USGS - science for a changing world

Great Lakes Science Center

About Us Products Research Library Links
Research Publications Research Publications
Home Data FITPOP BOOTCLUS PREDTOX Commercial Fishing Reports
Publications Reports Fact Sheets Great Lakes Copepod Key Spawning and Nursery Atlas
Research Publications 20082007200620052004Awards
Publiations Database Database Search (USGS Users) Help Notes Keyword List
2004 Publications List

Hoff, Michael H., Michael W. Meyer, Julie Van Stappen, and Thomas W. Fratt. 2004. Relationships between bald eagle productivity and dynamics of fish populations and fisheries in the Wisconsin waters of Lake Superior, 1983-1999. Journal of Great Lakes Research 30(Supplement 1): 434-442.
Contribution # 1259

Abstract

Bald eagle (Haliaeetus leucocephalus) abundance declined in the 1950s and 1960s along the Wisconsin waters of Lake Superior, and were nearly absent along Wisconsin’s Lake Superior shoreline. The population began to increase again between 1980 and 1983, and since then bald eagles nesting on islands along Wisconsin’s Lake Superior shoreline (i.e., Apostle Islands) reproduced at a lower rate than have those nesting along the mainland shoreline of the lake and inland. Recent research indicated that bioaccumulation of toxic chemicals in the aquatic food chain no longer limits bald eagle reproduction there, and that productivity at island nests was lower than at mainland nests and inland nests as the result of low food availability. Management agencies have sought models that accurately predict productivity and explain ecological relationships, but no satisfactory models had previously been developed. Modeling was conducted here to determine which factors best explained productivity variability. The Ricker stock-recruitment model derived from only the bivariate breeding pair and productivity data explained only 1% of the variability in productivity data. The functional relationship that explained the greatest amount of productivity variation (83%) included the number of breeding pairs, burbot (Lota lota) biomass, longnose sucker (Catostomus catostomus) biomass, and commercial harvest of nontarget fishes. Model results were interpreted to mean that productivity was positively affected by populations of burbot and longnose sucker, which are important prey items, and by commercial fishermen feeding nontarget fish to bald eagles. Harvest of nontarget fishes by tribal fishermen and burbot and longnose sucker populations have not tended to change during the entire study period, although the burbot population has declined since 1991. Therefore, bald eagle productivity is not predicted to increase unless burbot, longnose sucker, or other preferred prey of bald eagles increases in the Apostle Islands.

TOP  BACK

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: www.glsc.usgs.gov/publications.php?action=2004&abstract=1259
Page Contact Information: GLSC Webmaster
Page Last Modified: October 20, 2008 02:23pm