### Potential Impacts of Climate Change and Increasing Human Water Demands on Wisconsin Lake Levels

NO DOCKING THIS SIDE



### Tim Asplund Wisconsin Dept of Natural Resources

MWFWC: December 11, 2007



### Huron Lake, Waushara County



### Twin Lake, Marquette County



### Sandbar Lake, Bayfield County

#### R. Lathrop



### Fallison Lake, Vilas County

#### Shell Lake (WI) June 2002





Lake Monona, Dane Co, August 31, 2007

### Which one is the future?





### Maybe both!

## Many factors affect water levels

- Lake morphology and hydrology
- Landscape position
- Natural variability (weather)
- Short term drought (and wet) cycles
- Human water use (i.e. water withdrawals)
- Climate change

# Lake Hydrology



Magnuson et al. 2006

### Landscape Position





Magnuson et al. 2006

### Natural variability

|               | Period of | Average | Maximum | Minimum |
|---------------|-----------|---------|---------|---------|
|               | record    | annual  | annual  | annual  |
|               | (ft)      | (ft)    | (ft)    | (ft)    |
| Ground-water  | 2.5-      | 0.8-    | 1.2-    | 0.3-    |
| flow-through  | 10.5      | 2.7     | 5.5     | 1.4     |
| Surface-water | 2.6-      | 1.0-    | 2.1-    | 0.5-    |
| flow-through  | 7.8       | 2.6     | 4.7     | 1.2     |
| Ground-water  | 1.4-      | 0.6-    | 0.9-    | 0.2-    |
| discharge     | 3.8       | 1.4     | 2.9     | 0.6     |

"A statistical analysis of data in table 1 indicates that 9 out of 10 natural lakes in the State will fluctuate within the following approximate ranges during periods of **20** years or longer."

### **Response of Lakes to Drought**



# Is WI in a drought?

Total Precipitation Departure from Mean in Inches January 1, 2006 to December 31, 2006



Total Precipitation Departure from Mean in Inches July 10, 2007 to October 8, 2007





### Human water use



#### Natural



#### Affected By Pumping



# Evidence of Climate Change in the Great Lakes Region\*

- Temperatures are rising, especially in winter.
- Extreme rainfall events (24-hr and 7-day) are becoming more frequent.
- Winters have become shorter.
  Spring is coming earlier.
  Duration of ice cover is shorter, especially on smaller lakes.





# Projected Climate Changes in the Great Lakes Region by 2100

#### Temperature

\*http://www.ucsusa.org/greatlakes

- Winter 5-12 °F (3-7 °C)
- Summer 5-20 °F (3-11 °C)
- Extreme heat more common
- Growing season several weeks longer

#### Precipitation

- Winter, spring increasing
- Summer, fall decreasing
- Drier soils, more droughts

More extreme events – storms, floods

- Could be 50-100% more frequent than now
- Ice cover decline will continue



Source: Bob Allan, NREL

### Projected Precipitation Changes in the Great Lakes Region (by 2070-99)

Frequency of Heavy Precipitation Events in the Great Lakes Region



- Doubling of heavy precipitation events
- Seasonal shifts in precipitation --
  - \* <u>More</u> rain in winter and spring (planting season)
  - \* <u>Less</u> rain during the summer and fall growing seasons

#### Changes in the Hydrologic Cycle



#### **Average Water Balance - Southern WI**



Source: ISWS

## Water Levels – Scenario #1

- Warmer, wetter winters
- More CO<sub>2</sub> in atmosphere makes plants more water efficient
- More storms increases runoff
- More recharge increases baseflow and groundwater levels
- Lakes may go up



#### Source: John Magnuson, 2007



#### Lake Monona, Dane Co, August 2007

# Shell Lake (Washburn Co) Stage (1936 – 2006)



Source: USGS

### Devil's Lake (Sauk Co) Stage (1935-2006)



Source: USGS

### Step Increase in Lake Stage, Stream Flow, and Groundwater Levels after 1970



### Water Levels – Scenario #2

- Shorter duration of ice cover will increase evaporation in winter
- Warmer air temperatures will increase evapotranspiration Lower precipitation in summer will decrease soil moisture Lakes may go down

SOURCE: UCS/ESA 2003







### Long Lake, Waushara County

### LTER Lake Levels, Vilas Co

Crystal Lake, Vilas County

Sparkling Lake, Vilas County



Source: NTL LTER, Center for Limnology

### Anvil Lake (Vilas Co) Stage (1936 – 2006)

Anvil Lake, Vilas County, WI



Source: USGS

### Step Increase in Lake Stage, Stream Flow, and Groundwater Levels after 1970





Source: WGNHS



#### Source: UWSP

### Waushara County Lakes

Long, Huro Fish, Pine

#### Source: UWSP

### **NW Waushara County Lakes**



# Waushara County Lakes

- Landlocked lakes, no outlet
- Vary 2.5 to 10 feet over decadal scale
- Lakes near major regional groundwater divide
- Recent declines after unusually high period in the 1990s
- Short-term drought in Central WI
- Major pumping center





# Response of lakes to changing climate

- Landscape position and lake type affects response of lake levels to changes in climate
- Lakes higher in the landscape (both seepage and headwater) may drop, because they are sensitive to changes in precipitation and evaporation
- Lakes lower in the landscape may rise, because they are buffered from short term dry periods and respond to longer term changes in groundwater recharge
- Local conditions are important, including human influences!

# Implications of low water levels

- Water quality/clarity
- Shift in aquatic plant community
- Reduced fish cover
- Exposure of lake beds to disturbance
- Navigational issues
- Potential for spread of invasives (e.g. EWM, *Phragmites*)

### **Anvil Lake Water Clarity**

Lake Levels vs Secchi depth (1998 - 2007) Points are only for Lake Level and Secchi taken on same date



### Implications of low water levels



Source: USGS Circular 1186

#### R. Lathrop



#### Fallison Lake, Vilas County



### Tomahawk Lake, Bayfield County

#### F. Koshere



### Tomahawk Lake, Bayfield County

### Acknowledgements

- Ken Bradbury, WGNHS
- George Kraft, Dave Mechenich, UW Stevens Point
- Jim Krohelski, Bill Rose, usgs
- John Magnuson, Tim Kratz, Barbara Benson, UW Madison
- Scott Provost, Ann Schachte, Pamela Toshner, Dick Lathrop, Frank Koshere, WDNR