Publication Citation

USGS Series Fact Sheet
Report Number 213-95
Title Seasonal/Yearly Salinity Variations in San Francisco Bay
Edition - Online Only
Language ENGLISH
Author(s) Peterson, David H.; Cayan, Daniel R.; Dettinger, Michael D.; DiLeo, Jeanne Sandra; Hager, Stephen E.; Knowles, Noah; Nichols, Frederic H.; Schemel, Laurence E.; Smith, Richard E.; Uncles, Reginald J.
Year 1995
Originating office Geological Survey (U.S.)
USGS Library Call Number -
Physical description No pagination; Available online only
ISBN

Online Document Versions

Copies of the original may be available.

For more information or ordering assistance, call 1-888-ASK-USGS (1-888-275-8747), visit http://ask.usgs.gov, contact any USGS Earth Science Information Center (ESIC), or write:

USGS Information Services
Box 25286
Denver, CO 80225
Abstract

The ability of resource agencies to manage fish, wildlife and freshwater supplies of San Francisco Bay estuary requires an integrated knowledge of the relations between the biota and their physical environment. A key factor in these relations is the role of salinity in determining both the physical and the biological character of the estuary. The saltiness of the water, and particularly its seasonal and interannual patterns of variability, affects which aquatic species live where within the estuary. Salinity also determines where water can and cannot be diverted for human consumption and irrigated agriculture, and plays a role in determining the capacity of the estuary to cleanse itself of wastes. In short, salinity is a fundamental property of estuarine physics and chemistry that, in turn, determines the biological characteristics of each estuary. Freshwater is a major control on estuarine salinity. Most freshwater supplied to the Bay is from river flow through the Delta, which is primarily runoff from the Sierra Nevada. Most contaminants in San Francisco Bay are from the Sacramento/San Joaquin Valley and the local watershed around the Bay rather than the sea or atmosphere. Land is the primary source of freshwater and freshwater serves as a tracer of land-derived substances such as the trace metals (copper, lead and selenium), pesticides and plant nutrients (nitrate and phosphate). The U.S. Geological Survey is collaborating with other agencies and institutions in studying San Francisco Bay salinity using field observations and numerical simulations to define the physical processes that control salinity. The issues that arise from salinity fluctuations, however, differ in the northern and southern parts of the bay. In North Bay we need to know how salinity responds to freshwater flow through the Sacramento/San Joaquin Delta; this knowledge will benefit water managers who determine how much delta flow is needed a) to protect freshwater supplies for municipal water use and b) modulate salinity for a healthy estuary. In South Bay we need to know where the freshwater comes from (the distant Delta or local streams) to sort out the sources of a) contamination or b) dilution.