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Abstract 

 
The Beaufort River is a complex estuarine 

river system that supports a variety of uses 
including shellfish grounds, fisheries nursery 
habitats, shipping access to Port Royal, receiving 
waters for wastewater effluent, and an 32-
kilometer section of the Intracoastal Waterway. The 
river is on the 303(d) list of impaired waters of 
South Carolina for low dissolved-oxygen 
concentrations. The Clean Water Act stipulates 
that a Total Maximum Daily Load must be 
determined for impaired waters. 

Artificial neural network (ANN) models and 
other data mining techniques were applied in the 
Beaufort River system to quantify the relationships 
between the time series of four wastewater point-
source discharges and the dissolved-oxygen 
concentrations recorded at seven real-time gages 
distributed about the system. The analysis 
included environmental factors such as water 
temperature, tides, and rainfall. This paper 
describes findings of the relationship between one 
of the point sources and a nearby gage. It was 
found that the effects of biochemical oxygen 
demand and ammonia loads on the dissolved-
oxygen concentrations vary significantly with water 
temperature and tidal conditions.  Depending on 
tidal conditions, calculations estimate that at a 
water temperature of 20° Celsius, a reduction of 
100 lbs/day of 5-day biochemical oxygen demand 
from the point source will increase the dissolved-
oxygen concentration at the nearby gage by 0.073 
mg/L. The corresponding change in dissolved 
oxygen relative to 100 lbs/day of NH3 is 0.16 mg/L. 
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INTRODUCTION 

A problem of great social importance is determining how to best use natural resources while 
preserving the quality of surrounding natural systems, such as surface water, groundwater, and air 
systems. Environmental regulatory agencies attempt to control exploitation using scientific means 
such as deterministic (physics-based) models that predict how a natural system will behave under 
scenarios of interest. In practice, however, the statistical accuracy of the models commonly is poor 
because natural systems tend to be too complex for state-of-the-art deterministic modeling methods. 
The poor accuracy of the models results in important decisions being made in the absence of 
unambiguous scientific findings. 

The U.S. Geological Survey 
(USGS) cooperated in a study 
comparing artificial neural network 
models (ANNs) to deterministic finite-
difference models of the Cooper River, 
a complex estuarial system (Conrads 
and Roehl, 1999). Both models were 
developed from 3 years of 
measurements of water level (WL), 
dissolved-oxygen concentration (DO), 
water temperature (WT), and specific 
conductivity (SC) that had been 
recorded by a network of gaging 
stations. The models predicted the 
river’s hydrodynamic, mass transport, 
and water-quality behaviors. The 
comparison showed the ANNs to be 
significantly more accurate and 
quickly developed. The ANNs could 
also be deployed as compact programs 
that execute without iteration; a prototype control system was developed to investigate regulating 
wastewater discharges according to the river’s assimilative capacity (Roehl and Conrads, 1999). 
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Figure 2: FDO and FWT for Beaufort 
River at Port Royal (station 02176611). 

To gain a better understanding of the Beaufort River and its tributaries, Beaufort-Jasper 
Water 

DESCRIPTION OF STUDY AREA 

Beaufort County is a rapidly growing residential, retirement, and resort area along the 
southe

and Sewer Authority, in cooperation with the USGS, established a network of seven gaging 
stations in the Beaufort River Basin in 1998. The gaging stations use satellite telemetry to transmit 
the data in  “near” real-time (4-hour intervals) to the District Office in Columbia. This network 
consists of four stations on the Beaufort River, and one station each on Brickyard, Albergotti, and 
Battery Creeks (fig. 1). Each station records WL, WT, SC, and DO on a 15-minute interval. A 
precipitation gage is located at the Albergotti Creek gage.  Three acoustic velocity meters (AVMs) were 
deployed in the spring of 2001 at two gages on the Beaufort River and at the Battery Creek gage to 
measure continuous (15-minute interval) tidal streamflow.  In addition to the gaging network 
maintained by the USGS, the South Carolina Department of Health and Environmental Control 
gathers monthly water-quality monitoring data for the U.S. Environmental Protection Agency’s 
STORET (STOrage and RETrieval) database. In addition, the National Weather Service has collected 
meteorological data since the early 1980’s. 
 

ast coast of South Carolina. The water resources of the area are crucial to the economic 
success of the region. The Beaufort River is a complex estuarine river system that connects the 
Coosaw River to the north and Port Royal Sound to the south (fig. 1). The river experiences semi-
diurnal tides of approximately 3 meters at its confluence with Port Royal Sound. Continuous tidal 
streamflow measurements from the AVM at station 02176611 show large tidal oscillations of 
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approximately 60,000 cubic feet per second (ft3/s) and net streamflow towards the Coosaw River of 
approximately 6,000 ft3/s.  The Beaufort River and its tributaries support a variety of uses including 
shellfish grounds, fisheries nursery habitats, shipping access to Port Royal, receiving waters for 
wastewater effluent, and a 32-kilometer section of the Intracoastal Waterway. The river is on the 
303(d) list of impaired waters of South Carolina for low dissolved-oxygen concentrations.  

 

APPROACH 

The variability of DO in the Beaufort River is a result of many factors including the quality of 
the wa

measur

ncentration (NH3).  These measurements were 

reek station (02176587) and one of the 
water r

FDO and FWT 

shows 

ter from Port Royal Sound to the south and the Coosa River to the north, the loading of 
oxygen-consuming constituents from the tidal marshes and other non-point sources, effluent from 
four permitted point sources and physical characteristics of streamflow, tidal range, salinity, and 
temperature.  To evaluate whether an ANN could be used to determine the influence of point-source 
discharge loadings on DO, data from a gaging station near a permitted discharge was selected. Of 
the seven stations on the Beaufort River and its tributaries, the gage at Port Royal (02176611) is 
only 150 meters south of the largest of four point-sources in the system. 

The data were comprised of 30-minute 
ements for WL, SC, WT, and DO at station 

02176611. The effect on DO of the oxygen-
consuming constituents transpires on a time scale of 
several days. This effect can be difficult to discern 
when coupled to high frequency forces such as 
diurnal and semi-diurnal tidal water level, tidal flow, 
and ambient temperature. Therefore, the hourly time 
series were filtered using frequency domain filtering 
(Press and others, 1993) to remove diurnal and semi-
diurnal periodic signal components (filtered variables 
are denoted by a “F” prefix, for example, FDO).   A 
further processing step was taken to decorrelate 
variables by systematically synthesizing cross-
correlation functions and computing their residuals. 
This step was necessary to avoid the propensity of 
ANN models to overfit when correlated variables are 
used as inputs. Two years of point-source effluent 
data were obtained from four wastewater reclamation 
facilities that discharge effluent into the Beaufort 
River.  Data from the facilities consisted of 
measurements of flow rates, biochemical oxygen 
demand (5-day) concentration (BOD5), and ammonia co
typically taken once a week. The outfalls for the two facilities to the north of station 02176611 are 
located beside one another. The effluent data for these two facilities were combined and treated as 
one point-source in the analysis. 

Rainfall data were collected from the Albergotti C

Figure 3: Scatter plot of FDO and FWT 
and least-squares regression line (R2=0.88)
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eclamation facilities near the Beaufort River at Port Royal gage. The dataset was augmented 
with calculated variables. The dissolved-oxygen deficit (DOD) was computed using an algorithm that 
assumes a constant barometric pressure (USGS, 1981). It is assumed that higher values of DOD 
connote higher levels of microbial activity. In addition, the difference between the high and low tide 
WL’s for each tidal cycle (XWL) were computed and then filtered as above. 

Typically, the majority of the variability in DO is due to WT. Inspection of 
their inverse relationship (Figure 2).  Linear regression produces a coefficient of determination 

(R2) of 0.88, indicating that approximately 88 percent of the variability of DO is explained by WT 
alone (Figure 3), and that only approximately 12 percent of the variability is caused by other factors. 
WT has two effects. One is that dissolved-oxygen saturation decreases with WT, and the other is that 
microbial activity that consumes DO also increases with WT (given sufficient DO and nutrients). The 
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use of DOD rather than DO as the 
response variable of interest emphasizes 
the microbial activity effect in the DO 
signal. 

The goal of this study was to 
quantify the effect that point-source
discha

RESULTS 

 
Approximately 88 percent of the 

variability of DO is due to temperature, 
and al

spection of the BOD5 loading from the water reclamation 

and W

 
rges of oxygen-consuming 

constituents have on instream DO.  Due 
to the limited number of data points of 
the effluent sampling concentrations data 
as compared to the gaging data (weekly 
values as compared to 30-minute data), a 
subset of the dataset was excised that 
included only the digitally filtered data of 
DO, WT, WL, and XWL for the day of the 
effluent. In addition, the 1-day derivatives 
of the DO and WT were computed and 
included in the dataset (1-day derivate of 
the filtered variables are denoted by an E 
prefix, for example, EDO or ESC).  The 
sensitivity of the response variables, DO 
and DOD, to the explanatory variables of 
interest of BOD5, NH3, rainfall, and tidal 
range were determined using ANN 
models. The type of ANNs used were the 
multi-layer perceptrons described by 
Hinton (1992) that were trained using the 
back-propagation and conjugate gradient 
algorithms.  
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l other factors account for only 
about 12 percent of the variability. Visual in
facility and the daily change in DO concentration at station 02176611 (Figure 4) shows a relation 
between the two variables (note that the EDO scale has been inverted so decreases in daily DO rise 
on the scale). The number of coincident peaks in the daily change in DO and BOD5 loading, for 
example observations 6, 31, 35, 39, and 58, indicate that the BOD5 loading may account for a 
significant part of the remaining 12 percent of the variability in DO. 

An ANN model of the EDOD, having BOD5, rainfall, and decorrelated filtered WL, XWL, SC 
T as inputs, was generated to provide a more comprehensive assessment of the relationship 

between the BOD5 and the DO. Figure 5 shows that the ANN fits most of the higher peaks in the 
EDOD. The R2ANN = 0.57, indicating that approximately 57% of the variability in the EDOD is 
accounted for by variability in the input variables. The functional form of the ANN’s multivariate 
mapping of inputs to outputs can be understood by examining three dimensional response surfaces 
like that shown in Figure 6. The figure plots the ANN’s prediction of EDOD versus the decorrelated 
ESC and the BOD5. WT was set to 20º C. The actual data are projected onto the surface to show how 
the data are distributed in the (ESC, BOD5) plane. Note the region where there is no actual data and 
the ANN’s extrapolation through it.  Looking from right to left, the EDOD increases with the BOD5 for 
all values of decorrelated ESC, however, the sensitivity is much greater at negative values of 
decorrelated ESC than for positive values. A physical explanation of this observation is that the gage 
is on the ocean side of the discharge point and that a decreasing SC connotes freshwater flows from 

Figure 5: Measured and Predicted EDOD. ANN used BOD   5
as an input at a time delay of 1 day. R2

ANN = 0.57. 
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Figure 4: EDO and BOD5 (at a 1 day time delay).  
Linear R2 = 0.13. 
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inland sources moving effluent towards the DO probe. The historical range of the BOD5 is 15 to 765 
lbs/day. The impact of BOD5 on EDOD can be quantified as follows. Neglecting the region of no data, 
the EDOD range ≈ 0.50 - –0.05 = 0.55 mg/L. The sensitivity to 100 lbs/day of BOD5 loading at 20° C 
can be estimated as 100 (0.55 mg/L) / (765 – 15 lbs/day) = 0.073 mg/L per 100 lbs/day of BOD5. 

The impact of the NH3 discharge can be similarly evaluated. Figure 7 shows that predictions 
made by an ANN model of the EDOD, having NH3, rainfall, and decorrelated filtered WL, XWL, SC 
and WT as inputs, generally runs through the middle of the actual data. The R2ANN = 0.31, indicating 
that approximately 31% of the variability in the EDOD is accounted for by variability in the input 
variables. It should be noted that the NH3 input was delayed relative to the EDOD by 3 days,versus 1 
day for the BOD5, in the first model described above. The delays were chosen by testing different 
delay configurations and selecting those that produced the highest R2 ANN’s.  Figure 8 again plots the 
ANN’s prediction of EDOD versus the decorrelated ESC and the NH3, with WT set to 20º C, and the 
actual data projected onto the response surface. Again, the EDOD increases with the NH3 for all 
values of decorrelated ESC; 
however, unlike the first model, 
the sensitivity is much greater at 
positive rather than negative 
values of decorrelated ESC. A 
possible physical explanation is 
complex. The Beaufort River is 
just a channel connecting the 
Coosaw River to the north with 
Port Royal Sound to the south. 
The channel geometry decreases 
greatly from south to north. Flow 
measurements by acoustic 
velocity meters indicate that the 
net flow direction is from the 
Port Royal Sound to the Coosaw 
River with tidal oscillation an 
order of magnitude greater than 
the daily mean streamflow.  
Reversing tidal streamflows 
would mix the slow reacting NH3 
southward (connoted by negative 
decorrelated ESC) and would 
allow NH3 to be dispersed and 
diluted in the tidal exchange 
with Port Royal Sound. 
Conversely, flows to the north 
would trap a large portion of the 
NH3 in the Beaufort River where 
it would reside long enough to 
have a discernable impact on the 
DO. Indeed, analyses at gages to 
the north indicate the presence 
of a “sag” where DO levels 
become severely depressed 
during sustained high point-
source loading. Due to the large 
tidal prism, impacted water in 
the north is well mixed with 
water in the south so that the 
DO sensitivity to NH3 is 
registered at the 2176611 gage.  

Figure 6: ANN Prediction of EDOD versus 
decorrelated ESC and BOD5 at WT = 20C
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Figure 7: Measured and Predicted EDOD. ANN used 
NH3 as an input at a time delay of 3 days. R2

ANN = 0.31.
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The historical range of the NH3 
is 15 to 263 lbs/day. Neglecting the 
region of no data, the EDOD range ≈ 
0.10 - –0.3 = 0.40 mg/L. The sensitivity 
to 100

 combination, long-term real-
me gaging of water-quality parameters, 

signal pro NN’s can 
rovide an excellent means to

unders

 between these variables vary greatly with changing tidal 
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 lbs/day of NH3 loading at 20° C 
can be estimated as 100 (0.40 mg/L) / 
(263 – 15 lbs/day) = 0.16 mg/L per 100 
lbs/day of NH3. 

 
 

CONCLUSIONS 
 

In
ti

cessing, and A
p  

tand highly complex and 
interacting behaviors in an estuary. The 
location selected for this study provided 
an excellent case for evaluating the 
effects of point-source effluent loading 
on DO using these tools. The general 
findings are that a point-source’s 
signals of BOD5 and NH3 can be 
correlated to DO at a nearby gage 
through ANN modeling; that sensitivities
and ambient conditions; and that a physical interpretation of the system’s process physics can be 
readily made by examining ANN response surfaces. A final note is that South Carolina’s water-
quality standard for the maximum impact of all point sources on the Beaufort River is only 0.1 
mg/L. 

 

Figure 8: ANN Prediction of EDOD versus 
decorrelated ESC and NH3 at WT = 20C. 
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