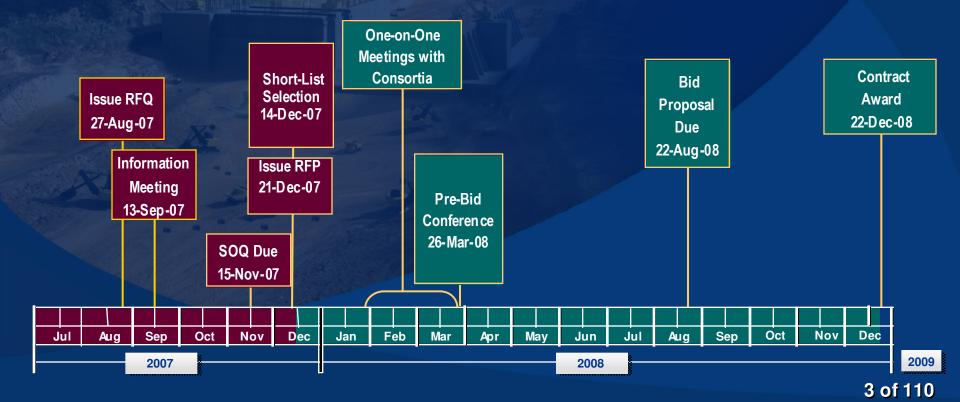


Locks Pre-Tender Meeting



AGENDA

- Status of the process
- Headings of changes included in amendments 1 4
- Instructions to Tenderers Vol. I, Part I
- Key Changes Amendment # 5
- Geotechnical/Geological Investigations
- LOCKS RFP Seismic Design Criteria
- Break
- Questions and Answers

Status

- Conducted the site visits
- Attended the individual meetings
- Answered more than 300 questions
- Issued 5 amendments

 Geotechnical Reference and Plates. Available in DVD format

- Vol. I, Part 1, Paragraph 8.a Improper contacts
- Vol. I, Part 1, Paragraph 8.b Meetings between Consortia and ACP
- Other minor changes throughout the RFP document

- Vol. I, Part 1, Paragraph A-5. Point of contact and coordination for visit to CNR laboratory
- Vol. I, Part 1, Paragraph A-8, Tender documents, ACQUISITION REGULATION OF THE PANAMA CANAL AUTHORITY – Art. 89C
- Vol. I, Part 1, Paragraph C-9, Format of tender, include electronic version of the financial proposal in the same envelope that contains the hard copy version
- Volume II, Part 1, Part 2 and Vol. III Part 3 various sections

- Vol. I, Part 1, Paragraph A-5, Visit Flanders Laboratory
- Vol. I, Part 1, Paragraph B-2, Clarification of RFP
- Vol. I, Part 1, Paragraph C-2, Documents comprising the Tender
- Vol. I, Part 1, Paragraph F-3, Notification of Contract Award
- Vol. I, Part 1, Paragraph F-4, Contract Signing
- Vol. I, Part 1, Paragraph G, Tender documentation to be put in escrow was deleted.
- Vol. III, Part 2, Sub-clause 6.2, Minimum Wage
- Vol. IV, Part 2, Evaluation Criteria for Key Personnel

Instructions to Tenderers Vol. I, Part I

- Paragraph D, Submission of Tenders
- Paragraph E, Tender Opening and Evaluation
- Paragraph F, Contract Award

Key Changes Amendment # 5

Stipend

 Stipend amount is changed from \$1.75 Million US to \$3 Million US (Appendix to Tender)

 Stipend language is unchanged (Instructions to Tenders, A. 2.)

Alternate Tenders

 Alternate Tenders language is slightly changed (Instructions to Tenders, A. 3.)

 Alternate or qualified tenders will not be considered

Bonding

 Tender Security must be a Bid Bond; but amount is not changed at \$100 Million US (Instructions to Tenders, C. 7.)

Performance Security

- Must be a Performance Bond
- Penalty sum is reduced from \$750 Million US to \$600 Million US
- Must use AIA Form A312
- Must remain valid from Commencement Date to issuance of Performance Certificate (Sub-Clause 4.2)

Payment Security

- Must be Payment Bond
- Amount not changed at \$250 Million US
- Must use AIA Form A312 (Sub-Clause 4.2)
- Surety must be licensed in New York and meet requirements of Sub-Clause 4.2.3

Subcontractors

 Particular Conditions Sub-Clause 4.4 is replaced with a new Sub-Clause 4.4

 Contractor shall not subcontract the whole of the works or subcontract one entire locks project

Contractor shall get Employer consent to subcontract, except:

- Subcontracts for Materials
- Subcontractors named in the Contract
- Subcontracts for less than \$1 Million US

Value Engineering

 Particular Conditions Sub-Clause 13.2 is replaced with a new Sub-Clause 13.2

 Cost savings from approved value engineering proposals shall be shared 50/50 between Contractor and Employer

Adjustments for Changes in Cost

- Particular Conditions Sub-Clause 13.8 is replaced with a new Sub-Clause 13.8
- Applies to Rebar, Portland Cement and Diesel fuel
- Quantities and dates are provided only variable is change in cost

Cost source not yet determined for Portland Cement

Retention

Retention remains "5% up to 50% of the Accepted Contract Amount and 2.5% thereafter" (Appendix to Tender)

Limitation of Liability

 Limitation of Liability amount changed from 30% of Contract Price to \$600 Million US (Appendix to Tender)

Added new Particular Conditions Sub-Clause 17.6 to refer to Appendix to Tender

Insurance

 New Insurance requirements are included as Particular Conditions Sub-Clause 18

• Owner Controlled Insurance Program

Technical Score/Cost Score

Technical score changed from 6,000 to 5,500 points

Cost Score changed from 4,000 to 4,500 points
 4,000 points for the lowest Total Price Proposal
 500 points for the lowest Total Extended Unit Price Elements

The successful Tenderer will have the lowest combined Technical and Cost Score

Unit Price Schedule

- Mandatory Unit Price Schedule
- Evaluated in Price Proposal

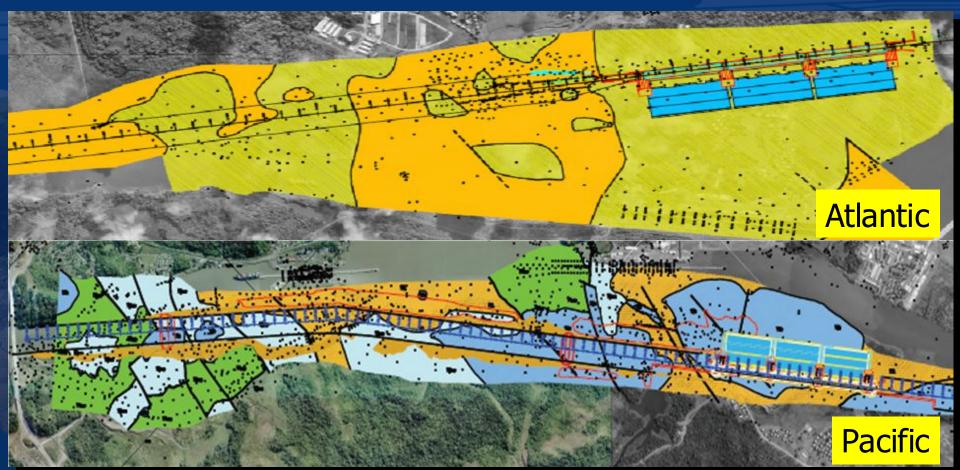
For pricing work done through Variations ordered by Employer

Wider Chamber Variance Price

 Requirement for Tenderers to submit a price for 59 meter wide chambers has been eliminated

Geotechnical Information

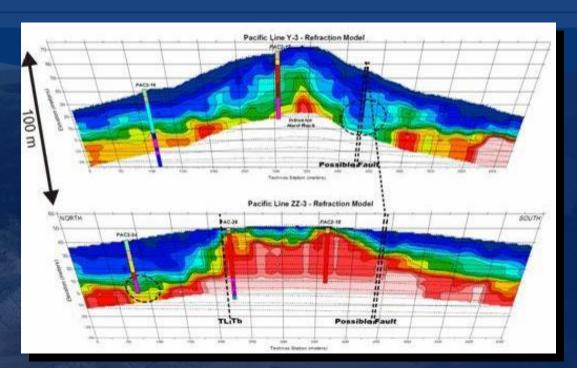
Partie


Content

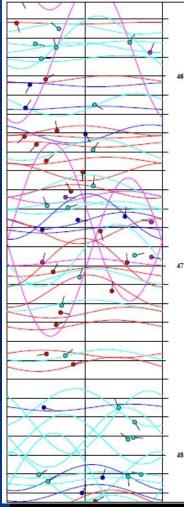
- Objectives
- Geotechnical-Geological Investigations
 - Pacific
 - Site Exploration
 - ACP Geological Profiles
 - Laboratory Testing
 - Field Testing
 - 1941 Construction Photos
 - Atlantic
 - Site Exploration
 - ACP Geological Profiles
 - Laboratory Testing
 - Field Testing
 - 1941 Construction Photos
- Summary of typical Shear Strength Parameters derived from Backanalysis
- Preliminary Design of Borinquen Dams 2E, 1W and 2W.
- Geotechnical and Geological Reports.

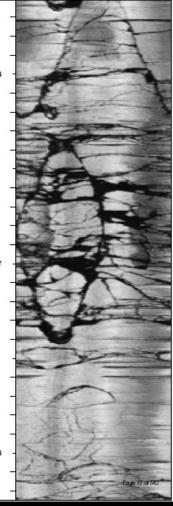
 Provide information necessary for a general characterization of the areas and for the preparation of preliminary designs for bid submittal.

Scope of Geotechnical Investigations



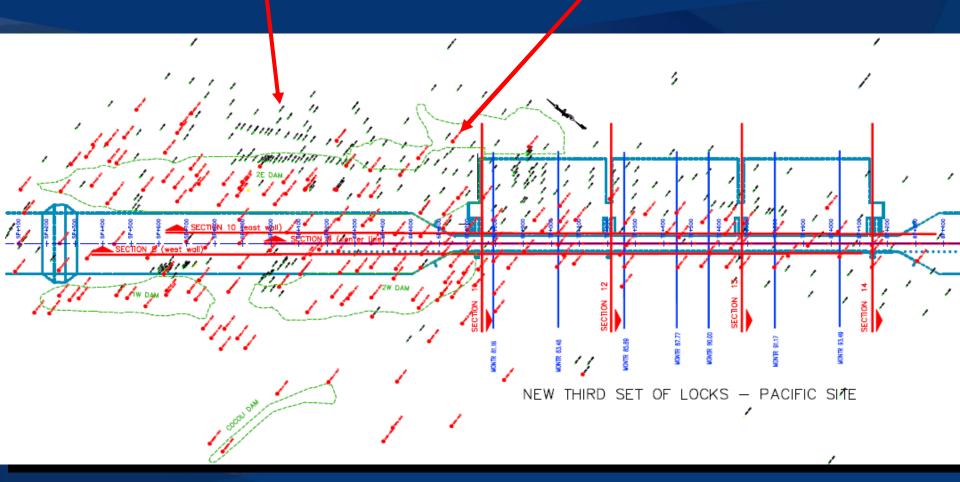
Year	Total	Length (m)	
1938-1948	1,569	44,542	
2005-2007	473	21,410	
TOTAL	2,042	65,952	f 110


Geotechnical/Geological Investigations

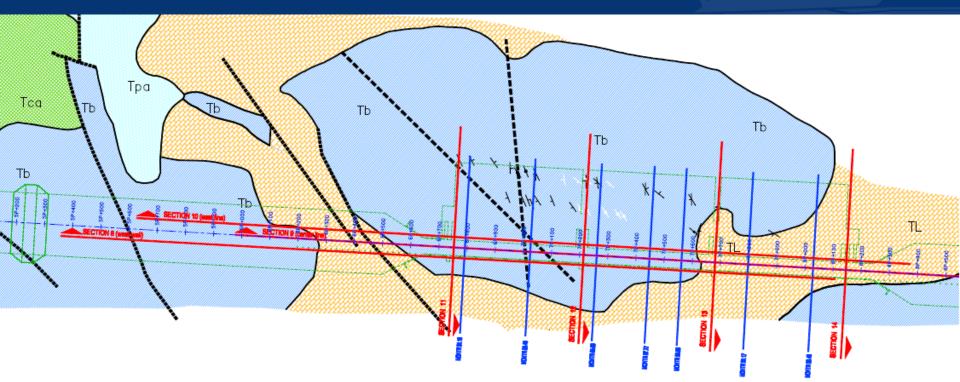

- Field Tests
 - Lugeon-Permeability, Lefranc
 - Strength and Compressibility:
 - Goodman (Borehole) Jack : hard rocks
 - Presurimeter: soft rocks
 - Dilatometer: soft to medium hard rocks
 - Discontinuities Characteristics
 - Core orientation:
 - a) CHRISTENSEN HÜGEL 1 in hard rocks
 - b) Borehole Image Processing System (BIPS)
 - RQD and core recovery
- Geophysical Profile
- Laboratory Testing

Some Field Tests

Geophysical



Borehole Image Processing System (BIPS) 27 of 110


Pacific Site Investigations

Old Boreholes

New Boreholes

Geological Plan View - Pacific

SYMBOLOGY

FORMATION

BASALT

INTRUSIVE AND EXTRUSIVE BASALT, MIDDLE AND LATE IOCENE

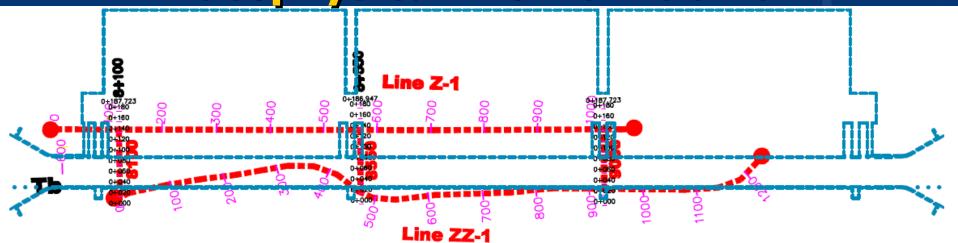
PEDRO MIGUEL

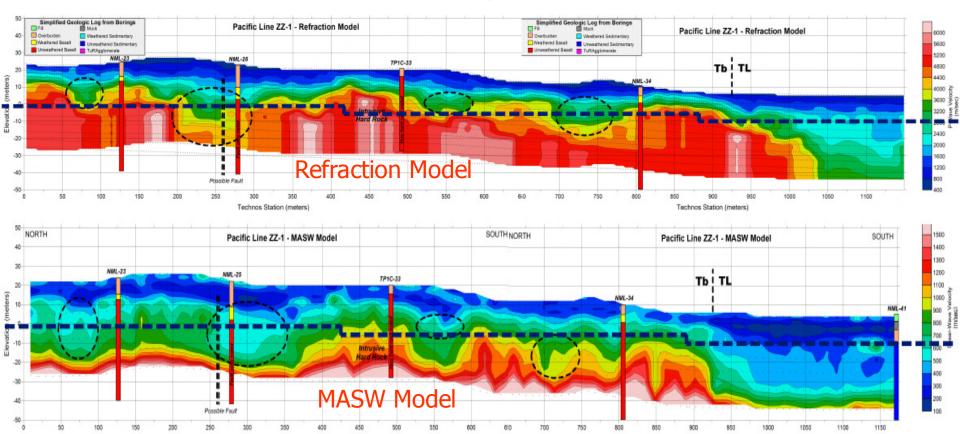
PEDRO MIGUEL FORMATION, EARLY MIOCENE HARD, FINE TO COARSE-GRAINED AGGLOMERATE

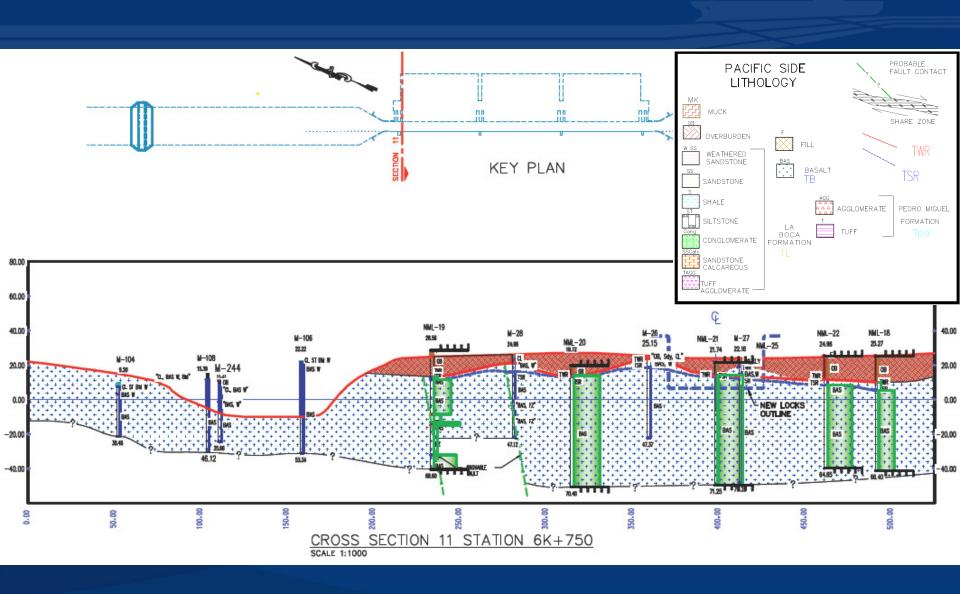
LA BOCA

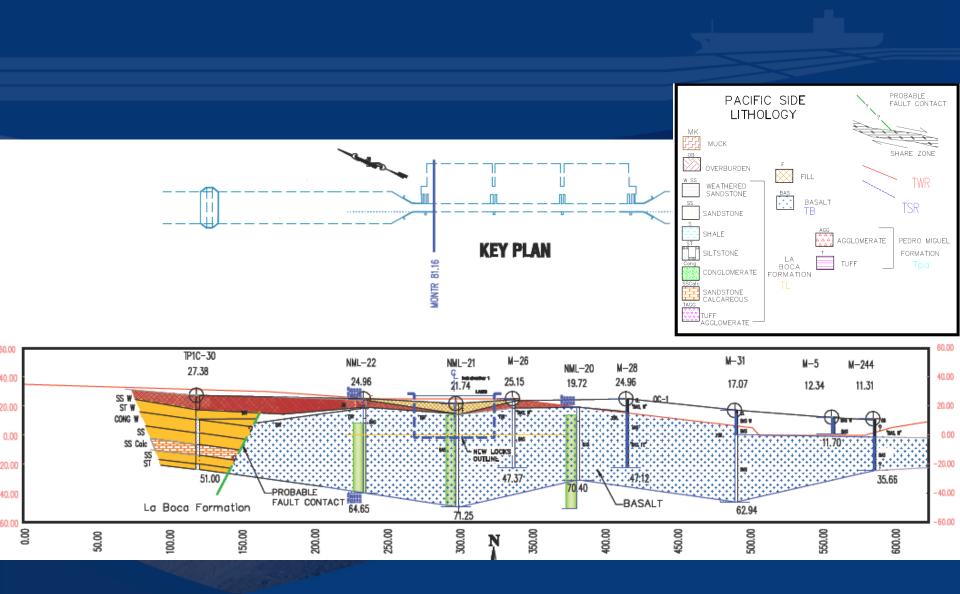
LA BOCA FORMATION, EARLY MICCENE SOFT, MUDSTONE, SILTSTONE, SANDSTONE, AND STONE TUFF, AND LIMESTONE

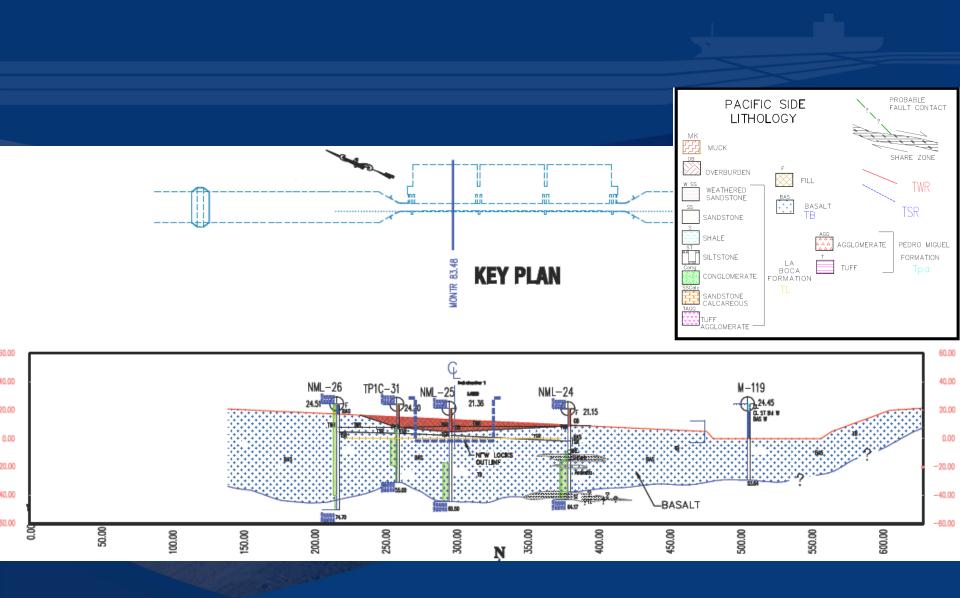
CUCARACHA

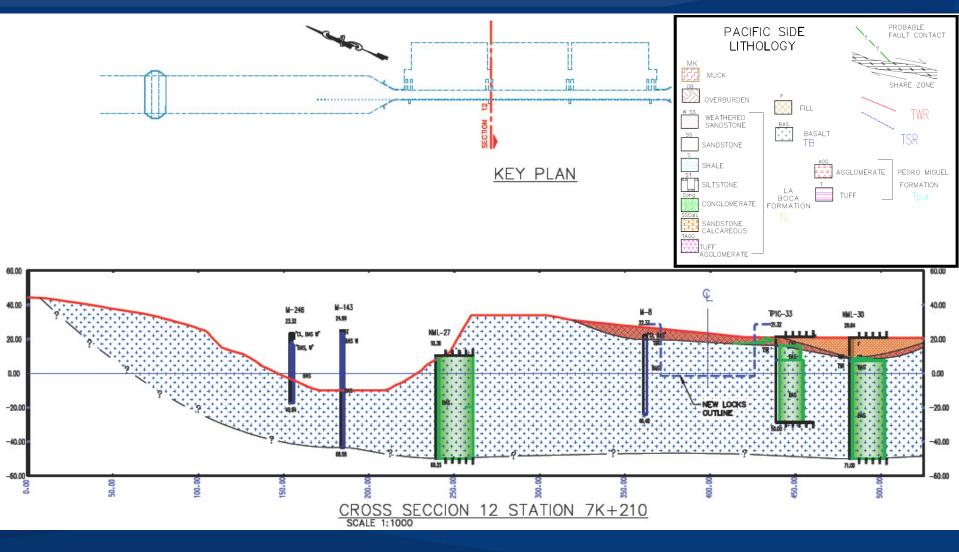

CUCARACHA FORMATION, EARLY MIOCENE, SOFT BENTONIC CLAY SHALE, CARBONACEOUS CLAY SHALE AND IN LOWER PART, A THIN ASH FLOW TUFF

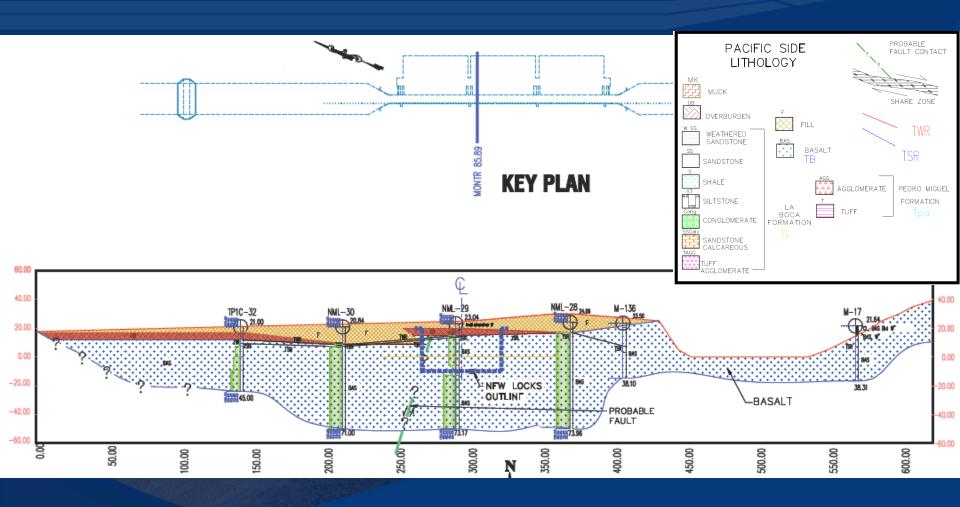

GEOLOGYCAL CONTACTS

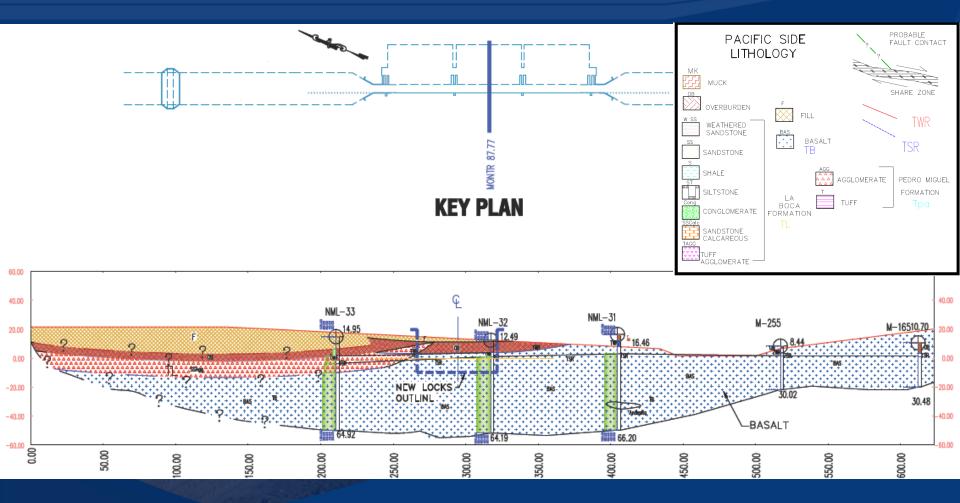

GEOLOGICAL FAULTS

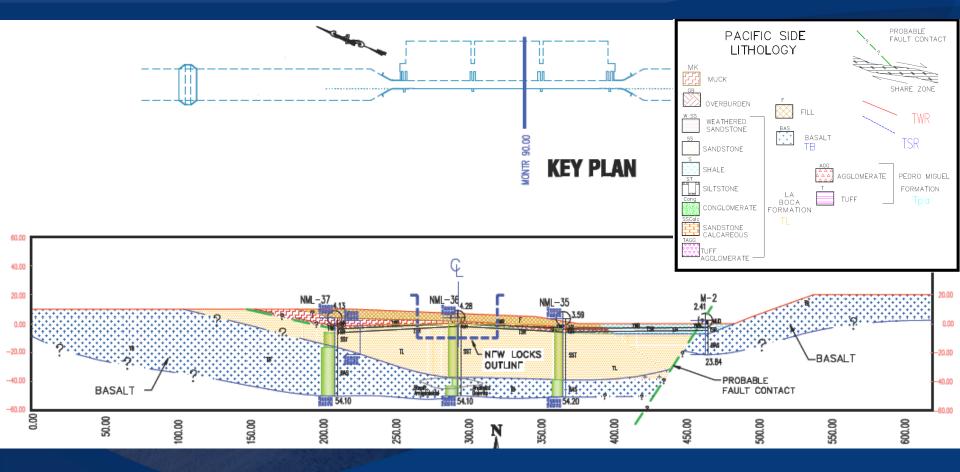

BEDDING

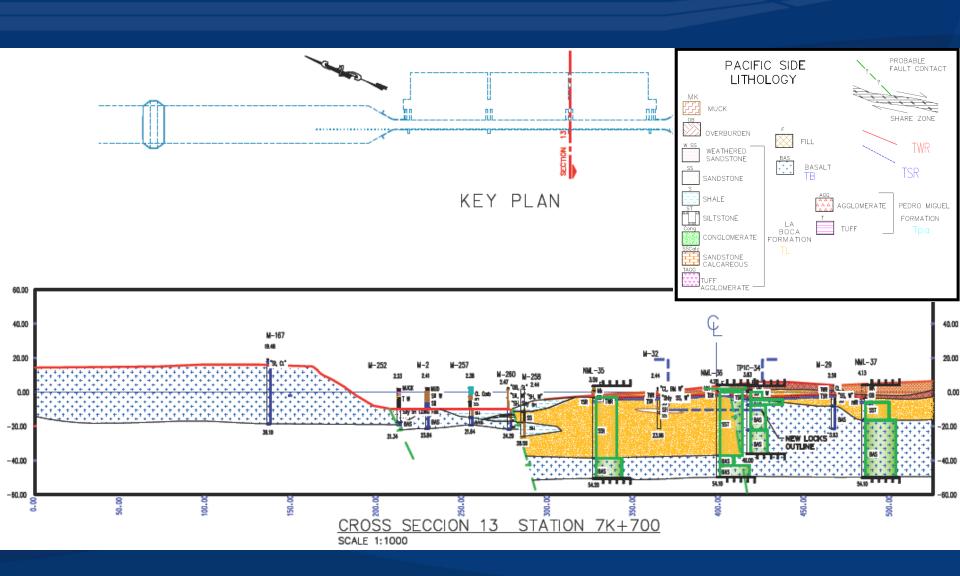

Geophysical Profile - Pacific

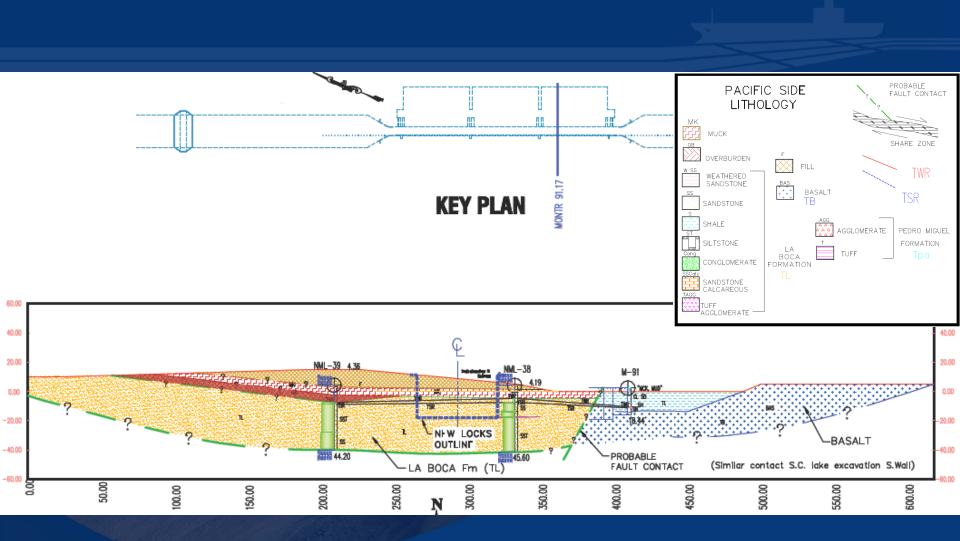


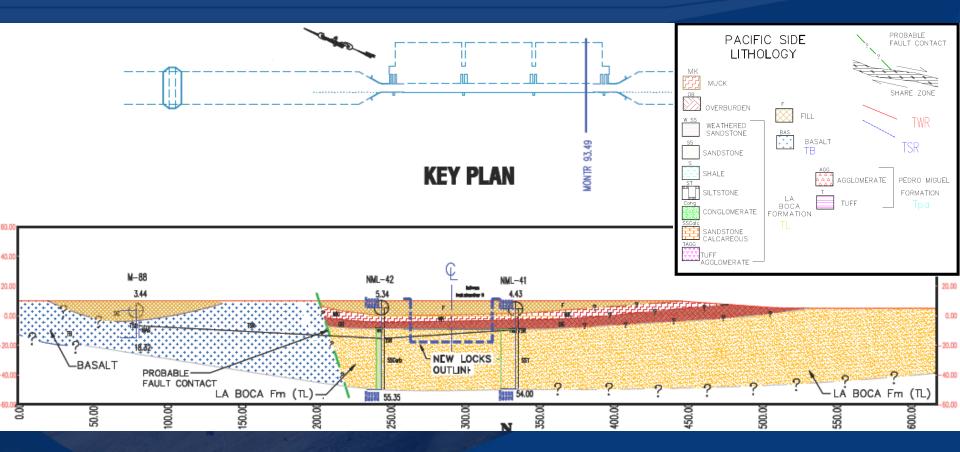


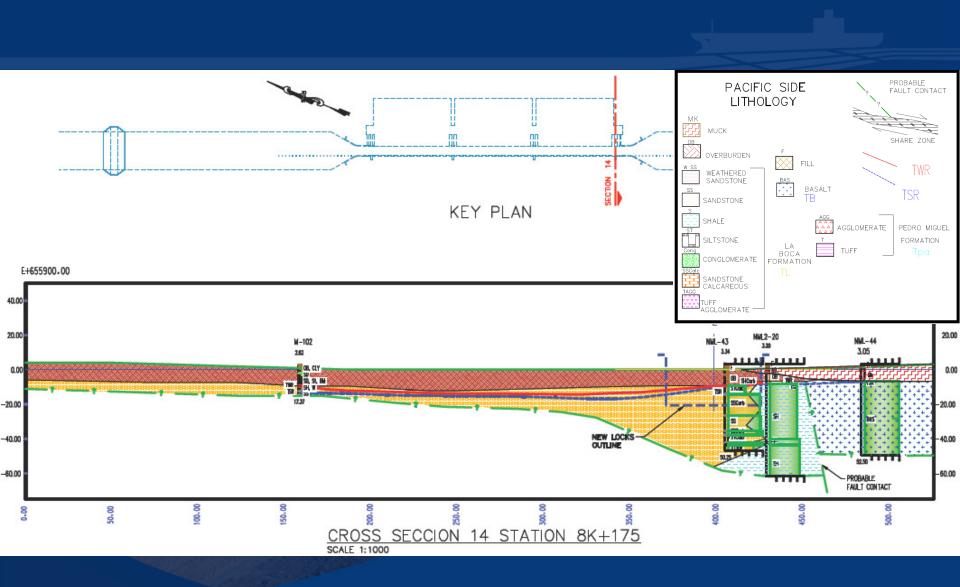


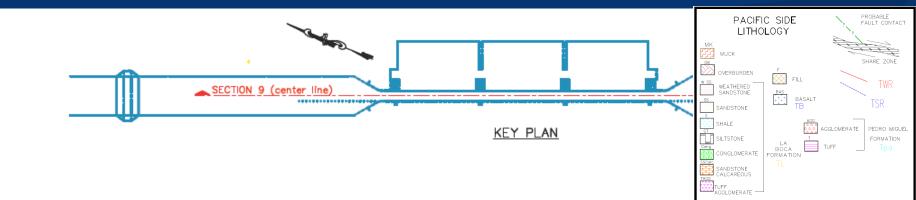


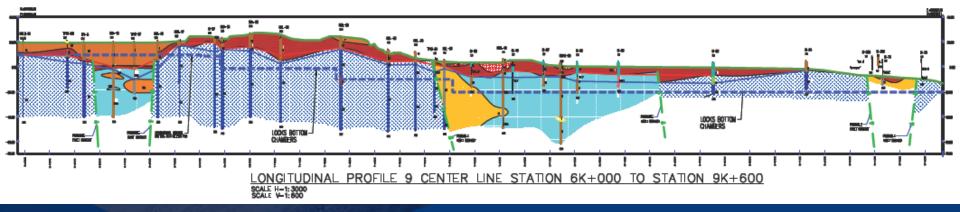


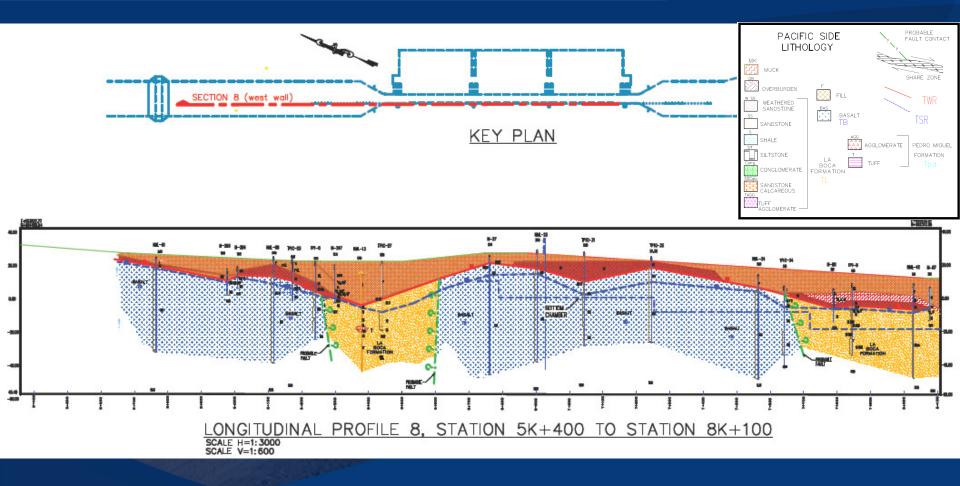




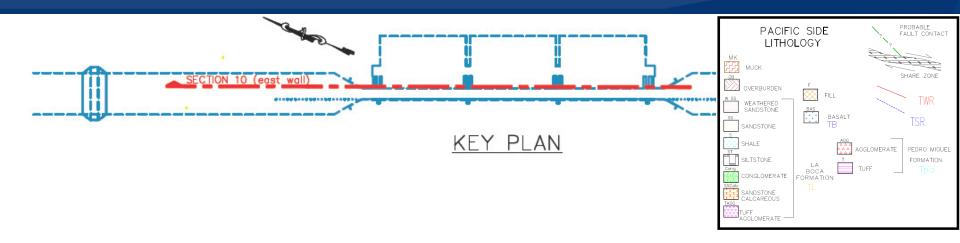


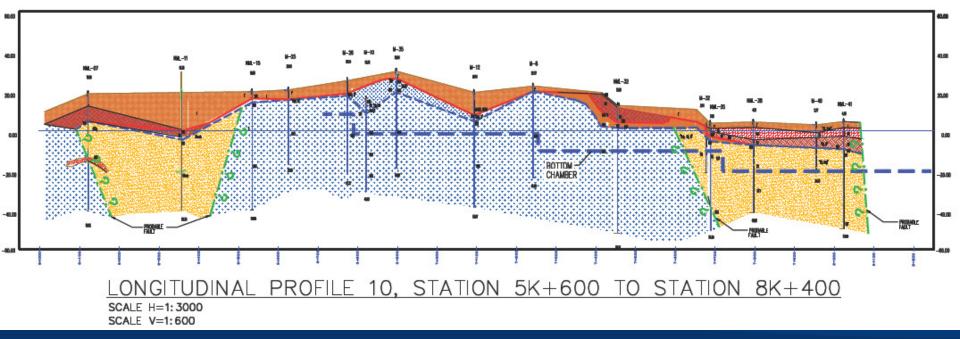






Longitudinal Geologic Profile (center)





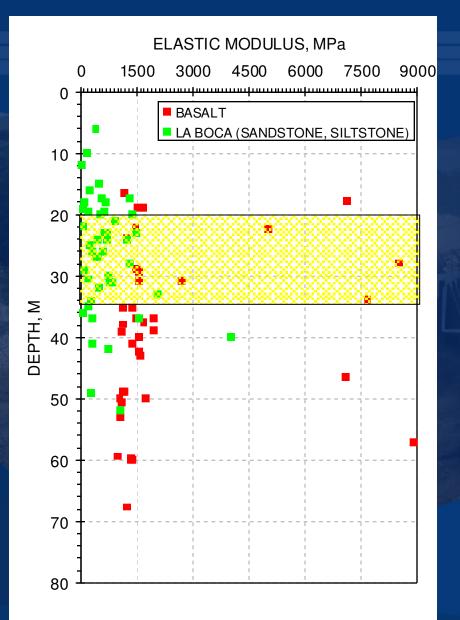
Longitudinal Geologic Profile (west)

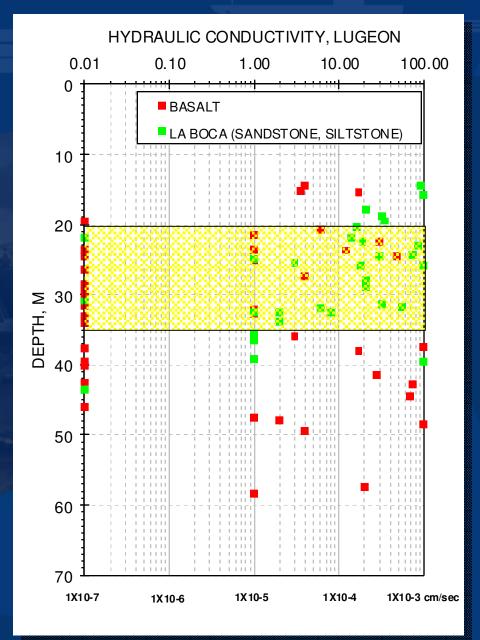
Longitudinal Geologic Profile (east)

Laboratory Testing Pacific

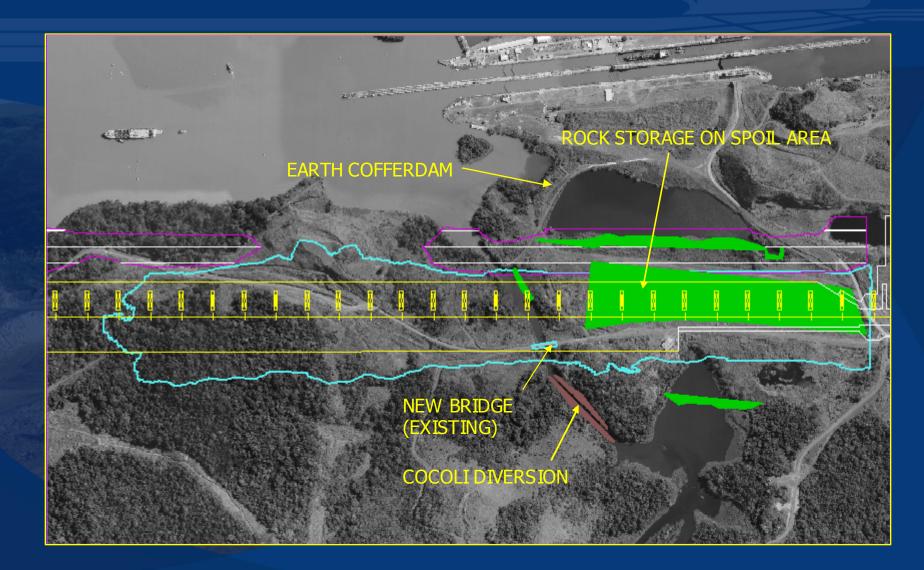
	TEST	ASTM	#
_	Specific Gravity	ASTM C 128	2205
	Moisture Content	ASTM D 2216	2490
	Sieve Analysis	ASTM C 136	1229
	Atterberg Limits LL # 40	ASTM D 438	1250
	Atterberg Limits LL # 200	ASTM D 438	24
	Hydrometer #10	ASTM D 422	53
	Hydrometer #200	ASTM D 422	26
	Rock Unconfined Compresive Strength	ASTM D 2938	1073
	Point Load Test	ASTM D 5731	835
20	Soil Unconfined Compresive Strength	ASTM D 2166	24
	Direct Shear	ASTM D 3080	24
	Torsional Ring Shear	ASTM D 6467	7
	Large Shear Box		9
	Triaxial Soils	ASTM D 4767	8
	Triaxial Rocks	ASTM D 2664	135
	<u>Slake Durability</u>	ASTM D 4644	13
	Compaction Proctor	ASTM 698/1557	17
	Percent Dispersion by Double Hydrometer	ASTM D 4221	2
	Consolidation	ASTM D 2435	5
	Pinhole Test	ASTM D 4647	3
	Absortion	ASTM C 127	60
	Permeability	ASTM D 5856	5
	Petrographic Examination	ASTM C 295	89
	X Rays Difraction	ASTM D 5856	13
	Field Unit Weight	ASTM D 1556	8
	Degradation by Angeles Machine	ASTM C 131	19
	Soundness of Sodium Sulfate	ASTM C 88	19
	Flat, enlogated Particles	ASTM D 4791	12
	Potential Alkali Reactivity	ASTM C 586	3
	Compressive Strength (Mortars)	ASTM C 109	7

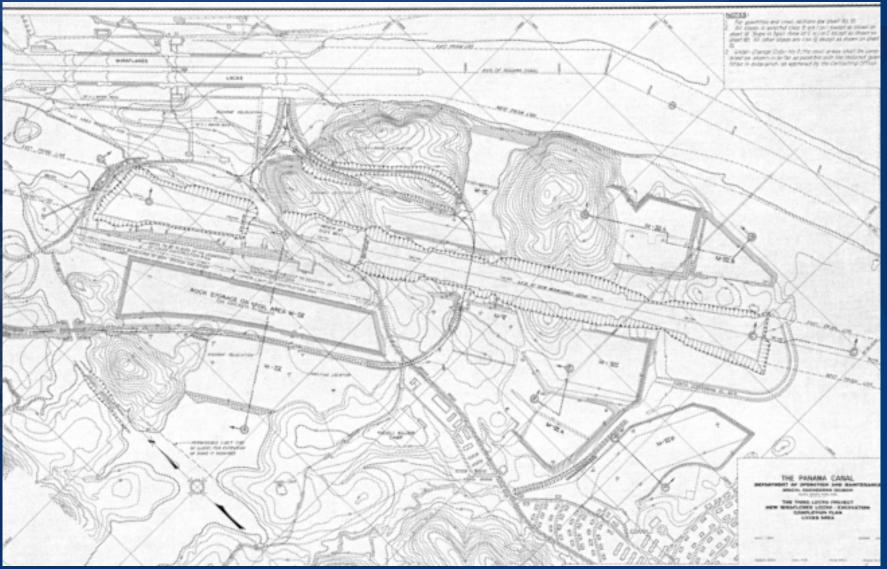
Gs			Unit	I nif Weight (Kg/ms)			astic Modul (Mpa)	$\Box (C \times \sigma_{C} (M n_{O}))$				Type of rock /	
N	Median Average	St. Dev.	N	Median Average	St. Dev.	N	Median Average	St. Dev.	N	Median Average	St. Dev.	Formation	
3	2.20	0.02	3	2,228	19	3	3,954	2,005	3	22.57	10.57		
	2.19			2,220			3,491	,		17.18		Ash flow	
2	2.17	0.15	2	2,199	183	2	341	402	2	0.65	0.78		
	2.17			2,199			341			0.65		Clayshale	
4	2.28	0.07	4	2,279	94	4	812	307	4	4.50	1.71	Sandstone	
	2.26			2,240			807			4.75		Sandstone	
9	2.20	0.08	9	2,233	89	9	994	1,764	9	5.00	8.91	Global	
	2.21			2,224			1,598			7.98		Cucaracha	
17	2.30	0.10	17	2,314	125	11	1,050	1,225	17	6.00	8.69	Conglamanata	
	2.29			2,293			1,714			9.22		Conglomerate	
3	2.20	0.10	3	2,185	130	3	1,828	1,229	3	8.00	5.70	Sandstone	
	2.24			2,185			1,474			7.10		conglomeratic	
73	2.24	0.06	82	2,224	125	74	907	4,563	82	5.75	11.39	Sandstone	
	2.25			2,239			2,881			9.91		Sandstone	
13	2.50	0.11	13	2,448	152	12	4,354	3,571	13	29.00	17.42	Sandstone,	
	2.45			2,430			4,679			30.11		calcareous	
12	2.22	0.06	12	2,228	146	12	847	3,365	12	4.30	15.73	Sandstone,	
	2.24			2,232			2,127			9.62		silty	
15	2.20	0.08	15	2,226	95	14	2,062	2,580	15	10.00	10.54	Sandstone,	
	2.22			2,202			2,782			11.99		tuffaceous	
6	2.27	0.03	6	2,253	92	6	4,137	3,446	6	24.00	16.34	Sandstone,	
	2.27			2,233			4,766			25.17		agglomeratic	
17	2.20	0.11	18	2,193	210	14	797	5,888	18	2.70	7.29	Siltstone	
	2.19			2,139		_	3,069			6.20			
6	2.12	0.06	6	2,078	89	6	608	2,159	6	3.10	1.87	Tuff	
	2.11		_	2,100		_	1,492			3.52			
7	2.30	0.09	7	2,358	112	3	2,226	774	3	0.81	0.55	Agglomerate	
0	2.29	0.1.1	0	2,303	1.00	0	1,817	1.000	0	0.69	7.01		
9	2.28	0.11	9	2,280	123	9	4,690	1,960	9	21.00	7.81	Tuff,	
1.50	2.31	0.16	1.00	2,307	1.40	1.64	4,194		100	21.82	10 50	agglomeratic	
178	2.25	0.10	188	2,250	148	164	1,207	3,973	188	7.00	12.79	Global La	
	2.26			2,244			2,932			11.93		Boca	


Table 1 Statistical Summary of Unconfined Compressive Strength, Elastic Modulus, Unit Weight and Specific Gravity (Pacific)


Gs			Unit	Unit Weight (Kg/m3)			Elastic Modulus E (Mpa)			UCS oc (M	Type of rock /	
Ν	Median Average	St. Dev.	Ν	Median Average	St. Dev.	Ν	Median Average	St. Dev.	N	Median Average	St. Dev.	Formation
5	2.20 2.28	0.11	5	2,261 2,257	77				5	21.00 19.20	6.91	Agglomerate and tuffaceous Agglomerate
2	2.30 2.30	0.00	2	2,253 2,253	33				2	17.30 17.30	10.89	Conglomerate
1	2.40	-	1	2,333					1	13.00		Sandy Tuff
8	2.30 2.30	0.09	8	2,269 2,265	66	0			8	19.50 17.95	7.00	Global Panama
268	2.40 2.42	0.08	268	2,403 2,414	125	152	7,784 8,229	4,373	268	34.00 33.05	13.00	Agglomerate
16	2.30 2.32	0.02	16	2,335 2,329	113	15	5,663 6,053	3,980	16	24.50 23.84	11.32	Agglomerate, tuffaceous
75	2.34 2.34	0.07	76	2,341 2,332	120	63	5,626 5,741	2,977	76	23.75 24.96	10.62	Tuff, agglomeratic
11	2.31 2.30	0.07	11	2,281 2,308	107	11	5,821 5,654	2,579	11	24.00 26.17	9.29	Tuff
370	2.40 2.39	0.08	371	2,379 2,390	129	241	6,707 7,326	4,115	371	31.70 30.79	12.87	Global Pedro Miguel
276	2.71 2.73	0.06	277	2,724 2,711	110	231	12,641 13,765	7,185	277	57.20 60.57	35.29	Basalt
87	2.76 2.75	0.06	89	2,749 2,740	106	89	13,282 14,459	6,393	89	55.80 56.25	22.03	Basalt/diabase
4	2.73 2.73	0.06	4	2,656 2,670	73	4	15,129 15,061	2,114	4	48.25 55.08	18.28	Basalt/andesite
19	2.48 2.52	0.11	23	2,562 2,562	153	23	6,401 6,758	3,432	23	19.00 21.41	10.64	Basalt (brecciated)
386	2.72 2.72	0.08	393	2,720 2,702	177	347	12,493 13,511	6,980	393	53.70 73.45	321.29	Global Basalt

Boring	Depth	sample	Un iaxia I Compressive Streng th	Water Content	Density	Triaxial test		Hoek	-Brown Fit	Friction an gle	C ohesio n	Material			
	(m)		σci(Mpa)	wo (%)	γw (kg/m 3)	σ3(Mpa) σ1(Mpa)		mi q _{ui} (Mpa)		φ'	(Mpa)				
	30.05-30.53	1		4.55 4.47	2671	1.4 2.8	59.2 69.0	39.0	240	55.0	60				
NML-10 NML-10		2		4.47	2623 2625	2.8 5.5	100.6	39.0	34.0	55.0	6.0	Basalt			
NML-10		4	68.5												
NML-10	36.13-37.10	1		4.68	2519	1.4	33.1								
NML-10 NML-10		2		5.09 5.21	2493 2424	2.8 5.5	51.2 67.6	50.0	1 3.0	57.0	2.0	Basalt			
NML-10		4	101.5	J.21	242.4	5.5	07.0								
NML-10	39.20-39.70	1	10110	8.82	2269	1.4	18.3								
NML-10		2		7.76	2281	2.8	38.8	50.0	4.0	57.0	0.7	Sandstone			
NML-10		3		9.52	2298	5.5	51.1					Ganastone			
NML-10 NML-14	39.26-39.56	4	24.8	3.47	2695	1.4	61.7								
NML-14	33 20-33.30	2		3.92	2725	2.8	73.8	13.0	52.0	46.0	9.9				
NML-14		3		3.51	2687	5.5	86.8					Basalt			
NML-14		4	95.3												
NML-27	56.65-57.74	1		2.73	2782	1.4	75.5	7.0	76.5	39.0	16.0				
NML-27 NML-27		2		2.91 2.06	277 7 276 7	2.8 5.5	90.9 93.9	7.2	7 3.0	39.0	10.0	Basalt			
NML-27		4	111.0	2.00	2101	5.5	33.9								
NML-33	21.82-22.80	1		5.88	2201	0.7	37.4								
NML-33		2		6.24	2266	1.4	52.5	24 .0	31.0	52.0	6.0	Tuff-			
NML-33		3	10	5.00	3116	2.8	57.4					Agg lomerate			
NML-33 NML-37	15.45-16.05	4	4.9	12.52	2281	0.7	20.0								
NML-37	13.43-10.03	2		12.52	2257	1.4	25.8	50.0	11.0	57.0	2.0				
NML-37		3		10.42	229.9	2.8	52.5			-				-	Sandstone
NML-37		4	76.2												
NML2-4	32.05-32.55	2-1		20.02	2078	0.6	25	50.0	0.0	57.0	10	Condatore			
NML2-4 NML2-4		2-2 2-3		19.41 19.58	2088 2049	1.2	40 46	50.0	9.0	57.0	1.6	Sandstone			
NML2-4		2-3	11	19.00	2049	1.0	40								
	11.32-11.68	2-1		13.59	2207	0.1	14								
NML2-17		2-2		9.45	2215	0.3	34	49.0	1 2.0	57.0	2.0	Sandstone			
NML2-17 NML2-17		2-3 2-3	29	10.92	2272	0.5	44					Agglo meratic			
PAC2-19	23.20-23.70	2-3	29	13.37	2269	0.25	27								
	20 20 -20.70	<u>∠</u> -1								57	2.8	Tuff,			
PAC2-19		2-2		13.97	2258	0.5	37	49	16	57	2.8	Agglo meratic			
PAC2-19		2-3		13.05	2283	1	50								
PAC2-19	9.04-9.76	2-4 1-1	10.2	3.44	2636	0.69	29								
PAC-3-16	9.04-9.76	1-1		3.89	263.6	1.38	 53	50	29	57	5	Agg lomerate			
		1-3		5.02	2514	2.76	60			-					
			29												
PAC-3-16	11.68-12.78	2-1		1.74	2502	0.69	43								
<u> </u>		2-2 2-3		1.46 1.59	2769 2759	1.38 2.76	1 03 1 24	50	28	57	5	Agg lomerate			
		2-3		2.12	2747	5.52	142	50	28	57	э				
8			28												
PAC-3-16	16.40-17.24	3-1		5.11	254.2	0.69	48								
		3-2 3-3		4.02 2.66	260 5 259 8	1.38 2.76	51 53	10	33	43	6	Agg lomerate			
		3-3		2.66	2598	2.76	- 53 - 73	10	33	40	0				
			33		<i>u</i> -										
				12.00	2176	0.69	34					Tuff,			
URS2-4	16.73-17.68	1-1			-		-					ag glomera tic			
		1-2		11.38	2196	1.38	43					Pedro Migue I			
		1-3		12.10	2156	2.76	45	12	29	45	45 6	Fearo Miguer			
		1-4		11.92	2177	5.52	61								
			29									— "			
URS2-4	21.46-22.41	2-1		11.35	2206	0.39	32					Tuff, ag glomera tic			
0032-4	21.40-22.41	2-1		12.13	2136	1.38	37					ayyonerallo			
		1			2100	2.76	0,	11	23	44	5	Pedro Migue I			
		2-3		11.64	2135		34		20	-44	3	Fm			
_		2-4		11.52	2122 2209	2.76	40								
		2-5	23	11.04	2209	5.52	59								


Rock Triaxial Test

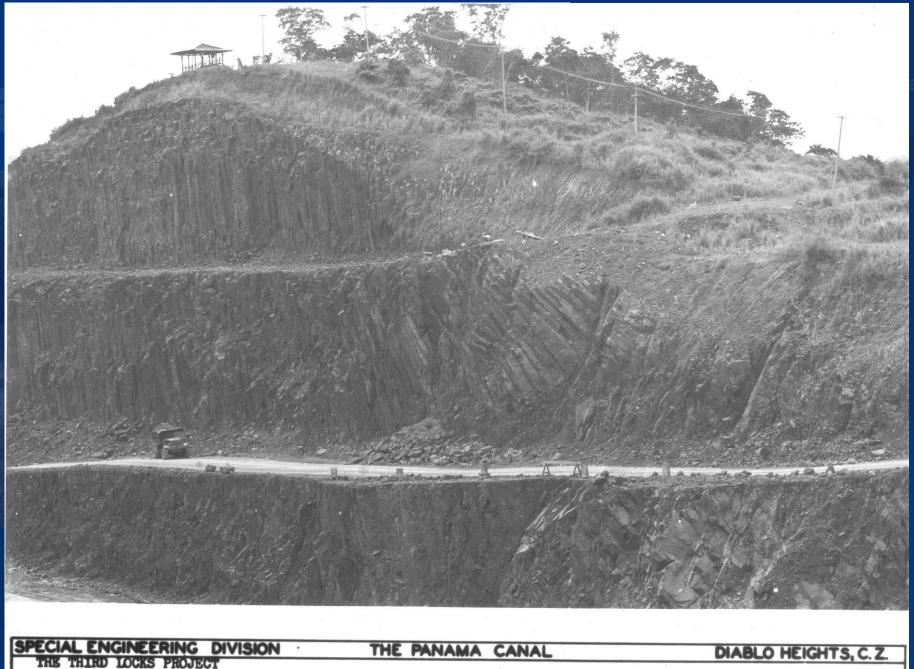

Field Tests Results (Dilatometer, Lugeon) - Pacific

The Third Locks Project (1941)

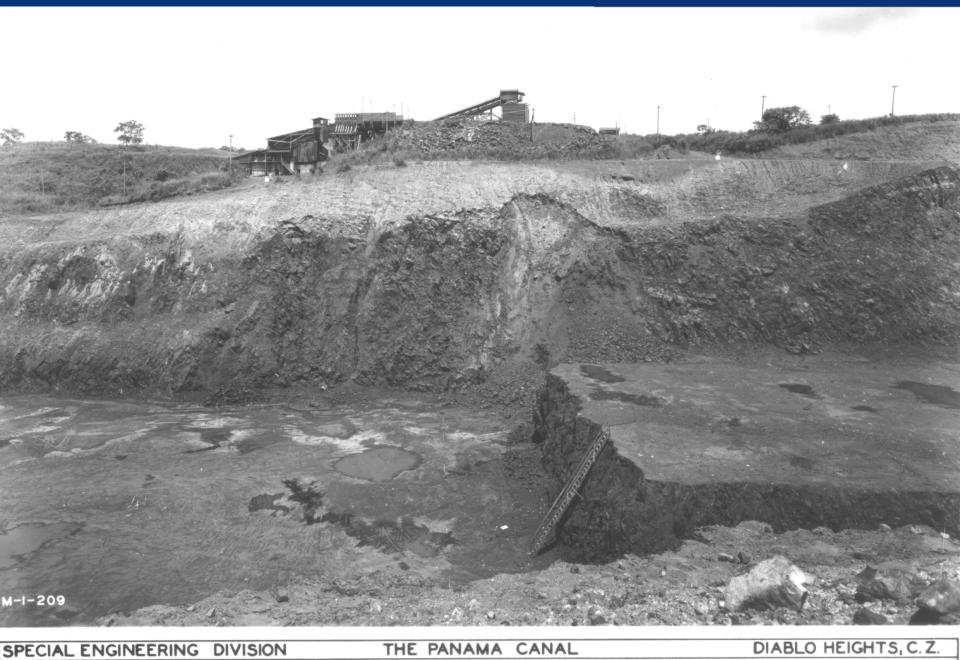
Pacific Locks (1941 excavation), Looking south

Pacific Locks (1941 excavation), Looking north

SPECIAL ENGINEERING DIVISIONTHE PANAMA CANALDIABLO HEIGHTS, C.Z.THE THIRD LOCKS PROJECT
6-9-43CONTRACT NO. PClp-6026-9-43NEW MIRAFLORES LOCKS. COMPLETED EXCAVATION. VIEW WEST FROM STA. 97/50, PANAMA CONSTRUCTORS, INC.M-1-202OFFSET 180' EAST. LEFT MARKER AT 96/00, RIGHT AT 99/00. (W5).



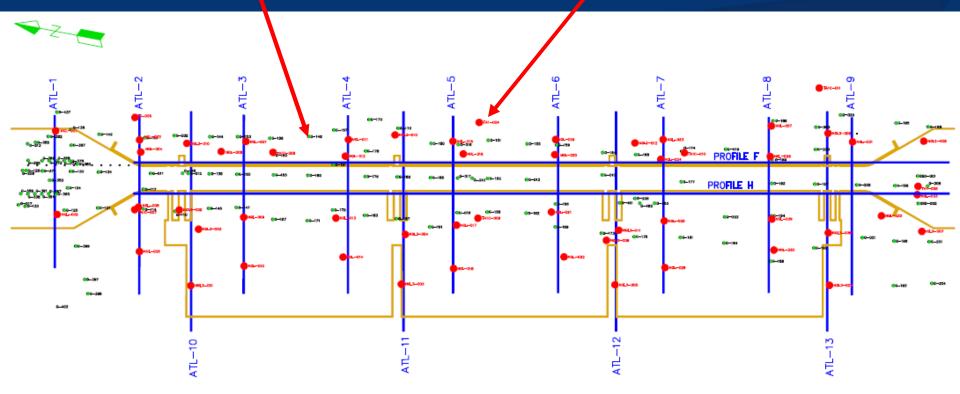
SPECIAL ENGINEERING DIVISION


THE PANAMA CANAL

DIABLO HEIGHTS, C.Z.

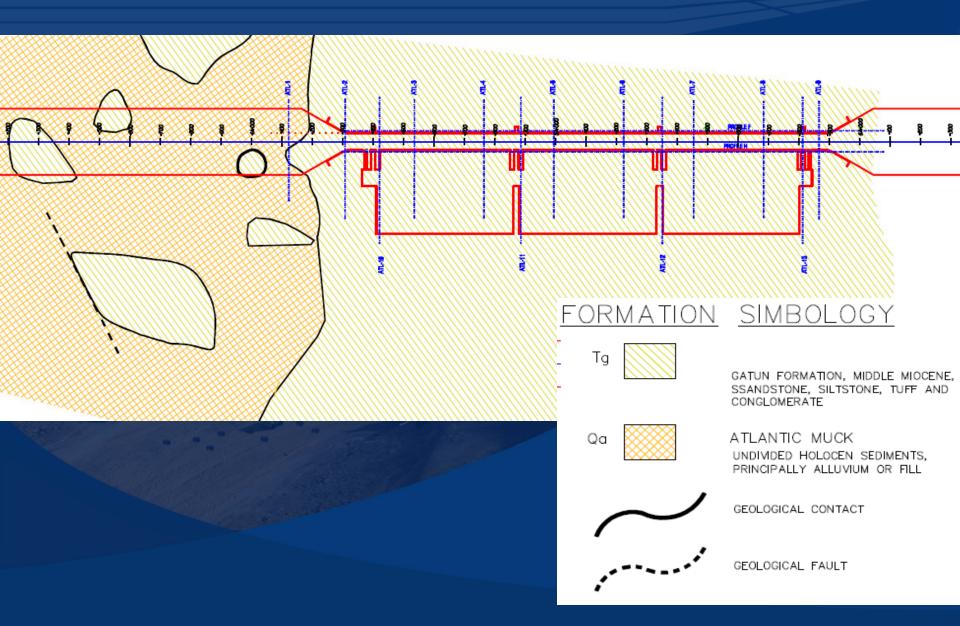
THE THIRD LOCKS PROJECT 3/31/42 NEW MIRAFLORES LOCKS EXCAVATION. VIEW LOOKING SOUTH FROM STATION 123 M-1-63 SHOWING EXCAVATION WORK IN PROGRESS AT STATION 108. CONTRACT NO. PClp-602 PANAMA CONSTRUCTORS, INC.

12/23/42 NEW MIRAFLORES LOCKS. FOUNDATIONS. VIEW LOOKING SOUTHERLY FROM M-4-66 STA. 119/00 SHOWING INCLINED (45 DECREE) COLUMNAR BASALT AT STA. CONTRACT NO. PC1p-602 PANAMA CONSTRUCTORS, INC. 110/00 WEST WALL FACE.

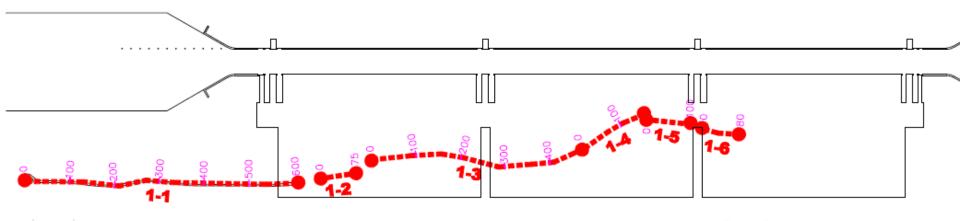

THE THIRD	LOCKS PROJECT					
6-10-43	NEW MIRAFLORES	LOCKS.	COMPLETED	EXCAVATION.	VIEW WEST FROM	STA.
M-1-209	118/05, OFFSET	219' EAS	ST. LEFT M	ARKER AT 117,	00, RIGHT AT 120	0 ≁ 00. (₩3

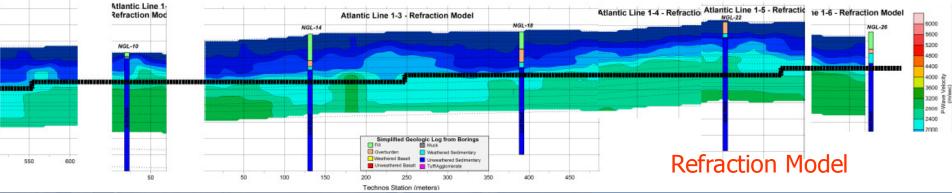
CONTRACT NO. PC1p-602 PANAMA CONSTRUCTORS, INC. 12).

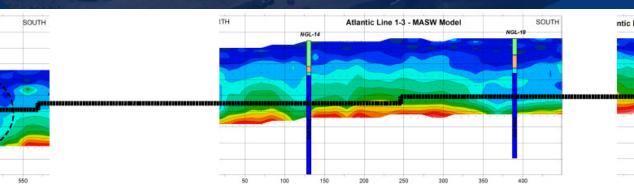
Atlantic Site Investigations

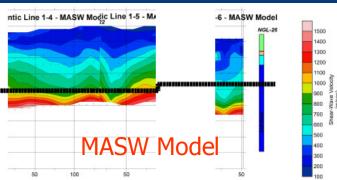

Old Boreholes

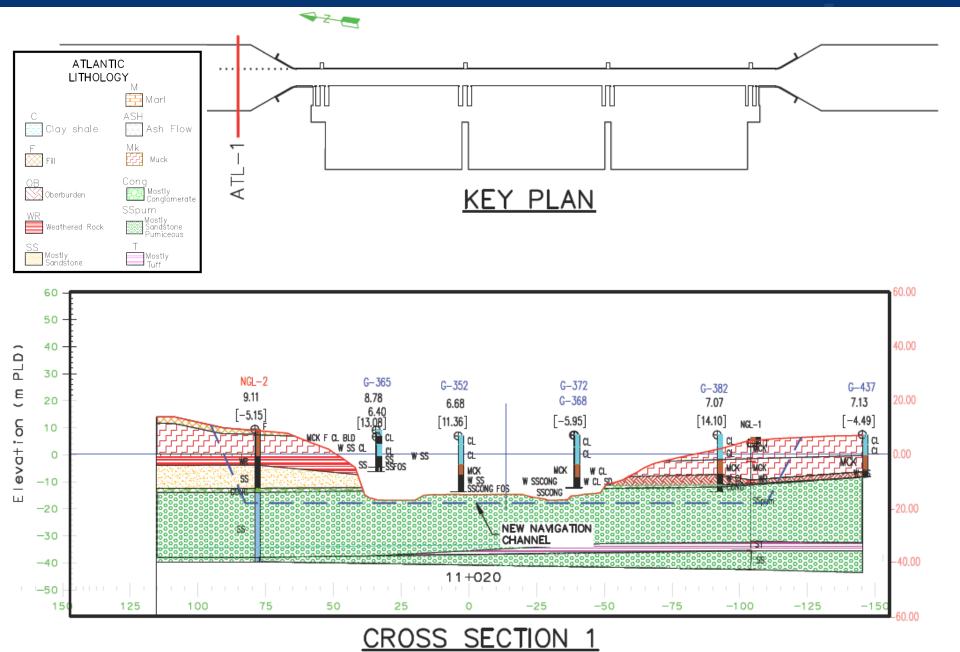
New Boreholes

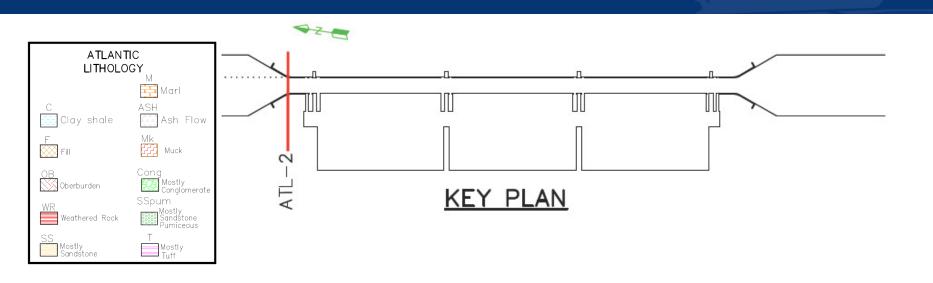


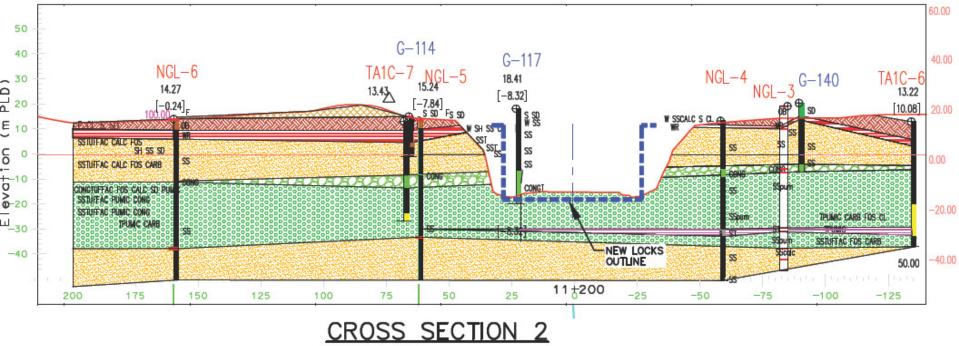

NEW THIRD SET OF LOCKS - ATLANTIC SITE


Geology Plan View - Atlantic

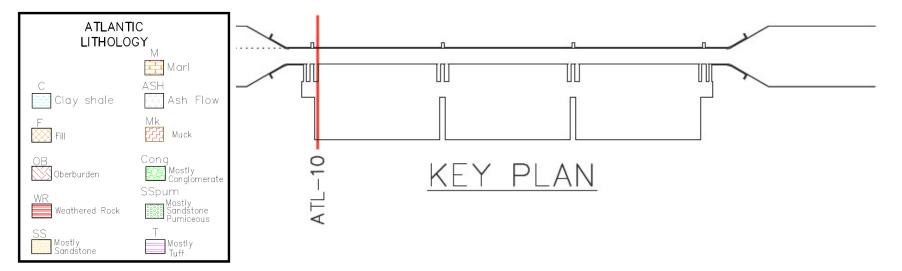


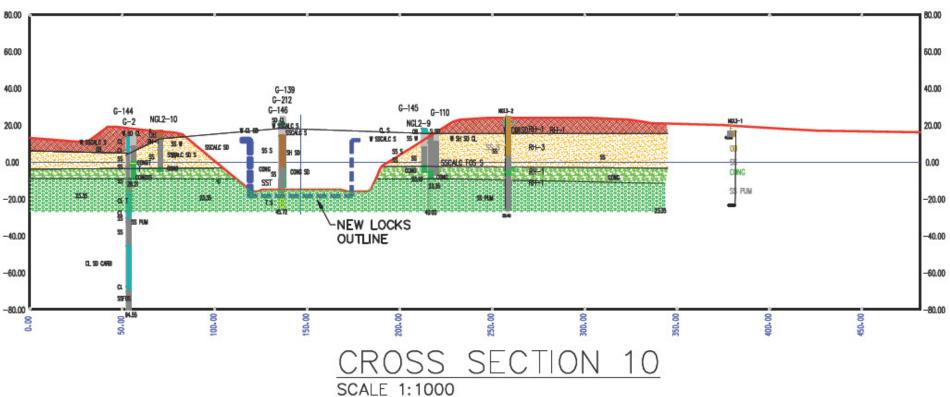

Geophysical Profile - Atlantic

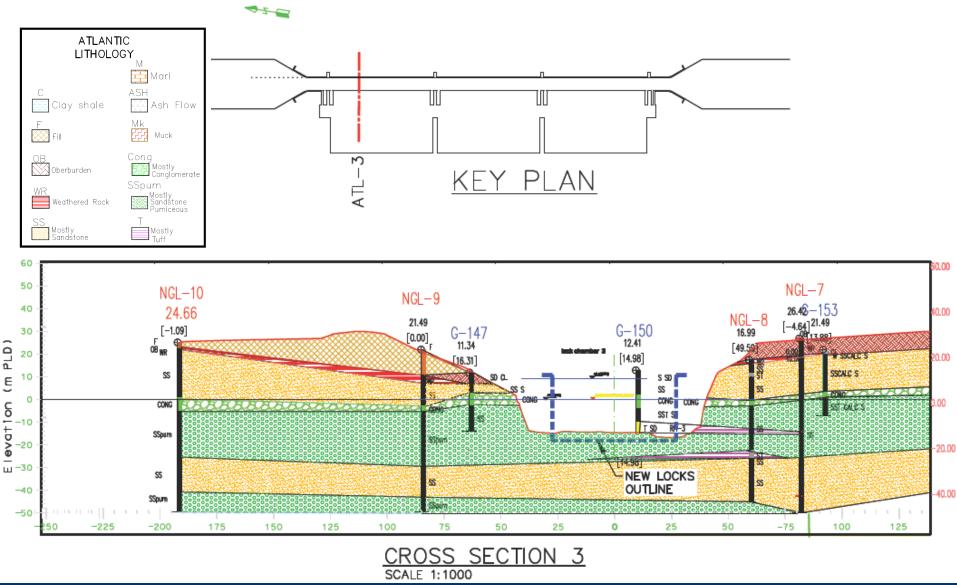




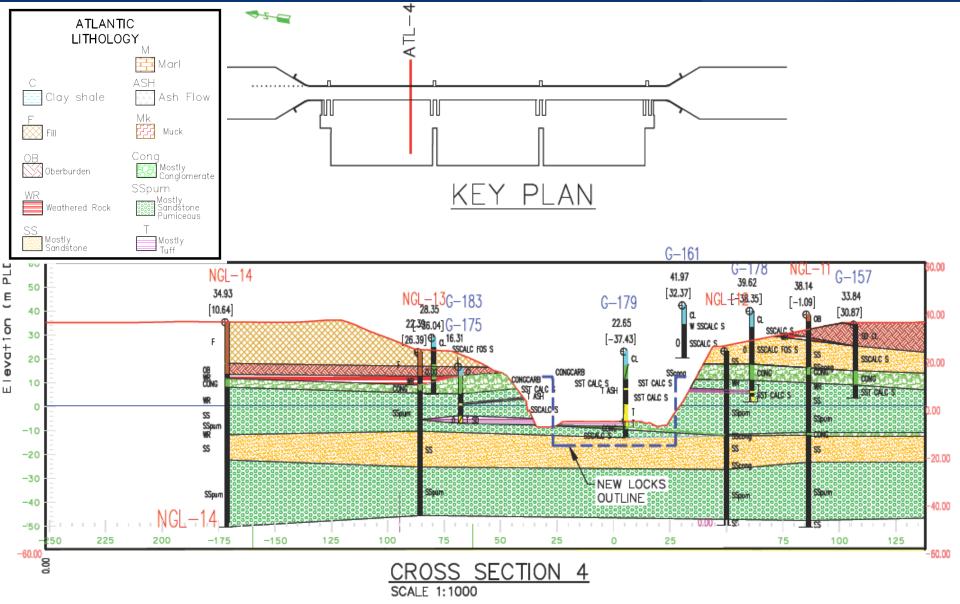
SCALE 1:1000

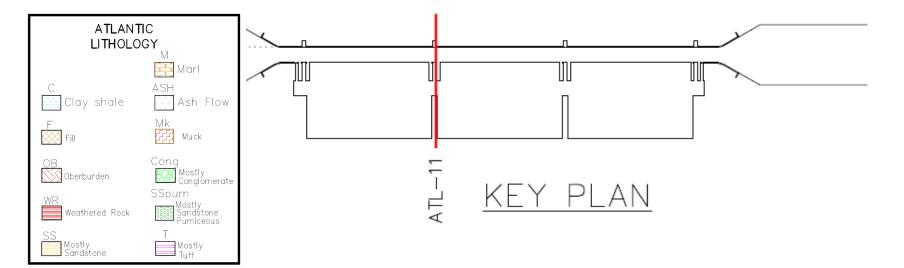

)

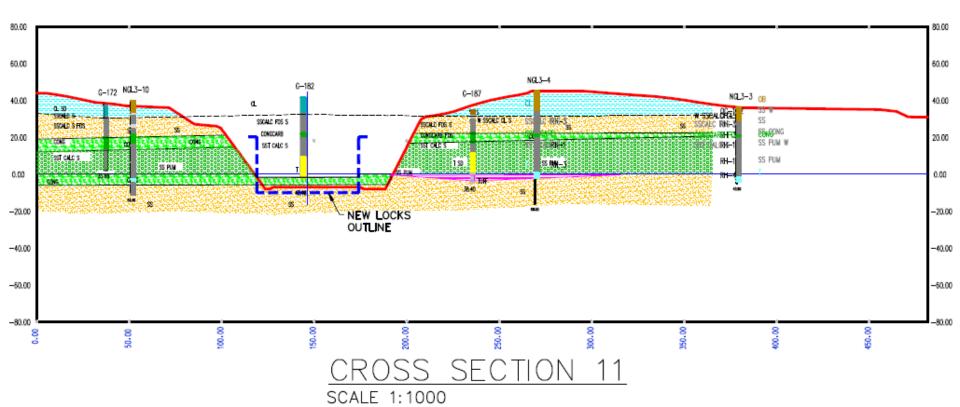


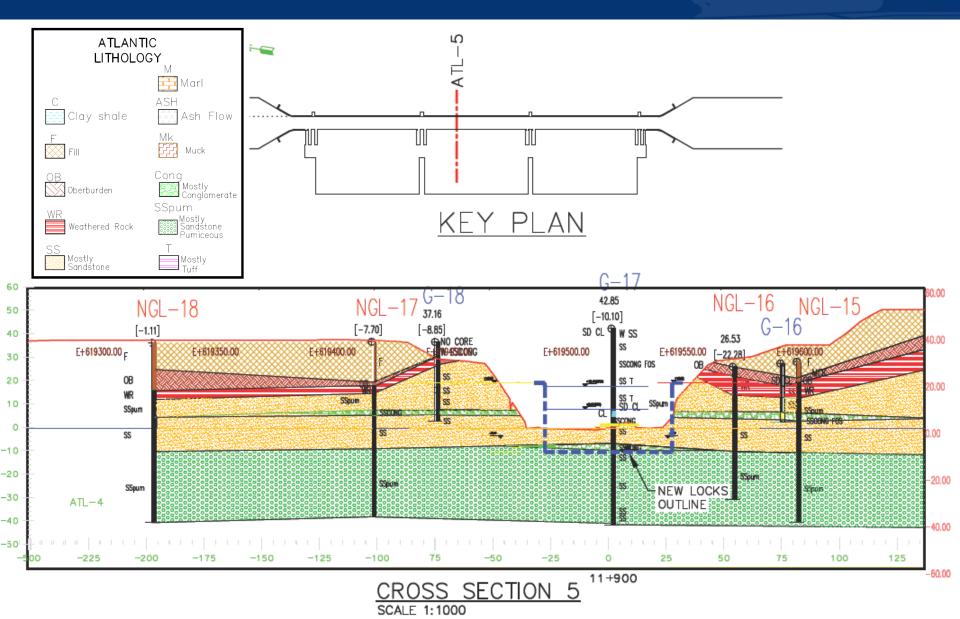


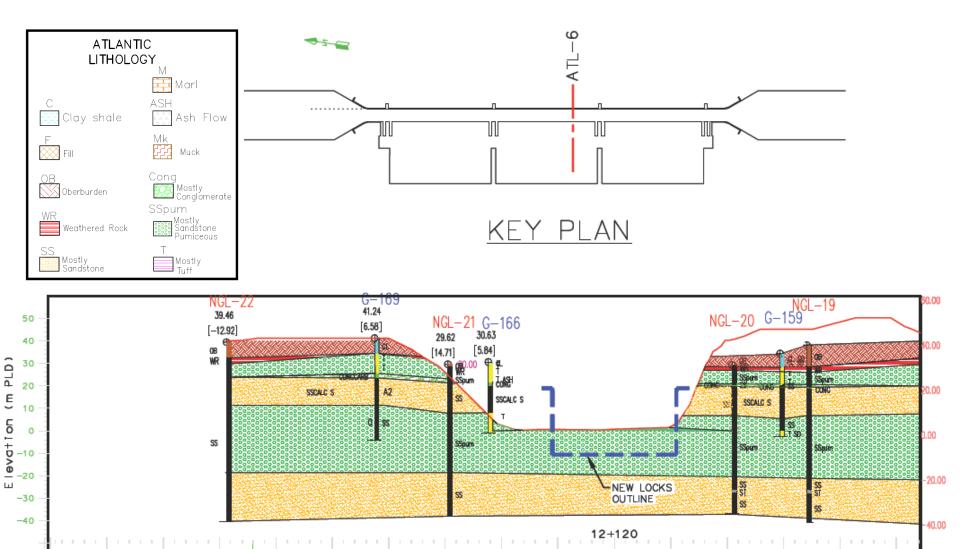
SCALE 1:1000

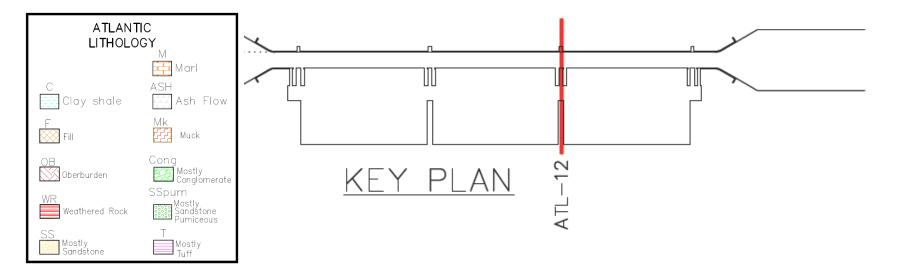


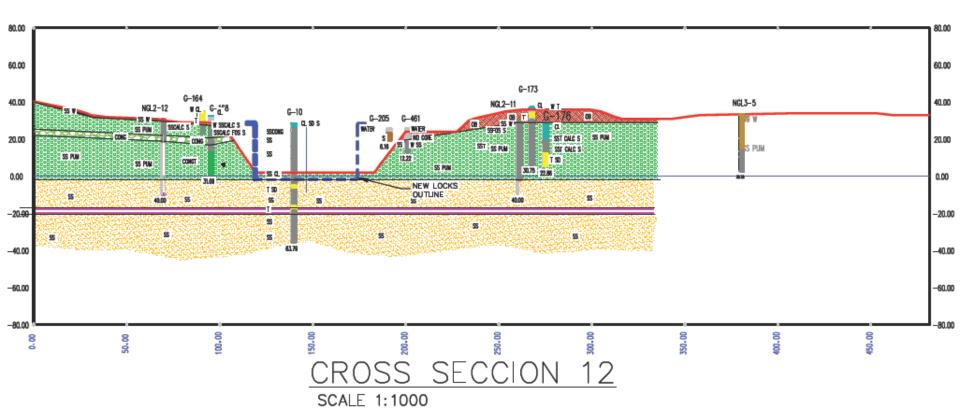


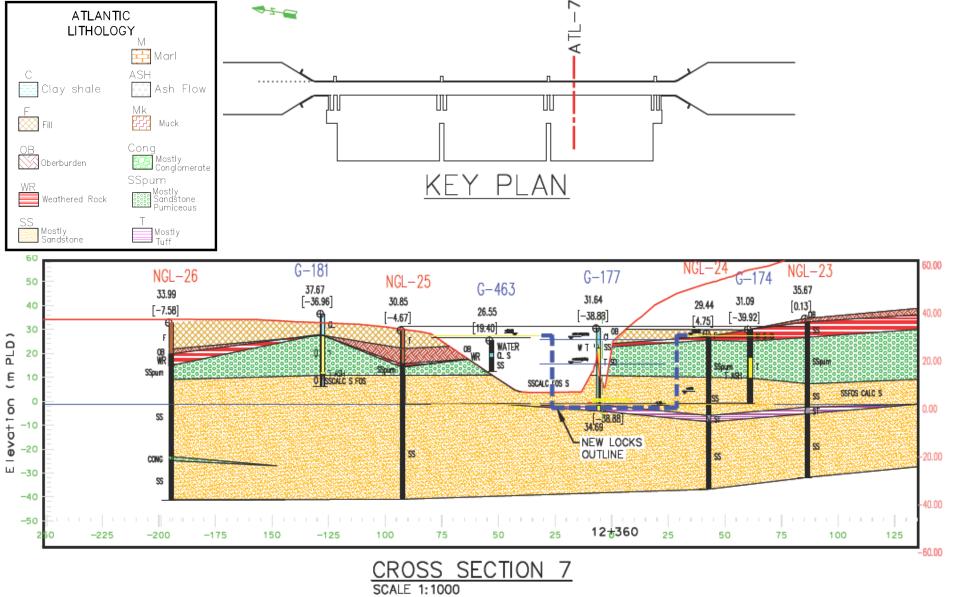


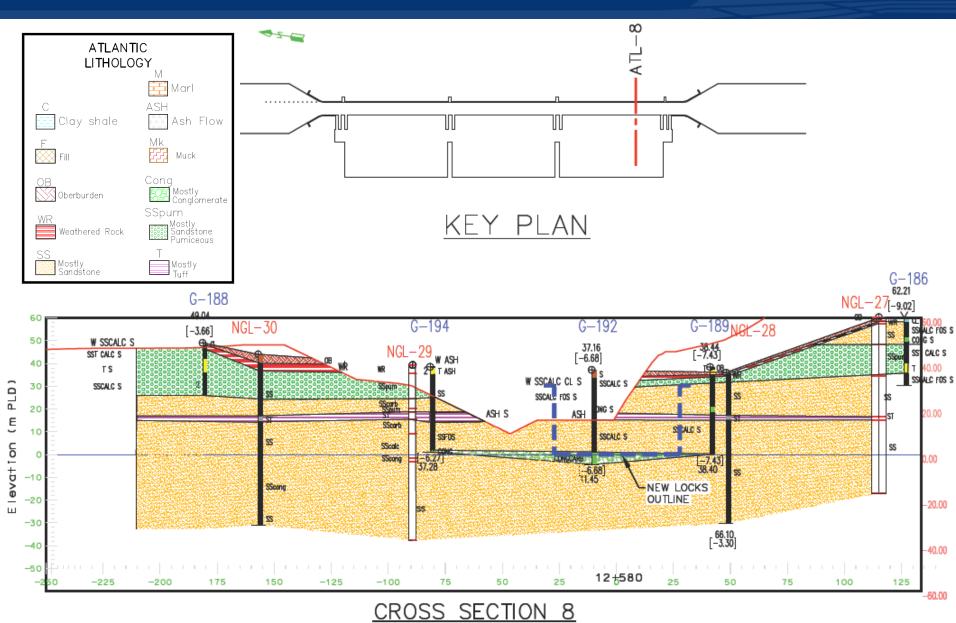




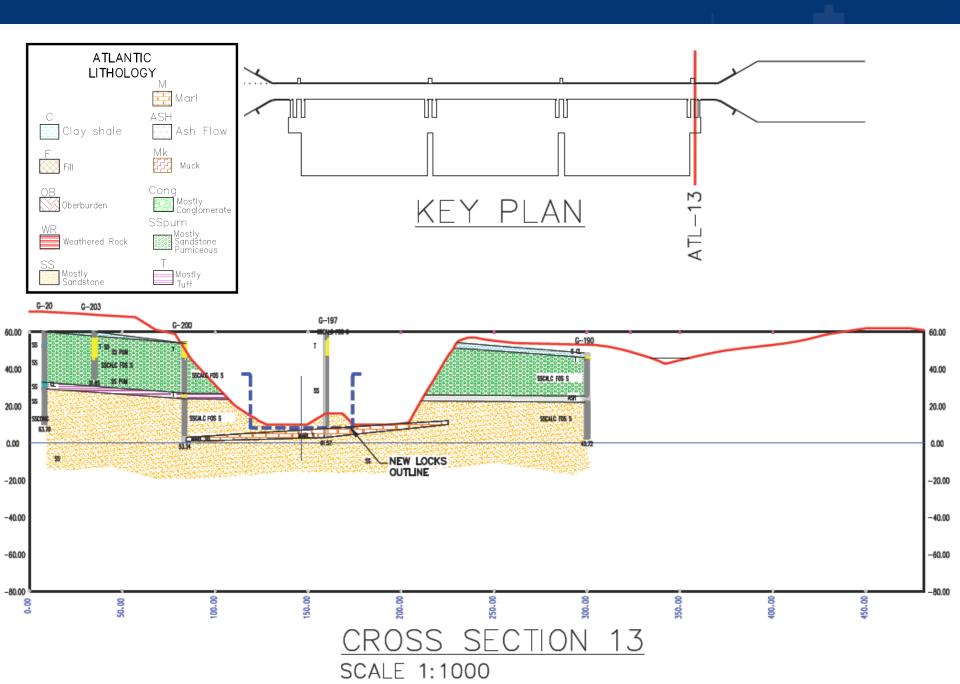


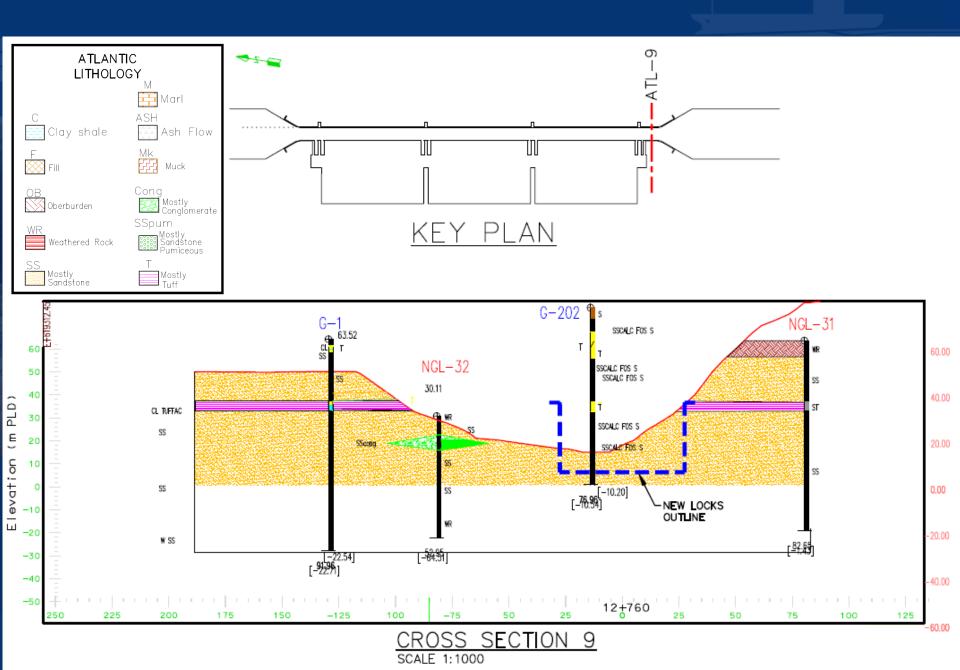

CROSS SECTION 6 SCALE 1:1000

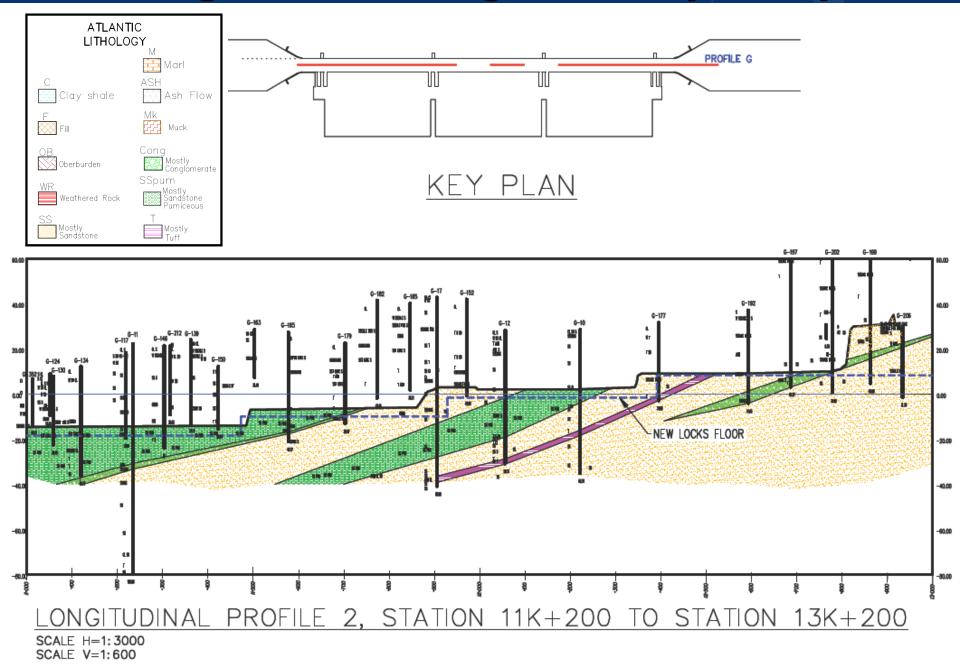

-60.00


-75

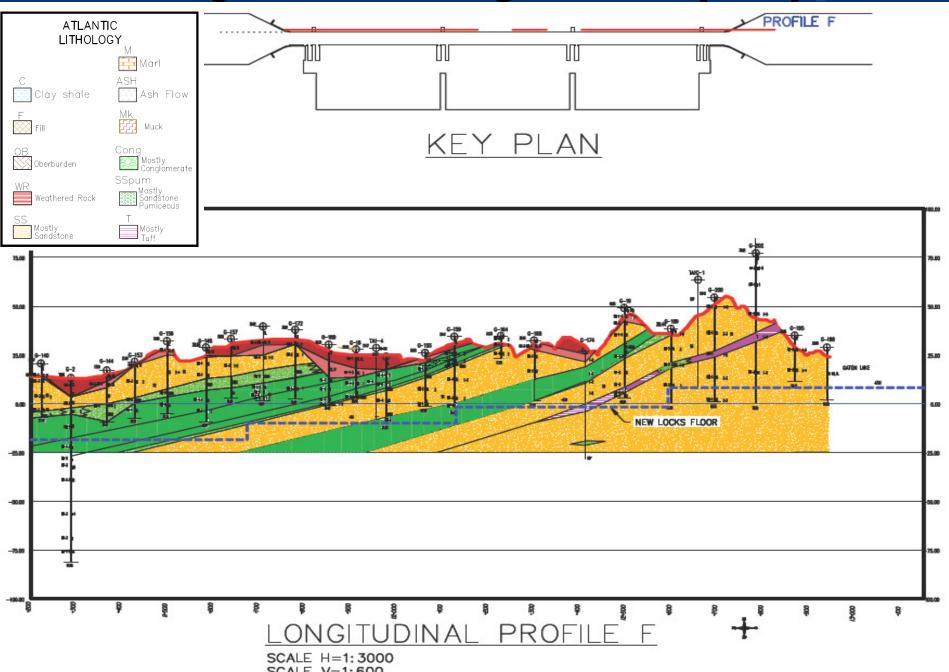
-175

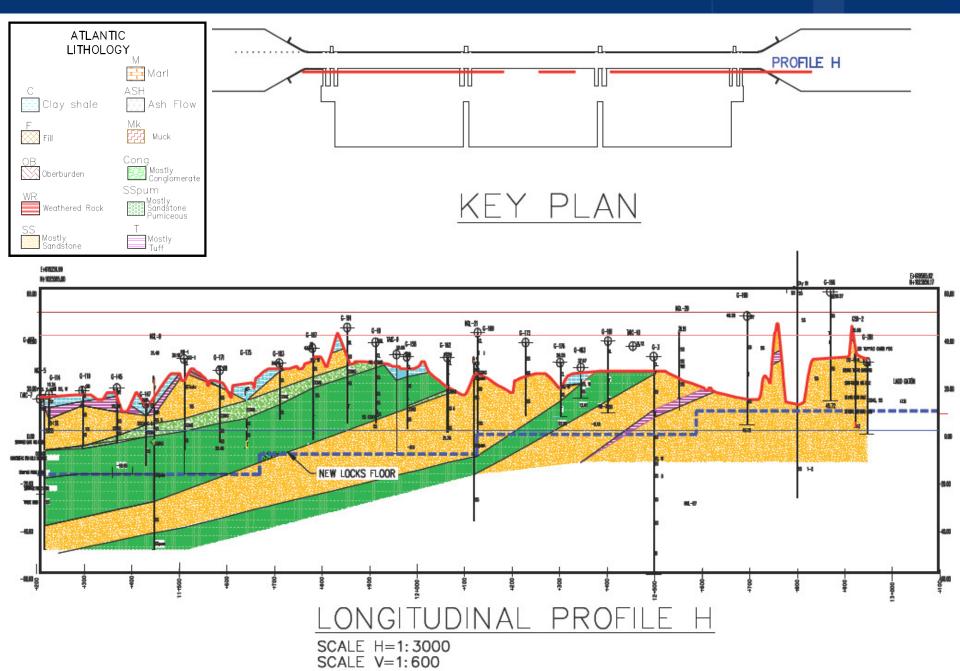






SCALE 1:1000




Longitudinal Geologic Profile (center)

Longitudinal Geologic Profile (east)

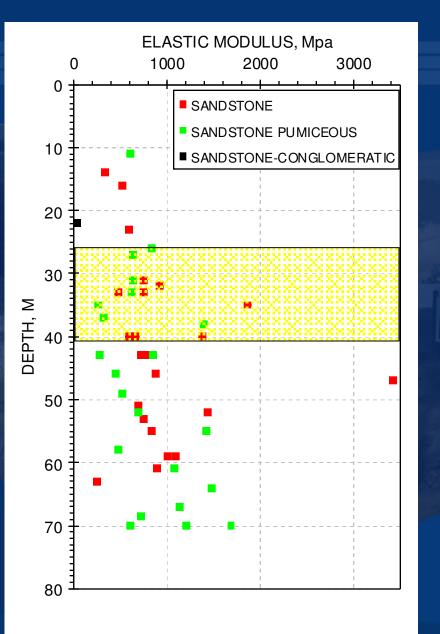
Longitudinal Geologic Profile (west)

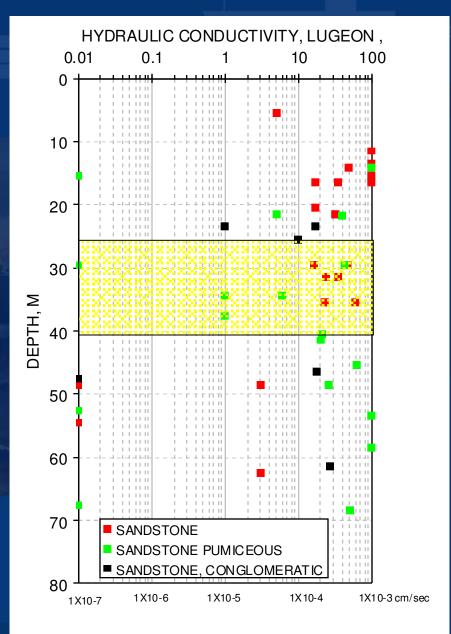
Laboratory Testing Atlantic

TEST	ASTM	#
Specific Gravity	ASTM C 128	886
Moisture Content	ASTM D 2216	869
Sieve Analysis	ASTM C 136	370
Atterberg Limits LL # 40	ASTM D 438	377
Atterberg Limits LL # 200	ASTM D 438	4
Hydrometer #10	ASTM D 422	6
Hydrometer #200	ASTM D 422	4
Rock Unconfined Compresive Strength	ASTM D 2938	450
Point Load Test	ASTM D 5731	383
Soil Unconfined Compresive Strength	ASTM D 2166	33
Direct Shear	ASTM D 3080	3
Torsional Ring Shear	ASTM D 6467	1
Large Shear Box		1
Triaxial Soils	ASTM D 4767	1
Triaxial Rocks	ASTM D 2664	10
Slake Durability	ASTM D 4644	3
Compaction Proctor	ASTM 698/1557	1
Absortion	ASTM C 127	1
Petrographic Examination	ASTM C 295	2
X Rays Difraction	ASTM D 5856	1

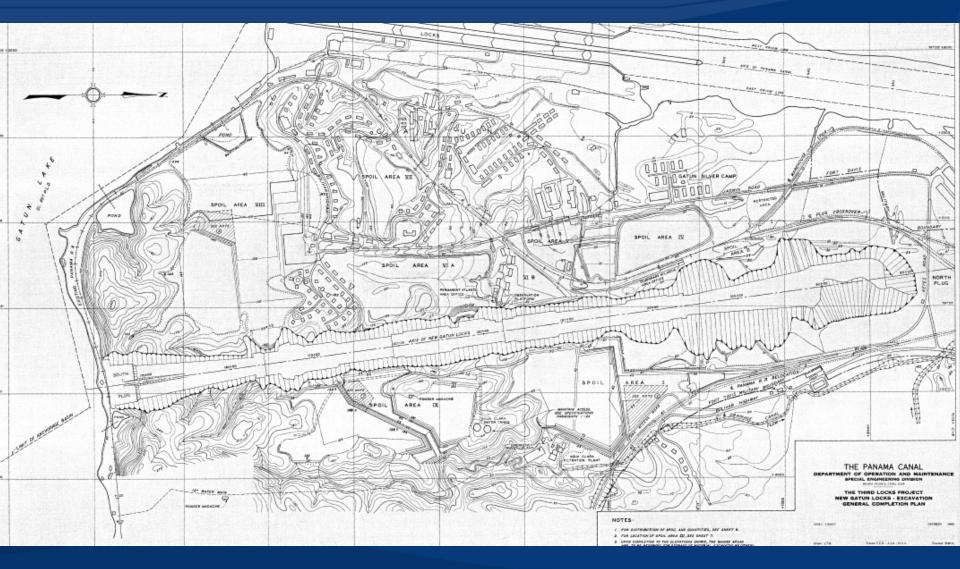
Statistical Summary – UCS - Atlantic

Table 1 Statistical Summary of Unconfined Compressive Strength (ASTM D 2938), Elastic Modulus, UnitWeight and Specific Gravity (Atlantic)


Gs			Unit Weight (Kg/m3)			Elastic Modulus (Mpa)			J	UCS oc (Mp	Type of rock	
N	Median Average	St. Dev.	Ν	Median Average	St. Dev.	Ν	Median Average	St. Dev.	Ν	Median Average	St. Dev.	
283	2.32	0.24	262	1,890	163	262	1,008	701	262	5.1	3.6	Sandstone
	2.31			1,885			1,162			5.9		
5	2.32	0.06	5	2,145	144	5	1,095	357	5	5.1	1.3	Sandstone,
	2.36			2,063			1,206			4.8		fossiliferous
9	2.40	0.24	9	1,884	165	9	1,008	905	9	3.4	1.4	Sandstone,
	2.35			1,923			1,303			3.6		conglomeratic
24	2.30	0.20	24	2,071	170	24	1,117	1,005	24	5.1	4.1	Conglomerate
	2.33			2,059			1,412			6.4		
78	2.34	0.19	76	1,658	130	76	1,328	842	76	5.3	4.3	Sandstone,
	2.26			1,664			1,459			6.5		pumiceous
34	2.10	0.12	31	1,872	111	31	1,008	610	31	5.2	1.7	Sandstone,
	2.14			1,896			1,200			5.6		tuffaceous
21	2.17	0.27	19	1,810	124	19	1,506	1,217	19	10.3	5.8	Siltstone
	2.19			1,803			1,971			9.8		
3	2.00	0.06	3	1,641	78	3	2,483	988	3	12.7	5.7	Tuff
	1.97			1,637			2,229			11.3		
457	2.32	0.23	429	1,863	183	429	1,096	794	429	5.2	3.9	Global
	2.29			1,854			1,278			6.1		


Table 1 Summary of Rock Triaxial Tests (ASTM D2664) in Gatun Formation (Atlantic)

Boring	Depth (m)	sample	UCS σci	Water Content	Density (kg/m3)	σ3 (MPa)	σ1 (MPa)		Hœk-Brown Fit		C (MPa)	Type of Rock
			(MPa)	Wo (%)				mi	q _{ui} (MPa)			
NGL-6	41.33- 42.33	1		25.7	1536	0.7	14.6					
NGL-6		2		33.1	1755	1.4	15.7	33.0	5.0	54.0	0.9	sandstone
NGL-6		3		33.1	1755	2.8	27.3					pumi ceous
NGL-6		4	7.7									
NGL-7	41.68- 42.38	1		25.3	1 193	0.7	4.3					
NGL-7		3		21.4	1185	2.8	9.9	25.0	1.0	52.0	0.1	sandstone
NGL-7		4	4.6									
NGL- 10	44.60- 45.15	1		12.1	1210	0.7	14.8					
NGL- 10		2		41.1	1381	1.4	21.0	50.0	5.0	57.0	0.9	sandstone pumi ceous
NGL- 10		3	6.7									_
NGL-7	40.61- 41.19	1		18.4	1131	0.7	9.4					sandstone
NGL-7		2		19.3	1209	1.4	12.4	11.0	5.0	44.0	1.0	pumi ceous
NGL-7		5	4.7									-
NGL2- 1	23.90- 24.95	3-1		33.24	1923	0.5	47					
NGL2- 1		3-2		33.55	1925	1.0	69					
NGL2- 1		3-3		31.13	1950	1.5	63	50.0	39.0	57.0	6.0	Sandstone Tuffaceous
NGL2- 11		3-4		54.48	1654	2.0	77					
NGL2- 11	36.77- 37.26	3-5	5									
NGL2- 3	25.24- 25.65	5-1		29.87	1918	0.4	22					
NGL2- 3		5-2		31.98	1884	0.8	78					
NGL2- 3		5-3		31.19	1914	1.2	43	50.0	34.0	57.0	6.0	Sandstone
NGL2- 11		5-4		45.83	1626	1.6	80					
NGL2- 11	36.77- 37.26	5-5	5									
NGL2- 4	23.32- 23.64	3-1		37.18	1834	0.5	3					
NGL2- 4		3-2		26.97	1990	0.9	26	50.0	15.0	57.0	3.0	Sandstone
NGL2- 4		3-3		26.49	2173	1.4	71					Sanustone
NGL2- 4		3-4	5									
NGL	summary		5		1746			28.0	23.0	53	4	sandstone
NGL	summary		6		1425			49.0	3.0	57	0.5	sandstone pumi ceous


Rock Triaxial Test

Field Tests Results (Dilatometer, Lugeon) - Atlantic



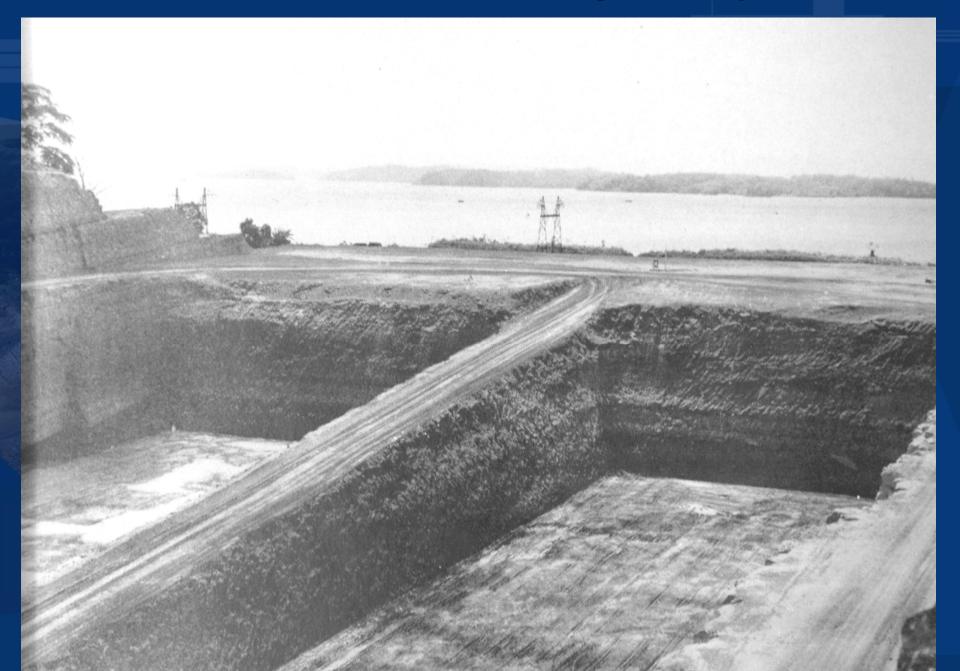
The Third Locks Project (1941)

New Gatun Locks, Completed Excavation Beds 1, 2, 3, and 4 on Left Wall Between Stations 167+00 and 171+00 Bed 1: Sandstone; Bed 2: Volcanic Ash; Bed 3: Sandstone; Bed 4: Volcanic tuff and Ash

New Gatun Locks, Completed Excavation

Beds 3, 4, 5, 6 and 7 on Left Wall Between Stations 151+45 and 155+00 Bed 3: Sandstone; Bed 4: volcanic Tuff and Ash; Bed 5: Sandstone; Bed 6: Sandstone

New Gatun Locks, Completed Excavation Beds 4, 5, 6, 7 and 8 on Left Wall Between Stations 143+00 and 147+00 Bed 4: volcanic Tuff and Ash; Bed 5: Sandstone; Bed 6: Sandstone; Bed 7: Volcanic Ash; Bed 8: Volcanic Tuff and Ash

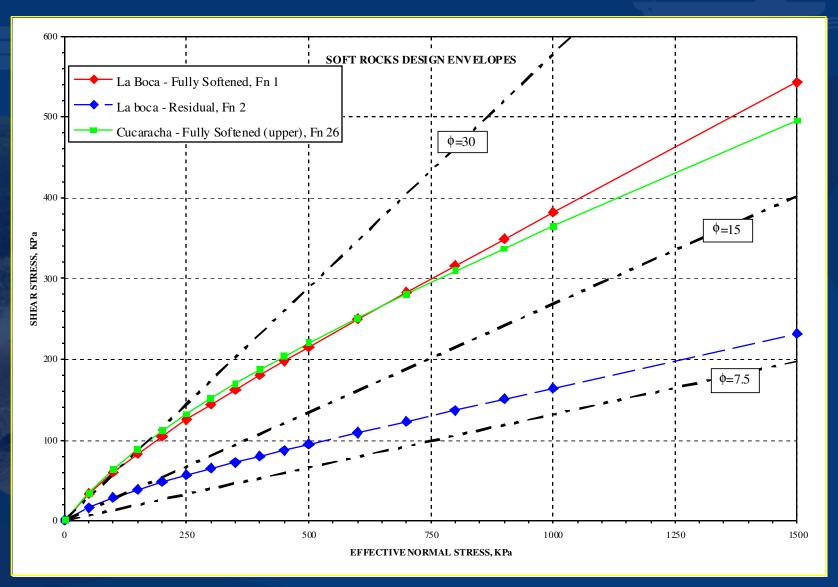

New Gatun Locks, Completed Excavation Beds 8, 9, 10, 11 and 12 on Left Wall Between Stations 119+00 and 123+00 Bed 8: Volcanic Tuff and Ash; Bed 9: Sandstone; Bed 10: Conglomerate; Bed 11: Sandstone; Bed 12: Sandstone

Gatun Slopes

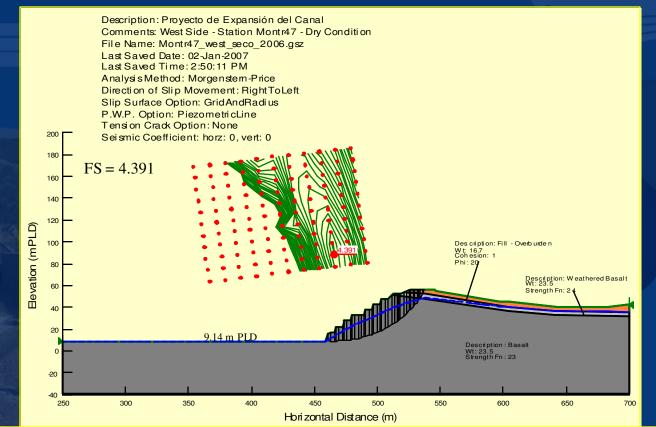
New Gatun Locks, South Plug and Ramp

New Gatun Locks, North Plug

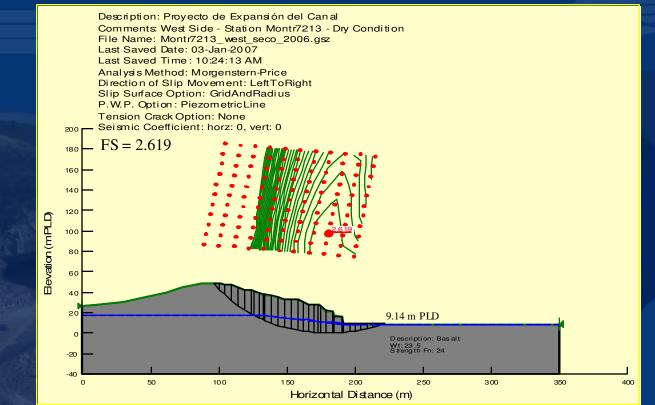
Summary of typical Shear Strength Parameters derived from Backanalysis

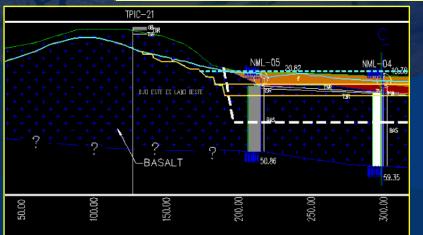

Fn. #	FORMATION	MECHANISMS	FUNCTION	EQUATION	BLASTED MATERIAL	UNIT WEIGHT	
1	La Boca	First Time	Fully Softened	φ = 17.5 + 20.3 / (1+σn / 200)	No		1
2	La Boca	Reactivated	Residual	φ = 7.5 + 14.0 / (1+σn / 150)	Si	21.2 - 22.0	S S
7	Cucaracha	First Time	Fully Softened	φ = 13.5 + 17.1 / (1+σn / 373)	No		
8	Cucaracha	Reactivated (lab)	Residual	φ = 7.4 + 8.7 / (1 +σn / 100)	Si		l S
25	Cucaracha	Reactivated (backanalysis)	Residual	φ = 8.5 + 13.0 / (1+σn / 100)	Si	21.2 - 22.0	
26	Cucaracha	First time	Fully Softened (upper)	φ = 13.5 + 24.0 / (1+σn / 373)	No		Soft Rocks
9	Culebra	First Time	Fully Softened	φ = 13.1 + 20.9 / (1+σn / 120)	No	21.2 - 22.0	
10	Culebra	Reactivated	Residual	$\phi = 9.1 + 5 \log (2400 / \sigma n)$	Si	21.2-22.0	
11	Gatuncillo	First Time	Fully Softened	$\phi = 12.0 + 20.7 / (1 + \sigma n / 362)$	No		
12	Gatuncillo	Reactivated	Residual	$\phi = 7.3 + 6 \log (4600 / \sigma n)$	Si	21.2 - 22.0	<u>ب</u>
3	Las Cascadas (Tuff)	First Time	Fully Softened	φ = 14.2 + 10.7 / (1+σn / 475)	No		1 ×
5	Las Cascadas (Tuff)	Reactivated (lab)	Residual	$\phi = 5.0 + 8.5 / (1 + on / 200)$	Si (for Tuff only)		t to Rocl
27	Las Cascadas (Weak Plane - La Pita)	Weak Plane (backanalysis)	Barton (oc=1110 psi)	$\phi = 8 + 10 \log (1110 / \sigma n)$	Si (for Aggl. & Andesite)	22.0 - 22.8	<u> </u>
4	Las Cascadas (Aggl. & Andesite)	First Time	Hoek & Brown	m = 0.3, s = 0.0001, σc = 1200 psi	No		So
6	Las Cascadas (Aggl. & Andesite)	Poor Quality Rock	Hoek & Brown	m = 0.069, s = 0.000003, oc = 1200 psi	Si (for Aggl. & Andesite)		
16	Bas Obispo	Plane failure along a disc.(option 2)	Barton (oc=3000 psi)	$\phi = 16 + 5 \log (3000 / \sigma n)$	No		↑ ⊥
17	Bas Obispo	Plane failure along a disc.(option 3)	Barton (oc=5515 psi)	φ = 16 + 5 log (5515 / on)	No		
13	Bas Obispo	First Time (option 1)	Hoek & Brown	m = 0.34, s = 0.0001, oc = 3000 psi	No		
14	Bas Obispo	First Time (option 2)	Hoek & Brown	m = 0.34, s = 0.0001, oc = 5515 psi	No		S N
18	Bas Obispo	P cor Quality Rock (option 1)	Hoek & Brown	$m = 0.069, s = 0.000003, \sigma c = 3000 \text{ psi}$	Si		
19	Bas Obispo	P cor Quality Rock (option 2)	Hoek & Brown	$m = 0.069, s = 0.000003, \sigma c = 5515 psi$	Si		Ŏ
20	Pedro Miguel Agglomerate	First Time	Hoek & Brown	m = 0.34, s = 0.0001, oc = 5515 psi	No		
21	Pedro Miguel Agglomerate	Reactivated & Plane Failure	Barton (oc=5515 psi)	φ = 16 + 5 log (5515 / on)	No	22.8 - 23.5	<u> </u>
22	Pedro Miguel Agglomerate	Poor Quality Rock	Hoek & Brown	m = 0.069, s = 0.000003, oc = 5515 psi	Si		Hard Rocks
23	Bæalt	First Time	Hoek & Brown	m = 1.21, s = 0.0021, oc = 7255 psi	No	00.5	
24	Bæalt	Poor Quality Rock	Hoek & Brown	m = 0.069, s = 0.000003, oc = 7255 psi	Si	23.5	↓

89 of 110

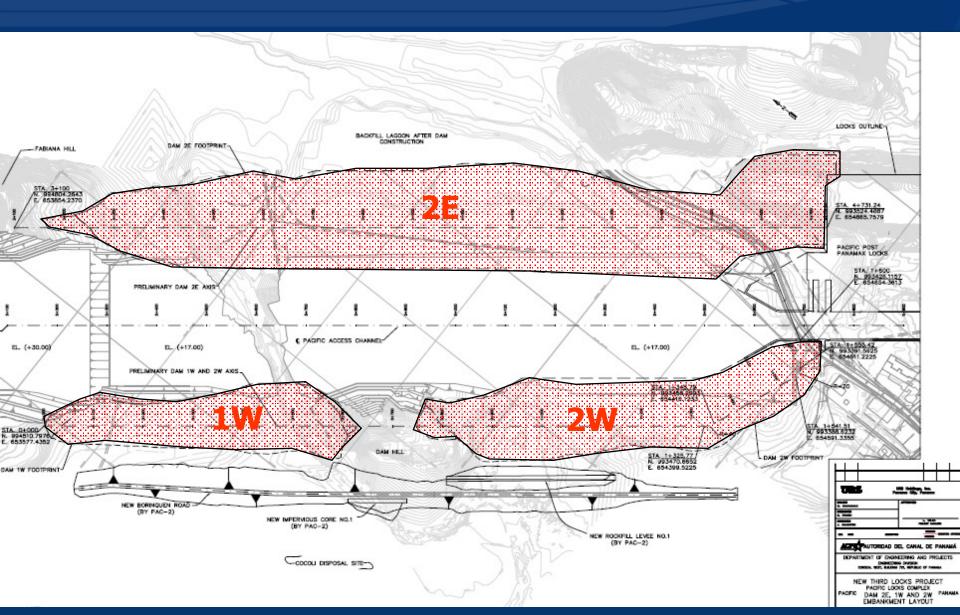

Shear Strength Envelopes (PM Agglomerates, Basalts)

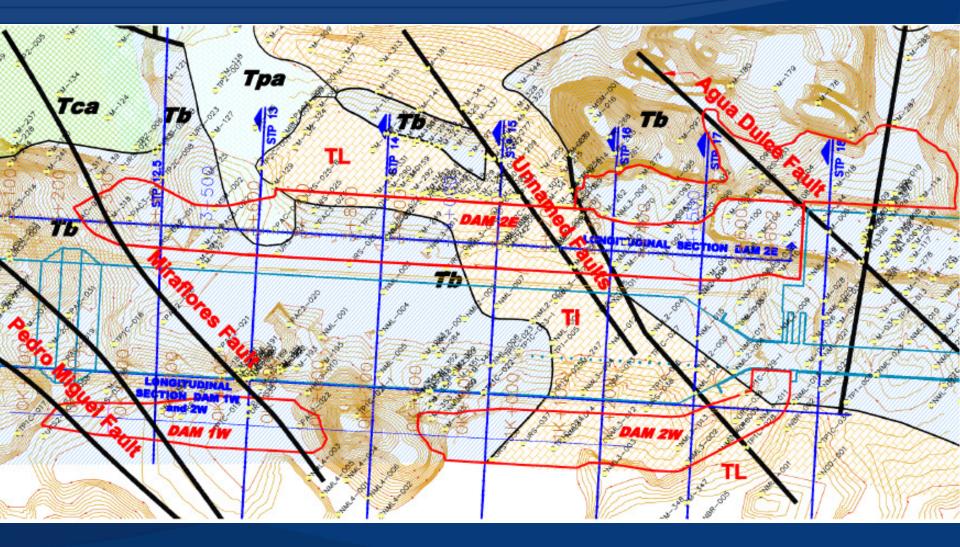
Shear Strength Envelopes (La Boca Formation)


Typical Stability Analysis in Basalt Slopes (good quality)

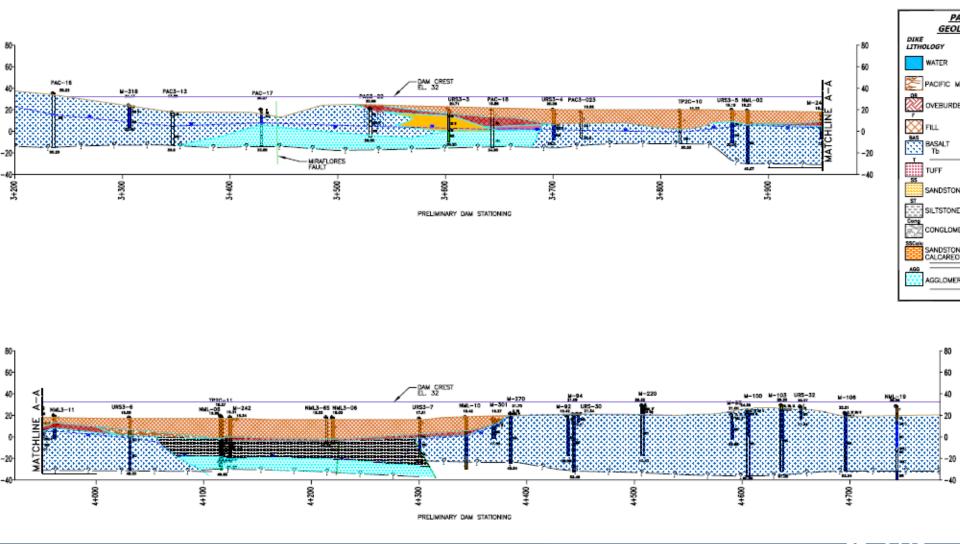


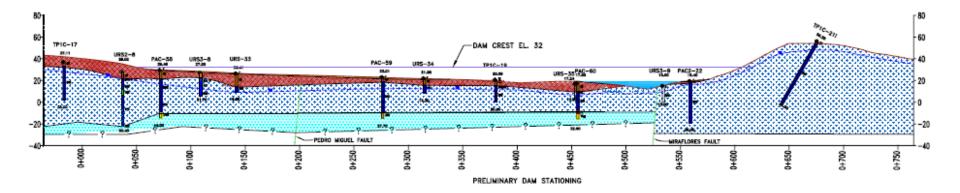
Typical Stability Analysis in Basalt Slopes (poor quality)

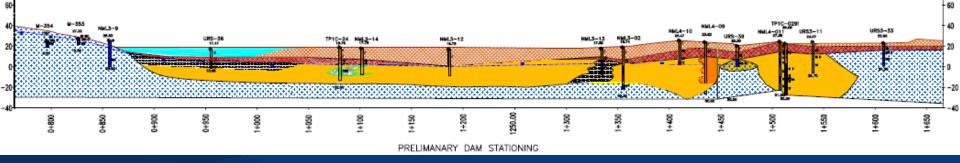



Observations on Shear Strength Envelopes

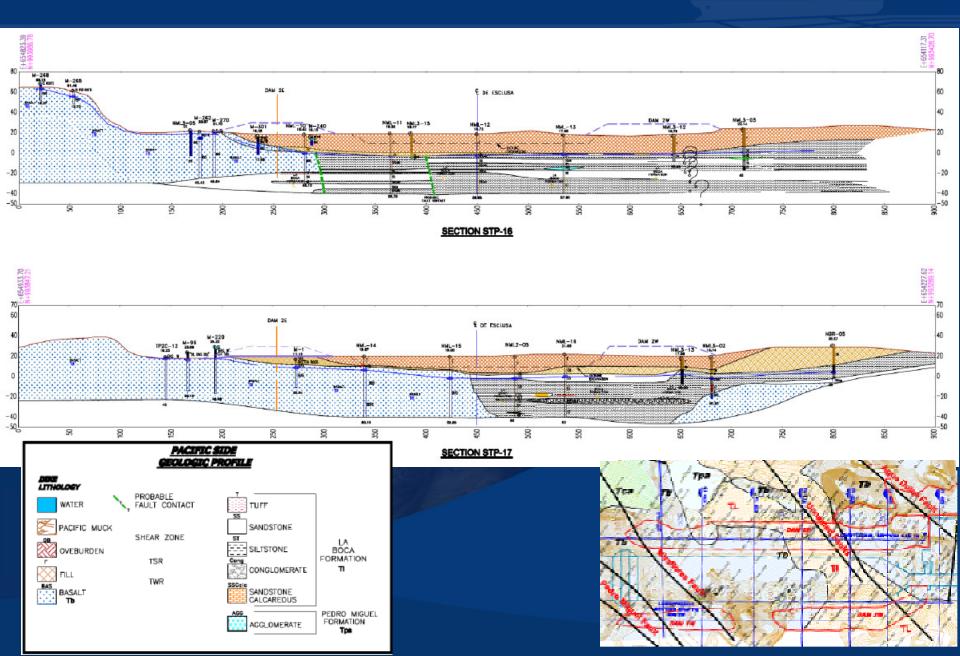
- These envelopes are derived from Backanalysis of past failures. Represent the average long-term shear strength of the slope mass.
- Their directly application to slope mass affected by discontinuities or plane of weakness is not advisable without prior studying their sensitivity in the stability of the slope. Judgment will be required for the adjustment and use in stability analysis.
- This information is given as reference and not as recommended shear strength for design.

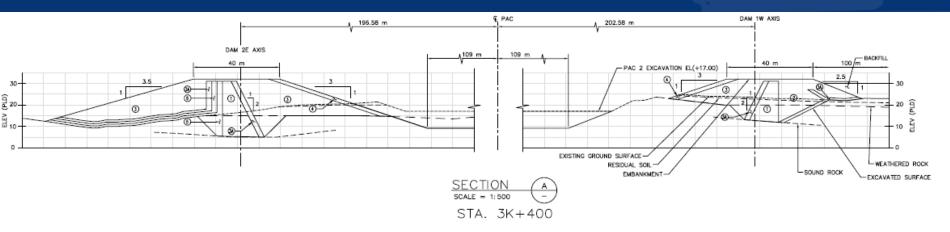

Preliminary Design of Borinquen Dams: 2E, 1W & 2W

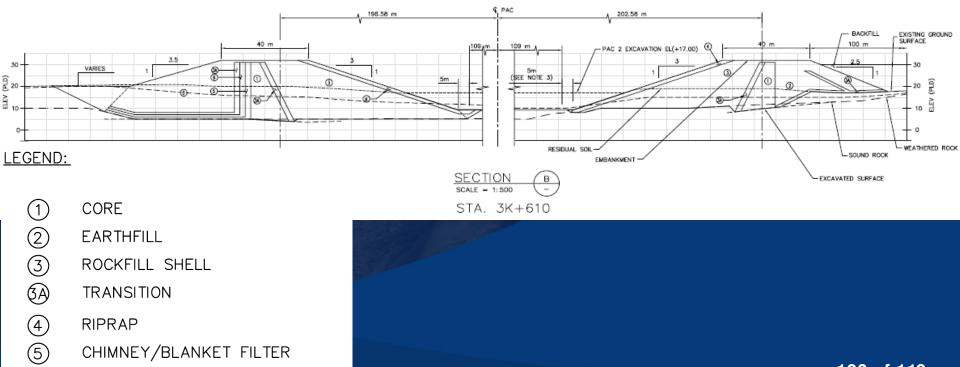

Geologic Plan – Dams Areas


Dam 2E Longitudinal Geologic Profile

Dam 1W and 2W Longitudinal Geologic Profile






2W

Geological Cross Sections

Typical Dam Sections

100 of 110

- EARTHFILL
 - ROCKFILL SHELL
- TRANSITION
- RIPRAP

6

- CHIMNEY/BLANKET FILTER
- CHIMNEY DRAIN/BLANKET FILTER

Interpretative Data from URS (Dam Foundation)

Table 5-1 Shear Strength Values From Hoek and Brown Criterion and Unit Weights for Foundation Rock

Rock Type	Representative Borings	Description	GSI	mi	UCS (MPa)	Friction Angle (degrees)	Cohesion (kPa)	Unit Weight (kg/m³)
Weathered Basalt	NML4-3, URS-22, 23, 24, 27, 34, 35, 39	Intensely to moderately fractured Highly to moderately weathered	20 to 40	25	50	52	300	2,630
Sound Basalt	NML4-3, 4, URS- 22, 23, 24, 27, 28, 34, 35	Moderately to slightly fractured Slightly weathered to fresh	40 to 80	25	50	57	900	2,630
Weathered Agglomerate	URS-25	Intensely to highly fractured Highly to moderately weathered	30	19	30	48	300	2,350
Sound Agglomerate	URS-25	Moderately fractured to massive slightly weathered to fresh	40 to 70	19	30	54	500	2,350
Weathered Sandstone	NML4-10, URS- 25, 26	Intensely to highly fractured highly to moderately weathered	20 to 30	17		20	200	
Sound Sandstone	NML4-9, 10, 11	Highly fractured to massive moderately weathered to fresh	30 to 70	17	~			2 200
Weathered Siltstone	NML4-11	Intensely to highly fractured Completely to highly weathered	15 to 25	7		5 32		2,200
Sound Siltstone	NML4-11	Moderately to intensely fractured moderately to slightly weathered	30 to 60	7				
Weathered Tuff	NML4-9	Highly to intensely fractured Completely to highly weathered	15 to 20	13	5	25	100	2,200
Sound Tuff	NML4-9, 10	Moderately to intensely fractured Moderately to highly weathered	15 to 35	13	5	27	100	2,200

¹ Friction angle and cohesion are based on a confining stress of 0.8 MPa.

Interpretative Data from URS (Dam Foundation)

Table 5-2
Summary of Shear Wave Velocities Estimated From Downhole Seismic
Velocity Tests and MASW Surveys Near Dam 2E

Geologic Formation	Location	V ₁₃₀ (m/s)					
Basalt	MASW-1	710 (700) ¹					
	MASW-3	650 (1970) ¹					
	MASW-4	930 (2070) ¹					
	CHT-5	590					
La Boca	MASW-15	620					
¹ Values in parenthesis are converted from V.							

in pareninesis are converted

Table 8-1 Engineering Properties for Foundation Materials									
Material		Weight g/m³	Total Stress Effective Parameters Parame				Permeability		
	Moist	Saturated	C kPa	ф deg	c' kPa	φ' deg	k _x (cm/sec	k_x/k_y	
Fill	1,700	1,920	45	-	0	24	6x10 ⁻³	1	
Residual Soil (La Boca)	1,730	1,730	45	-	35	22	8x10 ⁻⁴	1	
Residual Soil (Basalt)	1,720	1,900	35	-	40	24	8x10 ⁻⁴	1	
Basalt	2,630	2,630	-	-	300	52	8x10 ⁻⁵	1	
Pedro Miguel Agglomerate	2,350	2,350	-	-	300	48	8x10 ⁻⁵	1	
La Boca (Sandstone and Siltstone)	2,200	2,200	-	-	200	32	4x10 ⁻⁴	1	
Tuff	2,200	2,200	-	-	100	25	4x10 ^{.4}	1	

Reports That Contains Geotechnical Interpretative Data

- Isthmian Canal Company, Department of Operation and Maintenance, Special Design Office, "Drawings for Excavation, Gatun and Miraflores", Third Locks Project, Panama, 1939
- Isthmian Canal Company, Final Report on Modified Third Locks Project, Part II, Design, Chapter 5, Foundations and Slopes, December 1943.
- Isthmian Canal Company, "Report of the Governor of the Panama Canal" Isthmian Canal Studies, 1947.
- Consorcio Post-Panamax (CPP), "New Miraflores Locks Joint Geological Survey in South Cocoli Lake." Prepared as part of Panama Canal Authority's Contract CMC 159475: Engineering Services for Additional Studies and Technical Assistance for New Locks, 2006.
- Consorcio Post-Panamax (CPP), "New Gatun Locks Joint Geological Survey in Gatun" Prepared as part of Panama Canal Authority's Contract CMC 159475: Engineering Services for Additional Studies and Technical Assistance for New Locks, 2006.
- Consorcio Post-Panamax (CPP), "Excavations and structures conceptual design – Lock wall alternative studies for bottom F/E system (Atlantic and Pacific sides)." Prepared as part of Panama Canal Authority's Contract CMC 159475: Engineering Services for Additional Studies and Technical Assistance for New Locks, 2006.

Reports That Contains Geotechnical Interpretative Data

- Consorcio Post-Panamax (CPP), "Geology And Geotechnics Report / Data Collection - Atlantic Side." Prepared as part of Panama Canal Authority's Contract CMC 159475: Engineering Services for Additional Studies and Technical Assistance for New Locks, 2006.
- Consorcio Post-Panamax (CPP), "Geology And Geotechnics Report / Data Collection - Pacific Side." Prepared as part of Panama Canal Authority's Contract CMC 159475: Engineering Services for Additional Studies and Technical Assistance for New Locks, 2006.
- URS Corporation, GEOLOGIC ASSESSMENT DESIGN OF NEW BORINQUEN DAMS, Task Order No. 4 Sub-Task A.1.3. February 2008
- URS Corporation, FOUNDATION MATERIALS FOR DAMS 2E, 1W, AND 2W, GEOTECHNICAL INTERPRETIVE REPORT (GIR), Task Order No. 4 Sub-Task A.1.4. February 2008

LOCKS RFP – Seismic Design Criteria

Seismic Design Criteria

Overview of Section 01 81 16.13

Specific Highlights

Questions

Overview of Section 01 81 16.13

- Existing Section 01 18 16.13 to be replaced in its entirety
- Performance
 - Critical Components of the System are expected to sustain no permanent damage
 - Non-Critical Components can sustain minor damage
- Design
 - Single Performance Level [except emergency closure]
 - Tender Requirements
 - Intermediate and Final Design Stages
 - Linear Elastic Behavior
 - Finite Element Model
 - Identify the Seismic Load Paths and Redundancy
- Ground Motions
 - Atlantic PGA 0.42
 - Pacific PGA 0.52
 - Borinquen Dams PGA 0.90

Seismic Design Criteria – Specific Highlights

- Definition and References Enhanced Clarity
- Independent Design Check specifics
- Technical Evaluation for Proposed Design has been deleted in its entirety from this Section

E.S.

-

Re

Questions and Answers

Parts

Locks Pre-Tender Meeting

