

Association of American State Geologists

United States Geological Survey

National Cooperative Geologic Mapping Program

STATEMAP Component: States compete for federal matching funds for geologic mapping

Contact information

Delaware Geological Survey State Geologist: John H. Talley (302) 831-8258 STATEMAP Contact: Kelvin W. Ramsey (302) 831-3586 http://www.dgs.udel.edu/

SUMMARY OF STATEMAP GEOLOGIC MAPPING PROGRAM IN DELAWARE

Federal Fiscal Year	Project Title	State Dollars	Federal Dollars	Total Project Dollars
1993	Geologic Map of the Seaford East and Seaford West Quadrangles, Scale 1:24,000	\$68,727	\$18,290	\$87,017
1997	Geologic Map of the Milton and Ellendale Quadrangles, Scale1:24,000	123,617	49,076	172,693
1998	Geologic Map of the Ellendale Quadrangle, Scale 1:24,000	92,038	30,000	122,038
1999	Geologic Map of the Lewes and Cape Henlopen Quadrangles, Scale 1:24,000	80,071	30,000	110,071
2001	USGS Digital Geologic Map Database Development	14,619	8,000	22,619
2002	Surficial Geologic Map of Delaware, Scale 1:100,000	112,442	40,000	152,442
2003	Surficial Geologic Map of Delaware, Scale 1:100,000	159,297	75,819	235,116
2004	Surficial Geologic Map of Delaware, Scale 1:100,000	111,971	72,735	184,706
2005	Surficial Geologic Map of Delaware, Scale 1:100,000	155,713	80,273	235,986
2006	Geologic Map of the Georgetown Quadrangle, Scale 1:24,000	130,201	72,199	202,400
2007	Geologic Map of the Fairmount and Rehoboth Beach Quadrangles, Scale 1:24,000	116,302	67,655	183,957
	TOTALS	\$1,164,998	\$544,047	\$1,709,045

The Delaware Geological Survey has a continuing program to map the geology of the entire state at the detailed scale of 1:24,000. The STATEMAP component of the National Cooperative Geologic Mapping Program has contributed significantly to our surficial geologic mapping program. This work has entailed not only new geologic mapping, but also the digital compilation of previous mapping. Products resulting from this program include file formats that can be downloaded and printed from the web as geologic map products and imported into GIS software as georeferenced layers.

Geologic maps show the distribution of rock units and other geologically related information, and are important sources of natural-resource and environmental information including, but not limited to, water resources and building materials. Geologic maps are the fundamental bases from which derivative maps and applications are generated. Uses for geologic maps include:

- Development and protection of ground- and surface-water resources (occurrence, distribution, availability, quantity, and quality)
- Mapping of ground-water recharge and wellhead-protection areas
- Evaluation of geologic hazards (earthquakes, land subsidence, coastal erosion, stream and river flooding, landslides)
- Planning transportation and utility routes
- Land-use planning and evaluation of land-use proposals
- Environmental assessment and protection planning (underground storage tanks, landfills, spray irrigation sites, aquifer contamination, best management practices)
- Natural-resource assessment, exploration, development, and management (sand and gravel, clay, aggregate)
- Regulatory decision-making
- Site selection for public facilities (schools, landfills, water-treatment facilities, waste-disposal sites, reservoirs)
- Agriculture, Education and Recreation