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Abstract 
Reliable information for the lifetime distribution (LTD) of products is essential for 

determining current and future waste flows, for designing end-of-life management 

strategies, and therefore for improving resource efficiency of materials and energy. There 

is, however, a lack of both, methodology to determine the probability density functions 

for life expectancies of products, and solid quantitative data based on case studies.  In this 

report, we describe five approaches to determine the LTD of products using a 

combination of material flow modeling and survival analysis. Two of these approaches 

are applied to the following product categories: dwellings, passenger cars, refrigerators, 

air conditioners, CRT TV sets, and CRT computer monitors. The analysis was performed 

using data from various literature sources and a field study conducted during the summer 

of 2007. While the lifetime distribution of appliances is best approached with Weibull 

functions, passenger cars tend to follow normal distributions, and dwellings lognormal 

distributions. The lifetime expectancy of passenger cars has continuously increased since 

the 1960s, but experienced a pronounced increase for vehicles manufactured between 

1985 and 1990. One important factor for this sudden increase in lifetime expectancy 

might be the introduction of zinc-coated steel for corrosion protection.



1 Introduction 

1.1 Problem  

The fate of mineral resources extracted from the lithosphere is relatively well 

documented by USGS and various minerals associations. This is generally not the case 

for materials embodied in final products, or for their end-of-life destiny (Graedel, Van 

Beers et al. 2004; Graedel, van Beers et al. 2005; Johnson, Jirikowic et al. 2005). The 

lack of reliable data on those factors limits an understanding of their entire cycles, and 

therefore restricts policy development for resource and waste management. 

Measurements on discards and waste flows are very time consuming and expensive. In 

addition, the results of such samples are unlikely to be representative for an entire state or 

the U.S. as a whole because of regional differences in population growth and investments 

in capital and consumer goods. 

An alternative to determining discard flows is to compute them using historic data of 

products entering use and estimations of their lifetimes (Zeltner, Bader et al. 1999; 

Kleijn, Huele et al. 2000; Müller, Bader et al. 2004; Spatari, Bertram et al. 2005). The 

simplest assumption for service lifetimes is a “simultaneous exit”: products of a particular 

type all remain in the stock until they reach the average service life assumed, at which 

point they are all withdrawn. This is a convenient assumption for purposes of 

computation, but is a poor reflection of reality, and may result in inaccurate waste 

estimations. Common sense suggests that some assets will be withdrawn before they 

reach the average length of life and that some will remain active for some time longer. 

More realistic approaches assume that service lifetimes follow probability density 

functions (PDF). PDFs or lifetime distribution functions vary depending on the product 

category; as a result, several shapes have been suggested, such as normal, lognormal, 

Winfrey, or Weibull distributions (OECD 1993; Organisation for Economic Co-operation 

and Development. 2001; Bohm, Gleiss et al. 2002). Furthermore, the service life may 

also be dependent on the vintage year. For example, cars produced in the 1960s were 

more prone to engine failure or corrosion than newer models. 

Despite the crucial role of lifetime estimations, there is a lack of quantitative data 

analysis to determine reliable estimates for average service lifetimes as well as accurate 



shapes of the distribution function. Service lives of a large number of asset categories are 

used by the Bureau of Economic Analysis (BEA) to determine the size of capital stocks. 

The service lives used by BEA, which are derived from a variety of methods and (often 

old) sources, assume for most assets a simultaneous exit (single lifetime with no explicit 

distribution) which is constant over time (United States. Bureau of Economic Analysis. 

National Income and Wealth Division. 1999). For automobiles, where very good data of 

in-use stocks subdivided into vintage classes can be derived from registrations, BEA 

assumes full depreciation for vehicles older than 12 years. This assumption might be 

adequate for estimates of monetary assets, but it is certainly not reasonable for 

estimations of physical stocks and flows of goods, which do not lose weight during 

service lives.  

More recently, EPA commissioned two studies on the management of electronic waste in 

the United States (EPA 2007; EPA 2007), which involved a large field study conducted 

by the Florida Department of Environmental Protection. This work involved sampling 

more than 12,000 units to determine the age distribution of various electronic products 

reaching end-of-life management. The age distribution of retiring products was 

subsequently used as a proxy for the lifetime distributions. This approach, however, does 

not take into account the change in product sales: For example, if historic sales of a 

product have increased sharply over the past years, an analysis is more likely to 

encounter larger quantities of younger end-of-life products than would be the case for 

decreasing sales. The assumption that the age distribution is equal to the lifetime 

distribution assumes that sales are constant, which is often not the case. 

 

1.2 Objectives and relevance 

The objective of this study is to determine service lives for a variety of products using a 

combination of material flow analysis (MFA) and survival analysis. The models use a 

wide range of literature data for production, trade, and in-use stocks, which are 

complemented with a field study on end-of-life flows. 

The following products were analyzed: 



- Dwellings 

- Passenger cars 

- Refrigerators 

- Air conditioners 

- TV sets 

- CRT computer monitors 

Improved service lifetime estimations can be used to directly calculate the following 

variables in mineral cycle systems: 

- In-use stocks (growth, saturation, shrinkage), 

- Discard or obsolete product flows, 

- Stock replacement requirements. 

These, in turn, allow us to improve our understanding of the following information 

- Recycling efficiency,  

- Dissipative losses to the environment (arising, for example, from corrosion or 

abrasion of in-use stocks), 

- Flows into landfills, 

- Imports and exports of used and discarded products. 

Lifetime information is therefore essential in modeling material cycles, but also in deve-

loping forecasts and scenarios for future minerals demand and scrap availability (Müller 

2006). 

Improved data on the lifetime distribution of products will, when embedded into material 

flow models, enhance our understanding of mineral cycles in the past, the present, and 

the future, and therefore help to identify the most relevant opportunities to improve 

resource efficiency and to reduce environmental impacts of activities throughout the 

mineral cycles.



2 Methods 

2.1 Definition of service lifetime 
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Figure 1: System of product lifecycle from manufacturing to end-of-life management. 

 

The service lifetime of a product is defined in this report as the time span between its 

entry into use (I) and its exit from use (O1). This includes the time the product is actually 

used and the time it is “hibernating” (for example, vacant buildings or switched off 

computers that remain unused for a period of their life). Measurements of products 

exiting use (O1), however, are seldom performed. In these cases, measurements of 

products reaching end-of-life management (O2) are used as a proxy. This includes a 

period in which a product may be stored in “obsolete stocks”: for example, obsolete 

appliances stored in an attic or in illegal dumps, or abandoned structures that are not yet 

demolished. 

There are, however, two main reasons why a product reaches its end of service lifetime: 

deterioration and obsolescence. Deterioration refers to the diminishing functionality of 

the product due to changes in initial status, such as run out, wear out, breakage and so on 

and so forth, simply due to disintegration or degeneration. On the other hand, 

obsolescence, in general, is the process of passing out of usefulness. Note that a product 

can be obsolete even though it has not deteriorated, and it can deteriorate without 



reaching the obsolescent state. When a product is obsolete it means that the object is no 

longer perceived as having value, that is, a product is no longer in demand even though it 

may still be able to meet its functionality requirements. 

Obsolescence can be classified into four categories:  

Functional obsolescence usually occurs when a new product replaces an existing product, 

ending the demand for the current product. CDs and CD players replacing cassettes and 

LPs and their related products is a good example of functional obsolescence. 

Systemic obsolescence is generated by a system change that does not allow the current 

product to function fully in the new environment. Eliminating service and maintenance 

for the existing product and/or introducing a new operating system to the market, thereby 

creating difficulties in current software usage, can be considered as examples of systemic 

obsolescence causes. 

Style obsolescence usually occurs in high-cost low-demand products, and is usually 

highly correlated with the time that the product spent in the market. Fashion merchandise, 

high-technology objects (i.e., old model automobiles, PCs), toys (i.e., old Harry Potter 

movie merchandise) are examples of style obsolescence. That is, demand for the products 

ceases in the market place because the object loses its appeal for the customers due to the 

design rather than its functionality.  

Notification obsolescence is predetermined in the product design. Advice to the 

customers as how many times or how long a product may be used to avoid health risks or 

to maintain optimal performance, results in the discard of functioning products. Water 

filters are common example. 

These definitions of obsolescence are based on a conceptual lifecycle of products that 

may incorporate planned obsolescence. The lifetime definition used in this study, 

however, is independent of any such plan, and is independent of ownership. (A product 

may be reused several times by different owners). The service lifetime as used here is 

therefore defined purely in physical terms.  

 

 



2.2 MFA model 

In-use stock
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Figure 2: System of in-use stocks. I is the input into use, O the output from use, SK the 

stock in use, and dSK the rate of change in stock. T is the vintage year (year of 

manufacturing / construction), t the actual time of the system state. 

The dynamics of in-use stocks can be described in terms of a mathematical model 

(Baccini and Bader 1996). If we assume no trade in used products and integrate the 

hibernating stock into the in-use stock (Figure 2), we can formulate a generic model for 

the in-use stock system using three equations: 

dSK (t) = I (t) −O(t Mass balance (

t1

SK (t1 ) = SK (t0 ) + ∫ dSK (t) *
t0

Intrinsic relation (

t

O(t) = ∫ L(T , t) * I (t) * dT  
0

Model approach for constant LTD (3) 

The lifetime distribution (LTD) L(T, t) is the probability density function (PDF) that an 

input at time T exits use at time t. It delays an input at time T (e.g., vintage year) into 

outputs in various years t: some products of vintage T may retire after a short lifetime, 

others may remain in use much longer. The total output at time t, O(t), is the sum of the 



exits of all vintage classes prior to year t, or, in differential terms, the integral over all 

vintages.  

Using this model, the LTD functions can be determined via different approaches given 

the data available. Figure 3 illustrates input, output and stock as a function of time for one 

specific vintage T. 

 

T

Figure 3: Input, stock, and output of an individual vintage (cohort) 
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2.3 Survival analysis 

An alternative way to determine the LTD is the use of survival analysis. This branch of 

statistics is also known as reliability analysis in engineering or duration analysis in 

economics. Two key terms of our analysis are defined as the following: 



a. Survival function S

The survival function describes the probability that the time of death TD (or exit of use in 

our case) is later than some specified time t: 

S(t) = Pr(T D > t)  (4)

 of 

)5

Survival functions must be non-increasing (only deaths, no rebirths during lifetime), and 

they usually start with a value of 1 (S(0) = 1) at birth and diminish to a value of 0 as time 

elapses (S(+∞) = 0). 

. 

b. Lifetime distribution function L 

The lifetime distribution L(t) is a probability density function that describes the rate

exit at time t.  In other words, L(t) = P(T  =t). L(t)D  is also the derivative of the 

complement of the survival function:

L(t) = Pr(T D = t) = Pr'(T D ≤ t) = d (1− S(t)) / d  (

2.4 Approaches for determining the lifetime distribution

In the following, we assume that all products sold domestically remain in the country 

during their entire lifetime. This assumption is necessary because data for used and 

obsolete product trade are generally poor. Typically, for the few cases where used 

product trade data are collected, model years (vintages) are not distinguished, which 

makes the data useless for purposes of lifetime determination. The impact of this 

simplification differs by product category and approach used. Dwellings are usually not 

shipped across country borders, whereas trade in used passenger cars is known to be 

significant (U.S. Department of Commerce 2005). For used appliances no trade statistics 

are available, but those products are more difficult to ship than automobiles and are 

therefore likely to be less significant.  

 

 



It is furthermore assumed that the time of products exit use (O1 in figure 1) equals the 

time these products enter end-of-life management (O2); thus, that no significant amounts 

of obsolete products are stored prior to arrival in end-of-life management. 

Assuming no trade and stock accumulation of obsolete products, the lifetime distribution 

function of products can be estimated using data for inputs I(t), stocks SK(t), and outputs 

O(t) in various combinations. The estimation can be done either by analyzing individual 

vintages or cohorts, or by treating stocks and outputs in an aggregated form. A 

differentiation of vintages allows the determination of changes in lifetime distributions, 

while the aggregated form assumes a constant lifetime distribution. 

We identified five ways to determine the LTD of products. Two approaches deal with 

individual vintages and therefore enable the study of changes in LTD over time. Three 

approaches treat the vintages in a combined way and thereby presume a constant LTD. 

The five approaches use different parameters (Table 1). Official data on inputs I(t) are 

usually available on a national level, and are calculated by domestic production and trade 

(mass balance on market of final products in Figure 1). Alternatively, market research 

institutes may provide input data on smaller scales. Data on stocks of products in use are 

sometimes available for individual vintages (SK(T, t)), and sometimes only on an 

aggregate level (SK(t)). Stock data, if available at all, may be provided for a variety of 

scales (national, state, county, community, street, etc.). Data on outputs from use are 

rarely measured. Amounts of waste flows published by EPA are usually calculated using 

input data and assumed lifetimes, making these data useless for a determination of LTDs. 

In a few cases, however, output data for specific vintage years (O(T, t)) may be obtained, 

for example, for dwellings. For other products, the output may be measured in terms of 

its age distribution at a specific year, e.g., O(T, 2007) if the measurement took place in 

year 2007. Such analyses are not performed on a routine basis. They are very labor 

intensive, and their scale is often limited to individual transfer stations (community 

level), or, in exceptional cases, on a state level (EPA 2007).  

With the exception of the first approach, all methods presented here apply data on 

different scales. They therefore presume that the small-scale samples are representative of 



the entire country. The discussion as to whether or not this assumption is reasonable 

needs to be carried out on an individual basis. 

 

Table 1: Approaches and parameters (I(t): time series for input; SK(T, t): time series for 

stocks by vintage; SK(T,2007):age distribution of stock in year2007, SK(t):  time series 

for overall stock, regardless of vintage; O(T, t): time series for output by vintage; O(T, 

2007): age distribution of output in year 2007) 

 

 I(t) SK(T,t) SK(T,2007) SK(t) O(T,t) O(T,2007) Products 

 

Vintage 

(X) X - - - - Dwellings,  

passenger cars (1) 

(X) - - - X - None 

 

 

Combined 

X - X - -  None 

X - - - - X Passenger cars (2), 

refrigerators,  

air conditioners,  

TV sets, monitors 

X - - X - - (validation) 

Approach 1: Individual vintage stock 

Time series of in-use stocks for a specific vintage (stock graph in Figure 3) can be 

transformed into a cumulative proportion of surviving stock by scaling the values with 

the input of the respective vintage year. If the stock has negligible numbers of exits 

during the build-up phase (vintage year), the scaling can be done using the initial stock 

size. Survival functions (e.g., for normal, lognormal, or Weibull functions) are 

subsequently derived by non-linear regression of the adjusted cumulative proportion of 

surviving data. The survival functions are then restated as LTD functions using formula 

(5). 



 

Approach 2: Individual vintage output 

Time series for exits from use of a specific vintage (output graph in Figure 3) can be 

transformed into a lifetime distribution plot by scaling the values with the weight of the 

initial input of respective vintage years. LTD functions are then derived by non-linear 

regression, and the LTD functions can be expressed as survival functions. 

 

Approach 3: Combined vintage stock 

If the stock sizes of many vintages are known for only a few years (e.g., initial and 

current stock size), the individual tracking of a vintage (approach 1) provides little 

information for the shape of the LTD function. This problem can be resolved by 

assuming that all vintages have the same LTDs. In this case, all vintage stock data are 

first scaled by their respective inputs and subsequently plotted with the time axis showing 

age instead of construction year. This increases the number of data on the cumulative 

proportion of surviving plots, facilitating the non-linear regression to derive LTD 

functions and survival functions. 

 

Approach 4: Combined vintage output 

The age of retired products can be measured in field studies. If it is assumed that the 

products have a constant LTD, products of different vintages can be combined to form a 

plot of the age distribution. The age distribution plot needs to be scaled by the inputs of 

the respective vintage years to produce a LTD plot. Input data for the actually sampled 

region are generally not available, and need to be estimated using, for example, national 

sales data as a proxy. In order to account for the different scales in waste collection and 

sales, the national sales data for all vintage years are reduced proportionally in such a 

way that the overall sales data reflect the overall sample size. The LTD plot is 

subsequently used as a basis for non-linear regression analysis to determine LTD 

functions and survival functions. 



Approach 5: Combined vintage stock validation 

If time series for inputs and at least one independent measurement of the overall stock 

size are available, LTD functions can be validated: an MFA model (equations (1-3)) can 

be used to calculate the historic stock, which can be compared with the measured stock at 

the given time. This approach assumes a constant lifetime distribution. 

 

 

2.5 Approaches and data used 

a) Appliances 

We used approach 4 (combined vintage output) for estimating the LTDs of refrigerators, 

air conditioners, TV sets (CRT only), and computer monitors (CRT only). 

Input data (I(t)) were estimated using historic sales data (U.S. Census Bureau 1980-2007; 

U.S. Census Bureau 1980-2007; U.S. Census Bureau 1980-2007; EPA 2007). The age 

distribution of products exiting use, O(T, 2007) was determined by a field study at the 

transfer station in Branford, CT during the period June 2007 – September 2007. The age 

of retiring products was determined by subtracting the manufacturing date from the date 

of arrival at the transfer station. In cases where the manufacturing date was not indicated 

on the appliance, manufacturers helped us in determining them by indication of model 

and serial numbers. The resulting useful sample sizes were as follows: 

Refrigerators: 25 units 

Air conditioners: 34 units 

Monitors: 83 units 

TV sets: 75 units 

By using national sales data and local age distributions, we assume that the pattern of 

national sales is representative for Branford, or vice versa. 



b) Dwellings 

The LTDs of dwellings was estimated using a modified approach 4 (combined vintage 

output), which pays particular attention to the problem of data truncation. The truncation 

issue arose because of the longer lifetime of the buildings. In other words, even by 

tracking the buildings for over 100 years (which is as far as we could go in practice), we 

still only observed the first half of the LTD function. The model took into consideration 

this problem. 

Dwellings were analyzed for the city of New Haven, CT. The Department of Buildings 

has complete historic records of building permits since 1892, which serve as a proxy for 

inputs (I(t)). All dwellings with vintages of 1892, 1893, 1894, 1895, 1899, 1921, and 

1953 were analyzed in this study. Each of these vintages included between 50-150 

buildings. The time series of these vintage stocks SK(T, t) were investigated on a 

dwelling-by-dwelling basis using fire insurance maps from Sanborn (formerly called The 

Sanborn Map Company) for the years 1901, 1924, 1956, and 1973, and an online map of 

real estate appraisals from Vision Appraisal (a real estate appraisal company in New 

England) for 2007.  Since buildings with no explicit demolition year were assumed to 

exit use at the year of the first Sanborn map on which they no longer exist (while in 

reality they could have disappeared at anytime from the previous Sanborn map year up to 

this point), a slight overestimate could occur in our results,  

 

c) Passenger cars 

We used both approach 1 (individual vintage stock) and approach 4 (combined vintage 

output) for estimating the LTDs of passenger cars.  The first demonstrated how the 

lifetime of passenger cars evolved over the years, while the latter provided us with more 

information on the long tail of the LTD function. 

The LTD of passenger cars was studied using two complementary approaches. The first 

approach (individual vintage stocks) uses historical data of passenger car registrations per 

model year (MVMA 1973-1992; AAMA 1993-1998; WARD'S 1999-2006) in the U.S., 

which are available from 1961-2001, as proxies for in-use stocks per vintage year SK(T, 



t). By using these data, we assume that exits from use are caused by vehicle retirement, 

and neglect trade in used vehicles. Since exports of used vehicles exceed imports, the 

retirements from use are probably overestimated, resulting in an underestimation of the 

LTD. The magnitude of the error, however, cannot be determined because trade data for 

cars do not distinguish model years.  

The model year of cars is usually not identical with the calendar year, because production 

begins in the previous year, e.g., production and sales of cars of model year 2007 start in 

the fall of 2006. Therefore, assuming the first car of model year T is released to the 

market in October of the previous year, and the release continues at a constant rate until 

September of year T, we can simplify the problem by taking the middle of this cycle, 

April, as the release time of cars of model year T. Because the automotive stock statistics 

are assembled each July, this provides us with an additional three months in lifetime – 

when the 2007 models show up in the 2007 registration statistics, they have already been 

in use for three months. 

Car registrations differentiate model years for cars younger than 13 years, while data for 

vintages older than 13 years are only available as a sum. Apart from the trade problem, 

these are excellent data to determine the LTD of car vintages for the first 13 years of 

vehicles’ lives. However, many cars reach a lifetime much greater than this. In particular, 

these data do not allow the determination of the LTDs’ skewness on the right hand side. 

We therefore applied a second approach (combined vintage output) by which the shape of 

the right side of the LTD can be determined, although only for combined vintages. Retail 

sale data for passenger cars (MVMA 1973-1992; AAMA 1993-1998; WARD'S 1999-

2006) are used as proxies for the input (I(t)). It is therefore assumed that all trade in new 

cars is done prior to retail sale. The age distribution of cars exiting use, O(T, 2005-2007), 

is derived from records of Seymour Auto Wrecking, an automobile salvage company in 

Seymour, CT, who recorded information on the cars they salvaged over the period of July 

2005 – July 2007. Out of a total of 387 records, 100 were used for the analysis (records of 

trucks and vans or records with missing data such as unidentifiable manufacturing year 

were excluded). The age is determined by subtracting the model year from the salvage 

year. It is assumed that the age distribution of retiring cars salvaged in Seymour is 



representative for the U.S.



3 Results 

3.1 Introduction 

The goodness of fit was measured by either R2 or Akaike’s information criterion (AIC).  

R2s were used when the results were derived from the curve fitting process, i.e., the 

“combined vintage output” approach for passenger cars. R2 values represent the fraction 

of the total variance that is explained by the model equation. Generally speaking, the 

higher the R2 (closer to 1) the better the fit.  The judgment of the validity of a model, 

however, should be drawn based on other factors as well. In other words, one can get a 

perfect R2 (equals 1) by increasing the number of independent variables, but the 

interpretation of such model might be very difficult, or even impossible.  

AICs were used when the results were derived from the distribution fitting process, i.e., 

appliances, dwellings, and the “individual vintage stock” approach for passenger cars and 

appliances. AICs are used instead of R2 because the distribution fitting is based on the 

principle of Maximum Likelihood Estimation (MLE), instead of least squared-error.  AIC 

is defined as “AIC = 2k-2Ln(L)”, where k refers to the number of parameters and L refers 

to the likelihood (the chance of observing the samples given a probability distribution).  

Generally speaking, the smaller the AIC the better the fit. 

For each product category, we will demonstrate our results by listing the raw data used 

(first graphs from the left), the survival functions (second graphs), the lifetime 

distribution functions (third graph), and the goodness of fit (graphs on the right).  As 

mentioned earlier in the paper, we attempted three distribution functions for each 

product: normal, lognormal, and Weibull. 

 

 

3.2 Appliances 

All appliances were analyzed using the “combined vintage output” approach, which 

assumes a constant LTD (Figure 4).  



Refrigerators 

The expected lifetime for refrigerators varies only slightly with the assumed distribution 

function: 15.1 years for Weibull and normal distribution functions and 15.5 years for a 

lognormal distribution function. The standard deviation shows greater dependency on the 

chosen distribution function, and lies between 7.8 years (Weibull) and 10.5 years 

(lognormal). Using the AIC value as an indication, the best fit is achieved by the Weibull 

distribution function. 

 

Air conditioners 

The expected lifetime for air conditioners is also relatively robust between 13.5 years 

(Weibull) and 14 years (lognormal). The standard deviation ranges between 5.4 years 

(Weibull) and 8.1 years (lognormal). The Weibull and normal distribution functions show 

the lowest AIC values, indicating the best fit. 

 

TV sets (CRT) 

The mean lifetime for TV sets lies between 15.4 years (Weibull) and 15.9 years 

(lognormal), with the standard deviation being between 6.1 (normal) and 8.5 (lognormal). 

The best AIC values are achieved using Weibull and normal distribution functions. 

The study on management of electronic waste in the United States (EPA 2007) 

determined the age distribution of electronics based on a similar, but much larger field 

study conducted in Florida. The age distribution of TV sets in Florida resulted in a mean 

of 17.27 years for TV sets <19”, and 13.53 years for TV sets >19”. 

 

Computer monitors (CRT) 

The mean lifetime for CRT computer monitors is 10.2 years for all three distribution 

functions. The standard deviation is between 4 years (Weibull and normal) and 4.5 years 

(lognormal). The best fit is reached using the Weibull function. 



The above mentioned study on management of electronic waste in the United States 

(EPA 2007) with data from Florida determines the mean age of discarded computer 

monitors (CRT) to be 9.34 years. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Lifetime analysis for refrigerators, air conditioners, CRT TV sets, and CRT 

computer monitors in Branford, CT, using end-of-life data for June-September 2007. 

 

 

 

 

 



3.3 Dwellings 

Figure 5 shows the results for the dwelling analysis performed for New Haven, CT. The 

LTD could be determined only partially: Out of the oldest dwelling vintage with a 

complete data set (construction year 1892), about half of the dwellings are still in use. 

This provides us with reasonable data to calibrate the left side of the LTD curve, but the 

right side remains speculative. It is therefore impossible to make quantitative statements 

about a potential long tail, except for the reasonable presumption that some dwellings 

remain in use for a much longer period of time than the average. The resulting expected 

dwelling lifetime therefore depends strongly on the assumed distribution function, but 

lies for most vintages and approaches between 100 and 150 years (lognormal distribution 

tends to produce the longest lifetime estimate, with Weibull in the middle and normal the 

shortest). Although the dwelling lifetime seems to depend significantly on the vintage 

class, there is no convincing evidence for a clear trend in lifetime changes. This, 

however, may be due to the small sample size and the relatively short period of recorded 

dwelling stocks. 

The best fit (lowest AIC value) is for all vintages achieved using lognormal distribution 

functions. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Lifetime analysis for dwellings in New Haven with vintages 1892, 1893, 1894, 

1895, 1899, 1921, and 1953. 



3.4 Passenger cars 

Passenger cars were evaluated using two complementary methods, an “individual vintage 

stock” (Figure 6) and a “combined vintage output” approach (Figure 7).  

The policy of reporting data for the first 13 years of a vintage year was in the 1960s 

sufficient to cover most of the lifetime curve. However, the same policy currently does 

not even cover the exits from use of half of the cars, which results in an increasingly poor 

understanding of the expected lifetime. Worse, in 2003, WARD’S has discontinued the 

publication of numbers of cars in operation by model year. Based on the available data, it 

is therefore not possible to conclude whether or not the trend of increasing lifetime 

expectancies is still continuing. 

The analysis of individual vintages shows that the average lifetime expectancy of cars has 

increased considerably over the past decades: that of vintage 1965 cars was 10.6-11.3 

years; this has increased to more than 17 years for cars of vintage 1990. However, the 

strongest increase in lifetime occurred in the years between 1985 (13.8 years) and 1990 

(17.4 years).  

Based on the vintages of the 60s and 70s, which are covered with the most complete data 

sets, the LTDs are only slightly skewed to the right. The best fit for passenger cars is 

obtained with normal distribution functions. 

The “combined vintage output” approach conducted in Seymour, CT, results in slightly 

shorter lifetimes for passenger cars (15.9 years for all distribution functions). The best fit 

is again achieved using a normal distribution function. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Lifetime analysis for passenger cars in the U.S. using the individual vintage 

stock approach for model years 1965, 1970, 1975, 1980, 1985, 1990, and 1995. 



 

 

 

 

 

 

 

 

 

Figure 7: Lifetime analysis for wrecked passenger cars in Seymour, CT, using the 

“combined vintage output” approach. 



4 Discussion 

This study presents a first attempt to structure the task of determining the LTD of 

products using a combination of material flow modeling and survival analysis. Five 

approaches for determining LTD functions are introduced and applied for a set of 

commonly used products.  

The results are based on a set of assumptions, which might limit their accuracy: 

- Data for trade in used and obsolete products are incomplete or lacking entirely, 

and are neglected here. Assuming that exports exceed imports in the U.S., this 

results in an underestimation of the average lifetime. 

- Accumulation of obsolete products prior to disposal can often not be separated 

from the use phase (measurement at end-of-life management), which results in an 

overestimation of the average lifetime.  

- The sampling of end-of-life products is very time-consuming, resulting in 

relatively small sample sizes in our study. The study of end-of-life management 

of electronics conducted in Florida (EPA 2007; EPA 2007) is based on a much 

larger sample size. Nevertheless, the results for the age distribution of that study 

are very similar with our results. The age distribution, however, is a poor indicator 

for the LTD for products with significant changes in sales over the past years. 

- Literature data for time series of vintages are very rare. For example, WARD’S 

has discontinued the publication of data for vehicles in operation according to 

their model year. This severely restricts the analysis of changes in LTDs. This 

change is particularly important for automobiles, for which the average lifetime 

has almost doubled over the last 50 years. 

- All applications using end-of-life management data in this study used data on 

different scales, e.g., national sales data and local end-of-life data for the age 

distribution. This presumes that sales data for the U.S. are representative of local 

sales.  



The shape of the LTD varies strongly with the products: The LTDs of all investigated 

appliances are best approached using a Weibull function, while dwellings tend to be best 

fitted with lognormal functions, and automobiles with normal distribution functions. 

An increase in the expected lifetime could be observed for passenger cars throughout the 

vintages from 1965 to 1995. However, the extension of lifetime was most marked for 

vintages between 1985 and 1990. One important factor for this shift might be the 

introduction of zinc-coated steel for car bodies, which prevents cars from corroding.  
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