The problem: A certain ground motion has an x percent probability of being exceeded in Y years. What is the probability, w, that that same ground motion is exceeded in Z years?

The solution: In the algorithm used to create the maps, one specifies a probability of exceedance for a given number of years. The computer finds the ground motion that has an annual rate that satisfies the following equation:
$1-r(a)=F(a)=e^{-T \varphi(a)}$
where $r(a)$ is the exceedance probability of the ground motion $a, F(a)$ is sthe corresponding probability of non-exceedance, e is the base of the natural logarithm scale, T is the number of years for which we want to know the corresponding probability, and $\varphi(a)$ is the annual rate of exceedance of ground motion a. This equation is nothing more than the Poisson probability that given an expected number n of events, e^{-n} is the probability of getting none.

Given a ground motion, a, the annual rate at a site $\varphi(a)$ is constant. Taking logs and solving for $\varphi(a)$, we can make the equation,
$\frac{\ln F(a)}{T}=-\varphi(a)$
and equate for the two cases, number of years $=Y$ and Z

$$
\frac{\ln (1-x)}{Y}=\frac{\ln (1-w)}{Z}
$$

Solving for $1-w$,
$\ln (1-w)=\frac{Z}{Y} \ln (1-x)$
$(1-w)=e^{\frac{Z}{Y} \ln (1-x)}=(1-x)^{\frac{Z}{Y}}$
So, for instance, for $r=0.10, Y=50$, and $Z=500 ; F=0.9$ and

$$
(1-w)=(0.90)^{10}=0.35, \text { hence } w=0.65
$$

In a similar way, for $r=0.05, w=0.40$, and for $r=0.02, w=0.18$

If a ground motion has this probability of being exceeded in 50 years,	the same ground motion has the following probability of being exceeded in 500 years.	Prob of exceedance in $\mathbf{5 0 0}$ Prob of exceedance in $\mathbf{5 0}$
0.02	0.18	9.0
0.05	0.40	8.0
0.10	0.65	6.5

