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[1] Changes in heat energy stored within a column of wetland surface water can be a
considerable component of the surface energy budget, an attribute that is demonstrated
by comparing changes in stored heat energy to net radiation at seven sites in the
wetland areas of southern Florida, including the Everglades. The magnitude of changes
in stored heat energy approached the magnitude of net radiation more often during
the winter dry season than during the summer wet season. Furthermore, the magnitude
of changes in stored heat energy in wetland surface water generally decreased as
surface energy budgets were upscaled temporally. A new method was developed to
estimate changes in stored heat energy that overcomes an important data limitation,
namely, the limited spatial and temporal availability of water temperature
measurements. The new method is instead based on readily available air temperature
measurements and relies on the convolution of air temperature changes with a
regression-defined transfer function to estimate changes in water temperature. The
convolution-computed water temperature changes are used with water depths and heat
capacity to estimate changes in stored heat energy within the Everglades wetland areas.
These results likely can be adapted to other humid subtropical wetlands characterized
by open water, saw grass, and rush vegetation type communities.
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1. Introduction

[2] Suitable spatial and temporal definition of changes in
heat energy stored in a column of wetland surface water are
frequently needed to make local and regional energy budget
estimates of latent heat fluxes; that is, the energy equivalent
of evapotranspiration. Uncertainties in the characterization
of surface energy fluxes limit the reliability of hydrologic
analyses, and handicap efforts to manage water resources.
The purposes of this paper are to (1) identify when and
where changes in stored heat energy in wetland surface
water are a considerable component of the surface energy
budget and (2) introduce new equations for computing
changes in wetland stored heat energy that rely on measured
changes in air temperature rather than measured changes in
water temperature. Reliance on air temperature instead of
water temperature was considered desirable because air
temperature data are more readily available. Additionally,

air temperature monitoring is less expensive and less labor
intensive than water temperature monitoring. The new
equations for computing changes in heat energy stored in
wetland surface water are applied in a case study of the
Everglades areas of southern Florida (Figure 1).
[3] A simplified surface energy budget for wetlands takes

the form (Figure 2)

Rn � W þ Gveg

� �
¼ lE þ H ð1Þ

where Rn is net radiation, W is changes in heat energy stored
in wetland surface water, Gveg is biomass storage (heat
energy stored in the vegetation), lE is the latent heat flux,
and H is the sensible heat flux. The units for these surface
energy fluxes are watts per square meter (W m�2). The
terms on the left side of the energy budget equation are
commonly called the available energy (Ae) for evapotran-
spiration because this energy is partitioned between sensible
heat (H) and latent heat (lE). Typically, Rn is the dominant
component of a surface energy budget; however, this does
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not hold true universally because W can be considerable at
locations with surface water. In fact, W sometimes can be
the dominant component of a surface energy budget.
[4] Previous studies have investigated surface energy

fluxes using land-based hydrometeorological methods
[Brutsaert, 1982; Monteith and Unsworth, 1990; Abtew

and Obeysekera, 1995; Bidlake et al., 1996; Campbell
and Norman, 1998; German, 2000; Lott and Hunt, 2001;
Sumner, 2001; Jacobs and Satti, 2001; Wilson et al., 2002;
Small and Kurc, 2003] and satellite-based methods
[Anderson et al., 1997; Norman et al., 2003; Liu et al.,
2003; Bastiaanssen et al., 2002; Islam et al., 2002].

Figure 1. Location of study sites in the wetland areas of southern Florida. Modified from Lietz [2000].
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Because a change in surface water temperature reflects a
change in stored heat energy, previous studies of surface
water temperature are considered relevant, including those
of equilibrium surface water temperature [Edinger et al.,
1968; Bogan et al., 2003] and heat exchange at the air-water
interface [Mohseni et al., 1998]. The latter studies, however,
differ from the analysis described herein because they focus
on absolute water temperatures rather than changes in water
temperature. For example, Bogan et al. [2003] developed
relations between mean weekly equilibrium stream temper-
ature and mean weekly stream temperature, and Mohseni et
al. [1998] examined the relation between mean weekly air
and stream temperatures. Edinger et al. [1968] introduced
the concept of equilibrium water temperature, defining it as

the water temperature at which the sum of the heat fluxes
through the surface water is zero.

2. Data Compilation and Equation Development

[5] New equations developed for estimating changes in
heat energy stored in a column of wetland surface water are
presented. Existing hydrometeorological data [German,
2000] in the Everglades wetland areas of southern Florida
were compiled before these equations were developed.

2.1. Data Compilation

[6] The hydrometeorological data compiled for this
analysis were taken from German [2000] (Figure 1 and

Figure 2. Simplified surface energy budget for the Everglades.

Table 1. Site Locations and Characteristics in the Wetland Areas of Southern Floridaa

Site Latitude Longitude

Approximate Height
Above Land Surface
of Air Temperature

Sensor, m Community Comments

2 26�3704000 80�2601200 1.5 open water always wet; lily pads at times
3 26�3102000 80�2001100 1.4 open water flow regulation
4 26�1805500 80�2205700 3.0 dense saw grass dry part of some years
5 26�1503000 80�4401700 2.5 medium saw grass dry part of some years
7 25�3605900 80�4200800 2.3 sparse saw grass never dry
8 25�2101100 80�3800200 1.2 sparse rushes dry part of each year
9 25�2103500 80�3104600 1.6 sparse saw grass dry part of each year

aLocations are shown in Figure 1.
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Table 1), who estimated evapotranspiration in the Ever-
glades using a Bowen ratio approach [Bowen, 1926].
Data collected at sites included the surface water depth,
rainfall, wind speed and direction, incoming solar radia-
tion, net radiation, soil heat flux, air temperature, relative
humidity, vapor pressure gradient, air temperature gradi-
ent, and water temperature at both the water surface and
at depth. An example of a typical data collection site is
shown in Figure 3.
[7] At each site, sensor measurements were made every

30 s and averaged and stored on site at 15 or 30 min
intervals [German, 2000]. Measurements were stored at
15 min intervals at sites 4–9. Thirty minute means or
totals (for rainfall) were computed for sites 4–9 so that
analysis and equations could be applied at each location
using data with a consistent time step. Data used most
frequently in this paper are measurements of air and
surface water temperature, and surface water depth.
German [2000] measured surface water temperature (1) di-
rectly below the water surface, and (2) at depth near the
land-water interface adjacent to decaying peat and vege-
tation at the bottom of the surface water column. The
height above land surface where air temperature was

measured ranged from about 1 to 4 m (Table 1), and
depended on the vegetation height.
[8] German [2000] describes in detail (1) the criteria

for selecting monitoring sites, (2) data processing and
screening, and (3) site maintenance; these procedures are
summarized here. Factors considered in site selection
included plant community, duration of water inundation,
security and logistics. Each site was located at the center
of a circle of relatively uniform vegetative cover with a
radius of at least 100 times the height of the air
temperature/relative humidity sensor. Data processing in-
cluded screening tests based on range limits and visual
inspections to eliminate data collected by sensors that
were clearly malfunctioning. Sites were visited every 4 to
6 weeks for inspection and maintenance. It is important
to note the accuracy of air and water temperature mea-
surements used in this study. Accuracy of these measure-
ments may be about ±0.4% of the reading (Omega
Engineering Inc., oral communication, 2005). The mean
temperatures measured at all nine sites were about 23.3�
and 25.1�C, respectively, for air and water [German,
2000] which translates into an average error of about
±0.1�C. An error of ±0.2�C is possible for air and water

Figure 3. Typical data collection site. From German [2000].
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temperature changes, since these are the difference be-
tween two consecutive readings.

2.2. Equation Development

[9] Several equations were considered to estimate
changes in stored heat energy in a column of wetland
surface water. The goals were to (1) capture (reasonably
well) the observed variability in stored heat energy changes
at 30 min and daily time intervals, and (2) require only
readily available data.
[10] Estimating stored heat energy changes at short time

intervals (30 min and daily) was desirable because high-
frequency estimates are needed to make local and regional
energy budget estimates of evapotranspiration. For example,
30 min and daily fluxes of stored heat energy can be used to
estimate evapotranspiration with the Priestley-Taylor
[Priestley and Taylor, 1972] and Penman [1948] equations.
Also, high-frequency results can be temporally up-scaled to
fit the needs of most evapotranspiration estimators. For
example, 30 min fluxes of stored heat energy can be up-
scaled to weekly and monthly values for energy budget
based estimators of evapotranspiration.
[11] Ideally, stored heat energy is calculated from

changes in the vertically averaged water column temper-
ature measured by thermistor or thermocouple strings.
Unfortunately, historical water temperature data are limited.
Historical air temperature data, however, are readily
available and, for shallow layers of surface water, air
temperature changes are the primary driver of water
temperature changes. For example, air temperature
changes explain most of the variability in water temper-
ature changes in Everglades wetland areas. The similarity
of changes in mean daily air and surface water temper-
atures at site 3 in 1997 demonstrates this point (Figure 4).
These temperature changes were computed as the differ-
ence between two consecutive mean vertical and daily
surface water temperatures. Although air temperature
changes seem to explain most of the variability in water
temperature changes, some differences are apparent
(Figure 4). The differences could be caused by heat

exchange processes other than air temperature affecting
water temperature, including water management activities,
evaporative cooling, rainfall, and perhaps surface water
and groundwater interactions.
[12] The goal of capturing the variability of changes in

stored heat energy at short-time intervals (less than 1 hour)
presented additional challenges, particularly the ability to
account for the thermal memory of the wetland surface
water. Thermal memory is a length of time that an individ-
ual air temperature change will impact future water temper-
ature changes. Air temperature changes within the surface
water’s thermal memory are dampened, phase shifted, and
superimposed to produce the current water temperature
change (Figure 5). Air temperature changes that occurred
more recently within the surface water’s thermal memory
impact the current water temperature change more strongly
than air temperature changes that occurred later within the
surface water’s thermal memory. Notably, the concept of
thermal memory differs from the concept of thermal inertia,
which is the square root of the product of the media thermal
conductivity, density and specific heat capacity. Thermal
inertia is the ability of a material to conduct and store heat,
whereas thermal memory only represents a length of time.
Although not previously applied to heat exchange hydro-
logic problems, the general convolution integral can account
for the thermal memory of surface water when computing
changes in mean vertical surface water temperature.
2.2.1. Convolution Integral
[13] The convolution integral [Dodge, 1959; Besbes and

DeMarsily, 1984; Morel-Seytoux, 1984; Wu et al., 1997;
Weiler et al., 2003; Long and Putnam, 2004; O’Reilly, 2004]
uses a time series forcing function and transfer function to
calculate a time series response function. For this paper, the
physics of heat energy exchange between the atmosphere
and surface water is encapsulated as both a time-varying
and nonlinear transfer function. The transfer function is time
varying because the amount of heat energy exchanged
between the atmosphere and surface water depends not only
on the temperature gradient close the water surface, but also
the surface-water depth, which can change within the

Figure 4. Changes in mean daily and vertical water and air temperatures at site 3 in the Everglades
during 1997. Site location is shown in Figure 1.
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water’s thermal memory. The nonlinearity of the transfer
function is a consequence of it’s derivation from heat
transfer equations, which will be discussed later.
[14] Numerous studies have used the convolution inte-

grals. For example, Besbes and DeMarsily [1984] used the
convolution of a time series of infiltrated water (forcing
function) with a linear transfer function to compute a net
recharge time series (response function) for an unconfined
aquifer in northern France. Long and Putnam [2004] used
the convolution of a time series of the stable isotope of
oxygen (d18O) for recharge water (forcing function) with a
nonlinear transfer function (representing the effect of con-
duit and intermediate groundwater flow) to compute a time
series of d18O (response function) at a discharge point. In
this paper, the convolution integral is presented in a format
similar to that of Long and Putnam [2004] and takes the
form

y tð Þ ¼
Z t

0

h t � tð Þc tð Þdt ð2Þ

where y(t) is the computed time series of changes in mean
vertical surface water temperature (the response function),
h(t � t) is the time-varying and nonlinear transfer function
derived and described herein, c(t) is the time series of
measured changes in air temperature (the forcing function),
and dt is the derivative of time.
[15] Using the discrete form of the convolution integral,

changes in the response function (water temperature) were
computed as the linear superposition of a thermal mem-
ory of dampened and phase-shifted individual changes in
the forcing function (air temperature). The discrete form
of the convolution integral for this heat exchange problem
is

yi ¼
XIMEM

j¼0

hi�jci�j j ¼ 0; 1; 2; . . . ; IMEM ð3Þ

where y, h, and c are the discrete forms of the continuous
functions in equation (2); i is the integer time step for
computing changes in the response function (surface water
temperature); and j is the integer time step discretizing the
surface water’s thermal memory. The variable IMEM + 1 is
the number of historical time steps discretizing the surface
water’s thermal memory. Not present is an equation symbol
for the water’s thermal memory; instead, the thermal
memory is the time length spanning the summation of the
individual products of h and c from j = 0 to IMEM. Note
that the transfer function, hi– j, needs to be derived.
2.2.2. Transfer Function
[16] The transfer function describes the temporal re-

sponse of the response function to a unit change in the
forcing function and, as such, encapsulated the physics of
heat exchange between the atmosphere and surface water.
Assume that the derivative with respect to time of the
difference between the equilibrium [Edinger et al., 1968]
and actual water temperatures is proportional to the differ-
ence between equilibrium and actual water temperatures and
inversely proportional to surface water depth. The mathe-
matical formula becomes

d Te
w � Tw

� �
dt

¼ �kex
Te
w � Tw

� �
D

; ð4Þ

where Tw
e is equilibrium water temperature [T], Tw is actual

water temperature [T], dt is the derivative of time [t], kex is
the thermal exchange coefficient [Lt�1], and D is the surface
water depth [L]. The units [T], [t] and [L] represent the units
of temperature, time and length, respectively. Equilibrium
water temperature is defined as the temperature at which no
net heat exchange occurs in the area of interest. This
condition is met if the sum of various heat exchange
processes, such as air temperature, sensible heat flux, solar
radiation, and evaporative cooling totals zero. The kex
variable is a proportionality constant that describes the rate
at which water temperature responds to heat exchange
processes [Edinger et al., 1968]. In some cases treating kex

Figure 5. Changes in 30 min mean air and water temperature at site 3 in the Everglades. Site location is
shown in Figure 1.
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as a constant may oversimplify the actual system dynamics
because kex likely depends on processes such as the
temperature gradient near the water surface, local turbu-
lence, and radiation.
[17] Solving the ordinary differential equation (4) (see

Appendix A) yields

Tw ¼ Te
w � DTae

�kex
D
t; ð5Þ

where DTa is the rate of change in air temperature[Tt-1].
The rate of change in water temperature with time is
determined by differentiating equation (5) with respect to
time, which results in

dTw

dt
¼ DTa

kex

D
e�

kex
D
t: ð6Þ

The discrete form of this derivative introduces a coefficient,
a (unitless), which relaxes the assumption that a specific air
temperature change causes an equivalent water temperature
change. The coefficient a represents the fraction of air
temperature change that eventually causes an equivalent
water temperature change, and is less than or equal to 1.0.
This mathematical formula becomes

DTw

Dt
¼ aDTa

kex

D
e�

kex
D
t : ð7Þ

Thus the transfer function takes the form

hi�j ¼
kex

Di�j

e
� kex

Di�j
t
; ð8Þ

where t is the elapsed time within the surface water’s
thermal memory. The transfer function clearly is time

variant because of dependence on surface water depth,
Di– j, which changes within the thermal memory of the
wetland surface water. The thermal exchange coefficient,
kex, does not make the transfer function time variant
because this coefficient is a regression-defined constant.
[18] The summation shown in equation (3) was carried

out over an assumed finite thermal memory of the surface
water. To avoid discretization errors, the transfer function
was normalized by dividing by the total area under the
discrete transfer function of finite memory. For various
values of kex and Di– j (Figure 6), a normalized form of
the transfer function, equation (8), is indicative of exponen-
tial decay, suggesting air temperature changes that occurred
more recently in the water’s thermal memory have greater
impact on current water temperature changes than air
temperature changes that occurred later within the water’s
thermal memory. Increasing the thermal exchange coeffi-
cient, kex, reduces the impact of recent air temperature
changes on the current water temperature change, and
increases the impact of later air temperature changes on
the current water temperature change. Likewise, an in-
creased surface water depth, Di– j, reduces the impact of
recent air temperature changes on the current water temper-
ature change but has little effect on the impact of later air
temperature changes on the current water temperature
change. The final discrete form of the transfer function
and convolution integral, used to compute mean vertical
water temperature changes, and ultimately, changes in heat
energy stored in a column of wetland surface water, takes
the form

DTwi
¼

XIMEM

j¼0

kex

Di�j

e
� kex

Di�j
taDTai�j

j ¼ 1; 2; 3; . . . ; IMEM ð9Þ

Figure 6. Transfer function for various values of the thermal exchange coefficient (kex) and surface
water depth (D).
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[19] It is important to note that the distance between data
collection locations may affect the accuracy of equation (9).
For example, equation (9) is applied in the wetland areas of
the Everglades (Figure 1), where air temperature measure-
ments always were made less than 3 m away from the
location where predicted mean vertical water temperature
changes were desired. Using air temperatures measured
several thousand meters away from the target location for
predicting water temperature changes may increase the error
statistics.
2.2.3. Parameter Estimation
[20] Regression was performed using UCODE [Poeter

and Hill, 1998] to estimate parameter values for the transfer
function that minimized the errors between mean vertical
water temperature changes computed with the convolution
integral and those measured in the field. Accurately com-
puted water temperature changes are required to obtain
accurate estimates of changes in heat energy stored in a
column of wetland surface water. For example, an error of
0.1�C in water temperature change for a 30 cm deep water
column during a 30 min time period results in an error of
about 70 W m�2 in stored heat energy flux. This stored heat
energy error can be substantial, considering mean 30 min
net radiation ranged from �50 to 500 W m�2 within the
Everglades wetland areas. Negative values of net radiation
were common during the night, when incoming short-wave
solar radiation was zero. The regression-defined parameter
values served to minimize the error in water temperature
changes computed with the convolution integral, and pro-
vided further insight regarding the variability of heat ex-
change processes acting within the wetland system.
[21] Regression minimized the objective function, S(b),

[Hill, 1998] that was quantitatively defined as

S bð Þ ¼
Xnt
i¼1

DTwi
� DT 0

wi
bð Þ

� �2

ð10Þ

where b is a vector containing values of each of the
parameters being regression estimated, nt is the number of
water temperature changes measured in the field, DTwi

is the
ith measured water temperature change, DT0wi

(b) is the
equivalent of the ith measured water temperature change
computed by the convolution integral (a function of b).
Measured water temperature changes, DTwi

, in S(b) were
derived from the German [2000] data as follows. Thirty
minute mean water temperatures measured at the top and
base of the water column were averaged to estimate the
mean 30 min and vertical water column temperatures. The
difference between two consecutive mean vertical water
column temperatures was used as the mean vertical water
column temperature change (DTwi

).
[22] Field data requirements for equation (9) included

time series of air temperature changes (DTa) and water
depths (D). These time series data were taken from the
German [2000] data set. Field data were not available for
the thermal exchange (kex) and alpha (a) coefficients,
therefore these coefficients were estimated with regression
to minimize equation (10). A conservative overestimate of
the surface water’s thermal memory also was used in order
to solve equation (9) because it prevented errors in convo-
lution-computed water temperature changes caused by trun-
cation of the transfer function. For example, using 0.25 days

for the surface water’s thermal memory truncates relatively
large values of the transfer function (Figure 6). This
truncation creates errors in convolution-computed water
temperature changes (equation (9)) because air temperature
changes occurring prior to 0.25 days are not multiplied by
the transfer function and summed to compute the current
water temperature changes. In contrast, over estimating the
surface water’s thermal memory only truncates very small
values of the transfer function (Figure 6) which minimizes
truncation errors. Thus a period of 12 days was used as a
conservative overestimate of the surface water’s thermal
memory, based on the decay of the transfer function
(Figure 6) for values of kex and D expected in this study.
This 12 day thermal memory was used at all sites every year.
[23] The regression process was initiated by perturbing

kex and a by 1% from their initial values to compute
parameter sensitivities. These sensitivities were used to
solve for estimates of kex and a that minimized S(b). The
detailed forms of S(b), sensitivity, and regression equations
are presented by Poeter and Hill [1998] and thus are not
repeated here. S(b) was considered minimized when the
difference between two successive solutions for kex and a
was less than the parameter tolerance criteria (equal to
0.01). Within this parameter tolerance, further regression
iterations did not substantially reduce errors between
changes in mean vertical water temperature computed with
the convolution integral and those measured in the field.

3. Results

[24] The Florida Everglades, or ‘‘river of grass’’
[Douglas, 1947], is characterized by its low topographic
relief; a broad array of aquatic, semiaquatic and upland
habitats; and extensive wetland areas that include saw grass,
cat tails, cypress strands, and tree islands (Figure 1). Evolu-
tion of the Everglades landscape, including natural processes,
consequences of urbanization and water management activ-
ities, has been discussed extensively in many publications
[Douglas, 1947; Parker et al., 1955; Renken et al., 2005] and
therefore is not repeated here. It is reasonable to expect that
Everglades wetland areas may store or release considerable
amounts of heat energy, mostly because of the relatively large
heat capacity of surface water and the extensive wetland areas
covered by a column of surface water.

3.1. Surface Energy Budget

[25] A closer examination of terms in the surface energy
budget for the study area (Figure 1) is discussed in this
section. German [2000] reported that the mean annual
magnitude of net radiation (Rn) ranged from 121 to
134 W m�2 at nine sites in the Everglades wetland areas.
Subdaily mean values of Rn were less than zero during the
evening and night when long-wave radiation emitted from
the vegetation, land, and surface water generally exceeded
incoming atmosphere radiation. The magnitude of 30 min
mean Rn was relatively large during the day, sometimes
exceeding 500 W/m2 when the intensity of incoming solar
radiation was greatest.
[26] Energy is stored in the ecosystem biomass, specifi-

cally, in vegetation (Gveg), and in subsurface geologic
media. When present, surface water generally is the primary
medium for energy storage [Bidlake et al., 1996], largely
because of its relatively high heat capacity, which is about
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double the heat capacity of vegetation, soil minerals, and
soil organic matter [Brutsaert, 1982]. Vegetation is rarely
dense enough to create a large reservoir for energy. For
example, vegetation density was measured at several loca-
tions along five transects in the Everglades wetland areas
[Childers et al., 2003]. The maximum vegetation density
was about 4100 g/m2 (dry weight). Assuming plant matter is
90% water, the equivalent surface-water depth of the
maximum plant density was about 4 cm. This depth is
minimal when considering water depths in the Everglades
wetland areas can exceed 1 m.
[27] A component of the available energy for evapotrans-

piration not included in the surface energy budget
(equation (1)), is the energy that is added to, or removed from,
the wetlands through rainfall. An analysis of data [German,
2000] in the Everglades suggested energy fluxes attributed to
rainfall can be considerable in hourly surface energy budgets;
however, rainfall energy fluxes are relatively small compared
to mean daily fluxes of net radiation. From 1996 to 2000,
rainfall data were collected at sites 4 to 9 (Figure 1), and the
energy flux from rainfall events was computed as described
by Bogan et al. [2003, equation (12)] assuming the rainfall
temperature was equal to the dew point temperature. The
maximum and minimum energy fluxes from rainfall at the
sites were 10 and �40 W m�2, respectively, over the 4 year
period. A positive flux implies the rainfall is warmer than the
wetland surface water, and increases the amount of heat

energy to the system. Conversely, a negative flux implies
the rainfall is colder than the wetland surface water, and
decreases the amount of heat energywithin the system. Fluxes
of 10 and �40 W m�2 could be considerable within hourly
surface energy budgets during rainfall events when incoming
solar radiation is dampened by cloud cover.More than 93%of
the time, however, the magnitude of heat energy flux from
rainfall was less than one twentieth themagnitude of themean
daily net radiation.

3.2. Magnitude of Stored Heat Energy

[28] A time series plot shows mean daily net radiation
(Rn), mean surface water depth, and daily fluxes of stored
heat energy in the wetland surface water (W) at site 3 in
1997 (Figure 7). Fluxes of stored heat energy (W) were
computed as the product of DTw, D and heat capacity
divided by the number of seconds in one day. During the
winter, net radiation was relatively low, and air temperature
varied considerably (Figure 4), resulting in fluxes of heat
energy stored in wetland surface water that approached and
even exceeded 50 W m�2 (Figure 7). Stored heat energy
sometimes exceeded the magnitude of net radiation and
thus, in some instances, was the dominant component of the
daily wetland surface energy budget, particularly during the
winter when solar radiation was relatively low.
[29] To assess the importance of W in wetland surface

energy budgets, an importance ratio (Rimp), defined as the

Figure 7. Net daily fluxes of stored heat energy (W), mean daily net radiation (Rn), and mean daily
wetland water depth (DEPTH) at site 3 in 1997.
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Figure 8. Percent of Rimp greater than 0.2 within a specified time period (white bars) and available Rimp

expressed as a percent of the total possible Rimp (gray bars).
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ratio of the absolute value of W to net radiation, was
computed (Figure 8). The (1) heat capacity of water,
(2) net change in mean vertical water column temperature
from the beginning to the end of the time period of interest,
and (3) mean surface water depth within the time period of
interest were used to compute W for Rimp. For example, if
daily Rimp were desired, W was computed as the product of
the heat capacity of water, net change in mean vertical water
column temperature from the beginning of the day to the
end of the day, and the mean daily depth of surface water
divided by the number of seconds in a day. In this daily
case, Rimp was computed as the absolute ratio of mean daily
net radiation and W. If a weekly Rimp was desired W was
computed as the product of the heat capacity of water, net
change in mean vertical water column temperature from the
beginning of the week to the end of the week, and
the weekly mean depth of the surface water divided by
the number of seconds in a week. In this weekly case, Rimp

values were computed as the absolute ratio of mean weekly
net radiation to W.
[30] The percentage of time Rimp values were equal to or

greater than a filter threshold of 0.2 (Figure 8) highlights
time periods when W was a considerable part of the wetland
surface energy budget. Also computed were the data avail-
ability of Rimp, expressed as the percentage of time suffi-
cient data were available to compute Rimp. Data availability
trends for Rimpwere independent of the filter threshold trends
forRimp, which demonstrates the filter threshold trends are not
an artifact of missing data.
[31] During week 1 (1–7 January) of years 1996–2000,

about 40% of the daily Rimp values were equal to or greater
than 0.2 at sites 2 to 5 and 7 to 9. A total of 105 daily Rimp

values were calculated during week 1, of which 42 were

equal to or greater than the filter threshold value. During
week 29 (early July), however, less than 5% of the daily
Rimp values were equal to or greater 0.2. Although 165 daily
Rimp values were calculated during this period, only 3 ratios
were equal to or greater than the filter threshold value. This
analysis suggests that W is more often a considerable
component of the mean daily surface energy budget during
the winter than the summer.
[32] As expected, temporal upscaling reduces the impor-

tance of changes in heat energy stored in wetland surface
water in the surface energy budget. This assertion is
supported by comparing the percentages of the Rimp values
that exceed 0.2 over different time scales (Figure 8). For
example, during week 1 (1–7 January) of years 1996–
2000, about 40% of the daily Rimp were equal to or greater
than the 0.2 filter threshold; however, during the entire
month of January, less than 20% of the monthly total
number of weekly Rimp were equal to or greater than the
same filter threshold. This result is not surprising consider-
ing fluxes of stored heat energy in wetland surface water are
inversely proportional to time, such that longer time periods
result in smaller fluxes of stored heat energy.

3.3. Convolution Site Models

[33] Parameter estimation was applied to the discrete
form of the convolution integral (equation (9)) and transfer
function at 30 min time steps at sites 2 to 5 and 7 to 9
(Figure 1) for the 1996–2000 period. Each site/year com-
bination defines a convolution site model. A total of
20 convolution site models were constructed (Table 2).
The naming convention used for the site models is SN_XX,
where N represents the site number (Figure 1) and XX
represents the year. Graphical comparisons (Figures 9, 10,

Table 2. Summary of Regression-Estimated Coefficients and Error Statistics for Comparison of 30 min Measured and Convolution Site

Model Water Temperature Changes and Fluxes of Stored Heat Energya

Convolution
Site Model

Regression-
Defined
Thermal
Exchange
Coefficient
kex, m s�1

Regression-
Defined a

Number of
Comparisons

Measured and Convolution
Site Model-Computed Water
Temperature Changes T

Measured and Convolution
Site Model-Computed Fluxes
of Stored Heat Energy W

R2 of the
Comparison

Mean Absolute
Error of the

Comparison, �C
R2 of the
Comparison

Mean
Absolute

Error of the
Comparison,

W m�2

S2_96 5.46 0.36 4,849 0.56 0.08 0.56 134.71
S2_97 5.94 0.46 6,050 0.60 0.09 0.56 154.25
S3_96 4.31 0.55 8,137 0.65 0.09 0.65 108.32
S3_97 3.88 0.57 8,089 0.65 0.08 0.63 95.90
S4_96 0.48 0.51 7,080 0.64 0.10 0.57 46.45
S4_97 1.53 0.33 4,585 0.57 0.09 0.47 50.56
S4_98 3.17 0.23 6,396 0.45 0.06 0.40 68.14
S4_99 0.45 0.73 2,578 0.70 0.12 0.69 35.40
S5_96 0.83 0.43 8,136 0.68 0.08 0.66 50.34
S5_97 0.85 0.44 5,042 0.75 0.08 0.69 31.60
S7_96 1.53 0.74 8,137 0.71 0.07 0.72 73.35
S7_97 1.46 0.71 7,469 0.68 0.09 0.65 61.58
S7_98 1.71 0.74 8,089 0.64 0.07 0.65 71.51
S7_99 1.85 0.65 7,915 0.70 0.08 0.70 77.46
S7_00 2.09 0.60 5,208 0.61 0.09 0.60 109.18
S8_97 1.50 0.54 1,079 0.54 0.14 0.67 27.90
S8_98 0.88 0.91 5,671 0.68 0.16 0.69 28.01
S8_99 1.33 0.83 2,706 0.73 0.11 0.72 39.38
S8_00 1.06 0.87 2,212 0.73 0.16 0.73 37.39
S9_98 0.11 0.94 1,287 0.70 0.06 0.65 8.99

aSite locations are shown in Figure 1.
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11, and 12) of convolution computed water temperature
changes and fluxes of stored heat energy versus residuals
from measured values are presented for models with roughly
average error statistics.
[34] Site 1 (not shown in the figures and tables) was not

considered for analysis because of concerns that water
temperature mostly was a function of water management
activities, rather than natural changes in air temperature.
Site 1 is located south of agricultural areas surrounding U.S.

Highway 98 (Figure 1). During the rainy season when water
levels were high in the agricultural areas, surface water
pumps conveyed water southward toward the Water Con-
servations Areas and impacted water temperatures measured
at site 1. Site 6 (also not shown in the figures and tables)
was similarly removed from consideration because air
temperatures were recorded only to 1�C precision, resulting
in relatively large error statistics for the convolution site
models. Because stored heat energy changes in wetland

Figure 9. Comparison of 1996 residuals from measured values and convolution-computed mean
vertical water temperature changes from site 3. Site location is shown in Figure 1.

Figure 10. Comparison of 1996 residuals from measured fluxes of stored heat energy and convolution
computed fluxes of stored heat energy from site 3. Site location is shown in Figure 1.
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surface water are more often a considerable component of
the surface energy budget during winter (Figures 7 and 8),
all convolution site models included only the November to
April winter season. During the summer, net radiation
dominates the surface energy budget because of the mag-
nitude of solar radiation, and therefore the need for accurate
estimates of stored heat energy changes in wetland surface
water is less critical.
[35] In general, the convolution site models performed

adequately in computing 30 min mean vertical water
column temperature changes during winter (Table 2). The
R2 values for computed and measured water temperature
changes ranged from 0.45 to 0.75, with an average of 0.65.
The mean absolute error for the comparison ranged from
0.06 to 0.16�C, with an average of 0.10�C. A graphical
comparison of 1996 convolution computed water tempera-
ture changes versus the residuals from field-measured water
temperature changes at site 3 (Figure 9) indicates that
declines in water temperature are more precisely computed
than increases in water temperature. This bias was present
within each convolution site model (Table 2) based on
visual inspection of computed versus residual plots. Al-

though a mechanism for this bias is unclear, its consequence
is that in general during the winter releases of heat energy
from surface water storage (�W) will be more accurately
computed by the convolution sites models than fluxes of
heat energy into surface water storage (+W).
[36] The water temperature changes computed from the

convolution site models also seem to work well for approx-
imating 30 min fluxes of stored heat energy in wetland
surface water in the Everglades (Table 2). Fluxes of stored
heat energy in wetland surface water were approximated as
the product of DTw (computed by the convolution site
models), D, and heat capacity divided by the number of
seconds in 30 min and compared to the fluxes of stored heat
energy computed with field-measured changes in mean
vertical water column temperature. The R2 values deter-
mined for the comparison ranged from 0.40 to 0.73, with an
average of 0.63. The mean absolute error for the comparison
ranged from about 8.99 to 154.25 W m�2, with an average
of 65.52 W m�2. A graphical comparison of 1996 convo-
lution-computed fluxes of stored heat energy versus resid-
uals from field-measured fluxes of stored heat energy at site
3 (Figure 10) indicates bias similar to that in Figure 9

Figure 11. Measured and convolution-computed net daily water temperature changes from site 3. Site
location is shown in Figure 1. Missing data indicate that analysis was not performed for the period.

Figure 12. Measured and convolution-computed net daily fluxes of stored heat energy (W) from site 3.
Site location is shown in Figure 1. Missing data indicate that analysis was not performed for the period.
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because heat content is derived from water temperature
changes. As a consequence, each convolution site model
computes fluxes of heat energy leaving surface water
storage more precisely than fluxes of energy into surface
water storage.
[37] The site convolution models yielded reasonable

estimates of net daily changes in both wetland surface water
temperature and fluxes of stored heat energy during winter
months (Table 3). Net daily water temperature changes were
estimated as the daily sum of water temperature changes
that occurred during 30 min increments. The R2 values
between measured and computed net daily water tempera-
ture changes ranged from 0.46 to 0.85, with an average of
0.69. The mean absolute error for the comparison ranged
from 0.42 to 1.04, with an average of 0.64�C. A graphical
comparison of measured and convolution-computed net
daily water temperature changes at site 3 in 1996 is shown
(Figure 11). For computing net daily fluxes of stored heat
energy, R2 statistics for the convolution site models ranged
from 0.45 to 0.85, with an average of 0.67. The mean
absolute error for the comparison ranged from 1.28 to
22.24 W m�2, with an average of 9.36 W m�2. A graphical
comparison of measured and convolution-computed net
daily fluxes of stored heat energy at site 8 in 1998 is shown
in Figure 12.

4. Discussion

[38] The convolution site models and methods used to
determine when and where changes in stored heat energy

were a considerable component of the surface energy
budget revealed some results worthy of discussion. These
results include (1) nighttime ‘‘inversions’’ of the wetland
water column due to thermal convective mixing, (2) vari-
ability in regression-defined kex and a coefficients, (3) data
requirements and transfer value of the convolution models
to locations other than the Everglades wetlands areas, and
(4) the relative accuracy of the convolution models com-
pared to simpler approaches for approximating wetland
surface water temperature changes, and ultimately, fluxes
of stored heat energy.
[39] In Everglades wetland areas, thermal stratification in

the surface water column was common during the day, with
near-surface water temperatures rising more than water
temperatures at depth (Jenter et al., U.S. Geological Survey,
written communication, 2003). During the evening, the
water column was thermally mixed by a surface water
inversion process (convective mixing). Mixing occurred
when nighttime air temperatures caused cooling of a thin
layer at the top of the surface water, creating a negatively
buoyant boundary from which surface water ‘‘fingered’’
downward to the bottom of the water column. This process
is noteworthy because field-measured water temperature
changes used in S(b) were affected by this thermal stratifi-
cation and convective mixing. Because regression was used
to minimize S(b), regression-defined values of kex and a
likely account for some of the temperature variability
caused by this inversion process.
[40] Spatial variability in the regression-defined kex coef-

ficients provided some insight into the heat exchange
processes acting on a wetland system. Regression-defined
estimates of kex ranged from 0.11 m s�1 at site 9 in 1998 to
5.94 m s�1 at site 2 in 1997 (Table 2) and a statistically
significant difference existed between open water and
vegetated sites. Statistically significant difference was estab-
lished using the nonparametric Kruskal-Wallis rank-sum
test. This rank-sum test exceeded the critical value for
chi-square at the significance level of 0.01 with one degree
of freedom, suggesting the null hypothesis of equal distri-
butions could be rejected and a statistically significant
difference existed for kex between open water and vegetated
sites. Several mechanisms may explain larger kex values
over open water sites, including enhanced wind-driven and
thermal convective mixing. Wind-driven mixing would be
greater over open water sites because vegetational surfaces,
such as plant leaves, stalks, and stems are not present to
provide roughness obstacles. Likewise, thermal convective
mixing would be greater over open water sites because
vegetational surfaces are not present to increase frictional
resistance to vertical surface water flow and reduce con-
vective and radiative energy transport through the air-water
interface. Increased mixing (either wind-driven or thermal
convective) would homogenize the entire water column
relatively quickly until the water temperature approximately
equaled the air temperature. In contrast, decreased mixing in
vegetated sites would homogenize the water column more
slowly.
[41] Spatial variability in the regression-defined a coef-

ficients also was present, although not statistically signifi-
cant, in the Everglades wetland areas. Alpha (a) coefficients
ranged from 0.23 at site 4 to 0.94 at site 9 in 1998, with an
average of about 0.5 and 0.6 for open water and vegetated

Table 3. Summary of Error Statistics for Comparison of Measured

and Convolution-Computed Net Daily Water Temperature Changes

and Fluxes of Stored Heat Energya

Convolution
Site Model

Measured and Computed
Net Daily Water

Temperature Changes dT

Measured and Computed
Net Daily Fluxes of Stored

Heat Energy W

R2 of the
Comparison

Mean
Absolute

Error of the
Comparison, �C

R2 of the
Comparison

Mean
Absolute

Error of the
Comparison,

W m�2

S2_96 0.46 0.58 0.45 22.24
S2_97 0.63 0.50 0.60 19.94
S3_96 0.66 0.64 0.64 16.40
S3_97 0.57 0.68 0.56 17.99
S4_96 0.84 0.52 0.82 2.35
S4_97 0.72 0.78 0.64 7.93
S4_98 0.50 0.42 0.49 9.50
S4_99 0.85 0.54 0.85 2.47
S5_96 0.70 0.53 0.69 4.15
S5_97 0.74 0.58 0.75 5.19
S7_96 0.73 0.62 0.72 12.51
S7_97 0.72 0.57 0.69 9.20
S7_98 0.79 0.64 0.78 15.94
S7_99 0.59 0.49 0.61 11.87
S7_00 0.64 0.52 0.62 9.84
S8_97 0.78 0.73 0.78 3.07
S8_98 0.72 1.00 0.62 3.64
S8_99 0.57 0.79 0.70 6.97
S8_00 0.80 1.04 0.76 4.65
S9_98 0.75 0.62 0.57 1.28

aSite locations are shown in Figure 1.
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sites, respectively (Table 2). Statistically significant differ-
ence between open water and vegetated sites also was
examined using the nonparametric Kruskal-Wallis rank-
sum test. This rank-sum test was less than the critical value
for chi-square at the significance level of 0.01 with one
degree of freedom, suggesting the null hypothesis of equal
distributions could not be rejected and no statistically
significant difference exists for a between open water and
vegetated sites.
[42] The ability of the convolution site models to com-

pute water temperature changes and fluxes of stored heat
energy at other locations depends on the area of interest.
The convolution models and regression-defined kex and a
coefficients are more directly transferable in the winter to
similar humid subtropical wetland areas, suggesting that the
only data requirements in these areas are air temperature and
wetland water column depth. The convolution models also
may be applied in the winter over lakes or other land masses
associated with a sluggish surface water drainage including
coastal bays, mangrove or cypress swamps, and estuaries.
The transfer value of this analysis, however, diminishes at
locations with vegetation other than saw grass, cattails, rush,
and open water wetlands because the regression-defined kex
and a coefficients (Table 2) may not apply. New regression
experiments may be required to define values for kex and a
that are specific to the land cover of interest. This more
complicated case requires time series data for water tem-
perature in addition to time series data for air temperature
and surface water depth.
[43] Considering the modest mathematical complexity of

the convolution approach, an obvious question is: Do

simpler methods exist with comparable or improved error
statistics for computing 30 min and net daily changes in
surface water temperature, and ultimately, fluxes of stored
heat energy? Seven methods were evaluated at an open water
site (site 3) and a dense saw grass site (site 4) for 30 min and
daily time steps in 1996 (Table 4). These methods include,
for the 30 min time step, (1) the convolution approach,
(2) expressing water temperature changes as a simple re-
gression-defined function of air temperature changes, and
(3) setting water temperature changes equal to air tempera-
ture changes, and for the daily time step, (1) daily composites
of the convolution results, (2) expressing net daily water
temperature changes as a simple regression-defined function
of net daily air temperature changes, (3) daily composites of
the results of expressing 30minwater temperature changes as
a simple regression-defined function of air temperature
changes, and (4) setting net daily water temperature changes
equal to net daily air temperature changes.
[44] For the 30min time steps at the openwater site (site 3),

the convolution approach (method 1) clearly outperforms the
simpler approaches (methods 2 and 3) for computing changes
in the mean vertical water column temperature (Table 4).
With method 1, the R2 values were 0.65 and the mean
absolute error was 0.09�C at site 3. A simpler approach, that
is, setting the mean vertical water column temperature
change equal to the air temperature change (method 3),
produced the largest error statistics. With method 3, the R2

values were 0.27 and the mean absolute error was 0.29�C at
site 3. The results likely are similar for fluxes of stored heat
energy because heat content is derived from water tempera-
ture changes.
[45] For the 30 min time steps at the dense saw grass site

(site 4), the convolution approach (method 1) outperforms
the simpler approaches (methods 2 and 3) for computing
changes in the mean vertical water column temperature
(Table 4). With method 1, the R2 values were 0.64 and
the mean absolute error was 0.10�C. Although the simpler
method 2 produced a smaller mean absolute error (equal to
0.07�C) than method 1, the results for method 2 were almost
completely uncorrelated (R2 equal to 0.03) to measured
mean vertical water temperature changes.
[46] For daily time step at the open water site 3, there may

be simpler methods than daily compositing the site convo-
lution model results for computing water temperature
changes, and ultimately fluxes of stored heat energy, with
comparable error statistics. For example, at site 3 in 1996,
expressing daily mean water column temperature changes
as a regression-defined function of net daily air temperature
changes (method 5) produced a slightly lower R2 (equal to
0.64 for method 5 versus 0.66 for method 4), and a slightly
lower mean absolute error (equal to 15.69 W m�2 for
method 5 versus 16.14 W m�2 for method 4). The regres-
sion relation for site 3 was DTw

Dt
= c1DTa + c2, with c1 and

c2 equal to 0.027 and 0.475, respectively.
[47] For daily time steps at the dense saw grass site 4,

daily compositing the site convolution model approach
(method 4) also clearly outperformed the simpler
approaches (methods 5–7) for computing net daily fluxes
of stored heat energy (Table 4). With method 4, the R2 value
was 0.82, and the mean absolute error was 2.35 W m�2 at
site 4. For the simpler approaches (methods 5–7), the R2

values ranged from 0.45 (method 6) to 0.52 (methods 5 and

Table 4. Comparison of Error Statistics for Different Methods of

Computing Water Temperature Changes and Fluxes of Stored Heat

Energy at an Open Water Site (Site 3) and a Dense Saw Grass Site

(Site 4) for 30 min and Daily Time Steps in 1996a

Method Time Step R2 Coefficient Mean Absolute Error

Site 3 (Open Water)
1 30 min 0.65 0.09
2 30 min 0.27 0.15
3 30 min 0.27 0.29
4 daily 0.66 16.14
5 daily 0.64 15.68
6 daily 0.44 21.19
7 daily 0.66 29.09

Site 4 (Dense Saw Grass)
1 30 min 0.64 0.10
2 30 min 0.03 0.07
3 30 min 0.03 0.30
4 daily 0.82 2.35
5 daily 0.52 3.31
6 daily 0.45 4.71
7 daily 0.52 6.41

aLocations of sites 3 and 4 are shown in Figure 1. The MAE values are in
degrees Celsius for the 30min time steps and in watts per square meter for the
daily time steps. Method: 1, convolution approach; 2, expressing water
temperature changes as a simple regression-defined function of air temper-
ature changes; 3, setting water temperature changes equal to air temperature
changes; 4, daily compositing of the convolutionmodel results; 5, expressing
net daily water temperature changes as a simple regression-defined function
of net daily air temperature changes; 6, daily compositing of the results of
expressing 30 min water temperature changes as a simple regression-defined
function of air temperature changes; 7, setting net daily water temperature
changes equal to net daily air temperature changes.
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7), and the mean absolute errors ranged from 3.31 (method
5) to 6.41 W m�2 (method 7).

5. Limitations

[48] Several limitations are apparent in this study. Certain
spatial and temporal characteristics limit the accuracy of
results when the convolution integral is applied to compute
fluxes of stored heat energy. Also, the use of water temper-
ature at only two depths to derive a mean vertical water
column temperature change is questionable. Finally, the bias
in computing water temperature changes with the convolu-
tion integral is problematic.
[49] Spatial and temporal characteristics limit the accuracy

of results when the convolution integral is applied to
compute fluxes of stored heat energy. Spatially, the results
are more accurate at sites where water temperature changes
are mostly controlled by air temperature changes. Although
air temperature changes explain most of the variability in
water temperature changes (Figure 4), other heat exchange
processes also impact water temperature, including water
management activities (site 1), evaporative cooling, rainfall,
and perhaps surface water and groundwater interactions.
Temporally, accuracy increases at daily time steps at all sites
(Tables 2 and 3), because the errors at 30 min time steps are
mostly normally distributed with a zero mean and unbiased.
If the 30 min errors were nonnormal and highly biased,
errors statistics at daily time steps likely would increase.
[50] The use of water temperature at only two depths to

derive a mean vertical water column temperature change is
questionable. Data availability necessitated this approach
for sites 2 to 5 and 7 to 9. At other sites, water temperature
was measured vertically every 10 cm [Schaffranek and
Riscassi, 2004] at 30 min intervals. Changes in the mean
vertical water column temperature were computed from
August of 2000 through March 2001 using (1) the high-
frequency data, and (2) assuming only the top and bottom
water column temperatures were available. The mean abso-
lute error between these two alternatives was about 0.3�C.
This translates into an difference of greater than 300 W m�2

at 30 min time steps assuming the water column is 50 cm
deep. The water temperature changes measured with the
high-resolution data may be more reliable. Thus, if reliable
data are available, it seems prudent to compute fluxes of
stored heat energy with high vertical resolution measure-
ments of surface water temperature. When reliable data are
not available, air temperature changes can be applied to the
convolution integral as outlined in this paper to estimate
fluxes of stored heat energy.
[51] The bias in computing water temperature changes also

is problematic. The convolution site models compute a
decrease in water temperature more precisely than an in-
crease in water temperature at 30 min time steps. If the
underlying mechanism for the bias could be resolved, the R2

values and standard errors for water temperature change and
fluxes of stored heat energy (Tables 2 and 3) likely would
improve.

6. Conclusions

[52] On the basis of the results from this study, several
conclusions can be drawn regarding wetland surface energy

budgets and estimation of changes in heat energy stored in a
column of wetland surface water. These conclusions likely
are directly transferable to other humid subtropical wetlands
dominated by open water, saw grass and rush vegetation
communities.
[53] 1. Changes in heat energy stored in wetland

surface water were a substantial component of the surface
energy budget more frequently in the winter than in the
summer. This result is explained by the magnitude of
solar radiation during the winter and the control of air
temperature on water temperature. Specifically, solar ra-
diation during the winter was relatively low and air
temperature changes were more variable, creating water
temperature changes that were more variable. Interaction
of these two factors resulted in fluxes of stored heat
energy in wetland surface water that approached the
magnitude of net radiation more frequently during the
winter than in the summer.
[54] 2. The magnitude of changes in heat energy stored in

wetland surface water generally decreased as surface energy
budgets were upscaled temporally. Daily fluxes of stored
heat energy accounted for 20% or more of the magnitude of
mean daily net radiation for about 40% of the data examined
here. Weekly fluxes of stored heat energy were 20% or more
of the magnitude of mean weekly net radiation for about
20% of the same data examined here. This result is
explained by fluxes of stored heat energy being inversely
proportional to time, such that larger lengths of time result
in smaller fluxes of stored heat energy.
[55] 3. Air temperature changes can be used to approx-

imate changes in water temperature and, ultimately, fluxes
of stored heat energy in wetland surface water through
the application of a convolution integral with a regres-
sion-defined transfer function. This method was most
accurate at sites where surface water temperature changes
mostly were controlled by air temperature changes
rather than water management activities, evaporative cool-
ing or other heat exchange processes. The accuracy of
computed fluxes of stored heat energy also increased
when 30 min convolution results were composited to
net daily values.
[56] 4. Heat energy exchanges more rapidly at the air-

water interface over open water sites than at vegetated sites,
as suggested by a statistically significant difference between
the values of regression-defined thermal exchange coeffi-
cients at open water and vegetated sites. Several mecha-
nisms may explain this difference, including enhanced
wind-driven and thermal convective mixing at open water
sites due to less vegetational surfaces providing roughness
obstacles.
[57] 5. Energy fluxes from rainfall generally were mini-

mal compared to mean daily fluxes of net radiation, indi-
cating that energy fluxes from rainfall probably do not need
to be considered within surface energy budgets at daily and
larger time scales.
[58] 6. Wetland vegetation was not dense enough to

create a large equivalent surface water reservoir for
energy. The equivalent surface water depth of the max-
imum vegetation density was about 4 cm. This depth was
minimal considering water depths in the Everglades
frequently exceeded 1 m, and suggests changes in heat
energy stored in wetland vegetation likely can be ignored
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with little error in surface energy budgets at daily and
larger time scales.

Appendix A

[59] This appendix documents the solution of ordinary
differential equation (4) to obtain equation (5) described in
this paper. Equation (4) is expressed as

d Te
w � Tw

� �
dt

¼ �kex
Te
w � Tw

� �
D

:

Rearrange and integrate equation (4) so that

Z
1

Te
w � Tw

� � d Te
w � Tw

� �
¼ �kex

D

Z
dt: ðA1Þ

Let x = (Tw
e � Tw) and then dx = d(Tw

e � Tw). Substitute x
and dx into equation (A1) where:

Z
1

x
dx ¼ �kex

D

Z
dt; ðA2Þ

which equals

ln x ¼ �kex

D
t þ C1: ðA3Þ

Take the exponent of both sides so that equation (A3) equals

x ¼ C2e
�kex
D

t ; ðA4Þ

note that C2 equals e
C1.

[60] Substitute back for x so that equation (A4) equals

Te
w � Tw ¼ C2e

�kex
D

t: ðA5Þ

If we solve equation (A5) at the initial condition of t = 0,
then

Te
w � Tw ¼ C2: ðA6Þ

Introduce the assumption that a given air temperature
change, DTa [T], eventually causes an equivalent water
temperature change, where the water temperature change is
expressed as the difference between the equilibrium and
actual water temperatures, thus

Te
w � Tw ¼ C2 ¼ DTa: ðA7Þ

Substitute DTa in equation (A5) so that

Te
w � Tw ¼ DTae

�kex
D

t : ðA8Þ

By rearranging equation (A8), the formula becomes
equation (5), which is

Tw ¼ Te
w � DTae

�kex
D

t:
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