Final Supplemental Environmental Assessment Lehua Island Ecosystem Restoration Project October 2008

Lead Agencies:

U.S. Department of Interior, U.S. Fish and Wildlife Service Hawai'i Department of Land and Natural Resources, Division of Forestry and Wildlife

Cooperating Agency:

U.S. Department of Homeland Security, U.S. Coast Guard

Points of Contact:

Chris Swenson
Pacific Islands Coastal Program Coordinator
U.S. Fish and Wildlife Service
Honolulu, Hawai'i
(808) 792-9400
Chris Swenson@fws.gov

and

Thomas Kaiakapu Division of Forestry and Wildlife Lihue, Hawai'i (808) 274-3433 Thomas.J.Kaiakapu@ hawaii.gov

Responsible Officials:

Patrick Leonard, Field Supervisor Pacific Islands Fish and Wildlife Office U.S. Fish and Wildlife Service 300 Ala Moana Blvd., Rm 3-122 Honolulu, HI 96850 Paul J. Conry, Administrator Division of Forestry and Wildlife Department of Land and Natural Resources 1151 Punchbowl St., Rm 325 Honolulu, HI 96813

Prepared in compliance with the National Environmental Policy Act and Hawai'i HRS 343 and all associated regulations.

Cover photo courtesy of Kenneth Wood

Executive Summary

Lehua is an uninhabited island in Kaua'i County, Hawai'i located approximately 150 miles north-northwest of Honolulu, less than a mile north of Ni'ihau, and approximately 20 miles west of the island of Kaua'i. Its three-dimensional surface area is approximately 310 acres, although a variety of lower acreage figures are cited, likely based on estimates from 2-dimensional maps and images. The island is Federal property administered by the U.S. Coast Guard, which maintains a solar-powered navigational beacon near the 702-foot summit. It is also a state-designated Seabird Sanctuary managed by the Hawai'i Department of Land and Natural Resources (DLNR), and is zoned as Conservation land.

The U.S. Fish and Wildlife Service and the Hawai'i Department of Land and Natural Resources, Division of Forestry and Wildlife, in cooperation with the U.S. Coast Guard, propose to restore native species on Lehua Island by eradicating invasive rats using aerial application of bait pellets containing the anticoagulant rodenticide diphacinone (0.005% active ingredient). Bait with the anticoagulant brodifacoum (0.0025% active ingredient) would be considered for use if diphacinone failed to eradicate rats. The objective is to create suitable conditions for restoration of native seabirds, plants and other species by exposing all rats on Lehua to a lethal dose of rodenticide, thus eradicating rats from the island. The operation will be conducted during the winter months (January through March) when the rat population is low, few if any new rats are born, and native nontarget migratory species are not present or present in low numbers. Diphacinone has been shown to be an effective toxicant for rats in Hawaii and elsewhere and is preferred because of the reduced impacts to nontarget species, especially birds, both through consumption of bait (direct impacts) and/or through consumption of prey that has consumed the bait (secondary impacts).

In September 2005, the U.S. Fish and Wildlife Service and the Hawai'i Department of Land and Natural Resources Division of Forestry and Wildlife, as joint lead agencies, and the U.S. Department of Homeland Security, U.S. Coast Guard, as the cooperating agency published the *Final Environmental Assessment for the Lehua Island Ecosystem Restoration Project*, (Finding of No Significant Impact (FONSI) dated 09/30/05). As documented in the FONSI, the U.S. Fish and Wildlife Service Assistant Regional Director, Ecological Services, Region 1 selected the proposed action, Alternative 2, which included the following:

- 1) Eradication of the introduced alien European rabbit (*Oryctolagus cuniculus*) and Polynesian rat (*Rattus exulans*) on Lehua Island, as these species prevent or suppress ecological regeneration, followed by implementation of a long-term ecological restoration strategy;
- 2) Adoption of a preventive strategy to reduce the potential for invasive species to be accidentally reintroduced to Lehua Island during and after restoration activities occur (island biosafety/quarantine strategy);
- 3) Reintroduce appropriate native species that cannot effectively recolonize on their own; and
 - 4) Monitor project actions for effectiveness and overall restoration success.

Alternative 2 of the 2005 EA for Lehua included aerial and hand broadcast of bait pellets containing rodenticide in the summer months. The rodenticide proposed for use was diphacinone (50 ppm), with potential to use brodifacoum (25 ppm) as a backup the following year, but only if it could be determined that any eradication failure is due entirely to the use of diphacinone rodenticide and not other factors.

Following completion of the 2005 Final EA for ecological restoration of Lehua Island, European rabbits were eradicated from Lehua through intensive hunting efforts in 2005 and 2006. Therefore, rabbit eradication will not be addressed in this document.

Since the FONSI was signed in 2005, several important modifications to the rat eradication operation on Lehua Island associated with Alternative 2 have been determined to be more effective for rat eradication while also minimizing and/or avoiding adverse impacts to birds and humans. Therefore, the USFWS and DLNR, as joint lead agencies, have determined that the original 2005 EA should be supplemented to evaluate the impacts associated with these modifications. The purpose of this supplement is to describe the rat eradication operation for Lehua Island in detail as modified and evaluate the effectiveness and impacts associated with the entire operation, including the modifications.

The modifications include:

- Changing the season of starting rat eradication from mid-summer to mid-winter (January through March) in order to:
 - o increase efficacy of the operation by exposing the rats to rodenticide during winter when breeding ceases or slows, the rat population is at a minimum, and there is a lower probability that young rats in underground burrows will not be exposed to rodenticide,
 - o substantially decrease exposure of nontarget bird species to rodenticide since fewer birds are present in winter,
 - o avoid exposure of fishermen, limpet-pickers, and tourists, who rarely if ever use the area during winter,
 - o reduce chances of helicopter bird strikes, since fewer seabirds will be present at that time, and
 - o avoid all federally listed threatened and endangered seabird species, which are not present on Lehua during the winter.
- Improving effectiveness of bait distribution to all rats on Lehua by modifying or deleting those operational activities and mitigation actions that are not necessary to protect marine organisms, based on the extremely low risk and toxicity of bait to marine organisms as shown by the literature and by marine sampling results from the February 2008 Mokapu Island rat eradication near Moloka'i. Specifically:
 - o The deflector originally proposed for the bait applicator will not be used. Such deflectors, as currently designed, make it difficult for pilots to distribute bait pellets uniformly and frequently cause the bait applicator to malfunction;
 - To give the helicopter pilot and project manager discretion to distribute bait in the most effective pattern, the pilot will not be required to fly only from the coastline toward the ridgeline as originally proposed; and
 - The project manager and pilot will not be excluded from applying bait adjacent to coastlines, thus ensuring a uniform and complete distribution of pellets in shoreline areas used by rats.
- If any broadcast of rodenticide pellets occurs after black-footed and/or Laysan albatross chicks hatch, then all pellets within 6 feet of the nest will be manually collected so that

chicks, which are not yet mobile, cannot play with or ingest them accidentally. All albatross nesting is localized near and at the top of the northwestern portion of the inner crescent, facilitating such removal.

This document also analyzes impacts of diphacinone and brodifacoum related to the modified operation, including:

- transport of rodenticides through soils and water
- impacts of rodenticides on terrestrial and marine invertebrates through ingestion
- impacts on nearshore fish from ingestion of rodenticide bait and ingestion of marine invertebrates potentially having rodenticide residues in their tissues
- impacts on human health
- impacts on birds present on Lehua in the winter, including certain species of native seabirds, nonnative passerine birds, the nonnative barn owl, and two native shorebirds
- impacts on sea turtles, monk seals, and humpback whales.

The National Marine Fisheries Service determined that the operation, as modified, will not adversely affect ESA-listed marine species, including Hawaiian monk seals, sea turtles, and humpback whales. The USFWS made the same internal determination regarding three rare species of seabirds observed on Lehua.

The State Office of Planning determined that the actions described in this document are consistent with the enforceable policies of the Coastal Zone Management Act. The County of Kaua'i Planning Department also determined that the project is consistent with the goals and policies of the County of Kaua'i General Plan. The State Historic Preservation Officer has determined that the project will have no adverse effects on historic properties, provided that all mitigation measures are completed. Permits from the Hawaii DLNR and Department of Agriculture will be required.

A Finding of No Significant Impact (FONSI) per NEPA is appropriate based on analysis in Chapter 3 and no significant impacts have been determined per HRS 343.

Table of Contents

1.0 Purpos	se and Need	8
1.1 Descrip	tion of Lehua Island and the Need for Rat Eradication	8
	of This Supplemental EA	
1.2.1	Description of Selected Alternative in the 2005 EA	10
1.2.1	Modifications to the Selected Alternative.	
1.1.3	Scope of this Supplement	12
1.3 Pub	lic Comments on 2005 EA	
1.4 Sect	tion 7 Consultations on the Selected Alternative in the 2005 EA and the 2008	
Supplement	tal EA	14
1.5 Con	sistency with USFWS and DOFAW Invasive Species Policies	17
	vious Hawai'i Rodent Eradications and Consistency with Executive Orders	
	npliance with Laws/Executive Orders Applicable to Rodent Eradication	
1.7.1	Coastal Zone Management Act in Hawai'i	
1.7.2	State of Hawai'i Code for Pesticide Control.	20
1.7.3	The Endangered Species Act	21
1.7.4	The Migratory Bird Treaty Act and Executive Order Guidance for Protection	of
Migrator	y Birds	
1.7.5	State of Hawai'i State Wildlife Sanctuaries	23
1.7.6	National Historic Preservation Act	
1.7.7	Magnusen-Stevens Act and Essential Fish Habitat	24
1.7.8	Federal Clean Water Act and State HRS 342D and HAR 11-55	24
1.7.9	Subsistence and Other Human Uses	25
1.7.10	Consistency with the Hawai'i State Comprehensive Wildlife Conservation Plants	an 26
1.7.11	Consistency with the County of Kaua'i General Plan Objectives and Policies.	26
1.7.12	Native Hawaiian Rights	27
1.8 Res	ponse to Public Comments on the 2008 Draft Supplemental EA	27
	ption of the Modified Project and Mitigation	
2.1 Sele	ection of Winter Timing for Application of Rodenticides	33
2.1.1	Rodenticide Selection and Use	
2.1.2	Operational and Ecological Monitoring.	
2.1.3	Rodenticide Label Requirements for Invasive Rats	39
2.1.4	Necessary Permits for Eradication Projects on Lehua Island	40
2.2 Aer	ial Application of Rodenticides	40
2.2.1	Overall Application Operational Plan	40
2.2.2	Bait Handling, Storage and Staff Safety Measures	
2.2.3	Reporting, Project Debriefing and Adaptive Management	
2.3 Res	ource-Specific Mitigation Measures	
2.3.1	Species on Lehua Protected under the Endangered Species Act	
2.3.2	Archaeological Sites Protected under the National Historic Preservation Act	
2.3.3	Coastal Zone Management Act and Enforceable and Administrative Policies.	
2.3.4	Protection for Albatross Chicks from Ingesting Bait	43
2.3.5	Human Health	43
2.3.6	Water Quality	44

3.0 Env	ironmental Consequences	. 45
3.1 I	ntroduction	. 45
3.2 P	otential Impacts to Soil, Water, Invertebrates and Fish	. 46
3.2.1	r	. 46
3.2.2	r	
Specie	es, including Essential Fish Habitat	. 48
3.3 P	otential Impacts to Humans	. 53
3.4 F	otential Impacts to Birds	
3.4.1	Impacts to Native Seabirds Present on Lehua in the Winter	. 54
3.4.2		
3.4.3	, ,	
	otential Impacts to Hawaiian Monk Seals	
	otential Impacts to Humpback Whales	
	otential Impacts to Green Sea Turtles	
	Consistency with Hawai'i State Enforceable Policies per CZMA, Federal Endangere	
Species	Act, National Historic Preservation Act, and Clean Water Act	
3.8.1	\mathcal{E}	
3.8.2	\mathcal{J}	
	Cumulative Impact Analysis	
	tate Evaluation of Significance of Impacts per HRS 343	
	of Preparers	
5.0 Lite	erature Cited	. 79
Appendix	A: Introduction to Rodenticides and Rodenticide Hazard Analysis with Special Reference to Birds	
Appendix	B : Approved Pesticide Labels for Diphacinone and Brodifacoum	
Appendix	C: Results of Laboratory Analysis of Marine Samples Collected After the 2008 Aerial Diphacinone Application to Mokapu Island, Moloka'i	
Appendix	D : 2008 Informal Endangered Species Act Section 7 Consultation with National Marine Fisheries Service	
Appendix	E: Copies of Public Comment Letters Received	
Appendix	F: Copy of Response to Public Comment Letter	
Appendix	G: Organizations and Individuals Contacted	

1.0 PURPOSE AND NEED

1.1 Description of Lehua Island and the Need for Rat Eradication

Lehua is an uninhabited island located approximately 150 miles north-northwest of Honolulu, less than a mile from Ni'ihau, and approximately 20 miles west of the island of Kaua'i. Its three-dimensional surface area is approximately 310 acres. Lehua is Federal property administered by the U.S. Coast Guard, which maintains a solar-powered navigational beacon near the 702-foot summit. It is also a state-designated Seabird Sanctuary managed by the Hawai'i Department of Land and Natural Resources (DLNR), and the land is zoned as a Conservation District. Ecological restoration of Lehua Island was identified as a goal in the USFWS Pacific Region Seabird Conservation Plan (USFWS 2005) and by the Offshore Islet Restoration Committee, which is a working group of Hawai'i conservation organizations and agencies. The Hawai'i State Comprehensive Wildlife Conservation Strategy (Mitchell 2005) identifies Lehua as one of two islands offshore of Kaua'i (Kaula is the other) that are very important for seabird breeding.

An unidentified species of rat was first recorded on Lehua Island by Caum (1936), who reported that lighthouse personnel saw rats as early as 1931. Polynesian rats were positively identified during surveys conducted on Lehua in 2003 and 2004 (Wood et al. 2006) and voucher specimens were placed at Bishop Museum.

Polynesian rats are the smallest of the three alien rats introduced to Hawai'i. They eat a wide variety of foods, including fleshy fruit, seeds, flowers, stems, leaves, roots and other plant parts (Atkinson and Atkinson 2000). They also eat earthworms, centipedes, the larvae of butterflies and moths, ants, beetles, cicadas, snails and spiders. Rats scavenge and may also kill vertebrate prey, including birds and their eggs (Drummond 1960, Norman 1970, Fall et al. 1971, Jackson 1982, Atkinson 1985, King 1990, Navarette and Castilla 1993, Sugihara 1997, Drever and Harestad 1998, Hobsen et al. 1999, Cole et al. 2000, Innes 2001, Stapp 2002, Dunlevv and Scharf 2008). As reported in Tomich (1986), Polynesian rats in Hawai'i may prey upon Bulwer's petrel (Bulweria bulwerii), Laysan albatross (Phoebastria immutabilis) and burrownesting species such as the wedge-tailed shearwater (*Puffinus pacificus*), and the Bonin petrel (Pterodroma hypoleuca). Atkinson and Atkinson (2000) also reported detrimental effects of rats on burrowing petrels in Hawai'i and New Zealand and on red-tailed tropicbirds (*Phaethon lepturus*). Rat eradication on Midway Atoll resulted in dramatic increases of Bonin petrels, whose population had been declining due to rat predation (Seto and Conant 1996). In the two years immediately following the control of black rats on Mokoli'i near O'ahu, nesting success for wedge-tailed shearwaters increased rapidly, from only one chick fledging in the three years prior to rat eradication to 185 chicks fledging the second year after eradication (D. Smith, Hawai'i DOFAW, pers. comm.). Rats have also been documented to feed on endemic crickets and weevils (F. Howarth unpublished data, pers. comm.), as well as the seeds, bark, fruits, leaves and shoots of native Hawaiian plants.

Native seabirds, insects, coastal plants and marine species are becoming increasingly rare in the main Hawaiian Islands and have limited opportunities to recover due to alien species invasions, coastal development, and other human activities. Surveys conducted on Lehua Island in 1931 (Caum 1931) identified that European rabbits and Polynesian rats were the two main causes of native plant community degradation and the resulting dominance of nonnative plants there. Currently, about 23 native species, generally in very low numbers, have been able to survive

both rat and rabbit predation. Subsequent biological surveys have documented the extirpation or near extirpation of several species of native plants, insects, and seabirds by rats, rabbits, and other alien species, such as barn owls (*Tyto alba*) and cattle egrets (*Bulbucus ibis*) (Wood et al. 2004, VanderWerf et al. 2007). Guilds of native crickets, earwigs, mites, and spiders that were directly dependent on large numbers of breeding seabirds have disappeared from most islands due to eradication of large seabird colonies and the introduction of ants and other alien insects. Although rats have extirpated or diminished populations of several of the smaller, groundnesting seabirds, Lehua still stands out as one of the largest and most diverse seabird colonies in the main Hawaiian Islands. Recent surveys documented over 25,000 breeding pairs of seabirds and up to 11 species nesting or attempting to nest on Lehua (VanderWerf et al. 2007).

Wedge-tailed shearwaters are the most numerous species on the island, but Lehua has the largest brown booby (*Sula leucogaster*) colony and one of the largest red-footed booby (*Sula sula*) colonies in Hawai'i. Lehua and possibly Kaula are the only two nesting locations in the main Hawaiian Islands for rare black-footed albatross (*Phoebastria nigripes*), which were first documented nesting on Lehua in 2001 (Wood et al. 2004). Laysan albatross, another species rarely seen in the main Hawaiian Islands, also nest on Lehua. Another exciting discovery was the presence of rare band-rumped storm-petrels (*Oceanodroma castro*), threatened Newell's shearwaters (*Puffinus auricularis newelli*), and endangered Hawaiian petrels (*Pterodroma sandwichensis*) (VanderWerf et al. 2007). All three species have been seen returning to and circling Lehua in the evening. Biologists also found the body of a juvenile Newell's shearwater that was too young to fly, demonstrating that this rare and declining species is attempting to nest on Lehua but without much success. Species apparently extirpated from Lehua include the brown noddy (*Anous stolidus pileatus*), masked booby (*Sula dactylatra*), Bonin petrel, sooty tern (*Sterna fuscata*), gray-backed tern (*Sterna lunata*), and blue-gray noddy (*Procelsterna cerulea*).

Once restored, Lehua Island can provide a safe haven for a diverse and abundant suite of coastal species. Despite its problems, including presence of alien rats (and formerly rabbits) since at least the 1930s, if not earlier, Lehua still supports a large seabird colony, including small numbers of very rare seabird species. Restoration of rare, threatened or endangered bird, plant and invertebrate species on Lehua will help to accomplish restoration goals outlined in multiple federal species recovery plans. Restoration also offers opportunities to inform the public about Hawai'i's native species and efforts to conserve them.

Lehua can serve as a model for demonstrating restoration techniques which will have applications in other areas. Restoring unpopulated islands is one of the most cost-effective and lasting types of habitat restoration. Islands are a manageable size for intensive restoration projects, especially when eradication of an alien species is involved. Eradicating alien species in large areas can be very expensive, logistically challenging, and subject to risks of re-invasion from adjacent areas outside the restoration zone. Lehua, however, is small enough that the rats and the worst of the alien plant species can be completely removed. Furthermore, Lehua's isolation and difficult access help protect it from reinvasion by alien species after restoration has begun. While reinvasion will always be a major concern, it is much easier and cheaper to protect and manage uninhabited islands like Lehua than similar habitats on the larger, populated islands in Hawai'i.

1.2 Purpose of This Supplemental EA

1.2.1 Description of Selected Alternative in the 2005 EA

Alternative 2, the selected alternative in the FONSI for the original 2005 EA, involved the following actions for meeting the stated goals and objectives:

- 1) Complete eradication of alien European rabbits using hunting and trapping techniques, followed by
- 2) removal of Polynesian rats using aerial broadcast of the rodenticide diphacinone (50 ppm active ingredient), with an option to use the rodenticide brodifacoum (25 ppm active ingredient) as a followup the following year, but only if it could be shown that the sole reason for eradication failure was due to the use of the rodenticide diphacinone and no other factor, followed by
- 3) native plant restoration using a plant restoration and reintroduction plan considering appropriate sources of plants, population genetics, and historic ranges of plants.
- 4) Throughout the project, efficacy and impact monitoring would occur, as well as implementation of a plan to avoid reintroduction of alien plants and animals.

Both diphacinone and brodifacoum have been approved for conservation use by the U.S. Environmental Protection Agency (EPA). Diphacinone for conservation use in the small, ½" pellet formulation required for Lehua Island has been approved by the Hawai'i Department of Agriculture. The approved labels for diphacinone and brodifacoum are included as Appendix A. Use of brodifacoum for conservation purposes is considered for this project only if any eradication failure can be attributed directly to the use of diphacinone and not to any other factors. See Chapter 2 for more detailed descriptions of the modified operational plan for eradication of Polynesian rats from Lehua Island and Chapter 3 and Appendix A for more information on diphacinone and brodifacoum and their comparative impacts.

The proposed action for rat eradication as described in the 2005 final EA involved the following actions and mitigation measures. These measures include those required in the July 5, 2005, informal Section 7 consultation with the National Marine Fisheries Service, which resulted in their determination that the project "may affect but is not likely to adversely affect" Hawaiian monk seals (*Monachus schauinslandi*) and green sea turtles (*Chelonia mydas*).

- Rodenticide would be applied by hand or aerial application and/or bait stations, using a hopper [bait applicator] for aerial application with a 120 degree deflector, using hand broadcast in shoreline areas and/or with bait placed directly in burrows or other areas deemed to be high quality rat habitat, establishing a coastal no-fly buffer for bait application, and flying the helicopter from the shoreline inland to minimize risk of bait dropped in the ocean.
- Diphacinone would be applied at 12.5 lb/acre per application and bait stations would be filled with bait continuously for approximately two years, allowing rats free access. Any application of brodifacoum bait would be applied at up to 13.5 lb/acre or less as required.
- Conducting eradication operations during the dry summer season between April and October when rat population densities and the potential for storm events are lowest to avoid bait being washed into the ocean (only when no rain is forecast for 48 hours).

- Time bait broadcast in the summer to avoid shorebird season and juvenile albatross and transient birds of prey.
- Buffer zones within which no bait will be distributed will be maintained around shoreline areas.
- Bait will not be applied in high wind conditions.
- Any crews conducting hand broadcast of rodenticide pellets on the island will maintain a 100-foot buffer from [Hawaiian monk] seals.
- The helicopter will be required to alter course to avoid flying directly over hauled-out seals and no bait will be spread on or around seals.
- Pellets will be evaluated to ensure that no active seeds of nonnative plants are embedded in the bait pellets.
- Monitor plant communities before, during, and after rabbit and rat eradication efforts to determine if alien "weeds" are increasing and implement a weed management program if necessary.

Following completion of the 2005 Final EA for ecological restoration of Lehua Island, European rabbits were eradicated through intensive hunting efforts in 2005 and 2006. With the rabbits gone, the next restoration project task is the eradication of the rats.

1.2.1 Modifications to the Selected Alternative

Since the FONSI was signed in 2005, new information has become available and important modifications to the rat eradication operation on Lehua Island associated with the selected Alternative 2 have been determined to be more effective for rat eradication, while also minimizing and/or avoiding adverse impacts to both birds and humans. Therefore, the USFWS and DLNR, as joint lead agencies, have determined that the original Environmental Assessment for the Lehua Island Ecosystem Restoration Project should be supplemented to evaluate the impacts associated with these modifications (40 CFR 1502.9(c)). The purpose of this supplement is to describe the rat eradication operation for Lehua Island in detail as modified and evaluate the effectiveness and impacts associated with the entire operation, including the modifications.

The changes are:

- Changing the season of starting rat eradication from mid-summer to mid-winter (December through February) in order to:
 - o increase efficacy of the operation by exposing 100% of the individual rats to rodenticide because rat breeding is far lower and may cease in winter and the presence of dependent rat pups in burrows insulated from exposure to rodenticides is lowest,
 - o substantially decrease exposure of migratory nontarget bird species to rodenticide since fewer birds are present in winter,
 - o avoid exposure of fishermen, limpet-pickers, and tourists, who rarely if ever use the area during winter,

- o reduce bird strike hazard concerns for the helicopter pilot by operating when fewer seabirds are present, and
- o avoid all federally listed threatened and endangered seabird species, which are not present on Lehua during the winter.
- The following changes to operational activities and mitigation described in the 2005 EA will be made for two reasons. First, these changes will improve the effectiveness of bait application in critical shoreline areas, thus, providing for 100% exposure of all individual rats to rodenticide bait. Second, they are not necessary to protect marine organisms due to the extremely low risk and toxicity of bait to marine organisms, as shown by the literature summary and analysis in this supplement (Section 3.3.2) and marine sampling results from the February 2008 Mokapu Island rat eradication near Moloka'i.
 - o A deflector on the bait applicator will not be used. Such deflectors, as currently designed, make it difficult for pilots to distribute bait pellets uniformly and frequently cause the bait applicator to malfunction;
 - O The helicopter pilot and project manager will be given the discretion to distribute bait in the most effective pattern and will not be required to fly only from the coastline inland toward the ridgeline; and
 - O The project manager and the pilot will not be excluded from applying bait adjacent to coastlines, thus ensuring a uniform and complete distribution of pellets in shoreline areas used by rats.
- If any broadcast of rodenticide pellets occurs after black-footed and/or Laysan albatross chicks hatch, then all pellets within 6 feet of the nest will be manually collected so that chicks cannot play with or ingest pellets. All albatross nesting is localized near and at the top of the northwestern portion of the inner crescent, facilitating such removal.
- The definition of "high winds" is clarified to be 35 mph (as stated on the pesticide label), beyond which aerial application of pesticides cannot be conducted.
- Helicopters will be prohibited from flying over humpback whales and vessels will be prohibited from approaching within 100 yards of humpback whales.

1.2.3 Scope of this Supplement

This supplement also provides additional details for the rodenticide operation and conducts more detailed impact analyses than was provided in the original 2005 EA. It also clarifies some scientific interpretations regarding the timing of the operation in the original 2005 EA. Updated evaluation of significance of impacts of the rat eradication operation per Hawai'i HRS 343 is also included. This supplement serves as the final document for the rat eradication operation on Lehua Island and supersedes the 2005 EA in this matter.

This supplement does not:

- Affect the component of selected Alternative 2 regarding the rabbit eradication project, since this project was successfully completed in 2006.
- Modify the program for plant and animal restoration as identified in the original 2005 EA.

- Modify the programs for quarantine of and response to releases of nonnative plant and animal species.
- Duplicate unnecessary information regarding the affected environment and other information, as this information is detailed in Chapter 2 of the 2005 EA.
- Re-evaluate the no action alternative (not conducting a rat eradication project on Lehua Island) or Alternative 3 (use only brodifacoum as the rat eradication rodenticide on Lehua Island) as these alternatives were evaluated and rejected by the USFWS in the FONSI for the 2005 EA dated September 30, 2005.
- Describe the alternatives not considered in detail, as these are described in the 2005 Final Lehua EA.
- Consider or evaluate the use of any other rodenticides, chronic or acute, such as chlorophacinone, zinc phosphide or cholecalciferol for use on Lehua Island.

Therefore, the USFWS, in cooperation with DLNR, will use this supplemental EA and other appropriate documents to determine only if the modified rodent eradication might have significant impacts requiring analysis in an Environmental Impact Statement (EIS). No other decisions are necessary for this operation.

The USFWS and the Hawai'i Department of Land and Natural Resources (DLNR) are joint lead agencies on this EA per NEPA, and DLNR is the approving agency per HRS 343. This supplemental EA is prepared consistent with the National Environmental Policy Act (NEPA), its Council on Environmental Quality (CEQ) implementing regulations at 40 CFR 1500-1508, and HRS 343 and its implementing regulations at HAR 11-200, Department of Interior NEPA manuals 516 DM 1, 2, and 8 (USFWS) and other pertinent Federal and State of Hawai'i laws and regulations.

The action discussed in this supplement was developed cooperatively by USFWS and DOFAW staff in collaboration with members of the Offshore Island Restoration Committee (OIRC). Operational requirements, monitoring plan, and project planning were also reviewed by the New Zealand Island Eradication Advisory Group as part of the analysis for this supplement, integrating methodologies that have been successful in New Zealand and other locations.

This EA will be in effect through the eradication efforts and into the future if rats ever re-invade Lehua. However, this document would need to be further supplemented if the eradication project is further modified, new information becomes available that indicates that the effects would be different than those anticipated and documented in the original 2005 EA as modified by this supplement, or new eradication technologies become available.

A Finding of No Significant Impact (FONSI) per NEPA is appropriate based on the analysis in Chapter 3 of this supplement. No significant impacts have been determined per HRS 343.

Details of the general impacts of rats (*Rattus* spp.) on island ecosystems are found in both Chapter 1 of the 2005 final EA for Lehua Island and a more detailed analysis is found in Chapter 1 of the Final Environmental Assessment for Eradication of Polynesian Rats (*Rattus exulans*) from Mokapu Island, Hawai'i (FONSI signed January 10, 2008). Both final EAs are available from the Point of Contact on the cover of this supplement. This information merely supports and does not change the analyses in this supplement, which supersedes the original 2005 EA regarding the rat eradication project on Lehua Island.

1.3 Public Comments on 2005 EA

For the original 2005 EA, USFWS and DLNR DOFAW contacted all the organizations and individuals identified in Chapter 5 of the original Lehua Island EA. The USFWS and DOFAW made extensive efforts in 2005 to inform and seek input from the general public and government regulatory agencies, regarding the need to restore Lehua Island. In addition, members of a non-profit conservation organization, Island Conservation, were consulted and helped prepare the 2005 EA. A member of the New Zealand Department of Conservation conducted a site visit to Lehua Island and provided input into the development of plans for the eradication of rabbits and rats from the island.

The following comments were obtained regarding the proposed rat eradication operation during the 2005 scoping period:

- Public: two letters in strong support and one not in support (objecting to the rabbit eradication project only)
- Hawai'i environmental recreational businesses: two letters in strong support
- Pacific Seabird Group: strong support.

Based on the input gathered during the 2005 scoping process, a Draft EA was prepared and issued for public comment on June 8, 2005. The Draft EA was posted on the Service's Pacific Islands Office website per agency policy for NEPA and a notice requesting comment was published in the State of Hawai'i's Office of Environmental Quality Control Bulletin per HRS 343. Letters were also sent notifying interested parties of the availability of the Draft EA and requesting comments. A list of all the parties who were notified is included in Chapter 5 of the Final EA. The 30-day comment period closed on July 8, 2005. Four letters were received: one from The Nature Conservancy (comments in support of the project), and three from State of Hawai'i agencies: the Historic Preservation Division (concurring with the finding of no adverse impact with mitigation and requesting the final cultural resources report), the Department of Health (no comment), and the Office of Environmental Quality Control (requesting an evaluation of an HRS 343 finding of no significant impact and requesting documentation of contact with Native Hawaiian cultural experts). These letters and the response letters to them are included in Appendix F of the 2005 final EA.

1.4 Section 7 Consultations on the Selected Alternative in the 2005 EA and the 2008 Supplemental EA

Intra-Service Section 7 Endangered Species Act Consultation for the Newell's shearwater and Hawaiian petrel (both listed), and the band-rumped storm-petrel (a candidate for listing) was finalized in April 2005 and included in Appendix E of the 2005 final EA. The USFWS determined that the proposed action would benefit the ecosystem and the three species of seabirds, resulting in a determination of "may affect but is not likely to adversely affect" the shearwater and petrel, and a determination of "no effect" for the storm-petrel. The following actions were required to reduce adverse effects: "To minimize disturbance, hunting and trapping of rabbits will occur in the winter, when no listed seabirds are present and the smallest numbers of other seabirds are nesting. Newell's shearwaters, Hawaiian petrels, and band-rumped storm-petrels commute to and from their nesting sites at night. Aerial broadcast by helicopter and hand-placement of rodenticide bait would be done during the day, so no direct disturbance to

listed seabirds is expected." With the proposed change to a winter operation, when listed seabirds are not present, no impact to these species is anticipated and no mitigation needed.

An informal Section 7 consultation with the National Marine Fisheries Service (NMFS) (letter dated July 5, 2005, Appendix E of the 2005 EA) resulted in concurrence by NMFS that the proposed eradication projects on Lehua Island were not likely to adversely affect federally listed Hawaiian monk seals or sea turtles. The mitigation measures identified in the letter are included in italicized letters in Section 1.2.1 of this supplement. The letter also concurred with the USFWS statement that "bait pellets will not present a poisoning hazard to foraging seals or sea turtles." NMFS further stated: "It should also be noted that as a result of this project there could be indirect beneficial effects to both monk seals and sea turtles arising from increased native plant cover which will stabilize soils, reduce sediment runoff into the ocean and improve marine water quality. This may result in the establishment of improved nearshore foraging habitat for both monk seals and sea turtles. Given the mitigation put in place under the draft EA we conclude that any effects of the proposed action on monk seals or sea turtles would be discountable. NOAA Fisheries Service therefore concurs with your determination that the project may affect but is not likely to adversely affect ESA listed species under our jurisdiction."

A second informal Section 7 consultation was initiated with NMFS in 2008 because of the change in project timing to the winter season. In addition to including the monk seals and sea turtles discussed in the 2005 consultation for a summer operation, the 2008 consultation also included an assessment of impacts to endangered humpback whales (*Megaptera novaeangliae*), which are present in Hawaii only in the winter. The USFWS determined that the project was not likely to adversely impact any of these species. In a letter dated September 3, 2008 (included as Appendix D to this document), NMFS concurred with this determination, stating that "...we concur that the proposed action, as currently revised, is not likely to adversely affect ESA-listed marine species." Mitigation measures are listed in Section 2.3.1 below.

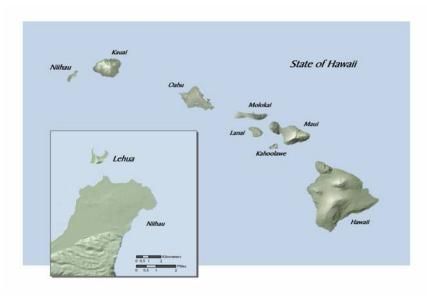


Fig. 1. Location of Lehua Island off the coast of Ni'ihau and Kaua'i

Graphic: USFWS

Fig. 2. Lehua Island aerial photograph #1

Photo: Steve Ebbert

Fig. 3. Lehua Island aerial photograph #2

Photo: Google Earth

1.5 Consistency with USFWS and DOFAW Invasive Species Policies

In this supplemental EA, the term "invasive" will be used to mean any nonnative species introduced into an area that causes ecological harm. The key characteristics of an invasive species involve the following factors:

- the human-induced introduction of a species occurring outside of its historically known natural range
- potential dispersal and establishment of the species within the new suitable habitat, and
- resulting damage to the native ecology, the economy, or human health.

Not only are invasive species highly adaptable, but typically they encounter favorable conditions in their new environment, and their rapid establishment can be facilitated by the availability of more or better resources, fewer or less efficient native competitors and predators, and/or a more advantageous habitat (Courchamp et al. 2002).

Restoration of native biological diversity by removing invasive species and preventing further introductions is a major priority of the USFWS, consistent with its mission and USFWS policy for managing refuges for biological diversity, integrity, and environmental health (601 FW 3, 2001).

The USFWS policy as stated in 601 FW 3 (2001) is to, first, maintain existing levels of biological integrity, diversity and environmental health at the landscape scale; and secondly, to restore lost or severely degraded elements of integrity, diversity, and environmental health at the landscape scale and other appropriate landscape scales where it is feasible and supports achievement of refuge purposes and mission. The policy recognizes that applications of chemicals may be necessary to maintain biological integrity. The policy also focuses on preventing the introduction of invasive species, detecting and controlling populations of invasive species, and providing for restoration of native species and habitat conditions in invaded ecosystems.

DOFAW's policy, as described in Hawai'i's Comprehensive Wildlife Conservation Plan (Mitchell et al. 2005) identifies seven objectives that are necessary for the long-term conservation of Hawai'i's native wildlife, of which the first two are related to protection of native species and habitats and management of invasive species:

- 1) Maintain, protect, manage, and restore native species and habitats in sufficient quantity and quality to allow native species to thrive;
- 2) Combat invasive species through a three-tiered approach combining prevention and interdiction, early detection and rapid response, and ongoing control or eradication.

Under the first objective, a high priority was to remove introduced mammals, including rats, from important habitats to establish ungulate and predator-free areas on each island, including landscape-level predator management.

Under the second objective, high priority actions include continuing coordination of invasive species prevention, management and control programs for county, state, Federal and private sector entities through existing entities and mechanisms, as well as to continue research on effective management methods and tools for introduced vertebrates and other taxa, including rats.

1.6 Previous Hawai'i Rodent Eradications and Consistency with Executive Orders

Using New Zealand's successes in controlling and eradicating invasive rodents as a model, Hawai'i has been at the forefront of efforts in the United States to adapt agricultural and commensal rodent control and eradication techniques to native ecosystem conservation areas. Developing rodenticide application techniques and obtaining registrations for them in Hawai'i has been pursued with the goal of conservation of plants and animals, while allowing natural and active restoration or recovery of species impacted by introduced rodents. This has been carried out by substantially reducing rodent populations in valuable native ecosystems on the main Hawaiian Islands and by eradicating them from uninhabited offshore islands and remote atolls. Beginning in 1990, the USDA-APHIS-Wildlife Services eradicated rats from four remote Pacific atolls where rats were having devastating impacts on seabird colonies (Hess et al. *in press*):

- 1) Conducted with the USFWS and the Samoan Department of Wildlife and Marine Resources, eradicated Polynesian rats on uninhabited Rose Atoll (17 acres), American Samoa, using brodifacoum (0.005% active ingredient) in bait stations. Although the first attempt controlled but failed to eradicate rats, a subsequent application with bromethalin (0.01% active ingredient), an acute neurotoxin, completed the eradication.
- 2) Wildlife Services (WS) and the Hawai'i Department of Land and Natural Resources (DLNR) eradicated Polynesian rats in 1993 from 348-acre Green Island, Kure Atoll (Northwestern Hawaiian Islands) using techniques similar to those used on Rose Atoll.
- 3) WS and U.S. Navy eradicated black rats from Eastern Island (362 acres) and Spit Island (3 acre) at Midway Atoll, using the same techniques used at Rose Atoll for Eastern Island and trapping on Spit Island. They also eradicated rats on 1,300-acre Sand Island at Midway Atoll using bait stations and live traps. Sand Island is the largest and the only inhabited island in the United States from which rats have been removed.

The last attempted eradication on a Pacific Atoll (black rats from Palmyra Atoll, in the equatorial Line Islands in 2001) was by far the most complex, involving approximately 742 acres and 52 islets, most of which were densely vegetated. This operation failed due to insufficient funding, inadequately trained personnel, and interference with bait stations by several species of land crabs

In 2002, the Offshore Island Restoration Committee (OIRC) was formed to restore selected small offshore islands around the Main Hawaiian Islands. To date, eradication of black rats (*Rattus rattus*) on Mokoli'i near O'ahu using diphacinone in bait stations has been completed (D. Smith, *pers. comm.*). In February 2008, the first aerial rodenticide application to eradicate rats from an island in Hawai'i using diphacinone was conducted on Mokapu Island off Moloka'i. This was the firs aerial eradication in the world to use diphacinone.

These past, existing and proposed projects are fully consistent with and contribute to complying with Executive Order 13112 of February 3, 1999, *Invasive Species*, which requires Federal agencies whose actions may affect the status of invasive species to, subject to the availability of appropriated funds and within administrative budgetary limits, use relevant programs and authorities to:

- Prevent the introduction of invasive species;
- Detect and respond rapidly to and control populations of such species in a cost-effective and environmentally sound manner;

- Monitor invasive species populations accurately and reliably;
- Provide for restoration of native species and habitat conditions in ecosystems that have been invaded:
- Conduct research on invasive species and develop technologies to prevent introduction of and provide for environmentally sound control of invasive species; and
- Promote public education on invasive species and the means to address them.

Under Executive Order 13186 of January 11, 2001, *Responsibilities of Federal Agencies to Protect Migratory Birds*, the USFWS is given authority to recognize and promote the great ecological and economic value of migratory birds to the United States and other countries by promoting the conservation of migratory bird populations. The Executive Order states that each Federal agency shall, to the extent permitted by law and subject to the availability of appropriated funds and within Administration budgetary limits, and in harmony with agency missions:

- Support the conservation intent of the migratory bird conventions by integrating bird conservation principles, measures, and practices into agency activities and by avoiding or minimizing, to the extent practicable, adverse impacts on migratory bird resources when conducting agency actions;
- Restore and enhance the habitat of migratory birds, as practicable;
- Prevent or abate the pollution or detrimental alteration of the environment for the benefit of migratory birds, as practicable;
- Design migratory bird habitat and population conservation principles, measures, and practices, into agency plans and planning processes (natural resources, land management, and environmental quality planning);
- Ensure that environmental analyses of Federal actions required by NEPA or other established environmental review processes evaluate the effects of actions and agency plans on migratory birds, with emphasis on species of concern;
- Identify where unintentional take of migratory birds reasonably attributable to agency actions is having, or is likely to have, a measurable negative effect on migratory bird populations, focusing on species of concern, priority habitats and key risk factors.

This supplemental environmental assessment contributes to continuing pursuit of these goals, consistent with Executive Orders 13112 and 13186 and Federal and state policy, by planning and implementing an aerial broadcast application of diphacinone on a small offshore island with an established invasive rodent population to restore the natural habitat of native seabirds and plants.

1.7 Compliance with Laws/Executive Orders Applicable to Rodent Eradication

1.7.1 Coastal Zone Management Act in Hawai'i

The Coastal Zone Management Act (CZMA) is a Federal law that delegates authority to states with approved management plans, including Hawai'i, to restore and protect coastal waters and resources. The Federal regulations at 15 CFR 930 and State statutes, regulations and guidance interact to provide the framework for State management of the coastal resources.

Federal regulations at 15 CFR 930.30-930.46 require "all Federal agency activities, including development projects affecting any coastal use or resource will be undertaken in a manner consistent to the maximum extent practicable with the enforceable policies of approved management plans." "To the maximum extent practicable" is defined as "fully consistent with the enforceable policies of [State] management plans unless full consistency is prohibited by existing law applicable to the Federal agency" (15 CFR 930.32).

"Enforceable Policies" are state policies which are legally binding through state constitutional provisions, laws, regulations, land use plans, ordinances, judicial or administrative decisions, by which a State exerts control over private and public land and water uses and natural resources in a coastal zone and which are incorporated in an approved management plan. They contain standards of sufficient specificity to guide public and private uses, and the state must base any objections to proposed actions within the coastal zone on the enforceable policies (15 CFR 930.11(h)).

The Hawai'i Office of State Planning has the authority to review Federal actions or actions on Federal lands for compliance with the State's implementing law (HRS 205A). The State of Hawai'i law for implementing the federal Coastal Zone Management Act is HRS 205A: Coastal Zone Management.

The following State enforceable policies have been identified as potentially applicable and consistency with these laws is documented in Section 3.4 of this supplement:

- HRS 149A: Hawai'i Pesticides Law
- HRS 195D and HAR 13-124: Conservation of Aquatic Life, Wildlife, and Land Plants (endangered species)
- HRS Chapter 6E: Historic Preservation
- HRS 342D and HAR 11-54: Water Pollution and Water Quality Standards

In a letter dated July 23, 2008 (included in Appendix E), the State Office of Planning determined that the project described in this document is consistent with the enforceable policies of the Coastal Zone Management Act.

1.7.2 State of Hawai'i Code for Pesticide Control

In addition to the Federal Insecticides, Fungicides, and Rodenticides Act (FIFRA), under which formulations of both diphacinone and brodifacoum are registered for conservation use, the State of Hawai'i also requires management and registration of pesticides. These requirements (in HRS Chapter 149A, HAR 4-66, 2006), are administered by the Hawai'i Department of Agriculture. The law requires licensing and labeling for pesticides, certification for applicators, and licensing for sales.

Both diphacinone and brodifacoum are considered "restricted use" pesticides. Therefore, pesticide applicators supervising the proposed program must have a Category 2 certification for persons using or supervising the use of pesticides in forests, forest nurseries, and forest seed producing areas. The helicopter pilot doing the bait application must have a Category 4 certification for persons applying pesticides by aircraft.

No person shall apply a restricted use pesticide by aircraft except by special permit under the following conditions and limitations:

- A written application including information on that applicant and applicator, purpose of aerial treatment, pesticide formulation, dosage, method of aerial treatment and proposed number of treatments to be made, and proposed sites and conditions.
- The request for special permit may be refused in writing, with rationale, if it is determined that the proposed aerial treatment may cause unreasonable adverse effects to humans or the environment (meaning any unreasonable risk to humans or the environment, taking into account the economic, social, and environmental costs and benefits of use of the pesticide (4-66-2)) or will create a hazard.
- A special permit specifies the time period and may specify and limit the number of treatments, or continuous treatments when conditions are not expected to change or vary during subsequent treatments conducted in the same designated area or areas.
- The Hawai'i Department of Agriculture shall be notified 24 hours in advance of the treatment.
- The special permit does not relieve the permittee from the penalty provisions or the law or any liability for any damage or contamination of crops or plants, animals, man and the environment resulting from the aerial treatment.

The necessary State permit will be obtained prior to aerial application of rodenticide on Lehua Island, and all rodenticide applications will be under the direct supervision of a certified applicator.

1.7.3 The Endangered Species Act

The Endangered Species Act (ESA) provides the means to conserve ecosystems upon which threatened and endangered species depend as well as the conservation of endangered and threatened species, and provides for taking steps as may be appropriate for meeting U.S. obligations in treaties and conventions such as migratory bird treaties with Mexico, Japan, Canada and Russia. It prohibits the "take" of listed threatened and endangered animal species without meeting certain procedural requirements. "Take" includes harassment which is defined as an "intentional or negligent act or omission which creates the likelihood of injury to wildlife by annoying it to such an extent as to significantly disrupt normal behavioral patterns which include, but are not limited to, breeding, feeding, or sheltering"(50 CFR 17.3).

Hawai'i State law HRS 195D-4 and associated regulations at HAR 13-124 govern the State regulation of endangered and threatened species. It provides for all Federally listed species to also be listed by the State, although the State retains the right to uplist species listed as threatened by the Endangered Species Act to endangered status. It also provides a list of endangered species at HAR 13-124.

No adverse impacts to and potential beneficial impacts on listed species were identified during the informal Section 7 consultations with the USFWS and NMFS for the operations described in the 2005 EA. USFWS initiated a second informal Section 7 consultation with NMFS in August 2008, specifically for the revised actions described in this document. Because humpback whales are potentially present around Lehua in the winter, they were included in the 2008 consultation along with the two marine species previously included in the 2005 consultation (monk seals and green sea turtles). In a letter dated September 3, 2008 (included as Appendix D), NMFS concurred with the USFWS finding that "the proposed project, as currently revised, is not likely

to adversely affect ESA-listed marine species." Mitigation measures for avoiding disturbance to monk seals, sea turtles, and whales (see Section 2.3.1 below) will be followed. The change from a winter, rather than a summer, operation eliminated any potential for adverse impacts on ESA-listed seabirds (which are absent in the winter) so there was no need to re-initiate the internal USFWS Section 7 consultation.

Marine mammals, which protected under the Marine Mammal Protection Act, would not be adversely impacted.

1.7.4 The Migratory Bird Treaty Act and Executive Order Guidance for Protection of Migratory Birds

The Migratory Bird Treaty Act (MBTA), originally passed in 1918, implements the United States' commitment to four bilateral treaties with Mexico, Japan, Russia and Canada for the protection of migratory bird resources. The Canadian treaty was amended in 1995 to allow traditional subsistence hunting of migratory birds. Each of the treaties protects selected species of birds and provides for closed and open seasons for hunting identified migratory game birds. Although the MBTA applies to the Federal government, based on the D.C. Circuit Court of Appeals decision (*The Humane Society of the United States v. Glickman*, Case No. 99-5309, decided 18 July 2000), other case law has found that the MBTA does not apply to actions, Federal or non-Federal, in which incidental (indirect) take of migratory birds occurs incidental to some other activity conducted for some other purpose. Subsequent to the *Humane Society* decision, the U.S Fish and Wildlife Service issued a Director's Order (now superseded and reinforced by USFWS Manual 724 FW 2, *Migratory Bird Permits*) that clearly applies the MBTA to the Federal government. Federal agencies must obtain permits for the same activities for which permits are required for other entities, including permits for bird banding, scientific collecting permits, and depredation.

The USFWS regulations do not provide for permits for any other type of activity, including the application of pesticides. However, the USFWS decided to prepare an environmental impact statement (EIS) for an initial incidental take permit and a subsequent environmental assessment (EA) for renewal of that permit under MBTA per a California District Court action (civil action number 01-2288) for aerial application of brodifacoum on Anacapa Island, California (National Park Service 2000), even though the Court did not require application of NEPA to such a permit. Therefore, the precedent is set for the application of MBTA permits for aerial application of rodenticides for the purpose of rodent eradication for ecological objectives on land under Federal jurisdiction. However, the USFWS has no formal policy in place regarding the requirement for a permit for pest eradication projects. Therefore, although this document will provide sufficient NEPA analysis for a permit application for adoption (40 CFR 1506.3) by the USFWS should one be needed, the USFWS authority per the MBTA will not require that the Federal government nor anyone else request a permit for any rodent control or eradication projects conducted on Lehua Island.

The USFWS published a list of species not regulated under the MBTA in 2005 (*Federal Register* 70(49): 12710-12716). Although many avian species found in Hawai'i are native to North America but not to the Hawaiian archipelago, the MBTA does not exempt a species covered by one or more of the four conventions that is nonnative to Hawai'i but native within the contiguous United States or its territories (same *Federal Register* notice). Of the species found on Lehua, the nutmeg mannikin (*Lonchura punctulata*), the house sparrow (*Passer domesticus*), the rock

dove (*Columba livia*), and the zebra dove (*Geopelia striata*) are not protected under the MBTA. The northern cardinal (*Cardinalis cardinalis*), house finch (*Carpodacus punctulata*), barn owl, and cattle egret are nonnative to Hawai'i but still protected under the MBTA. However, the cardinal and house sparrow are not present on Lehua Island in the winter months. The nonnative barn owl is known to be adversely impacting native birds on Lehua (VanderWerf 2007) and the cattle egret may also be feeding on chicks and eggs and potentially competing for nest sites.

On January 10, 2001, President Clinton issued Executive Order 13186, *Responsibilities of Federal Agencies to Protect Migratory Birds*, requiring that Federal agencies not only support the conservation intent of the migratory bird conventions, but also identify where unintentional take that is reasonably attributable to agency actions is likely to have measurable negative effects on migratory bird populations.

The analyses for birds protected under the MBTA and requiring analysis under E.O. 13186 potentially present on Lehua Island in the winter are included in this document.

1.7.5 State of Hawai'i State Wildlife Sanctuaries

Lehua Island is a legally designated State Seabird Sanctuary. Per 13 HAR Chapter 125, the State of Hawai'i, under the authority of the DLNR, can establish wildlife sanctuaries for the purpose of conserving, managing and protecting indigenous wildlife in sanctuaries. It is prohibited to remove, disturb, injure, kill or possess any form of plant or wildlife or to introduce any form of plant or animal life without a permit. Permits may be issued to enter or land upon identified sanctuaries only for scientific, educational, or conservation purposes and shall specify any terms and conditions deemed necessary for the conservation, management, and protection of indigenous wildlife and wildlife habitats. Therefore, a permit for carrying out conservation operations in a sanctuary will need to be issued by DLNR prior to conducting the rat eradication project on Lehua Island.

The island is also zoned as a Conservation District per HRS 183C and associated regulations at HAR 13-5. Because eradication of alien species is a standard management activity on Conservation lands and no construction or other alterations are proposed, there is no need for a Conservation District Use Permit.

1.7.6 National Historic Preservation Act

Section 106 of the National Historic Preservation Act (NHPA) requires that every Federal agency take into account how each of its undertakings could affect historic properties, and provide the Advisory Council on Historic Preservation (ACHP) a reasonable opportunity to comment on the proposed project. Any property that is listed on or eligible for listing on the National Register of Historic Places, including archaeological resources, is considered historic. The protections of Section 106 extend to properties that possess significance but have not yet been listed or formally determined eligible for listing, as well as properties that have not yet been discovered but possess significance.

The Federal action agency is responsible for initiating and completing the Section 106 review, coordinating with the State Historic Preservation Officer (SHPO). The process includes:

• Identifying and evaluating the significance of historic and archaeological properties;

- Assessing the effects based on criteria in 36 CFR 800 ("No Effect", "No Adverse Effect", "Adverse Effect");
- Consulting with the SHPO or ACHP if the agency determines that adverse effects would occur.

HRS Chapter 6E, Historic Preservation, implements the NHPA in Hawai'i, under the jurisdiction of the DLNR, State Historic Preservation Division. The state law requires that before any agency or officer of the State or its political subdivisions commences any project which may affect historic property, aviation artifacts or a burial site, the agency or officer shall advise the department and allow the department an opportunity for review of the effect of the proposed project, consistent with Section 6E-43 [prehistoric and historic burial sites], especially those on the Hawai'i register of historic places. The proposed project shall not be commenced, or in the event that it has already begun, be continued until the department shall have given its written concurrence (Section 6E-8). Section 6E-43.6 also regulates the inadvertent discovery of burial sites.

The State Historic Preservation Officer concurred with the USFWS determination that the project will have "No Adverse Effect" on significant historic sites on Lehua Island (letter dated October 17, 2005), provided that the following mitigation measures are implemented: 1) Submission of a completed archaeological inventory survey report; 2) Recovery of data from a hearth site by a qualified archaeologist; and 3) placement of site tags on historic properties prior to restoration. Mitigation measures 2) and 3) are completed and measure 1) is in progress and will be completed prior to rat eradication.

1.7.7 Magnusen-Stevens Act and Essential Fish Habitat

The Magnusen-Stevens Act provides for protecting certain fish stocks that have declined to the point where their survival is threatened and other stocks that have been so substantially reduced in number that they could become threatened from fisheries and direct and indirect marine, estuarine, and other aquatic habitat losses. Essential Fish Habitat (EFH) identified in Fishery Management Plans required by law includes those waters and substrates necessary to identified stocks of fish for spawning, breeding, feeding, and/or growth to maturity, considering the species' full life cycle. An "adverse effect" on EFH means any impact that reduces the quality and/or quantity of EFH, including direct or indirect physical, chemical, or biological alterations of the waters or substrate and loss of, or injury to, benthic organisms, prey species and their habitat, and other ecosystem components. Adverse effects to EFH may result from actions occurring within EFH or outside of EFH, and may include site-specific or habitat-wide impacts, including cumulative impacts. The Federal action agency retains the discretion to make their own determinations as to what actions may fall within NMFS' definition of "adverse effect."

The analysis of potential impacts to EFH is discussed later, with a determination of no adverse effect.

1.7.8 Federal Clean Water Act and State HRS 342D and HAR 11-55

The U.S. Environmental Protection Agency (EPA) has issued a final rulemaking pursuant to the Clean Water Act regarding whether a National Pollution Discharge Elimination System (NPDES) permit is required for application of pesticides that are applied over or near water (71 FR 227:68483-68492, November 27, 2006). The final rule, at 40 CFR 122.3, states that the

"application of pesticides consistent with all relevant requirements under FIFRA (*i.e.*, those relevant to protecting water quality), is excluded from the requirements to obtain a National Pollutant Discharge Elimination System permit in the following two circumstances:

- "(1) The application of pesticides directly to waters of the United States in order to control pests...
- "(2) The application of pesticides to control pests that are present over the waters of the United States, including near such waters, where a portion of the pesticides will unavoidably be deposited to waters of the United States in order to target the pests effectively; for example, when pesticides are aerially applied to a forest canopy or when pesticides are applied over or near water for control of adult mosquitoes or other pests."

Based on the final rule, this proposed action does not require a NPDES permit because the second of these criteria applies to the proposed bait application at Lehua, which will be in full compliance with FIFRA. The Hawai'i Department of Health's regulations regarding NPDES permits, found in HAR 11-55-04(h), are in full agreement with the language in 40 CFR 122.3.

The State of Hawai'i also has a law and associated regulations for managing and protecting freshwater and marine water quality, located at HRS 342-D and HAR 11-54. Analysis regarding the low potential for water quality degradation under HRS 342-D is included in Section 3.6.2 of this document.

1.7.9 Subsistence and Other Human Uses

ESA and MBTA allow for subsistence take of species protected pursuant to their authority. Analysis of potential impacts to subsistence users in the Hawaiian Islands is incorporated into Chapter 3.

Executive Order 12898 Federal Actions to Address Environmental Justice in Minority and Low Income Populations (1994) requires every Federal agency to collect, maintain, and analyze information assessing and comparing environmental and human health risks borne by populations identified by race, national origin or income. To the extent practical and appropriate, the Federal agency shall use this information to determine whether its actions and programs have disproportionately high and adverse human health or environmental effects on minority populations and low-income populations.

No studies were found regarding ongoing cultural practices on Lehua Island. No comments regarding cultural uses were received in response to the request for comments on the 2005 Draft EA for the Lehua Island Ecosystem Restoration Project. However, responses gathered during interviews by DOFAW for the 2005 Lehua Island EA indicated that residents from both Kaua'i and Ni'ihau visit the waters around Lehua to fish. Interviewees said that the residents of Ni'ihau visit the island when the water is good; residents of Kaua'i apparently visit Lehua less frequently, most likely due to the distance from Kaua'i. Respondents reported that people visit the island in order to fish and to collect opihi (marine limpets) and limu (seaweed).

The waters around Lehua are also a destination for SCUBA trips departing from Kaua'i. Lehua's remoteness makes this trip a full-day undertaking, so use is light compared to most dive sites in Hawai'i. Sportfishing, bird watching, snorkeling, and eco-tourism also occur in the waters around Lehua. All these activities most commonly occur in the calm summer season when the waters between Kaua'i and Lehua are not as rough.

Because most human use on and around Lehua occurs in the summer and the proposed modification changes the operational season to winter, when the surrounding seawaters are rough, no adverse impacts are expected to human use. Based on field and laboratory tests and experiences with past broadcasts, toxicants are not expected to accumulate in fish or marine invertebrates. Therefore, no closures of Lehua for fishing and gathering for consumptive purposes are planned if diphacinone is used. The public will be notified prior to diphacinone application and the results of laboratory tests for diphacinone residues in Lehua seawater and marine species will be made public as soon as they become available. However, a temporary closure would be considered if brodifacoum is used, in addition to public notification, which could go into the summer fishing season. Therefore, no impact associated with diphacinone use would occur regarding either subsistence use of resources or disproportionate impacts to minorities or low income communities and no further analysis is conducted in this supplement. However, the possible closure mitigation for brodifacoum is discussed later, even though the chance of using this rodenticide is low and would only be considered if diphacinone fails to eradicate rats from Lehua.

1.7.10 Consistency with the Hawai'i State Comprehensive Wildlife Conservation Plan

The Hawai'i Comprehensive Wildlife Conservation Plan (Mitchell et al. 2005) was prepared by the Hawai'i Department of Land and Natural Resources (DLNR) as a requirement for participating in the State Wildlife Grant program administered by the USFWS. It presents strategies for long-term conservation of Hawai'i's native terrestrial and aquatic species and their habitats. The Plan built upon Hawai'i's strong history of conservation and involved working with resource managers, biologists, and concerned individuals statewide.

The mission of Hawai'i's Comprehensive Conservation Strategy is to guide conservation efforts across the state to ensure protection of Hawai'i's wide range of native wildlife and the diverse habitats that support them.

The Plan identifies and analyzes threats to Hawai'i's Species of Greatest Conservation Need (SGCN), including all native terrestrial animals, all endemic aquatic animals, additional indigenous aquatic animals identified as in need of conservation attention, a range of native plants identified as in need of conservation attention, and all identified endemic algae. All the species evaluated in this supplement except the cattle egret, glaucous-winged gull (*Larus glaucescens*), peregrine falcon (*Falco peregrinus*), northern cardinal, house finch, nutmeg mannikin, and house sparrow are identified as SGCN in this Plan.

Consistency of the proposed action with the Plan is integrated into this supplemental EA wherever it is appropriate. Therefore, this rat eradication project on Lehua Island as modified is fully consistent with and contributes to implementing the Hawai'i Comprehensive Wildlife Conservation Plan.

1.7.11 Consistency with the County of Kaua'i General Plan Objectives and Policies

The County of Kaua'i General Plan goals for environmental quality seek to achieve an ecological balance between a high quality of life and an environment in which the natural resources of the island are viable and sustainable, maintain and, if feasible, improve the existing environmental quality of the island and to control pollution. The stated policies applicable to the proposed action, with associated policies, include:

Chapter 3. Caring for Land, Water, and Culture.

Policy 3.1.1.1(d). Projects undertaken with State or County lands or funds shall be designed to conserve heritage resources.

Policy 3.3.2.1. Preserve important archaeological and historic sites.

The County of Kaua'i Planning Department, in a letter dated August 4, 2008 (included in Appendix E), determined that the project is consistent with the policies and objectives of the County of Kaua'i General Plan.

1.7.12 Native Hawaiian Rights

Native Hawaiians have special rights under Federal law, the State Constitution, and State statutes, as interpreted by Federal and State courts. Under the State Constitution, the State and Counties are empowered to promote the health, safety, and welfare of all inhabitants without discrimination as to ethnic origin. The State and Counties recognize the rights of native Hawaiians and the laws concerning land and waters that have been established through the State Constitution, State and Federal Laws, and State and Federal court decisions:

- Native Hawaiian water rights provided under State Water Code, HRS Chapter 174C.
- Kuleana lands, water rights, and access rights provided under the Kuleana Act of 1850, as recognized in current statutes, rules and court decisions.
- Konohiki and hoa'aina fishing rights provided under the 1839 Law of Kamehameha, as modified by subsequent legislative acts and court decisions.
- Traditional and customary rights of native Hawaiians, such as for access and gathering, provided under the State Constitution and Hawai'i revised statutes, as interpreted by the courts (for example, the *PASH* case).
- Burial rights provided under the Hawai'i Historic Preservation Act and the Federal Native American Graves Repatriation Act.
- Preservation of historic properties and archaeological resources provided under the Federal Archaeological Resources Protection Act of 1979, the National Historic Preservation Act of 1966, and the Hawai'i Historic Preservation Act.

The proposed project will have no impact on any native Hawaiian rights to land, access, burial rights, or rights to resources. The impact of the program to marine fish, invertebrates, and associated consumption of marine fish are evaluated in later sections.

1.8 Response to Public Comments on the 2008 Draft Supplemental EA

Eight written comments were received in response to notification letters sent by the USFWS (see contact list in Appendix G) and to the public notification published in the State of Hawaii OEQC *Environmental Notice* on July 8, 2008. These letters are included in Appendix E. Seven of the letters were positive and and/or did not raise any issues requiring a response. The written response to questions raised in the eighth letter is included in Appendix F.

A letter from the State of Hawai'i Office of Planning stated that the proposed project is consistent with the enforceable policies of the Coastal Zone Management Act. No response letter was sent since this letter did not raise any questions or concerns.

A letter from the County of Kaua'i Planning Department stated that the proposed project is consistent with the objectives and policies of the Kaua'i County General Plan. No response letter was sent since this letter did not raise any questions or concerns.

A letter from the Conservation Council of Hawai'i expressed support for the project and urged the agencies involved to move forward with project implementation. No response letter was sent since this letter did not raise any questions or concerns.

An email from Dr. Nick Holmes, Kaua'i Endangered Seabird Recovery Project Coordinator, expressed strong support for the project and stated that it has "...immense value for Hawaiian seabirds." No response letter was sent since this letter did not raise any questions or concerns.

A letter from Ms. Margaret Lohfeld, member of the Ocean Conservancy, supported the project. No response letter was sent since this letter did not raise any questions or concerns.

A letter from Mr. Mark Rauzon expressed strong support for the project. No response letter was sent since this letter did not raise any questions or concerns.

A letter from Mr. Melvin Gabel expressed strong support for the project. No response letter was sent since this letter did not raise any questions or concerns.

A letter from the Hawai'i Department of Agriculture did not oppose the project but raised technical questions and concerns about toxicology data and rat eradication techniques, which are summarized (in italics) and answered below. The letter sent in response to these comments is included as Appendix F.

Lack of information in the Supplemental Draft EA for marine mammals other than seals

- The Service recently completed an informal consultation with the National Marine Fisheries Service (NMFS), under section 7 of the Endangered Species Act, on the potential effects of the Lehua project on threatened and endangered marine species, including humpback whales. NMFS' response letter (see Appendix D) concurs with the Service's determination that the project is unlikely to adversely affect any ESA-listed marine species, including whales.
- A new section was added to Chapter 3 of the Final Supplemental EA to provide additional risk analysis for humpback whales.

General lack of data on rodenticide toxicity to marine mammals

• According to the NMFS recovery plan (NMFS 1991) for humpback whales, they do not feed in Hawaii so there is no viable pathway by which humpback whales can ingest rodenticide. Therefore, precise estimations of toxicity of rodenticides to humpback whales are not required to determine risk.

• No exposure pathway exists because: a) humpback whales do not feed when they are in Hawaii; b) diphacinone is almost completely insoluble in water; and c) there is no evidence of marine contamination resulting from any previous aerial rodenticide broadcast, including the one done at Mokapu Island near Moloka'i. Seawater, fish and invertebrates collected at Mokapu all tested negative for diphacinone residues.

Concerns about uneven bait distribution at Keahuou Ranch experimental bait drop

- Many improvements have been made since the misapplication of bait at Keauhou Ranch in 2003. These include safeguards that will ensure that bait is evenly and correctly applied at Lehua. Now regarded as standard operating procedures, safeguards such as the use of differential GPS and GIS to track bait application were not used at Keauhou. Also, the bait bucket used for Keauhou was old, had been stored under poor conditions, and had not been properly maintained or repaired. Consequently, it malfunctioned during the application.
- The final report on the Keauhou operation concluded that: "Numerous deviations from the study protocol and from the terms of the EPA permit, such as pigs' tampering with bait stations, bait spillage, and an uneven broadcast application rate likely allowed pigs to efficiently forage on concentrated sources of diphacinone bait."
- New buckets with current technology that ensures even bait distribution were purchased in 2007 and will be used on Lehua. The bucket is calibrated prior to each use to confirm that bait is being distributed at the desired application rate and a differential GPS is used to accurately record the location of application swaths. The pilot uses the real-time display of this information to ensure that there are no gaps between application swaths or overlap application swaths by too much. Pellet counts will be done on the ground to confirm that the desired and correct application rate is being achieved.

Lack of discussion of unacceptable aerial broadcast operating conditions

- All relevant operating conditions were discussed in the Draft Supplemental EA. In addition to not flying when winds exceed 35 mph, no broadcast will occur when heavy rains are forecasted. Also, the pilot has the final authority for determining safe flying conditions and will not fly if he is uncomfortable with the any of the conditions.
- An experienced pilot with specialized training in the aerial application of rodenticides, and a State-issued pesticide application certification, was used for Mokapu Island and the same pilot will be used for Lehua.

Concerns about achieving uniform bait distribution on slopes

• Experience from bait applications onto steep islands throughout the world has demonstrated that sufficiently uniform bait coverage can be achieved and result in complete rat eradication. The pilot for Lehua has been instructed on treatment methodology for slopes by the project manager and an experienced broadcast application pilot from New Zealand who has conducted successful bait applications in steep areas.

- Sufficiently uniform bait distribution on slopes will be ensured by calibrating the bucket
 with placebo bait prior to the application, using specialized application equipment, and
 using a differential GPS to guide the pilot on systematic flight lines and GIS to document
 and check where bait was applied. This will be confirmed with on-the-ground bait
 application assessments during the entire treatment period.
- Pellets moving downhill during each individual application swath will be a relatively
 uniform factor throughout all swaths and is accounted for, resulting in overall uniformity
 of bait across the island. Although a small amount of fine scale variation resulting from
 differences in physical topography will occur, the average bait density on steep slopes
 will remain relatively uniform and within label application rates. Pellet movements
 down-slope will be monitored at selected locations following each broadcast.
- Aerial broadcast was the only application method considered because many areas of Lehua are too dangerous or physically impossible to reach on foot.

Suggestion to use spray adjuvants to make bait sticky so it will stick to slopes

- The use of a spray adjuvant is not practical because sticky bait pellets would clog the bucket. Any pellets that make it out of the bucket will stick together and result in clumps, making uniform bait distribution impossible.
- None of the other 58 islands that have been treated with aerial broadcast used sticky bait
 pellets and no adverse impacts to the nearshore marine environment or pelagic marine
 life has been documented.

Concerns about the death of a humpback whale calf on Maui after the Mokapu Island rat eradication

- NOAA investigated the February 2008 stranding and death of the whale calf on Maui and found no reason to suspect a causal connection with the use of diphacinone on Mokapu Island, Moloka'i earlier that month. Their conclusion was based on: a) the lack of a pathway for toxin ingestion (since humpbacks don't feed while in Hawai'i) or dermal absorption (since diphacinone is virtually insoluble in water); b) the unremarkable results of the gross necropsy; and c) the negative lab results from the tests for diphacinone performed on the calf's liver (see following bullet item).
- Liver samples were collected from the humpback whale and analyzed for diphacinone residues by laboratories at the U.S. Department of Agriculture's National Wildlife Research Center and the U.S. Geological Survey-Biological Resources Division's Columbia Environmental Research Center. The laboratories' detection limits for diphacinone were 77 parts per billion (ppb) and 15 ppb, respectively. Neither laboratory detected diphacinone residues in the samples. Diphacinone concentrates in the liver and would be expected to be present if the calf had been exposed to diphacinone.

Concerns about susceptibility of pregnant marine mammals to diphacinone

- There is no risk to pregnant marine mammals because there is no exposure pathway, for the reasons discussed above.
- Although there is no toxicity data for marine mammals, a laboratory study that fed pregnant rats for multiple consecutive days with diphacinone found that a dose of 0.01 mg/kg/day caused vaginal bleeding (Daniel 1993). Extrapolating the results for rats to whales, a 45 metric ton adult female humpback whale would have to find and ingest 8.16 kilograms (4,080 two-gram pellets) every day over multiple days to cause excess maternal bleeding during birth. It is extremely unlikely that a whale would be able to find or even be attracted to this many bait pellets over multiple days, especially since whales don't feed in Hawai'i.

Question about human fatalities associated with anticoagulants in 2006

• All of the 18 human fatalities associated with anticoagulants documented in the 2006 report cited in the comment letter resulted from anticoagulant pharmaceuticals (*e.g.*, acetaminophen), not rodenticides. Diphacinone and brodifacoum were not contained in any of these pharmaceuticals. None of the deaths were caused by anticoagulant rodenticides.

Question about the number of fatalities when diphacinone was used as a human medication

• According to the records of the Pharmacia Corporation, there were no human fatalities associated with diphacinone (formerly marketed as Dipaxin) during its 23 years of use as a human medication in the United States.

Verbal comments received during the July 24, 2008, public meeting held at the Waimea Neighborhood Center on Kaua'i, were all supportive of the project. Several questions were asked seeking clarification or more detail on various aspects of the project. These questions (in italics) and the answers are summarized below.

Will crabs be collected and tested for rodenticide residues after the bait is applied?

• Yes, intertidal crabs (and other marine organisms) will be sampled. Test results will be made public.

Will the rodenticide harm the birds?

• No impacts are expected since diphacinone is relatively non-toxic to birds, they would have to eat huge amounts to be affected, and seabirds feed only in the ocean and are not attracted to food items (e.g., bait pellets) on land. As an additional precaution, bait pellets around albatross chicks will be collected, since the chicks sometimes play with and swallow items they find around their nests.

How long does it take for the bait pellets to break down?

• The pellets will probably break down within about 2-3 days in rough ocean conditions. The active rodenticide ingredient within the pellets, however, is almost insoluble in water and is not expected to be available in solution to any marine organisms. The half-life of diphacinone in soil, which breaks down into carbon dioxide, is approximately 35 days (depending on soil type, sunlight, and temperature).

If a barge is used as a staging platform for the helicopter applying bait, how long will it stay at Lehua?

• Various options are being considered for staging logistics, but if a barge is used it would stay at Lehua for less than a day during each bait application (there could be from 2-4 bait applications) and then return to Honolulu at the end of the day. The barge would not stay overnight at Lehua.

How long will bait application take?

• Each helicopter bait application would take less than a day, but bait could be applied a total of 2-4 times.

After the eradication, could rats re-colonize Lehua by swimming from Ni`ihau?

• It's unlikely that they would swim across the channel. The greatest risk is from rats on visiting boats.

Are there plans to eradicate invasive weeds?

• Yes, highly invasive incipient weed populations (like *Verbesina*) will be eradicated but some other weeds are too widely established to eradicate.

What about impacts of helicopters on humpback whales?

• This issue was addressed in the 2008 Section 7 consultation with NMFS. Helicopters will not be allowed to fly over whales. NMFS has concurred that the operation, as described in the Supplemental EA and including use of helicopters, is not likely to adversely affect humpback whales or other ESA-listed marine species.

2.0 DESCRIPTION OF THE MODIFIED PROJECT AND MITIGATION

2.1 Selection of Winter Timing for Application of Rodenticides

Since the operational objective is to eradicate Polynesian rats from Lehua Island, a key consideration when evaluating potential timing is the biology of the target rat population. It is especially important to identify periods when rat reproduction is low or nonexistent so that dependent juveniles are not in burrows where they will not be exposed to the rodenticide (Orueta and Ramos 2001). Consideration of the abundance of rats and their seasonal food availability is also important.

Subsequent to the consideration of rat biology, the presence of nontarget species that could be vulnerable to rodenticide exposure and toxicity, either directly by eating bait or indirectly by eating prey that have rodenticide residues within their tissues must be evaluated. Selecting the season when most nontarget species are not present is the most effective mitigation method (Orueta and Ramos 2001). In Hawai'i, and especially on arid Lehua where the weather varies little, with storms occurring occasionally in the winter, weather is a tertiary consideration.

The proposed timing in the 2005 EA was based on the common sense but erroneous assumption that rat reproduction would peak during the wet winter months when water, sprouting plants, insects, and other food items would be most available. However, rodent population monitoring on Lehua in 2007 and 2008 demonstrated that rat populations and breeding activity are actually highest in dry summer months and lowest in winter (Dunlevy 2008).

Lehua rat abundance and reproductive status were monitored in July and September 2007 and March 2008 in preparation for the eradication operation (Dunlevy 2008). Standardized traplines were put in place to sample microhabitat types from coast to summit in order to make inferences regarding Polynesian rat distribution. In July and September, captures occurred from the coast to the summit in all habitat types, and large numbers of rats, which are typically nocturnal, were seen active during the day. In March, only one capture of an adult pregnant female occurred, on the coast, and only two rats were seen active during the day. The corrected trap index, a comparative index of rat abundance based on the number of rats trapped per the number of trap nights, was 30% in July, 17% in September, and 1% in March. The best predictor of trap success was the presence of nearby vegetation. Rats are distributed throughout the island, reinforcing that the entire land area must be treated, with special attention paid to vegetated areas.

Dunlevy (2008) concluded that rat numbers on Lehua dropped significantly from the summer through the fall and apparently reached a low sometime during the winter months. In the summer months, almost 50% of the population was composed of juvenile rats (indicating a high level of breeding at that time), dropping to about 30% in the fall. No juveniles were caught in March, although the only rat trapped was a pregnant female, indicating that breeding was occurring at that time. As population and reproduction levels on Lehua are apparently lowest during the winter, the winter provides the highest probability for successful eradication of the rats. Tamarin and Malecha (1972) postulated that the most probable environmental factor controlling breeding is the length of daylight.

Based on the site-specific findings on Lehua Island (Dunlevy 2008), the probability of eradication success is greatly increased by conducting the operation in December through

February (with follow-up if needed in March), when reproduction and the probability of juvenile rats in burrows is clearly low or non-existent.

The timing of the operation in winter avoids disturbing the largest numbers of birds (especially the wedge-tailed shearwaters), all the listed bird species, and thus the majority of the vulnerable eggs and chicks (see Table 1 below). This also resolves many concerns with the exposure of nontarget species to the rodenticide. Applying the rodenticide when most nontarget species are absent is the primary and most assured method of reducing the exposure of these species to the toxicant or disturbance (Orueta and Ramos 2001). Low numbers of birds flocking in the air also reduces safety concerns associated with helicopters striking birds. Based on surveys conducted on Lehua from 2002 through 2005, the greatest abundance of native bird species is present from March through August and many of the overwintering birds are non-nesting visitors (VanderWerf et al. 2007).

Table 1. Bird species present/absent on Lehua during winter (December-February) and winter breeding status (B = winter breeder, NB = winter non-breeder)					
Species	Present	Absent			
Black-footed albatross (B in low numbers)	X				
Laysan albatross (B in low numbers)	X				
Hawaiian black noddy (NB)	X				
Great frigatebirds (NB)	X				
Brown booby (B in low numbers)	X				
Red-footed booby (NB)	X				
Red-tailed tropicbird (B in low numbers)	X				
Sooty tern (NB, rare visitor)	X				
White-tailed tropicbird		X			
Gray-backed tern		X			
Wedge-tailed shearwater (most numerous Lehua species; 23,000 pairs breeding in summer)		X			
Newell's shearwater (threatened species)		X			
Christmas shearwater		X			
Bulwer's petrel		X			
Hawaiian petrel (endangered species)		X			
Band-rumped storm petrel (candidate species)		X			
Pacific golden plover (NB, migrant)	X				
Ruddy turnstones (NB, migrant)	X				
Glaucous winged gull (NB rare visitor)	X				

Description of Alternatives

Peregrine falcon (NB rare visitor)	X	
Barn owl (NB, alien)	X	
Cattle egret (NB, alien)	X	
Great blue heron (rare visitor)		X
Black-crowned night heron (rare visitor)		X
Rock dove (alien)		X
Zebra dove (alien)		X
Nutmeg mannikin (alien)		X
House sparrow (alien)		X

However, certain species are primarily present only in the winter (migratory Pacific goldenplover, ruddy turnstone and the two species of breeding albatross) and will warrant extra caution when planning and conducting operations. Albatross chicks in particular may peck at or swallow objects near their nests. However, albatross chicks in January and February do not yet move from the nests so the proposed mitigation (removing the pellets near nests with chicks, all of which are localized near the top of the western portion of the inner crescent), would reduce any concerns.

In general, storms occur most frequently from October through March, with occasional heavy rains and sometimes strong winds. Average wind speeds are highest during the summer tradewind period. From September through April, when trade winds are not as prevalent, wind speeds in excess of 12 mph occur about 40% of the time. Frequent light variable winds are balanced by occasional very strong winds. Most storms occur during the winter but are usually short-duration events (http://www5.ncdc.naoo.gov/climatenormals/clim60/states/clim_HI_01.pdf).

For the Lehua operation, the primary weather-related logistical constraints are wind and rain. Rodenticide application will not be conducted in winds higher than 35 mph. For each application day, a forecast of five days and nights without significant rainfall (>13 mm) is preferred (Dunlevy 2007). Currently, the closest long-term weather station with similar conditions is located on the leeward side of Kaua'i in Kekaha, with weather data collected from 1949 through 2000. The average precipitation during the spring, summer, and fall (April through November) varies from 0.31 inches to 2.78 inches. The average precipitation for December is 4.13 inches, for January is 4.05 inches, for February is 2.22 inches and for March is 2.06 inches (Western Regional Climate Center). The National Weather Service in Honolulu will be used to supply forecasts for the Lehua area, and a rain gauge and anemometer will be set up on site and recorded daily before and after bait application (Dunlevy 2007).

Therefore, the ideal time to conduct the rodent eradication project on Lehua Island would be at the time of year that ensures the highest probability of successfully distributing rodenticide and eradicating rats while having the lowest potential impact on nontarget species. Between December and March, most species of native seabirds that may provide food for rats and are also nontarget species are absent from Lehua or only present in low numbers. Only the red-footed and brown boobies are present in any numbers, and only albatrosses have chicks, although small,

and all the nests are located within 60 to 300 feet below the summit on the western portion of the inner crescent

Therefore, the optimum timing of the operation is based primarily on the lack of rat reproduction and the absence of the majority of seabirds. This occurs during the winter months from December through February. Operations may continue into March, if necessary.

2.1.1 Rodenticide Selection and Use

Selection of the most appropriate rodenticide for the specific conditions of a project is one of the primary decisions for any rodent eradication project. Rodenticides must be used in the lowest quantity and toxicity which ensures that every rodent is exposed to a lethal dose while minimizing adverse environmental effects, especially impacts to nontarget species. Prudent use is also critical to ensure that regulators will allow effective rodenticides to continue to be made available for future use (Marsh 1985, Cromarty et al. 2002).

Marsh (1985) advised selecting the rodenticide for which the target rodent has a high susceptibility and nontarget wildlife species have a low susceptibility, thereby maximizing effectiveness and minimizing adverse effects, especially to nontarget species. Maximizing effectiveness of the selected rodenticide involves combining the critical factors of the concentration of the active ingredient in the bait formulation, the method of application, the bait application rate, and the seasonal timing of bait application (when rodent populations, reproduction, and alternative foods are lowest) to ensure that all target rodents are exposed to a lethal dose. Both the selection of the appropriate rodenticide and the technical considerations must also consider the complexity of the physical terrain and the size of the island to be treated.

The technical considerations of efficacy are more straightforward than those involved in minimizing adverse effects on nontarget species and other public trust environmental resources. Minimizing overall adverse effects is possible in a variety of ways; most mitigation methods for reducing hazards to nontarget species involve (Kalmbach 1943, Marsh 1985):

- Applying bait when nontarget species are not present, present in seasonally low numbers, or not breeding or raising young;
- reducing bait toxicity to nontarget species;
- reducing the acceptance of bait (exposure) by nontarget species;
- minimizing or avoiding exposure of nontarget species (e.g., via protective stations);
- minimizing rodenticide residues in the tissues of target and nontarget species.

In summary, the selection of the appropriate rodenticide in an effective bait formulation for a specific project must ensure a high potential for efficacy in eliminating invasive rodents when conducted according to the description of the proposed action during the optimum seasonal time frame, while having the lowest potential for adverse impacts to nontarget species.

The New Zealand Department of Conservation (NZ DoC) implemented a policy in October 2000 that placed restrictions on the use of brodifacoum for conservation purposes on the New Zealand mainland because of documented levels of direct and indirect poisoning of nontarget species. NZ DoC conducted a study using diphacinone 0.005% formulations of pellets and blocks in mainland control situations that demonstrated the efficacy of diphacinone in the field (Gillies et al. 2006). Studies in Hawai'i have also documented the efficacy and lower nontarget impacts of

diphacinone in field and laboratory studies (Swift 1998, Dunlevy et al. 2000, Dunlevy and Campbell 2002, Nelson et al. 2002, Spurr et al. 2003a and 2003b, Eisemann and Swift 2006).

For the rodent eradication project on Lehua, the rodenticide with the lower risk to nontarget species, diphacinone, has been selected for use. Brodifacoum would be used only if the application of diphacinone fails and the failure can be determined to have been caused by the rodenticide diphacinone itself and not improper or inadequate application methods, timing, bait life, bait competition with nontarget species, or other operational issues.

2.1.2 Operational and Ecological Monitoring

Introduction

Monitoring the efficacy of rodent eradication and successful ecosystem restoration, as well as environmental fate and the potential for adverse effects on nontarget species and populations is critical to rodent eradication projects (Atkinson 1994, Courchamp et al. 2002, Smit 2003). Smit (2003) focuses on the importance of monitoring not only to determine if goals are achieved, but also to add to existing knowledge on how to better manage ecosystems, including learning from experience and adjusting actions when necessary to better meet objectives. He states that it is critical to define indicators that characterize the state of the resource, define the intensity of monitoring, and use thresholds to determine whether to increase or decrease the intensity of monitoring or stop it altogether, based on the results of monitoring. Courchamp et al. (2002) also emphasize the importance of learning from "unwitting mistakes made in the past, since all results contribute to an understanding of island ecology and can be used in future conservation actions on other islands."

Bait Monitoring

Rodenticide uptake by target rodents must be evaluated to ensure that sufficient bait is applied to ensure consumption of a lethal dose by 100% of the rats (Sterner and Ramey 2002). Monitoring of bait take during broadcast application requires refined monitoring techniques (Sterner and Ramey 2002). Careful testing and calibration of equipment and methods prior to broadcast and detailed records of the amounts of rodenticide applied and the areas (using Differential GPS systems) over which it is distributed are the first steps in the monitoring of bait application, while providing for the computation of nominal bait application rate. Monitoring the appropriate density of bait is also necessary. In addition, broadcast applications should monitor bait degradation, which should also be outlined in detail within the specific project operation plan. In general, this entails closely monitoring weather conditions in representative habitats and areas of possibly variable exposure and observing how rapidly the bait deteriorates. The level of toxicant in the bait should also be monitored, both before application and once on the ground, to ensure that all rats are exposed to the appropriate dosage of active ingredient for meeting eradication objectives (Spurr and Powlesland 2000).

On-the-ground application monitoring methods are outlined in detail in the specific project operation plan (Dunlevy 2007). It is planned that rodenticide application will be assessed by measuring and recording the total amount of bait applied and evaluating the actual bait distributed on the ground in the treatment area using ground surveys. The number of pellets found within census plots will be recorded immediately after bait application, while recording

substrate and slope. To assess bait disappearance, marked pellets will be examined daily for up to 14 days until they disappear or biodegrade.

Eradication Efficacy Monitoring

Radio telemetry will be used to monitor the fate of 20 rats fitted with radio collars before the operation begins. Signals will be monitored for three days before bait application to confirm activity and until all collared animals are confirmed dead post treatment. Recovered rats will be necropsied to determine exposure to rodenticide and cause of death, and carcasses will be individually labeled, bagged and frozen for residue analysis.

Rat presence will be assessed annually in the summer for two years post-operation (Dunlevy 2007). Rat presence post-operation will be assessed using rodent traps, using the protocols established during the 2007 and 2008 Lehua rat surveys. An appropriate number of transects with snap-traps will be laid out and baited daily for several days after pre-baiting to avoid rats' natural fear of new objects. Monitoring for success in meeting the eradication objective will be conducted in July 2009 and 2010 using night-vision goggles, chew blocks, snap-traps, and tracking tunnels, as appropriate.

A brodifacoum formulation could be used only if operational failure occurs and can be determined to have been caused by the rodenticide diphacinone itself and not improper or inadequate application methods, timing, bait life, bait competition with nontarget species, or other operational issues. If this were to occur, the brodifacoum product would be used the following winter, at least one year after the diphacinone treatment, during the same time period. The treatment regime would be similar, entailing two broadcasts following the approved label. The primary difference between the application of diphacinone and brodifacoum would be the application rate dictated by the label.

Ecological Monitoring

Monitoring for primary and secondary adverse impacts on nontarget species is one of the foremost concerns for rodent eradication projects. Sometimes the primary factor in determining whether to conduct an eradication project is the evaluation of the ecological cost of killing individuals of nontarget species, and potentially adversely impacting populations, as compared to the benefits associated with meeting ecosystem restoration objectives. Primary hazards (through direct ingestion of bait) and secondary hazards (through eating prey with rodenticide residues in their tissues) to individuals of nontarget birds may potentially occur. The evaluation and determination of killing a proportion of a nontarget population and whether it would cause adverse impacts at a population level must be considered in terms of species' biology and population dynamics. Based on the analyses in these sections, no adverse impacts to any bird species are anticipated.

Baseline vegetation and bird surveys have been conducted on Lehua Island (Wood et al. 2004, VanderWerf et al. 2007) and will be continued following the eradication operation to monitor restoration success. Key indicators of successful restoration will be improvements in the status of threatened plant species and native vegetation abundance and composition, as well as recolonization by nesting seabirds. The spread of introduced plants from reduced herbivory by rabbits and rats will also be monitored. A comprehensive list of introduced plants on Lehua, documenting qualitative and quantitative weed information (Wood et al. 2004) provides the comparative baseline.

Populations of desired nontarget species, including nesting seabirds and protected plants, will be actively monitored for a sufficient period to produce reliable estimates before and after operations. At a minimum during the operation, personnel will collect all carcasses found incidentally for necropsy and laboratory analysis of rodenticide residues in tissues. Any rat carcasses found in the open will also be recorded and collected for residue analysis. Avian predators or scavengers seen on Lehua will also be recorded. The cattle egret, which is known to be an opportunistic predator on eggs and chicks, and the barn owl, recently recorded on Lehua, are both introduced species to Hawai'i.

Multiple seawater and intertidal invertebrate and fish tissue samples will be collected after the broadcast and sent to at least two laboratories to test for the presence of rodenticide residues. The exact timing of sample collection will be determined by safety considerations, but the goal will be to collect post-application samples 24 hours after the first application and 7 days after the first and last application.

2.1.3 Rodenticide Label Requirements for Invasive Rats

All applications of rodenticides must follow label requirements as approved by the US Environmental Protection Agency (EPA) pursuant to FIFRA.

EPA-Approved Diphacinone Label

The FIFRA Section 3 label (see label in Appendix B) for conservation purposes (EPA reg. no. 56228-35, Diphacinone--50, 0.005% or 50 ppm active ingredient), has the following use requirements:

- Broadcast applications are prohibited on vessels or in areas of human habitation. Broadcast bait pellets by helicopter or manually at a rate of 11.1 to 13.8 kg/ha (10 to 12.5 lbs/ac) of bait per treatment. Depending upon local weather conditions, make a second broadcast application (typically 5 to 7 days after the first application), at a rate no higher than 13.8 kg/ha (12.5 lbs/ac). In situations where weather or logistics only allow one bait application, a single application may be made at a rate no higher than 22.5 kg/ha (20 lbs/ac). Aerial (helicopter) applications may not be made in winds higher than 35 mph (30 knots). The pilot in command has final authority for determining safe flying conditions. However, aerial applications will be terminated when the following conditions are present: Windspeed in excess of 25 knots with an evaluation of the terrain and impact of the wind conditions and not to exceed a steady wind velocity of 30 knots. If rodent activity persists after application, set up and maintain tamper-resistant bait stations or apply bait directly to rodent burrows in areas where rodents remain active. If terrain does not permit the use of bait stations or burrow treatment, continue with broadcast baiting, limiting such treatment to areas where active signs of rodents are seen. Maintain treatments for as long as rodent activity is evident in the area and rodents appear to be accepting bait.
- For all methods of baiting, monitor the baited area periodically and collect and dispose of any dead animals found.

Broadcast applications of Diphacinone--50 at the maximum label rate of 22.5 kg/ha (20 lb/ac) result in approximately one 2 gram pellet distributed about every square meter.

EPA-Approved Brodifacoum Label

The nationwide label (see Label in Appendix B) approved by EPA for conservation purposes (EPA reg. no. 56228-37, Brodifacoum-25D, 0.0025% or 25 ppm active ingredient) has the following use requirements:

- Broadcast applications are prohibited on vessels or in areas of human habitation. Broadcast bait using aircraft, ground-based mechanical equipment, or by gloved hand at a rate no greater than 18 kg bait/ha (16 lbs/acre) per application. Make a second broadcast application, typically 5 to 7 days after the first application, depending on local weather conditions, at a rate no higher than 8 lbs. of bait per acre (9 kg bait/ha). In situations where weather or logistics only allow one bait application, a single application may be made at a rate no higher than 16 lbs. bait per acre (18 kg/ha). Aerial (helicopter) applications may not be made in winds higher than 30 knots (35 mph). The pilot in command has final authority for determining safe flying conditions. However, aerial applications will be terminated when the following conditions are present: Windspeed in excess of 25 knots with an evaluation of the terrain and impact of the wind conditions and not to exceed a steady wind velocity of 30 knots. Set the application rate according to the extent of the infestation and apparent population density. For eradication operations, treat entire land masses.
- Assess baited areas for signs of residual rodent activity (typically 7 to 10 days post-treatment). If rodent activity persists, set up and maintain tamper-resistant bait stations or apply bait directly to rodent burrows in areas where rodents remain active. If terrain does not permit use of bait stations or burrow baiting, continue with broadcast baiting, limiting such treatments to areas where active signs of rodents are seen. Maintain treatments for as long as rodent activity is evident in the area and rodents appear to be accepting bait.
- Monitor the baited area periodically and, using gloves, collect and dispose of any dead animals and spilled bait properly.

The maximum broadcast application rate of Brodifacoum-25D allowed by the label is 18 kg/ha (16 lb/ac), resulting in a density of just under one 2 gram pellet per square meter.

2.1.4 Necessary Permits for Eradication Projects on Lehua Island

For conducting any actions on Lehua, which is designated as a State Wildlife Sanctuary, DOFAW must issue a permit (HAR 13-125-6).

For aerial application of rodenticide on Lehua, a permit from the Hawai'i Department of Agriculture per HRS 149A and HAR 4-66 must be acquired prior to beginning the operation.

If diphacinone fails to achieve eradication and the decision is made to use brodifacoum, it could only be applied if the State Department of Agriculture's Pesticides Branch also licenses the FIFRA Section 3 label for brodifacoum use within Hawai'i under HRS Chapter 149A.

2.2 Aerial Application of Rodenticides

2.2.1 Overall Application Operational Plan

Rats will be eradicated using a rodenticide formulation containing the active ingredient diphacinone at 50 ppm. The bait is dyed green by the manufacturer to reduce acceptance by

birds. The rodenticide will be uniformly broadcast across the emergent land area of the island at an approved application rate exposing all rats to a lethal dosage. Rodenticide bait will be applied once all necessary personnel and equipment are in place and a suitable weather forecast is received.

Application on Lehua will be completed by aerial broadcast across 100% of the land area of the island. All rodenticide application would be carried out under the direct supervision of licensed pesticide applicators. Aerial broadcast will be carried out utilizing an agricultural spreader suspended from a helicopter. Bait will be applied at a nominal rate of 10 to 12.5 lbs/acre in at least two, but up to four, separate broadcast applications to be carried out approximately five to seven days apart. To ensure as uniform an application rate as possible, onboard Differential Global Positioning System (DGPS) in the helicopter and computerized GIS mapping would document the application area. This allows real time and after-the-fact monitoring and assessment of the rodenticide application, as well as printouts showing the actual path covered by the helicopter during bait application. Immediately prior to the application, all equipment will be tested and calibrated in a location allowing for repairs or adjustments and ensuring accurate application results.

Bait loading and helicopter re-fueling will be done either on land at Lehua or west Kauai, or on a vessel temporarily staged at Lehua during the bait application.

The first application is planned to occur after January 1, 2008 and before the end of March 2009. If broadcast is delayed beyond this period, it will be attempted again the following winter. Each aerial broadcast application operation will start as early in the day as possible to provide as much time as possible to finish the entire application, check GPS printouts and re-apply to any gaps and conclude bait application monitoring before dark.

Weather forecasts will again be consulted before deciding on the appropriate day for the second application of bait, five to seven days after the first application, using the same application rate and methods outlined above. The five-to-seven day interim before the second application may be extended if sufficient bait is still on the ground (greater than 5 lb/ac bait remaining). Flight lines for the second application may be treated in reverse and/or perpendicular to the first application. Up to four such applications, if necessary, will comprise the full treatment regimen. Treatment should be completed by March if possible, or by the end of March at the latest.

If rats persist post-operation and it is shown that the active ingredient diphacinone is solely responsible for the failure (as opposed to application methodology, weather or bait condition, for example), bait containing 25 ppm brodifacoum could be used the following winter per the approved label. With the exception of label differences, the treatment would be the same as that described in this section for diphacinone per the brodifacoum label. However, this is not expected to be needed.

2.2.2 Bait Handling, Storage and Staff Safety Measures

- All possible measures to transport and store the rodenticide in a manner that maintains its integrity and quality will be followed. Optimum storage conditions are a cool, dry and dark environment.
- The rodenticide will be inspected regularly, and the relative humidity within the storage area monitored. Any bait with evidence of decay will be immediately removed and

disposed of according to the label, and the remaining bait dried. Anti-moisture techniques will be used for stored bait as needed, including use of moisture absorbents, ventilation during dry conditions, elevating and maintaining drainage around the storage area.

- Staff will follow all approved label handling and disposal instructions, such as:
 - Storing bait in original containers tightly sealed in a dry secure place inaccessible to unauthorized people, children and pets, away from fertilizer and products with strong odors, which may contaminate the bait and reduce acceptability.
 - Wearing long-sleeved shirts, long pants, gloves and shoes plus socks at all times when handling bait;
 - Wearing required personal protective equipment (PPE) such as eyewear and dust masks when loading bait for aerial application;
 - o Washing hands and all exposed skin before eating and after work;
 - Not reusing empty bait containers for any reason, and disposing of empty bait containers according to the label;
- Any spilled bait on land will be collected for disposal according to the label.
- In the event of a helicopter ditching or other event that causes a bait spill into the ocean in a shallow coastal area, appropriate State and Federal agencies, including the U.S. Coast guard, will be notified. Bait pellets will be removed from the water and disposed of if it is feasible and safe to do so. Because each bucket load holds no more than 750 pounds of bait, this would be the largest amount of bait potentially spilled into the water.

2.2.3 Reporting, Project Debriefing and Adaptive Management

Upon completion of each broadcast, a debriefing will be conducted with all operational personnel, including the pilot, for the purpose of evaluating the application and making any necessary modifications. Upon completion of the project, at a minimum, an internal report will be completed. In addition, a project debriefing will be conducted and lessons learned from this project will be applied to subsequent rodent control and eradication projects using aerial broadcast in Hawai'i.

2.3 Resource-Specific Mitigation Measures

Many mitigation measures for project-level actions are already incorporated directly into the description of the eradication operation, including the use of a rodenticide with reduced toxicity to nontarget organisms (diphacinone), conducting the operation in the winter when most nontarget bird species are not present and rodent biology is favorable, safe bait handling procedures, not flying in high winds or when heavy rains are predicted, public notification prior to application, and pre- and post-project monitoring. The following mitigation actions are in addition to those already incorporated into the modified eradication operation and are based on analyses documented in Chapter 3 and included in the 2008 Section 7 consultation with NMFS. These mitigation measures will be implemented as part of the operation and are included in the operational plan.

2.3.1 Species on Lehua Protected under the Endangered Species Act

Per the results of the informal Section 7 consultation conducted with the USFWS for the rat eradication project on Lehua Island, the only listed or candidate species that could be present during a summer application would be the threatened Newell's shearwater, the endangered Hawaiian petrel, and the candidate band-rumped storm-petrel. None of these birds or any other listed birds will be present in the winter (VanderWerf et al. 2007) so no mitigation will be needed. Per the results of the informal Section 7 consultations conducted with NMFS in 2005 and 2008, the following mitigation measures (in addition to those previously mentioned) will be implemented to protect ESA-listed marine species:

- The helicopter will be required to avoid flying over or spreading bait onto any monk seals hauled out on Lehua.
- Ground crews will attempt to maintain a 100 foot buffer from monk seals on land
- The helicopter will be required to avoid flying over humpback whales.
- Vessels associated with the project will be prohibited from approaching within 100 yards of humpback whales.

Both NMFS and the USFWS recognized that the eradication operation will benefit listed species by improving water quality, increasing vegetation cover and eliminating depredation by rats.

2.3.2 Archaeological Sites Protected under the National Historic Preservation Act

The State Historic Preservation Officer has concurred with the USFWS determination of "No Adverse Effect" on significant historic sites on Lehua Island from the project (letter dated 10/17/05), conditioned upon on completion of the following mitigation measures: 1) Submission of an approved and completed archaeological inventory survey report; 2) Recovery of data from a hearth site by a qualified archaeologist; and 3) placement of site tags on historic properties prior to restoration. All these measures will be completed prior to rat eradication.

2.3.3 Coastal Zone Management Act and Enforceable and Administrative Policies

The Hawai'i State Office of Planning has determined that all proposed rodenticide projects must go through the consistency process. The analyses are included in this supplement and are incorporated into the CZM review package. The CZMA review and the public involvement process were conducted concurrently with the review for this supplement and the State Office of Planning determined that this project is consistent with the enforceable policies of the CZMA.

2.3.4 Protection for Albatross Chicks from Ingesting Bait

If bait is applied after chicks have hatched, all bait pellets within 6 feet of nests with chicks will be manually removed as soon as possible after bait application. Pellets further than 6 feet away cannot be reached by the chicks sitting in the nest, since they would not yet be mobile.

2.3.5 Human Health

Public notices will be posted and published in local newspapers informing people before the bait is applied. Weather permitting, seawater, marine sediment, marine invertebrate, and fish tissue samples will be collected 24 hours after the first application and 7 days after the first and last

Description of Alternatives

applications to test for rodenticide residues. Test results will be published in Kaua'i newspapers. Use of inland areas of Lehua is by DOFAW permit only. The area is used by recreational divers and limpet and algae gatherers during the summer. However, as the project will be conducted in the winter (January through February, with the potential for some follow-up into March), no potential for impacts would occur. Access permits for other than authorized personnel will not be issued during pre-operational monitoring, distribution of bait, post-operational monitoring and, for diphacinone, one month after the last bait application. If the use of brodifacoum becomes necessary, a temporary harvest closure after bait application could occur if required by the State Department of Health.

2.3.6 Water Quality

In the event of a helicopter ditching or other event that causes a bait spill into the ocean in a shallow coastal area, the U.S. Coast Guard and the State Department of Health would be notified and bait pellets would be removed from the water and disposed of if it is feasible and safe to do so. A water ditching could result in a maximum 750-pound bait spill, since the bait bucket holds no more than 750 pounds. See Section 3.2.1 for analysis of the impacts of the loss of bait into the water.

3.0 ENVIRONMENTAL CONSEQUENCES

3.1 Introduction

This chapter includes the technical background and affected environment information for each issue considered in detail, and documents the impact analysis for each issue. This chapter also includes consistency analyses with the Hawai'i Enforceable and Administrative Policies under the Coastal Zone Management (CZMA), analysis of impacts to birds protected by the Migratory Bird Treaty Act and required by E.O. 13186, potential impacts to species listed under the Endangered Species Act, and potential impacts to Essential Fish Habitat under the Magnusen-Stevens Act and state equivalent laws. Since the analyses required for the impacts under the identified laws are functionally equivalent to those required for NEPA, these analyses are incorporated into this chapter and are identified as such to facilitate understanding the impacts and resultant determinations and to avoid unnecessary paperwork, consistent with NEPA (40 CFR 1501.7, 1502.25, 1506.4).

To assist the understanding of the analyses of impacts caused by rodenticides on each issue, Appendix A of this document summarizes the scientific literature regarding the rodenticides diphacinone and brodifacoum and compares their characteristics and their relative toxicity to invertebrates, fish, birds and mammals. It also summarizes the methodologies used in this EA for evaluating the impacts of proposed actions on the resources of Lehua. This information was not included in the 2005 EA and is intended here to help the reader better understand the logic of the impact analyses and how the differing characteristics of the rodenticides apply to those impacts. For additional background, the approved pesticide labels for diphacinone and brodifacoum are included in Appendix B.

Table 2 has also been added below as a reference. It outlines the acute oral doses and dietary toxicity for birds and primary and secondary hazards for birds and mammals as well as known tissue residues for brodifacoum and diphacinone (from Erickson and Urban 2004 and Fisher et al 2003). In order to understand Table 2 and subsequent risk analyses, it is necessary to understand the following three terms:

- Acute oral toxicity or LD_{50} A single dose that is lethal to 50% of the test subjects in the population or study group under consideration, expressed as milligram(s) of active ingredient per kilogram of test subject body weight;
- Dietary toxicity or LC_{50} The concentration of rodenticide in the diet (multiple feedings) that is lethal to 50% of test subjects in the population or study group under consideration, expressed as parts per million of the daily diet.
- Lowest observed effects level or LOEL The lowest dosage at which measurable effects, such as increased blood-clotting times, are documented. This is not a mortality threshold and no negative impacts are necessarily derived at this hazard level. Diphacinone has LOELs calculated for birds and mammals; brodifacoum does not because of its substantially higher toxicity.

Table 2. Nontarget Hazards to Birds and Mammals from Brodifacoum and Diphacinone (50

mg active ingredient[a.i.]/kg bait)1

mg active ingredient		Brodifacoum	Diphacinone		
Acute Oral Toxicity	Mallard	0.26 mg a.i./kg	3,158 mg a.i./kg		
(LD ₅₀) to Birds					
(LD ₅₀) to Difus	Northern bobwhite	Not reported	>400, <2,000 mg		
A 4 701 4 770 1.14	36.11 1	2.0	a.i./kg		
Acute Dietary Toxicity	Mallard	2.0 ppm	906 ppm		
(LC ₅₀) to Birds	Northern bobwhite	0.8 ppm	>5,000 ppm		
Bird: Primary Hazard	Lowest reported LD ₅₀ for birds	0.26 mg a.i./kg	>400 mg a.i./kg		
	(amount of a.i. per kg body				
	weight to kill 50% of				
	population)				
	25-g bird: grams of bait LD ₅₀ /	0.13 g / 2.1%	200 g />100%		
	% of daily food intake				
	100-g bird: grams of bait LD ₅₀ /	0.52 g / 5.4%	800 g />100%		
	% of daily food intake	7.2 / 0.50/	0000 / 1000/		
	1000-g bird: grams of bait LD ₅₀	5.2 g / 9.6%	8000 g />100%		
D. 1 C. 1	/ % of daily food intake	217 1	00.1		
Bird: Secondary	Liver retention time (half life)	217 days	90 days		
Hazard	# reported incidents where				
	rodenticide was detected in wild				
36 1 0 1	birds	0.4	2.2 : //		
Mammal: Primary	Average LD ₅₀ for rats (amount	0.4 mg a.i./kg	2.3 mg a.i./kg		
Hazard	of a.i. per kg body weight to kill				
	50% of population) 25-g rodent: grams of bait LD ₅₀ /	0.2 g / 5.2%	1.2 g / 32%		
	% of daily food intake	0.2 g / 3.2 / 0	1.2 g / 32/0		
	100-g rodent: grams of bait LD ₅₀	0.8 g / 9.6%	4.6 g / 55.4%		
	/% of daily food intake	0.6 g / 9.070	4.0 g / 33.470		
	1000-g mammal: grams of bait	8.0 g / 11.6%	46.0 g / 67%		
	LD ₅₀ / % of daily food intake	0.0 87 11.070	10.0 g / 0 / / 0		
Mammal: Secondary	Liver retention time (half life)	113.5 days	3 days		
Hazard	# reported incidents where	101 incidents	14 incidents		
	rodenticide was detected in non-				
	target wild mammals				
Avg. Number of LD ₅₀	Choice test	40	Not reported		
Doses Consumed by	Choice test	70	rotreporteu		
Rats by Time of Death	No choice test	80	1		
Rate by Time of Death					
Anticoagulant Residue	Residue ranges measured in	2.07 - 25.97 ppm	0.48 - 3.4 ppm		
Levels in Primary	whole carcasses of rodents and				
Consumers exposed to	other mammalian target species				
50 mg a.i./kg bait	(in ppm)				

All data and information from Erickson and Urban (2004) except liver retention time, from Fisher et al. 2003).

3.2 Potential Impacts to Soil, Water, Invertebrates and Fish

3.2.1 Environmental Fate of Brodifacoum and Diphacinone in Soil and Water

Both diphacinone and brodifacoum have extremely low solubility in water and bind tightly to organic matter in soil, where the rodenticide is degraded by soil micro-organisms and exposure

to oxygen and sunlight. The half-life in soil is 30 to 60 days for diphacinone, and 84 to 175 days for brodifacoum, depending on the soil type and aerobic vs. anaerobic soil conditions. The rate of microbial degradation is dependent on climatic factors such as temperature, light, and the presence of microbes enabling degradation. Therefore, degradation time will increase in colder climates and decrease in warm sunny places like Hawai'i (Eason and Wickstrom 2001, Eisemann and Swift 2006). Due to the non-polarity of brodifacoum and diphacinone molecules and the ionic strength of seawater, seawater solubility of both these compounds is extremely low. The solubility of brodifacoum is likely in the low parts per billion range (Primus et al. 2005), with diphacinone assumed to be substantially less soluble.

The low risk of rodenticide showing up in seawater was also demonstrated by sampling conducted after the aerial application of diphacinone bait pellets to Mokapu Island in February 2008. Samples of surface seawater (as well as intertidal limpets and nearshore fish) were collected to address public concerns about contaminating marine life and to verify assumptions that the project would have no negative impacts to marine waters and organisms (see complete Mokapu sampling and laboratory report in Appendix C). These assumptions were based on data from extensive laboratory and field trials submitted to Hawai'i Department of Agriculture's Pesticides Branch and EPA during the rodenticide registration process. In addition, operational safeguards built into the aerial broadcast process minimized risk of bait pellets getting into the adjacent seawater. These safeguards included applying bait only during sufficiently low wind speeds or when no significant rainfall was predicted, and using a calibrated bait delivery system to avoid overapplication of bait and an on-board differential GPS system to correctly target bait application.

Mokapu Island samples were sent for testing to the U.S. Department of Agriculture National Wildlife Research Center in Fort Collins, Colorado and to the U.S. Geological Survey Columbia Environmental Research Center in Columbia, Missouri.

Results from the laboratories were obtained in April and May 2008. No diphacinone residues were detected in any of the Mokapu seawater, limpet or fish samples (see Appendix C for results and description of laboratory quality assurance/quality control procedures). This indicated that project mitigation measures, low water solubility of diphacinone, rough winter seas, dilution, or some combination of these factors resulted in little or no rodenticide being released into or retained in the water column.

The threat of an accidental spill of rodenticide pellets is a remote possibility. In the event of serious flight difficulties requiring an emergency landing, the helicopter pilot would likely need to jettison the spreader bucket before landing, potentially resulting in up to 750 pounds of bait pellets going into the water. Should such an unlikely scenario occur, the project emergency plan would be enacted, notifying all relevant persons and initiating the appropriate response and clean-up, if possible. However, since the pellets contain only .005% of active ingredient of diphacinone (or .0025% active ingredient in the case of brodifacoum), the actual amount of active chemical ingredient entering the water from a 750-pound bait pellet spill would be less than an ounce for either rodenticide. Due to the very low water solubility of both rodenticides, very little of this small amount of active ingredient would dissolve into the water column and the risk to marine organisms would be minimal.

Water quality data collected after a massive brodifacoum spill into nearshore waters supports this statement. In 2001, a truck went off the road into the ocean on the east coast of New Zealand's

South Island, prior to an eradication project. Twenty tons of 0.002% (20 ppm) brodifacoum bait was spilled into the ocean at a single point. Furthermore, because the seas were calm, the congealed bait material remained on the ocean floor for about a week, until it was diluted and dissipated by wave action. Despite expectations that significant concentrations of brodifacoum would be dissolved into the water column, brodifacoum levels in water samples were no longer detectable 36 hours after the spill had occurred (Primus et al. 2005).

In summary, the potential for contamination of surface water, groundwater or seawater is extremely low for both diphacinone and brodifacoum. Lehua does not have any known permanent surface water or groundwater. Possible mechanisms for rodenticide to reach the ocean include pellets bouncing off or rolling down steep slopes, being blown off course by high winds, or being washed into the ocean by heavy rains before they are eaten by rats. The last two possibilities will be minimized by not applying bait pellets in high winds (greater than 35 mph) or when heavy rains are forecast. Contamination of ocean water is unlikely due to the same combinations of factors that resulted in the inability of labs to detect rodenticide residues in water samples taken after the Mokapu Island aerial application and the New Zealand bait spill.

3.2.2 Effects of Diphacinone and Brodifacoum on Marine Invertebrate and Fish Species, including Essential Fish Habitat

Marine organisms can potentially be exposed to rodenticides in one of three ways: they can eat bait pellets, they can eat prey items that have accumulated rodenticide in their tissues, or they can absorb rodenticides that have dissolved in seawater through their skin.

Previous sections discussed project mitigation measures to help keep bait out of the water, which will minimize risks of marine invertebrates and fish being exposed to rodenticides through any of these pathways. The very low water solubility of both diphacinone and brodifacoum, discussed above, further decreases the likelihood of exposure of marine organisms to dissolved rodenticides.

This section presents evidence that direct ingestion of bait and consumption of contaminated prey are also very unlikely. Evidence includes results from Lehua field observations indicating that nearshore fish are unlikely to be attracted to bait pellets, in addition to sampling results from a rat eradication recently conducted at Mokapu Island, which found no detectable rodenticide residues in marine tissues after two diphacinone applications. Further evidence comes from the unexpectedly low rodenticide levels in marine organisms following a massive 20 ton spill of brodifacoum pellets into shallow, nearshore waters in New Zealand.

The 20 ton spill of brodifacoum in New Zealand documented by Primus et al. (2005) is a "worst case" scenario that will be used here for a highly conservative analysis of rodenticide impacts. The use of this data in toxicity models yields very conservative results because:

- Brodifacoum is more toxic, persistent and bioacummulative than diphacinone; and
- The likelihood of that volume of any rodenticide being spilled into the environment at a
 point source is extremely remote. The only circumstance under which such a spill could
 happen in the Hawaiian Islands would be if a vessel carrying large quantities of bait to an
 island to be treated would sink in shallow nearshore waters, which is highly unlikely,
 even in the winter.

This analysis will conclude that the risks to marine species at Lehua are very low, based on the lack of likely exposure pathways; the fact that the Mokapu Island bait application did not result in detectable rodenticide residues in marine samples; and the surprisingly low levels of localized contamination resulting from the worst-case scenario of the New Zealand brodifacoum spill. No significant impacts are anticipated to Lehua's marine invertebrates and fish from the use of either diphacinone or brodifacoum.

Additionally, no physical changes would occur to any Essential Fish Habitat (EFH) at Lehua and the proposed project is not anticipated to adversely affect Essential Fish Habitat in any way. As a result, no EFH assessment per the Magnusen-Stevens Act is required.

Marine Invertebrates

Since diphacinone and brodifacoum are highly insoluble in water, invertebrates could not be exposed to significant amounts of dissolved rodenticides. Therefore, as with the fish, any problems or concerns with invertebrates would have to be caused by their eating bait pellets or eating contaminated prey.

Because many marine invertebrates scavenge or graze on items on the bottom or in intertidal areas, it is possible that they would pick up bait pellets or pellet fragments prior to the pellets breaking down in the water. Complete breakdown of a pellet in the water would likely take only a few days, especially if the water is rough. Therefore, dietary exposure to pellets would have to occur during the few days when the pellet was still intact. The question then becomes whether or not this potential exposure pathway is significant.

Evidence against the existence of a significant dietary exposure pathway for invertebrates, at least in the context of the proposed Lehua project, comes from field sampling of marine invertebrates conducted following an actual rodenticide application in Hawai'i, and another round of sampling done after an accidental New Zealand spill of large amounts of brodifacoum into the ocean.

The sampling program conducted at Mokapu Island, following aerial application of diphacinone bait, did not detect diphacinone residues in any of the water or tissue samples collected. Seawater, limpet and fish samples were collected at Mokapu Island on February 17, 2008, 11 days after the first rodenticide application and 5 days after the second and final application. Two Moloka'i fishermen and a USFWS employee collected samples by hand (water and limpets) and with hook-and-line (fish) after accessing the island by boat. Forty intertidal limpets (*Cellana exarata*) were collected from three locations around Mokapu. Limpets were shelled and the whole bodies, including gut contents, were analyzed for diphacinone residues. Six fish (3 different species) were also collected. Appendix C contains the laboratory reports documenting that no diphacinone was found in the limpets or in the fish muscle tissues. Since gut contents were included in the limpet samples, it can be assumed that because they did not have any bait pellet fragments in their digestive tracts they either did not encounter or did not like bait pellets.

In 2001, a semi-trailer truck went off the road into the ocean on the east coast of the South Island of New Zealand prior to an eradication project. Twenty tons of 0.002% (20 ppm) brodifacoum bait was spilled into the nearshore environment at a single point (Primus et al. 2005). Samples of marine invertebrates and fish were taken immediately after the spill, then monthly for four months, then at three and six month intervals for the following 21 months. Bait spilled into the

water began to soften and disintegrate quickly, but the plume of green water from the bait dye lasted approximately 24 hours. Approximately one week post-spill, the congealed grain bait material on the ocean floor was diluted and dissipated by wave action. Most exposure of marine invertebrates occurred within approximately 300 feet of the spill site; minor exposure was detected from 300 to 900 feet from the spill site, and none was detected beyond 900 feet.

The following results were found during sampling (Primus et al. 2005):

- Mean brodifacoum concentrations in mussels peaked at 0.41 ppm one day after the spill
 and were just above detection limits after 29 days. Five mussel samples collected 353
 days after the spill still averaged 0.002 ppm.
- Abalone gut and muscle tissue residues were highest on day 29 with 0.07 ppm for gut tissue and 0.03 ppm for muscle tissue. At day 191, residues averaged 0.003 ppm for gut and 0.0015 ppm for muscle. At day 353, abalone gut and muscle tissues were 0.0017 ppm and 0.0014 ppm, respectively.
- Limpet tissue maintained detectable brodifacoum residues for about 80 days.

The New Zealand spill was a worst-case scenario but still only resulted in low levels (less than 1.0 ppm) of tissue contamination, mostly within 300 feet of the spill site. However, the persistence of brodifacoum in the tissues was thought to be due to a combination of the high volume of brodifacoum introduced into the shallow marine environmental at one location, a prolonged half-life of the brodifacoum in the invertebrates, and re-exposure to the high volume of bait due to tidal action. Because brodifacoum would only be considered for use on Lehua if diphacinone fails and the likelihood of a major bait spill into the ocean is minute, the risk of any such persistent accumulation of brodifacoum in invertebrate tissues at Lehua is small.

Corals would not likely be exposed to rodenticide since coral cover around Lehua is very sparse, due largely to extreme winter surf conditions. However, there is a large and exceptional bed of *Sinularia abrupta* (a soft coral) located off the northwest horn of Lehua. Although the effects of rodenticides on corals have not been tested in the laboratory, the rat eradication should not pose a risk to this coral bed for the following reasons: 1) the pellets and most pellet fragments are too big for the filter-feeding coral polyps to eat; 2) the solubility of rodenticides in water and thus the risk of corals absorbing dissolved toxins are very low and the concentrations of rodenticide in pellets (25-50 ppm) are low to begin with; 3) there is no known physiological mechanism by which vertebrate anticoagulants can affect invertebrates; and 4) because the *Sinularia* bed is located off of the narrow, tapering northwest tip of Lehua, relatively little bait would be applied to this area and even less could potentially fall into the water.

For all these reasons, no adverse impacts to marine invertebrates are predicted as a result of using diphacinone or brodifacoum bait pellets on Lehua.

Marine Fish

Since diphacinone and brodifacoum are highly insoluble in water, fish could not be exposed to significant amounts of dissolved rodenticides. Therefore, as with the invertebrates, any problems or concerns with fish would have to be caused by their eating bait pellets or contaminated prey.

In order to address the question of whether fish would eat bait pellets, the USFWS conducted field trials on Lehua Island in 2004, using placebo bait pellets similar in size, shape and material to pellets that might actually be used (C. Swenson, USFWS, unpublished data). Results showed

that although certain species routinely inspected bait pellets in the water, none of the 21 nearshore fish species observed ate the placebo bait (Table 3). Although other fish species are present at Lehua that were not observed during these tests, results included a representative sample of species and provided good evidence that fish don't consider bait pellets to be palatable. In any event, bait pellets are not available to fish or other organisms for long since they quickly soften and break up in water, particularly when the ocean is rough (Empson and Miskelley 1999).

If fish aren't exposed to dissolved rodenticides and don't eat bait pellets, the only remaining question is whether they could take up rodenticide by eating contaminated prey items. Strong supporting evidence that prey species would not likely be contaminated comes from field sampling of fish and invertebrates conducted following an actual rodenticide application in Hawai'i, and another round of sampling done after an accidental New Zealand spill of large amounts of brodifacoum into the water.

The sampling program conducted at Mokapu Island, following aerial application of diphacinone bait, did not detect diphacinone residues in any of the water or tissue samples collected. Seawater, limpet and fish samples were collected at Mokapu Island on February 17, 2008, 11 days after the first rodenticide application and 5 days after the second and final application. Two Moloka'i fishermen and a USFWS biologist collected samples by hand (water and limpets) and with hook-and-line (fish) after accessing the island by boat. The fish collected included four blue-lined snappers (*Lutjanus kasmira*), one hogfish (*Bodianus bilunulatus*), and one bridled triggerfish (*Sufflamen fraenatus*). All of these fish are shoreline-associated predators that feed primarily on invertebrates and/or small fish. Appendix C contains the laboratory reports documenting that no diphacinone was found in fish muscle or limpet tissues.

Additional supporting evidence for the lack of significant pathways for rodenticide accumulation in fish tissues comes from results of sampling conducted following a massive, 20 ton spill of brodifacoum pellets into shallow, protected coastal waters in New Zealand. Expectations were that significant contamination of fish would result. However, the only fish with detectable residues was a butterfish sampled 9 days after the spill. This fish had only 0.040 parts per million (ppm) brodifacoum in the liver and 0.02 ppm in the gut, and no detectable residues in muscle tissues. No brodifacoum residues were detected in four other fish samples collected between day 14 and 16 after the spill (Primus et al. 2005). As discussed above, brodifacoum was found in invertebrate tissues in concentrations below 1.0 ppm, primarily within 300 feet of the spill site. The New Zealand example was a worst-case scenario but still only resulted in low levels of localized tissue contamination.

For all these reasons, no adverse impacts to marine fish are predicted as a result of using diphacinone or brodifacoum bait pellets on Lehua.

Table 3. Attraction gram size) at Leh	of nearshore mari ua Island, Hawai`i,					
		Total Number of	Number observe interac	Number of bait		
Common English Name	Scientific Name	Fish	Inspected Bait	Touched Bait	Consumed bait	interactions per species
Orangespine Unicornfish	Naso literatus	13	10	8	0	18
Convict Tang	Acanthurus triostegus	8	0	0	0	0
Whitebar Surgeonfish	Acanthurus leucopareius	85	19	0	0	19
Orangeband Surgeonfish	Acanthurus olivaceous	7	3	5	0	8
Achilles Tang	Acanthurus achilles	2	0	0	0	0
Ringtail Surgeonfish	Acanthurus blochii	1	0	0	0	0
Eyestripe Surgeonfish	Acanthurus dussumieri	1	0	0	0	0
Lagoon Triggerfish	Rhinecanthus aculeatus	1	1	0	0	1
Black Durgon	Melichthys niger	6	21	13	0	34
Pinktail Durgon	Melichthys vidua	5	13	9	0	22
Moorish Idol	Zanclus cornutus	1	0	0	0	0
Ornate Butterflyfish	Chaetodon ornatissimus	1	0	0	0	0
Longnose Butterflyfish	Forcipiger longirostris	1	0	0	0	0
Cornetfish	Fistularia commersonnii	1	0	0	0	0
Gray Reef Shark (juv.)	Carcharhinus amblyrynchos	1	1	0	0	1
Blackspot Sergeant	Abudefduf sordidus	1	3	0	0	3

Manybar Goatfish	Parupeneus multifasciatus	2	0	0	0	0
Blue Goatfish	Parupeneus cyclostomus	3	0	0	0	0
Yellowstripe Goatfish	Mulloidichthys flavolineatus	1	0	0	0	0
Hawaiian Hogfish	Bodianus bilunulatus	1	1	1	0	2
Parrotfish spp.	Family Scaridae	2	0	0	0	0

3.3 Potential Impacts to Humans

Human harvest near Lehua focuses on marine fish and limpets. The analysis in Section 3.2 shows that there is minimal risk that the project will contaminate marine organisms. Field data collected from Lehua supports the assumption that Hawai'i nearshore fish do not eat the type of bait pellets planned for use and, therefore, would not have rodenticide residues in their tissues (Table 3). Exposure levels of marine invertebrates to rodenticide, if any, would be at such low levels and for such a short time that no tissue accumulation is anticipated and, therefore, no effects to human consumers are anticipated. As discussed earlier, no diphacinone residues were detected in the seawater, limpets, or fish sampled following the 2008 Mokapu Island rat eradication (see Appendix C). Following the large New Zealand bait spill, only low levels of brodifacoum were detected in organisms close to the spill site.

In addition, access to the waters surrounding Lehua is often risky or impossible for recreational or harvesting purposes during the rough winter months when the bait application would occur. Therefore, collection of limpets and fish is highly unlikely during the period of operations. Project mitigation methods to prevent or minimize bait pellets falling into the water include not applying bait in high winds and not applying before heavy rains that could wash pellets into the water. For all these reasons, the risks of either direct or indirect human exposure to rodenticides in marine organisms are minimal to non-existent. Nonetheless, the public will be notified prior to any bait application. Sampling of water, fish and invertebrate tissues is planned after application, if ocean conditions permit safe sample collection. Results from marine sample testing will be published in Kaua'i newspapers as soon as they become available.

Harvest or consumption of terrestrial resources, such as plants or seabirds living on the island is illegal and is not known to occur.

Project personnel would follow all required safety and product handling procedures and would not, therefore, be exposed to harmful amounts of rodenticides.

3.4 Potential Impacts to Birds

Most birds found on Lehua are seabirds, which are present in significant numbers only in the summer and fall and are absent or greatly reduced in numbers in the winter. However, some species are year-round residents. Nonnative passerine birds are also found on Lehua but have only been observed in the summer. Nonnative barn owls are apparently a recent year-round

resident. All species on Lehua except the nonnative house sparrow and the nutmeg mannikin are protected under the Migratory Bird Treaty Act.

In general, birds can only be exposed to rodenticides in two ways: either they can eat the bait pellets (direct ingestion) or they can eat prey organisms that have been contaminated by eating rodenticide (indirect ingestion). The types of birds at highest risk of rodenticide poisoning are birds of prey or scavengers that may feed on live or dead rodents that have already eaten rodenticide pellets. However, because almost all the birds on Lehua during the winter operation are seabirds, there is little risk of either direct or indirect rodenticide ingestion by birds. Seabirds do not generally eat things they find on land, such as bait pellets or rodents. Seabirds only eat fish and other marine organisms they catch in the ocean, often far from shore (see Table 4).

Nonetheless, the following sections present data on the effects on birds of direct and indirect bait ingestion. The common theme is that diphacinone, regardless of how ingested, is less toxic than brodifacoum. In most cases, it would be physically impossible for birds to eat enough diphacinone pellets or tainted prey to cause death. As stated earlier, diphacinone is the preferred compound for use on Lehua. Brodifacoum would only be used as a last resort if a failure to eradicate Lehua's rats could be directly traced to a problem with using diphacinone. Even though it is more toxic than diphacinone, it is unlikely to cause problems since birds are not likely to eat bait pellets or contaminated prey.

3.4.1 Impacts to Native Seabirds Present on Lehua in the Winter

Biology and Status

The numbers of seabirds on Lehua are reduced in the winter compared to the rest of the year, largely because the most numerous species, the wedge-tailed shearwaters, are absent in winter. Breeding is also greatly reduced in the winter and the number of active nests at this time is relatively small. Species observed nesting during the December-February project period (also see Table 1) include both albatross species, brown boobies, and red-tailed tropicbirds. Other year-round Lehua residents like black noddies and red-footed boobies may be breeding in small numbers also but have not been observed to do so. All Lehua seabirds feed on marine organisms offshore and do not gather any food on land.

The following seabird species have been recorded on or near Lehua during the winter (VanderWerf et al 2007):

- black-footed albatross
- Laysan albatross
- red-tailed tropicbird (possible year-round resident)
- brown booby
- red-footed booby (year-round resident)
- great frigatebird
- glaucous-winged gull (rare visitor)
- sooty tern (rare visitor)

- brown noddy (rare visitor)
- Hawaiian black noddy (year-round resident)

Potential Impacts to Seabirds from Direct Ingestion of Rodenticide (Primary Nontarget Hazard)

Because the adults of all the Lehua seabird species feed by foraging for fish and other marine organisms offshore (Table 4), it is highly unlikely that any of the seabirds would be attracted to or incidentally pick up bait pellets of either diphacinone or brodifacoum during a winter operation. Few pellets would actually fall into the nearshore waters and any pellets falling into the water would disintegrate rapidly. However, as older albatross chicks in the nest are known to be curious and pick up small articles near the nest, it is possible that a chick could ingest a pellet.

If an adult seabird picked up bait pellets, which is highly unlikely, a black noddy, the smallest of the seabirds, would have to consume 860 grams (2 pounds) of 50 ppm diphacinone bait (based upon the lower reported acute oral LD_{50} of >400 mg/kg body weight for bobwhites) to obtain an LD_{50} -equivalent dosage. It would be physically impossible for such a small bird to consume that much bait in one or even several days. An adult red-footed booby, the most numerous seabird species on Lehua in the winter, would have to consume 8,000 grams (approximately 17.6 pounds) of diphacinone bait, which is physically impossible.

The great frigatebird would have to eat 10,800 g (almost 24 pounds) of 50 ppm diphacinone bait to consume a lethal dose (Table 5). However, the projected LOEL (extrapolated from the lowest reported LOEL for diphacinone in birds, 0.11 mg/kg/day, Savarie et al 1977) of diphacinone for the great frigatebird, is 0.15 mg/kg/day or about three grams of bait per day. As long as bait is present in a treated area, a non-lethal level of exposure like this would be physically possible, although it is highly improbable that any of the seabirds would forage on bait pellets along the coastline rather than fish in the open ocean.

Based on the acute oral LD_{50} figure reported for mallards (0.26 mg/kg body weight), a 108 g (3.8 oz.) black noddy, the smallest species of seabird likely to be present during the operational window, would only have to consume 1.1 gram of 25 ppm brodifacoum bait, or half of one 2-g pellet, to obtain an LD_{50} —equivalent dosage. The average adult great frigatebird weighs approximately 1,350 g (3 lbs) and would need to ingest 14 g, or about seven small-size (2 g) pellets of a brodifacoum product to obtain the LD_{50} —equivalent dosage of 0.35 mg (Table 5). LOEL values are not available for brodifacoum because of its high toxicity. Again, it is highly improbable that any of the seabirds would forage on bait pellets along the coastline rather than fish in the open ocean.

However, it is possible that Laysan or black-footed albatross chicks, known to be curious about objects near their nest, might pick up and inadvertently ingest bait pellets that they can reach from their nests. Albatross chicks grow rapidly after hatching, but newly hatched chick, such as those likely to be present during the project period, weigh about 200 g or 7 ounces (Whittow 1993a and 1993b). A 200 g chick would have to ingest 1,600 g (over 3.5 pounds) of diphacinone bait pellets to obtain the LD₅₀—equivalent dosage of 80 mg; an impossible amount to eat.

This same size chick would need to ingest about 2.1 g, or roughly one (2 g) pellet of a brodifacoum product to obtain the LD_{50} —equivalent dosage of 0.05 mg (Table 5). As stated in Section 3.2.1, LOEL values are not available for brodifacoum because of its high toxicity.

Environmental Consequences

Larger albatross chicks would have to ingest proportionately larger volumes of either bait to cause an effect. However, because of the potential for direct ingestion, all pellets within 6 feet of any active albatross nest will be manually removed soon after bait application.

In conclusion, the potential for any adverse impacts to seabirds from consuming either diphacinone or brodifacoum pellets is low because seabirds feed on marine organisms, not bait pellets, and they feed in the open ocean far from where bait will be applied. The possible exception to this is albatross chicks accidentally feeding on bait pellets near their nest. Therefore, mitigation measures include quickly removing bait pellets near any active albatross nests.

Potential Impacts to Seabirds from Indirect Ingestion of Rodenticide (Secondary Nontarget Hazard)

Another potential route of exposure to rodenticides for seabirds is consumption of prey items that have themselves ingested rodenticide. However, all species of seabirds on Lehua consume fish or squid offshore. As a result, it is highly improbable that adult seabirds would feed on or bring fish with rodenticide residues back to their chicks, because the fish in the open ocean would not be exposed to rodenticides and, even if they were, are not expected to feed on bait pellets and thus bioaccumulate residues, as discussed earlier. Therefore, this scenario will not be evaluated in detail. Nonetheless, the number of grams of marine animal tissues necessary for secondary poisoning to seabirds is included in Table 5. Using the numbers in this table, even under the extreme circumstances of an accident involving a large-scale brodifacoum bait spill and assuming that the seabirds eat nearshore invertebrates (an unknown behavior for the seabird species on Lehua) rather than fish and squid in the open ocean, the risk of mortality for any species of seabird on Lehua is essentially zero for either a diphacinone or brodifacoum formulation.

Table 4. Biological Characteristics of Seabirds Present on Lehua Island in the Winter

Species ¹	Mass (g) ¹	Energy Dyna- mics	Winter Distribution	Diet	Biological Information	Seasonal Presence in Lehua Area	Citations ²
Black-footed albatross kaʻupu	Adult: 2800 Chick: 200 (hatch weight)	Data not available	Outside of Japan, 95% breed on Laysan Island and Midway Atoll; breeding recently confirmed on Lehua (VanderWerf 2007), pelagic rest of year	In Hawai'i, squid, deep- water crustaceans, fish and flyingfish eggs	Age at first breeding >5 years; 1 egg; nest in scooped out hollows; both parents incubate, brood, feed chick	Eggs laid in November and chicks fledge in June and July	Mitchell et al. 2005; VanderWerf et al. 2007
Laysan albatross Mōlī	Adult: 2400 Chick: 200 (hatch weight)	Data not available	Breed throughout NWHI and on Kaua'i, O'ahu, and Lehua Islands in winter, pelagic rest of year	In Hawai'i, squid, deep- water crustaceans, fish and flyingfish eggs	Age at first breeding 8 or 9 years; 1 egg; nest scrape to ring-like structure comprised of sand, vegetation, and debris on steep rocky areas on Lehua; both parents incubate, brood, feed chick	Eggs laid between November and December; chicks fledge in July; 1 egg	Mitchell et al. 2005; VanderWerf et al. 2007
Brown booby 'ā	1340	141 g/day	Little known about movements outside of breeding season	Forages on fish by diving into the water	Age at first breeding 4 to 5 years; 2 eggs/season; nests on ground; both parents incubate, brood, and feed chicks	Breeding from March through May, with fledging by September	Mitchell et al. 2005; VanderWerf et al. 2007
Red-footed booby 'ā	1000	Data not available	Breed throughout NWHI, Kauaʻi, Kaneohe Bay Oʻahu, Moku Manu and Lehua	In Hawai'i, flyingfish and squid, mackerel scads, saury, and anchovies	Age at first breeding 3 -4 years; nest in shrubs and trees; 1 egg; both parents incubate, brood and feed chick	Egg-laying possibly February, most young fledged by September' some birds present year- round	Mitchell et al. 2005; VanderWerf et al. 2007
Great frigatebird 'iwa	1350	147 g/day	Outside breeding season, breeding adults remain relatively close to breeding area; young and nonbreeders disperse	Steals food from other seabirds and forages for fish by dipping into the water	First breeding at 8 to 10 years; 1 egg/season; platform nests in low bushes; both parents incubate, brood, and feed; females often only breed every 2 to 4 years	Does not breed in the main Hawaiian Islands but can be present and possibly roosting throughout the year; nesting not confirmed on Lehua	Mitchell et al. 2005; VanderWerf et al. 2007

Species ¹	Mass $(g)^1$	Energy Dyna- mics	Winter Distribution	Diet	Biological Information	Seasonal Presence in Lehua Area	Citations ²
Red-tailed tropicbird koa'e 'ula	660	87 g/day	Outside the breeding season, adults are solitary and pelagic	Forages on fish by diving into the water	Age at first breeding between 2 and 4 years; 1 egg/season; nests on ground; both parents incubate brood and feed	Breeding can occur throughout the year, but most nests active between February and June	Mitchell et al. 2005; VanderWerf et al. 2007
Glaucous- winged gull	1,180 (male) 950 (female)	Data not available	Farther from shore during winter; beaches and nearshore habitat, intertidal zone other seasons	and pelagic incubate, brood, and feed Farther from shore Seizes small One of first species to first during winter; fish from near recolonize islands after beaches and the water removal of introduced nearshore habitat, surface and mammalian predators; 2-3 intertidal zone forages for eggs; highly territorial		small One of first species to first Rare winter visitor to rom near recolonize islands after ter removal of introduced e and mammalian predators; 2-3 s for eggs; highly territorial	
Sooty Tern 'ewa'ewa	200	Data not available	Remain aloft outside of breeding season; pelagic	Squid, goatfish, flyingfish, mackerel scad	First breeding at 4 to 10 years; nests on shallow scrapes; 1 egg; high site fidelity; both parents incubate, brood, and feed chicks.	Reported recently as a rare visitor to Lehua; only breeds in large colonies between February and September	Mitchell et al. 2005; VanderWerf et al. 2007
Brown Noddy noio kōhā	180	Data not available	Remain near breeding grounds (within 62 miles) year-round	Fish and squid	First breeding at 3 to 7 years; 1 egg; nest on ground, cliffs, trees; both parents incubate, brood, and feed chicks.	Previously extirpated on Lehua; Only breeds in large dense colonies in spring and summer	Mitchell et al. 2005; VanderWerf et al. 2007
Black Noddy Noio	108	29 g/day	Remain near breeding grounds (within 50 miles) year-round	Juvenile goatfish, lizardfish, herring, flyingfish, and gobies	First breeding at 2 to 3 years; Nests on ledges in back of sea caves; egg laying occurs year- round, although no nests found on Lehua in February; high site fidelity; 1 egg; both parents incubate, brood, and feed chicks.	Present year-round and presumable breeding in the sea caves	Mitchell et al. 2005; VanderWerf et al. 2007

¹ Mass values from Birds of North America, www.bna.ed

Table 5. Acute Toxicity of Diphacinone and Brodifacoum to Seabirds Wintering in the Lehua Area. 1,2

<i>Note</i> : 1 pound = 454 grams	Amount of rodenticide that would have to be directly eaten to kill 50% of the population Diphacinone Brodifacoum				Amount of contaminated prey that would have to be eaten to kill 50% of the population Diphacinone Brodifacoum				
	mg of active ingredient	Grams of bait pellets (50 ppm)	mg of active ingredient	Grams of bait pellets (25 ppm)	Grams of Mussels	Grams of Fish Liver	Grams of Mussels	Grams of Fish Liver	
Black-footed	80	1,600	0.05	2.08	195,122	2,000,000	127	1,300	
or Laysan									
albatross chick									
Brown booby	536	10,720	0.35	13.90	1,307,317	13,400,000	850	8,710	
Red-footed	400	8,000	0.26	10.40	975,610	10,000,000	634	6,500	
booby									
Black noddy	43	860	0.03	1.10	105,366	1,080,000	69	702	
White-tailed	182	3,640	0.12	4.73	443,902	4,550,000	289	2,958	
tropicbird									
Red-tailed	264	5,280	0.17	6.90	643,902	6,600,000	419	4,290	
tropicbird									
Great	540	10,800	0.35	14.00	1,317,073	13,500,000	856	8,775	
frigatebird									
Glaucous-	380	7,600	0.25	9.90	926,829	9,500,000	602	6,175	
winged gull									
Sooty tern	80	1,600	0.05	2.10	195,122	2,000,000	127	1,300	
Brown noddy	72	1,440	0.05	1.90	175,610	1,800,000	114	1,170	

¹ Based on the lower of the two acute oral LD₅₀ values for bobwhites or mallards (>400 mg/kg body weight for diphacinone, 0.26 mg/kg body weight for brodifacoum).

² Based on the maximum tissue residue recorder in mussels and fish liver

3.4.2 Potential Impacts to Migratory Shorebirds Present on Lehua in the Winter

Biology and Status

Two species of shorebirds are present on Lehua during the winter: the Pacific golden-plover and the ruddy turnstone. Neither species nests in Hawai'i. Both species are present in small numbers on Lehua during the winter. Six golden-plovers and 9 ruddy turnstones were observed during a recent winter expedition to Lehua (VanderWerf et al. 2007). The ruddy turnstone feeds on marine invertebrates in the intertidal zone. The golden-plover feeds on terrestrial insects and intertidal invertebrates (Table 6). Other shorebird species, such as wandering tattlers and sanderlings, are common in Hawai'i in the winter but have not been observed on Lehua.

Potential Impacts from Direct Ingestion of Rodenticide (Primary Nontarget Hazard)

Ruddy turnstone and Pacific golden-plover, which both forage in intertidal areas (see Table 6), are likely to be present during the winter operational window on Lehua and could potentially be exposed to rodenticide. Although pellets could be available in the intertidal area, it is highly unlikely that these species would actually forage on bait pellets given their normal feeding behavior, the low density of pellets, and the small number of shorebirds on Lehua.

Even if a bird were to pick up diphacinone bait pellets, the ruddy turnstone would have to consume approximately 640 g (almost 1.5 pounds) and the Pacific golden-plover would have to consume approximately 1,200 g (almost 2.7 pounds) of diphacinone bait to deliver an LD₅₀ equivalent dosage (based upon the lower reported acute oral LD₅₀ of >400 mg/kg body weight for bobwhites). It would be physically impossible for either species to consume that much bait in one or several days. However, the projected LOEL (extrapolated from the lowest reported LOEL for diphacinone in birds, 0.11 mg/kg/day, Savarie et al. 1977) of diphacinone for a ruddy turnstone is 0.01 mg/day or about 0.2 gram of bait per day and for a Pacific golden-plover it is 0.02 mg/day or about 0.3 gram of bait per day (Table 6). As long as bait is present in a treated area, such a level of non-lethal exposure would be possible. However, the bird would most likely not consume it based on feeding habits.

Based on the acute oral LD₅₀ figure reported for mallards (0.26 mg/kg body weight, Table 6), a ruddy turnstone would only have to consume 0.8 g of a 25 ppm brodifacoum bait, or about 50% of one average-sized pellet, to obtain an LD₅₀-equivalent dosage; while a Pacific golden-plover would only have to consume 1.6 g of a 25 ppm brodifacoum bait, or about one average sized pellet, to obtain an LD₅₀-equivalent dosage (Table 6). The lethal effects of brodifacoum have been confirmed in northern New Zealand dotterels (*Charadrius obscurus acquilonius*), and observed in an additional two shorebird species on a mainland mammal eradication project (pied stilts, *Himantopus himantopus*; and spur-winged plovers, *Vanellus miles nova novaehollandiae*) (Dowding et al. 1999, Dowding et al. 2006). Again, no LOEL has been determined for brodifacoum because of its substantially higher toxicity; all doses administered have had measurable effects.

In conclusion, the potential is very low for any direct adverse impacts to shorebirds from directly consuming either diphacinone or brodifacoum pellets, since neither species is likely to feed directly on pellets, pellets will be distributed at very low densities, and few shorebirds use Lehua. Even if they did feed on diphacinone pellets, it would be physically impossible for either species to consume a lethal dose.

Table 6. Biological Characteristics of Shorebirds Present on Lehua Island in the Winter

Species ¹	Mass ¹ (g)	Energy Dyna- mics	Winter Distribution	Diet	Biological Information	Seasonal Presence in Lehua Area	Citations ²
Pacific golden- plover Kōlea	150	No informa- tion	Common on all main Hawaiian Islands (August- April) along shorelines and grassy areas	Terrestrial insects and intertidal marine invertebrates	High site fidelity to wintering grounds and territories within those areas in Hawai'i; no nesting	Winter only	Mitchell et al. 2005; VanderWerf et al. 2007
Ruddy turnstone 'akekeke	80	No informa- tion	Common on all main Hawaiian Islands (August-April). Found on rocky shorelines with abundant seaweed and on mudflats	Primarily marine invertebrates, including worms, small fish, bivalves and crustaceans	Age of first breeding is 2 years; 3-4 eggs/clutch; nests on ground in tundra; both parents incubate and feed young; 1 clutch per year	Winter only	Mitchell et al. 2005; VanderWerf et al. 2007

mudflats

Mass values from Birds of North America, www.bna.edu

Potential Impacts from Indirect Ingestion of Rodenticide (Secondary Nontarget Hazard)

A ruddy turnstone would have to consume over 78,049 g (172 pounds) of mussels with diphacinone in their tissues to obtain the equivalent LD_{50} dose, which is physically impossible. For brodifacoum, a turnstone would have to eat 50.7 g (1.8 ounces) of contaminated mussels, which is unlikely. The LOEL for secondary hazard for diphacinone would be 21 g of contaminated mussels and 220 g of fish liver. Only if contaminated tissue were available over several days would there be any risk of obtaining an LOEL for the turnstone through secondary exposure to diphacinone. This is unlikely because of the small amount of bait to which marine invertebrates might be exposed in the intertidal zone. The ruddy turnstone would not be adversely impacted with diphacinone because of the impossibly large amount of contaminated invertebrates that would need to be consumed, nor with brodifacoum, because it is unlikely there would be enough invertebrates exposed to the degree necessary to accumulate significant levels of toxins.

The Pacific golden-plover would have to consume over 146,341 g (323 pounds) of mussels with diphacinone in their tissues to obtain the equivalent LD_{50} dose, which is physically impossible. For brodifacoum, the level is 95.1 g (3.4 ounces) of contaminated mussels, which is unlikely. The LOEL for secondary hazard would be 40 g of mussels contaminated with diphacinone and 413 g of fish liver. Only if contaminated tissue were available over several days would there be any risk of obtaining an LOEL for the Pacific golden-plover through secondary exposure to diphacinone (Table 6).

In conclusion, the potential is very low for any indirect adverse impacts to shorebirds from consuming prey items contaminated with either diphacinone or brodifacoum, primarily because intertidal organisms are not expected to accumulate rodenticides in their tissues. Even if shorebirds did feed on contaminated prey, it would be physically impossible for them to consume a lethal dose of diphacinone. It is physically possible but unlikely in this context for shorebirds to consume a lethal dose of brodifacoum in prey tissue, given the low probability that invertebrates will be exposed to enough rodenticides to accumulate it in their tissues.

Table 7. Acute Toxicity of Diphacinone and Brodifacoum to Shorebirds Wintering in the Lehua Area. 1,2

<i>Note</i> : 1 pound = 454 grams	Amount of rodenticide that would have to be directly eaten to kill 50% of the population				Amount of contaminated prey that would have to be eaten to kill 50% of the population				
	Dipha	cinone	Brodif	acoum	Diph	Diphacinone		Brodifacoum	
	mg of active ingredient	Grams of Bait (50 ppm)	mg of active ingredient	Grams of Bait (25 ppm)	Grams of Mussels	Grams of Fish Liver	Grams of Mussels	Grams of Fish Liver	
Pacific golden- plover	60	1,200	0.04	1.6	146,341	1,500,000	95.1	975	
Ruddy turnstone	32	640	0.02	0.8	78,049	800,000	50.7	520	

^{1.} Based on the lower of the two acute oral LD₅₀ values for bobwhites or mallards (>400 mg/kg body weight for diphacinone, 0.26 mg/kg body weight for brodifacoum)

^{2.} Based on the maximum tissue residue recorded in mussels and fish liver

3.4.3 Potential Impacts to Barn Owls, Cattle Egrets and Peregrine Falcons

Biology and Status

The barn owl, not native to Hawai'i but native to North America, has been recently recorded on Lehua and could potentially visit the island in the winter. No breeding has been documented on Lehua. A sediment deposit beneath a roost on the southern shore of Lehua contained thousands of bones from Polynesian rats, feral rabbits, Bulwer's petrels, brown noddies, zebra doves and several other bird species. One owl pellet contained the entire skull of a wedge-tailed shearwater, demonstrating that the owls prey on relatively large species (VanderWerf et al. 2007). Because barn owls eat rodents, it is possible that they could secondarily ingest rodenticide in poisoned rats.

The peregrine falcon is an extremely rare winter visitor from either Asia or North America, where it has been delisted under the Endangered Species Act. Single birds have been observed infrequently during winter months flying near Lehua but not landing (VanderWerf et al. 2007). Peregrine falcons feed primarily on small birds on the wing, so they would not be expected to scavenge bait pellets or feed on live or dead rodents. Because there is no likely pathway for poisoning for falcons, they will not be considered further.

Cattle egrets are not native, and some commute to Lehua from nearby Ni'ihau and Kaua'i. Adults are present in February but don't nest until later spring and summer on Lehua. They may be predators on seabird eggs and chicks (VanderWerf et al. 2007) and appear to prefer live prey, although they are not known to eat live rats. They also would not be expected to scavenge bait pellets or eat dead rodents. Because there is no likely pathway for poisoning for egrets, they will not be considered further.

Potential Impacts from Direct Ingestion of Rodenticide (Primary Nontarget Hazard)

Barn owls only capture live prey and therefore would not ingest grain-based pellets (Table 8). Therefore, there is no potential for the barn owl to ingest rodenticide directly in the form of bait pellets.

Potential Impacts from Indirect Ingestion of Rodenticide (Secondary Nontarget Hazard)

Because barn owls hunt live prey, they would not eat dead rats but could eat live ones carrying rodenticide residues in their tissues prior to dying. The most conservative (worst case) analyses of these situations will be examined here, using data from the literature. To assess secondary nontarget hazards for the barn owl, the analysis will use whole body values with the maximum residue levels documented in rodents (Erickson and Urban 2004). The LD $_{50}$ for an average sized 315 g (0.7 lbs) owl is estimated to be 0.1 mg of brodifacoum and 126 mg of diphacinone. To ingest these amounts of rodenticides secondarily via rodents contaminated to the highest level documented, an owl would need to consume 3.15 g (0.1 ounce) of a brodifacoum-loaded rat or 37 kg (81.6 pounds) of a diphacinone-loaded rat. An owl could obtain an LOEL dosage of diphacinone by eating 10 g of contaminated rodents. Even under these extreme situations, the risk of mortality due to using a diphacinone formulation is essentially zero.

Table 8. Biological Characteristics of Barn Owls Present in Winter on Lehua Island

Species	Mass ¹ (g)	Energy Dynamics	Winter Habitat	Diet	Biological Information	Seasonal Presence in	Citations ¹
Barn owl	378 (female) 315 (male)	41 g to maintain weight for 24 hours (1-2 adult voles/day)	Open or semi- open country	Live rats and small birds, including seabirds, on Lehua	3-8, sometimes 12 or more eggs/clutch, 1-2 broods per year	Lehua area Year-round resident, probably flies in from Ni'ihau and Kaua'i	Kaufmann 1996

¹ Mass values from Birds of North America, www.bna.edu

Table 9. Acute Toxicity of Diphacinone and Brodifacoum to Barn Owls Present in Winter on Lehua Island

<i>Note</i> : 1 pound = 454 grams			le that would 50% of the p		Amount of contaminated prey that would have to be eaten to kill 50% of the population		
	-	ne (50 ppm)		ım (25 ppm)	Diphacinone	Brodifacoum	
	mg of active ingredient	Grams of Bait	mg of active ingredient	Grams of Bait	Grams of Rodents ¹	Grams of Rodents ¹	
Barn owl (315 g body mass)	126	2,520	0.08	3.30	37,059	3.15	

¹ Based on maximum whole body residues recorded in rodents: 3.4 ppm diphacinone, 25.97 ppm brodifacoum.

Using a brodifacoum product, however, could create a substantial risk to a small number of barn owls on Lehua. However, brodifacoum would only be used if diphacinone fails and it can be shown that eradication failed due to the use of diphacinone rodenticide, not other factors. Because this scenario is unlikely, there is little risk from the proposed project to nonnative barn owls. However, in the event that a barn owl died as a result of ingesting brodifacoum, it would not affect the population significantly since barn owls are regular visitors from the adjacent islands such as Kaua'i and Ni'ihau (VanderWerf et al 2007), where the large owl populations would not be affected and could rapidly provide additional birds.

3.5 Potential Impacts to Hawaiian Monk Seals

Biology and Status

Hawaiian monk seals (*Monachus schauninslandi*) are a Federally-listed endangered species endemic to the Hawaiian Archipelago. The population is declining and only about 1,200 animals remain. The most serious threats to the population are food limitation, entanglement in fishing gear, and shark predation. The majority of seals are found in the northwestern Hawaiian Islands but small resident populations are present in the main Hawaiian Islands, including around Ni'ihau (NMFS 2007). They are potentially present around Lehua throughout the year and are often seen hauled out on Lehua's rocky ledges. However, anecdotal information from boat captains familiar with Lehua indicates that seals are not present on Lehua during the winter months when the rat eradication is scheduled to occur.

Potential impacts to monk seals were discussed in the 2005 EA and in the 2005 and 2008 informal section 7 consultations with NMFS. Monk seal use of Lehua is not expected to increase in winter (and may in fact decrease), so switching to a winter operational season will not change anything with regard to the 2005 impact analysis. None of the other proposed modifications will increase risk to monk seals. NMFS confirmed this in September 2008 when they concurred with the Service's determination that the project is not likely to adversely affect monk seals. In short, there is no probable pathway of injury since monk seals are not likely to eat bait pellets and there is only a very slight risk that marine organisms eaten by monk seals could become contaminated. In order to minimize disturbance, helicopters will not fly directly over or apply rodenticides onto monk seals hauled out on Lehua. Project personnel on island will also maintain a 100' distance from hauled out seals. For all these reasons, no impacts are anticipated.

Potential Impact from Direct Ingestion of Rodenticide (Direct Nontarget Hazard)

Hawaiian monk seals forage at sea in offshore areas and sometimes at depths of up to 500 meters in precious coral beds (NMFS 2007). They sometimes spend days at sea before returning to the islands where they sleep and digest their food. Spiny lobster, eels, flatfish, scorpenids, larval fishes and octopus are the most commonly consumed prey. Due to these foraging areas and food habits, and the very small risk that rodenticide will contaminate marine organisms near Lehua (see above sections), it is highly unlikely that direct ingestion of rodenticide pellets would occur during operations. Dermal absorption

of dissolved rodenticide is not a risk due to the virtual insolubility of brodifacoum and diphacinone in water.

Even in the unlikely event that a monk seal ate bait pellets, a 227 kg (500 lb) Hawaiian monk seal would have to ingest 91 mg of pure brodifacoum to receive an LD50– equivalent dosage (based on the Norway rat LD50 value of 0.4 mg/kg body weight). To obtain this amount, the seal would have to ingest 3.6 kg (7.9 lbs) of 25 ppm brodifacoum bait pellets. It is extremely improbable that Hawaiian monk seals would feed in the nearshore area of Lehua or be attracted to bait pellets as a food item. For a diphacinone product, the likelihood that a seal would consume enough bait to approach an LD50 dosage is ever lower than with brodifacoum. Based on the Norway rat LD50 value of 2.3 mg/kg body weight, an average seal would have to ingest 522 mg of pure diphacinone to receive an LD50-equivalent dosage. To attain this dosage, a seal would have to consume 10.4 kg (22.9 lbs) of 50 ppm diphacinone bait pellets.

Potential Impact from Indirect Ingestion of Rodenticide (Secondary Nontarget Hazard)

The possibility of Hawaiian monk seals being exposed to rodenticides by consuming marine prey items that have ingested rodenticides (secondary hazards) is very remote, based on the analyses in Section 3.22 above. The most conservative (worst case) analysis of this unlikely scenario will be constructed using data from the massive, 20 ton brodifacoum spill in New Zealand, resulting from a truck crash on the coast. This scenario assumes an adult female Hawaiian monk seal of average weight (227 kg or 500 lbs) that feeds exclusively in an area massively contaminated to the extent documented at a bait spill site in New Zealand, and feeds exclusively on the most contaminated organisms collected during the monitoring of that incident (mussels). One day after the New Zealand truck spilled 20 tons of brodifacoum directly into nearshore marine waters, mussels contained brodifacoum residues of 0.41 ppm.

Based on the Norway rat LD50 value of 0.4 mg/kg body weight, a 227-kg (500-lb) Hawaiian monk seal would have to ingest 91 mg of pure brodifacoum to receive an LD50-equivalent dosage. To obtain this amount, the seal would have to ingest 221 kg (487 lbs) of mussels contaminated at the 0.41 ppm level found in mussels collected one day after the New Zealand spill. That amount of intake would almost equal the seal's body weight and would be much more than the animal's possible daily food intake. For a diphacinone product, the likelihood that a seal would consume enough contaminated mussels to approach an LD50 dosage is even lower than with brodifacoum. Based on the Norway rat LD50 value of 2.3 mg/kg body weight, an average female seal would have to ingest 522 mg of diphacinone to receive an LD50-equivalent dosage. To attain this dosage, a seal would have to consume 1,273 kg (2,806 lbs) of mussels contaminated with diphacinone at 0.41 ppm. That amount of consumption is almost six times the animal's body weight. Ingestion of these amounts of either rodenticide would be impossible.

At nine days post-spill in New Zealand, butterfish had residue concentrations of 0.04 ppm in the liver and 0.02 ppm in the gut, and below the method limit of detection (<0.02 ppm) in the muscle tissue. However, conservatively assuming that a monk seal ate only fish whose entire bodies were as contaminated as the livers sampled at the spill site, it would still have to eat 2,270 kg (5,004 lbs) of contaminated tissue (ten times its total

body weight) to receive an LD50 dose. In the case of diphacinone, a seal would have to eat 13,053 kg (28,777 lbs) of contaminated tissue, an impossible amount of food intake.

Therefore, even using the most conservative assumptions, no effects to Hawaiian monk seals would be expected to occur from indirect ingestion of rodenticide in contaminated prey.

3.6 Potential Impacts to Humpback Whales

Biology and Status

Humpback whales (*Megaptera novaeangliae*) are a Federally-listed endangered species found throughout the world's oceans. World populations appear to be increasing as a result of whaling bans and other legal protection. The northern Pacific population that migrates seasonally to Hawaiian waters in the winter spends the rest of the year in Alaska or other west coast locations. Adults and calves are present in Hawai'i from approximately November to May, often in shallow coastal waters and including areas around Ni'ihau and Lehua. Whales calve and breed in Hawai'i but are not known to feed here (NMFS 1991).

Potential impacts to endangered humpback whales were addressed in the 2008 informal section 7 consultation with NMFS. NMFS concurred with the Service's determination that the project is not likely to adversely affect marine ESA-listed species at Lehua, including humpback whales. There is no realistic pathway by which humpback whales can be exposed to rodenticide at Lehua because: a) humpback whales do not feed when they are in Hawaii; b) diphacinone and brodifacoum are almost completely insoluble in water; and c) there is no evidence of marine contamination resulting from any previous aerial rodenticide broadcast, including the one done at Mokapu Island. Seawater, fish and invertebrates collected at Mokapu all tested negative for diphacinone residues. In order to minimize mechanical disturbance, mitigation measures will include prohibitions on helicopters flying over humpback whales and vessels from approaching within 100 yards of them. For all these reasons, no adverse impacts are anticipated.

Potential Impact from Direct Ingestion of Rodenticide (Direct Nontarget Hazard)

The humpback whales that migrate to Hawai'i forage exclusively at sea in Alaska's offshore areas during the summer (NMFS 1991). Krill and small schooling fish, such as herring (*Clupea harengus*), salmon, capelin (*Mallotus villosus*) and sand lance (*Ammodytes americanus*) as well as mackerel (*Scomber scombrus*), pollock (*Pollachius virens*) and haddock (*Melanogrammus aeglefinus*) are the most commonly consumed prey. Due to these foraging areas and food habits, it is virtually impossible that direct ingestion of rodenticide bait pellets would occur during operations at Lehua. Dermal absorption of dissolved rodenticide is not a risk due to the virtual insolubility of brodifacoum and diphacinone in water.

Based on the Norway rat LD50 value of 0.4 mg/kg body weight, a 45,000 kg (99,208 lb) humpback whale would have to ingest 18,000 mg of pure brodifacoum to receive an LD50–equivalent dosage. To obtain this amount, the whale would have to ingest 720 kg (1,587 lbs) of 25 ppm brodifacoum bait pellets. For a diphacinone product, the likelihood

that a whale would consume enough bait to approach an LD50 dosage is even lower than with brodifacoum. Based on the Norway rat LD50 value of 2.3 mg/kg body weight, an average whale would have to ingest 103,500 mg of pure diphacinone to receive an LD50-equivalent dosage. To attain this dosage, a whale would have to consume 2,070 kg (4,564 lbs) of 50 ppm diphacinone bait pellets; more bait than will be applied to Lehua during any single application.

Although there is no toxicity data for marine mammals, a laboratory study that fed pregnant rats for multiple consecutive days with diphacinone found that a dose of 0.01 mg/kg/day caused vaginal bleeding (Daniel 1993). Extrapolating the results for rats to whales, a 45 metric ton (45,000 kg) adult female humpback whale would have to find and ingest 8.16 kilograms (4,080 two-gram pellets) every day over multiple days to cause excess maternal bleeding during birth. It is extremely unlikely that a whale would be able to find (or be attracted to) this many bait pellets over multiple days, especially since they don't feed in Hawai'i.

Potential Impact from Indirect Ingestion of Rodenticide (Secondary Nontarget Hazard)

The possibility of humpback whales being exposed to rodenticides by consuming marine prey items that have ingested rodenticides (secondary hazards) is very remote, based on the analyses in Section 3.22 above. The most conservative (worst case) analysis of this unlikely scenario will be constructed using data from the massive, 20 ton brodifacoum spill in New Zealand, resulting from a truck crash on the coast. This scenario assumes an adult female humpback whale (45,000 kg or 99,208 lbs) that feeds exclusively in an area massively contaminated to the extent documented at the spill site in New Zealand, and feeding exclusively on the most contaminated organisms collected during the monitoring of that incident (mussels). One day after the New Zealand truck spilled 20 tons of brodifacoum directly into nearshore marine waters, mussels contained brodifacoum residues of 0.41 ppm.

Based on the Norway rat LD50 value of 0.4 mg/kg body weight, a 45,000 kg (99,208 lb) humpback whale would have to ingest 18,000 mg of pure brodifacoum to receive an LD50–equivalent dosage. To obtain this amount, the whale would have to ingest 43,902 kg (96,787 lbs) of prey contaminated at the 0.41 ppm level found in mussels collected one day after the New Zealand spill. For diphacinone, the likelihood that a whale would consume enough contaminated mussels to approach an LD50 dosage is even lower than with brodifacoum. Based on the Norway rat LD50 value of 2.3 mg/kg body weight, an average whale would have to ingest 103,500 mg of pure diphacinone to receive an LD50-equivalent dosage. To attain this dosage, a whale would have to consume 252,439 kg (556,532 lbs) of mussels contaminated with diphacinone at 0.41 ppm; almost six times the animal's body weight. Ingestion of these amounts of either rodenticide would be impossible even if whales ate while in Hawaiian waters.

At nine days post-spill in New Zealand, butterfish had residue concentrations of 0.04 ppm in the liver and 0.02 ppm in the gut, and below the method limit of detection (<0.02 ppm) in the muscle tissue. Conservatively assuming that the humpback whale ate only fish whose whole bodies were as contaminated as the livers sampled at the spill site, it would have to eat 450,000 kg (992,080 lbs), or ten times the whale's total body weight,

of brodifacoum-contaminated tissue to receive an LD50 dose. For diphacinone, it would have to eat 2,587,500 kg (5,704,461 lbs) of contaminated tissue. Even given these extremely conservative assumptions, such food intake levels would be impossible. As a side note, the New Zealand bait spill occurred in a marine sanctuary when marine mammal species were present, and no adverse impacts to these mammals were observed.

Therefore, even using the most conservative assumptions, no effect to humpback whales would be expected to occur from indirect ingestion of rodenticide in contaminated prey.

3.7 Potential Impacts to Green Sea Turtles

Biology and Status

Green sea turtles (*Chelonia mydas*), a Federally-listed threatened species, are found in tropical and sub-tropical oceans. The Hawai'i population appears to be increasing. Approximately 90% of the Hawai'i population nests at French Frigate Shoals (NMFS and USFWS 1998). Small numbers of turtles nest in the main Hawaiian Islands but not at Lehua, where the absence of any sandy shores makes nesting impossible. Green sea turtles are sometimes seen in waters around Lehua but, according to a NMFS sea turtle biologist, "Lehua has not demonstrated itself as a site commonly used by any of the [turtle] species. Turtles are uncommon to rare there, and then only in the sea, not on land basking, and certainly not nesting (George Balazs, pers. comm.)." Adult green sea turtles are obligate herbivores and feed on a variety of seaweeds and seagrasses (NMFS and USFWS 1998).

Possible impacts to turtles were addressed in the 2005 and 2008 informal section 7 consultations with NMFS. Because Lehua does not appear to be good feeding habitat, nesting is impossible, and turtles have never been documented to haul out, the chance of any negative interaction is minimal. Chances of direct and indirect ingestion are minimal, as detailed below. For all these reasons, NMFS concurred with the USFWS in both the 2005 and 2008 section 7 consultations that the proposed project is not likely to adversely affect green sea turtles or any other ESA-listed marine species.

Potential Impact from Direct Ingestion of Rodenticide (Direct Nontarget Hazard)

Although there is no data for marine reptiles, some terrestrial reptiles are potentially susceptible to brodifacoum and diphacinone. Telfair's skinks (*Leiolopisma telfairii*) were found dead after eating 20 ppm brodifacoum bait used for eradication in New Zealand, and post-mortem analyses revealed brodifacoum concentrations of 0.6 mg/kg in samples. There has been no documented mortality of herpetofauna associated with the use of diphacinone.

Green sea turtles forage in nearshore seagrass meadows within bays, lagoons and shoals. Adult green sea turtles feed exclusively on various species of seagrass and seaweed. They have been observed grazing on various species of macroalgae; specifically *Caulerpa, Turbinaria, Spyridia, Codium*, and *Ulva* are the most commonly consumed species. Due to these foraging areas and food habits, it is very unlikely that direct ingestion of rodenticide bait pellets would occur during Lehua operations. Therefore, direct consumption of rodenticide bait will not be considered in detail. Dermal

absorption of dissolved rodenticide is not a risk due to the virtual insolubility of brodifacoum and diphacinone in water.

Potential Impact from Indirect Ingestion of Rodenticide (Secondary Nontarget Hazard)

There is no possibility of green sea turtles being exposed to rodenticides by consuming prey items that have ingested rodenticides (secondary hazards). As noted above green sea turtles feed exclusively on various species of seagrass and seaweed. Plants have not been documented to take up and store anticoagulants.

Therefore, no effect on green sea turtles would be expected to occur from indirect ingestion of rodenticide in their food.

3.8 Consistency with Hawai'i State Enforceable Policies per CZMA, Federal Endangered Species Act, National Historic Preservation Act, and Clean Water Act

3.8.1 Consistency with Applicable State Coastal Management Policies

The following objectives and policies of HRS 205A-2 (Coastal Zone Management) would apply to the proposed project (J. Nakagawa, Hawai'i Coastal Zone Management Program, Hawai'i Office of State Planning, pers. comm.), with evaluation of consistency:

- (b)(4)(A) Protect valuable coastal ecosystems, including reefs, from disruption and minimize adverse impacts on all coastal ecosystems.
 - Consistency rationale: The native ecosystems on Lehua have been disrupted by invasive rats. This project intends to eradicate the rats to allow the plant and seabird components of the ecosystems to recover naturally when possible and to provide the foundation for actively removing invasive weeds for supporting the restoration of native plant communities. These actions are consistent with the purposes of HAR 13-125 regarding State Wildlife Sanctuaries. No adverse impact will occur to any marine vertebrate or invertebrate communities and species, nor to marine plant communities.
- (c)(4)(C) Preserve valuable coastal ecosystems, including reefs, of significant biological or economic importance.
 - o Consistency rationale: Rats are an ongoing threat to native plants and animals on Lehua and eradication will benefit native species. Lehua has remnant populations of native plant species that will be preserved with the rat eradication project. Existing seabird species will have the potential to recover to larger populations if rats are removed, and species that are not found on Lehua but found on adjacent islands may be able to recolonize available habitat. Again, no adverse impact will occur to any marine vertebrate or invertebrate communities and species, or to marine plant communities.
- (c)(4)(E) Promote water quality planning and management practices that reflect the tolerance of fresh water and marine ecosystems and maintain and enhance

water quality through the development and implementation of point and nonpoint source water pollution control measures.

- o **Consistency rationale:** Water quality will not be adversely impacted because:
 - No surface water is found on Lehua;
 - Extremely small amounts of rodenticide would enter the marine environment when applied as described in Chapter 2;
 - The rodenticide pellets that do enter the marine environment break up rapidly in the intertidal dynamics;
 - Studies made of a huge point source spill of brodifacoum in New Zealand indicate that marine invertebrates are not adversely affected; the minute amounts of diphacinone entering the marine environment would have no adverse impacts to water quality.
 - No diphacinone residues were detected in any seawater samples collected at Mokapu Island after the February 2008 aerial rodenticide broadcast.

3.8.2 Consistency with State Enforceable Policies

The following four State laws and associated regulations, as well as their Federal counterparts, are described in detail in Chapter 1. Consistency with these state enforceable policies are evaluated for each law and found consistent.

HRS 149A: Hawai'i Pesticides Law and FIFRA

Consistency rationale: Both diphacinone and brodifacoum are "restricted use" pesticides. The USDA will obtain the necessary permits from the State Department of Agriculture for aerial application of the rodenticide and all rodenticide application will be under the direct supervision of a certified applicator. Per both FIFRA and HRS 149A, all applications will be according to the label, and no pesticide will be used that does not have an approved label.

HRS 195D and HAR 13-124: Conservation of Aquatic Life, Wildlife, and Land Plants (Endangered Species) and Federal Endangered Species Act

Consistency rationale: No threatened or endangered bird species are known to be present on Lehua in the winter but Hawaiian monk seal, green sea turtles, and humpback whales could be present. No listed plants or insects are present.

Intra-Service Section 7 Endangered Species Act Consultation for the Newell's shearwater and Hawaiian petrel (listed), and the band-rumped storm-petrel (candidate) was finalized in April 2005 and included in the 2005 final EA for the Lehua Island project. The USFWS determined that the proposed action would have positive effects on the ecosystem and the three species of seabirds, resulting in a determination of "may affect but is not likely to adversely affect" the shearwater and petrel, and a determination of "no effect" on the storm-petrel. With the change to a winter operation, when listed seabirds

are not present, no impact is anticipated. All operations would be conducted during the day.

An informal Section 7 consultation with the National Marine Fisheries Service (letter dated July 5, 2005, Appendix E of the 2005 EA) also determined that the proposed eradication project on Lehua Island was not likely to adversely affect federally listed Hawaiian monk seals or sea turtles. The letter also documented that the USFWS found that "bait pellets will not present a poisoning hazard to foraging seals or sea turtles." NMFS concurred with this finding and further stated: "It should also be noted that as a result of this project there could be indirect beneficial effects to both monk seals and sea turtles arising from increased native plant cover which will stabilize soils, reduce sediment runoff into the ocean and improve marine water quality. This may result in the establishment of improved nearshore foraging habitat for both monk seals and sea turtles. Given the mitigation put in place under the draft EA we conclude that any effects of the proposed action on monk seals or sea turtles would be discountable. NOAA Fisheries Service therefore concurs with your determination that the project may affect but is not likely to adversely affect ESA listed species under our jurisdiction."

A second informal Section 7 consultation was initiated with NMFS in 2008 because of the change in project timing to the winter season. In addition to including the monk seals and sea turtles discussed in the 2005 consultation for a summer operation, the 2008 consultation also included an assessment of impacts to endangered humpback whales (*Megaptera novaeangliae*), which are present in Hawaii only in the winter. The USFWS determined that the project was not likely to adversely impact any of these species. In a letter dated September 3, 2008 (included as Appendix D to this document), NMFS concurred with this determination, stating that "...we concur that the proposed action, as currently revised, is not likely to adversely affect ESA-listed marine species." Mitigation measures are listed in Section 2.3.1.

Therefore, the informal Section 7 consultations conducted with the USFWS and NMFS fulfills compliance with both state and federal law and regulations.

HRS Chapter 6E: Historic Preservation and Federal National Historic Preservation Act

Consistency rationale: Lehua has several historical sites, one of which has been data-recovered and all the others marked with tags. Since bait will be applied from the air, bait application will not adversely affect these sites. Placing pre-operational rat and bait monitoring gear, as well as conducting post-operational monitoring, will require limited foot traffic. All personnel will be trained to avoid disturbing these sites, which have all been marked by a qualified archaeologist. No digging or other excavations will be conducted during operations or monitoring. No cultural practices are currently known to occur on Lehua Island itself. Subsistence gathering in waters around Lehua rarely if ever occurs in the winter months and therefore is not expected to be impacted. Rodenticide residues are not expected to accumulate in subsistence species. Therefore, no impact would occur to cultural structures and practices. The State Historic Preservation Officer has concurred with the USFWS determination of "No Adverse Effect" on significant historic sites on Lehua Island from the project (letter dated 10/17/05), as long as the following mitigation measures are completed: 1) Submission of a completed archaeological inventory survey report; 2) Recovery of data from a hearth site by a

qualified archaeologist; and 3) placement of site tags on historic properties prior to restoration. All mitigation measures will be completed prior to initiating rodent eradication.

HRS 342D and HAR 11-54 Water Pollution and Water Quality Standards; HAR 11-55 and Federal Clean Water Act

Consistency rationale: Per HAR 11-54-4(b)(3), no rodenticide, including diphacinone and brodifacoum, is identified as a toxic pollutant. No disturbance of soil and no construction activities are included in the proposed action.

The minute amount of rodenticide pellets that might enter nearshore marine waters would disintegrate quickly and be dispersed. Therefore, the pellets and the active ingredient would not:

- form either a bottom sludge nor floating materials;
- change any water characteristics;
- be toxic to any marine life;
- encourage any nonnative marine life.

Consistency rationale: HAR 11-54-6 (b) defines the waters around Ni`ihau and Lehua as Class AA open coastal waters and sets numerical water quality parameters that must not be exceeded in such areas, including criteria for total nitrogen, ammonia nitrogen, nitrate+nitrite nitrogen, total phosphorus, light extinction coefficient, chlorophyll and turbidity. However, use of diphacinone or brodifacoum rodenticides could not result in exceedances of these parameters because:

- Rodenticides contain little or none of these chemical compounds; and
- The minute amount of rodenticide pellets that might enter nearshore marine waters would disintegrate quickly and be dispersed and therefore would not cause turbidity or light extinction.

Consistency rationale: No NPDES permit is required under either the Federal Clean Water Act per 40 CFR 122.3 or per State of Hawai'i HAR 11-55-04(h), as explained previously.

Consistency rationale: Environmental sampling following a similar Hawai'i project did not detect any diphacinone residues in the environment. Seawater, limpets and fish were sampled around Mokapu Island, Moloka'i following two aerial applications of diphacinone to eradicate rats in February 2008. Two independent laboratories tested the samples, with detection limits set in the low parts per billion range, and neither detected any trace of diphacinone. This indicates that even if diphacinone pellets did enter the water, they did not leave detectable residues in water or marine tissues.

3.9 Cumulative Impact Analysis

Under the National Environmental Policy Act (NEPA), cumulative effects are defined as:

"The impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time." (40 CFR 1508).

Under Endangered Species Act (ESA) regulations cumulative effects are defined as:

"Those effects of future State or private activities, not involving Federal activities, that are reasonably certain to occur within the action area of the Federal Action subject to consultation." (50 CFR 402.2)

The U.S. Fish and Wildlife Service further defines "State or private activities" as including tribal, local, or private actions that are reasonably certain to occur in the action area considered. Future Federal actions that are unrelated to the proposed action are not considered because they require separate evaluation under Section 7 consultation. The past and present impacts of non-Federal actions are part of the environmental baseline. The lighthouse managed by the Coast Guard does not adversely impact any resources on Lehua and no additional actions were identified in the 2005 EA.

Overall, because the proposed rat eradication project is under the jurisdiction of DOFAW (the island is a State Wildlife Sanctuary), no further cumulative impacts would occur to the species evaluated below under either NEPA or the ESA beyond those already having occurred or continuing to occur under the baseline (i.e, under the no action alternative as described and analyzed in the 2005 EA). No other non-Federal action could occur on the island without full approval of DOFAW. No planned actions or even proposed actions other than this ecological restoration project are foreseen at this time. Therefore, foreseeable actions will have no contributory adverse impacts to any resources evaluated in this supplement.

Even with four applications of diphacinone in the winter of 2008 to 2009, no long-term cumulative impacts are expected for any species or resource, as evaluated in this chapter. Again, although the hazards to nontarget birds are substantially higher with brodifacoum than diphacinone, the analyses in this chapter indicate that no long term adverse cumulative effects are foreseen with brodifacoum, even if potentially impacted alien bird populations are reduced. It is expected that population recovery would take longer with brodifacoum than with diphacinone, but that it would occur, especially with ingress from alien bird populations on Kaua'i and Ni'ihau. If quarantine fails in the future and rats reinvade the island, then the proposed action may be repeated. This is not expected to occur and, even if it does, it would not occur for at least two years. Therefore, any impacted populations would be expected to have recovered and no cumulative impacts would occur to those populations.

3.10 State Evaluation of Significance of Impacts per HRS 343

The State of Hawai'i Environmental Council gives 13 criteria (in italics below) for defining significant project impacts (Hawai'i Administrative Rules, Section 11-200-12). As discussed below, this project does not trigger any of the criteria for significance and thus, under State law, does not require preparation of an environmental impact statement (EIS). Federal criteria at 40 CFR 1508.27(b) for significance and the State criteria for significance listed below are similar but not identical.

<u>The proposed actions do not involve an irrevocable commitment to loss or destruction of any natural or cultural resource.</u> The actions will contribute to the restoration of a healthy native ecosystem on Lehua by eradicating nonnative rats (Chapter 1). These actions are also consistent with the Hawai'i Comprehensive Wildlife Conservation Plan (Mitchell et al. 2005).

The proposed actions will not curtail the range of beneficial uses of the environment. The activities proposed are intended to contribute to ecological restoration of the island and improve habitat for the native plants and nesting seabirds that inhabit or historically inhabited the island, prior to its degradation by invasive rats. Restoration of Lehua will thus improve the range of beneficial uses of the environment, including for endangered seabirds, Hawaiian monk seals and sea turtles (Chapter 1).

The proposed actions will not conflict with the State's long-term environmental policies. The proposed actions will not conflict with the environmental policies set forth in HRS Chapter 343 and the State written policies and enforceable policies and other statutes and regulations, since the proposed actions will not damage sensitive natural resources. Instead, they will improve the environment of Lehua (Chapter 1).

The proposed actions will not substantially adversely affect the economic and social welfare of the community. The proposed activities utilize the most effective strategies to eradicate invasive rats as well as mitigating potential adverse impacts, thus contributing to the restoration of the ecosystem of Lehua. With ecosystem restoration, seabird populations will most likely increase and additional species will most likely return to Lehua, increasing its value as a State Seabird Sanctuary. Therefore, the proposed project will result in an improved environment, thus supporting eco-tourism and enhancing economic and social welfare (Chapter 1).

<u>The proposed actions will not substantially adversely affect the public health of the community.</u> The rodenticides have been found to have no adverse impacts on water quality or on marine life that might be consumed by people (Chapter 3).

<u>The proposed actions will not involve substantial secondary impacts, such as population changes or effects on public facilities.</u> Lehua is a small island designated as a State Seabird Sanctuary and is uninhabited and undeveloped. The project does not propose construction of public facilities or involve establishing a human population. Thus, the proposed actions will not affect any public recreational facilities and will not induce population growth or decline in the area.

The proposed actions will not involve a substantial degradation of environmental quality. Modifying the project to be conducted in the winter and using diphacinone as the primary rodenticide will minimize impacts to the environment during the implementation of the proposed actions. ESA-listed species potentially present in the winter include the endangered Hawaiian monk seal and humpback whale, and threatened green sea turtles. NMFS has concurred that the project is not likely to adversely affect these species. Restoration will increase the environmental quality of the ecosystems of Lehua for its flora and fauna (Chapter 3).

<u>The proposed actions will not affect a rare, threatened or endangered species or its habitat.</u> The operation as modified will benefit native plant and animal species protected

under the Federal and state endangered species laws. The limited and temporary human activities associated with the modified operation will have a negligible impact on listed species because either they will not be present during the winter (*e.g.*, listed seabirds) or project actions combined with mitigation identified during the informal Section 7 consultations with NMFS will result in no adverse impacts (Chapters 1 and 2).

<u>The proposed actions will not have cumulative impacts or involve a commitment for larger actions.</u> The analyses show that the modified operation and mitigation measures integrated into the proposed actions, such as the use of diphacinone and conducting operations during the winter when presence of nontarget and listed species is minimal, will result in no cumulative impacts. No other known or potential actions would contribute to or cause any cumulative impacts (Chapter 3).

<u>The proposed actions will not substantially affect air or water quality or ambient noise levels.</u> The proposed actions are fully consistent with both Federal and State water quality laws and regulations. Helicopters will cause noise for a period of up to four non-consecutive days during aerial application of rodenticides on Lehua, but the effect will be highly temporary and no people not associated with the operation will be present on the island (Chapter 2).

The proposed project is not located in an environmentally sensitive area (e.g. flood plain, tsunami zone and coastal zone). Although the site is located in a State Seabird Sanctuary, the proposed actions are in accordance with HAR 13-125, as well as Federal and State Coastal Zone Management policies and enforceable policies. All actions will protect sensitive resources, including the coastal zone while meeting ecological management objectives. Project actions are in accord with environmental management goals of USFWS and DOFAW (Chapter 1).

<u>The proposed actions will not substantially affect scenic vistas and view planes identified or State plans or studies.</u> The project does not involve construction of any permanent structures or alteration of landscapes. Thus, it will not affect any sites or vistas.

<u>The proposed project will not require substantial energy consumption.</u> The affected area is not on a local power grid. The only energy uses will be using motorized vehicles for accessing points of departure to the island and for broadcasting bait via helicopter for up to 4 days total over several months. All work will be conducted during daylight hours.

4.0 LIST OF PREPARERS

The primary preparers of this document are:

Judith Lee

Environmental Planning Strategies, Inc. Pleasant Valley, IA 52767 jleeeps@mchsi.com 563-332-6870

Ms. Lee has over 30 years experience developing and implementing planning strategies for and managing complex and often politically-charged Environmental Impact Statements and Environmental Assessments using highly skilled agency technical staff. Ms. Lee specializes in facilitating cross-functional and inter-organizational coordination, resulting in well-supported decisions and long-term positive inter- and intra-agency relationships. Using a simple yet detailed and effective systematic interdisciplinary process, her proven "Facilitated Planning Approach," she facilitates teams through articulation of clear statements of need, quantified objectives, scope of decisions to be made, issue statements in cause-and-effect format, reasonable alternatives and mitigation measures, and focused analyses of environmental consequences. She also prepares the document concurrently with the progress of the analysis, using a self-correcting review process. Her training and workshops are nationally recognized for their quality and direct application to the workplace. Her facilitation and conflict-resolution skills have been used to great and long-lasting advantage by many agencies. With two degrees in wildlife management and biology, she has extensive experience in preparing programmatic NEPA documents for wildlife damage management, including invasive rats, for USDA-APHIS-Wildlife Services and the USFWS. With Mr. Dunlevy, she has prepared a final draft programmatic EA for the Aleutian Islands Unit of the Alaska Maritime National Wildlife Refuge, and prepared the EA for the rat eradication on Mokapu Island. Hawai'i.

Peter Dunlevy

USDA - APHIS - Wildlife Services 300 Ala Moana Blvd., Rm. 3-122 Honolulu, HI 96785 peter.dunlevy@aphis.usda.gov 808-792-9400

Mr. Dunlevy has over 15 years experience as a wildlife biologist and has worked for both Wildlife Services and the Fish and Wildlife Service as well as for universities. Much of this has been studying rodent biology, including their roles as vectors of zoonoses, population dynamics, control/ eradication methods as well as nontarget hazard analysis and toxicology. Mr. Dunlevy has actively participated in the FIFRA registration process for rodenticides and has conducted GLP studies for several labels sought and obtained in both Alaska and Hawai'i. He has also co-written programmatic as well as site specific invasive rodent NEPA documents. In addition, he has planned and instituted invasive rodent programs and projects on the operational level in both Alaska and Hawai'i, including the rat eradication operation on Mokapu Island.

5.0 LITERATURE CITED

- Armstrong, D.P., J.G. Ewen, W. Dimond, T. Lovegrove, and B. Walter. 2000. Breeding biology of North Island robins (*Petroica australis longipes*) on Tiritiri Matangi Island. Notornis 47:106-118.
- Atkinson, I.A.E. 1985. The spread of commensal species of *Rattus* to oceanic islands and their effects on island avifaunas. ICBP Technical Publication No. 3. p. 35-81.
- Atkinson, I.A.E. 1994. Guidelines to the development and monitoring of ecological restoration programmes. New Zealand Department of Conservation Technical Series No. 7. 34 pp.
- Atkinson, I.A.E. and T.J. Atkinson. 2000. Land vertebrates as invasive species by the South Pacific Regional Environment Programme. In: Invasive species in the Pacific: A technical review and draft regional strategy. G. Sherley, Ed. South Pacific Regional Environmental Programme (SPREP), Samoa.
- Baroch, J. 1994. Field efficacy of rodenticide bait diphacinone-treated grain (0.005%) FLN No. CA890020 used in bait stations to control California ground squirrel (*Spermophilus beecheyi*). California Department of Food and Agriculture, Unpub. Report, Sacramento, CA. In: Erickson, W. and D. Urban. 2004. Potential risks of nine rodenticides to birds and nontarget mammals: A comparative approach. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. 153 pp.
- Baroch, J. 1996. Field efficacy of rodenticide bait chlorophacinone-treated grain (0.005%) FLN No. CA890023 used in bait stations to control California ground squirrel (*Spermophilus beecheyi*). California Department of Food and Agriculture, Unpub. Report, Sacramento, CA. In: Erickson, W. and D. Urban. 2004. Potential risks of nine rodenticides to birds and nontarget mammals: A comparative approach. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. 153 pp.
- Caum, E.L. 1936. Notes on the flora and fauna of Lehua and Kaula Islands. Occasional Paper Bernice P. Bishop Museum 20(21). Cited in: VanderWerf, E.A., K. R. Wood, C. Swenson, M. LeGrande, H. Eijzenga, and R.L. Walker. 2007. Avifauna of Lehua Islet, Hawai'i: Conservation value and management needs. Pacific Science 61(1):39-52.
- Choquenot, D. and W. Ruscoe. 1999. Assessing the effect of poisoning programs on the density of non-target fauna: design and interpretation. New Zealand Journal of Ecology 23(2):139-147.
- Christopher, M.J, M. Balasubramanyam, and K.R. Purushotham. 1984. Toxicity of three anticoagulant rodenticides to male hybrid leghorns. Zoology 71:275-281.
- Clout, M.N. and J.C. Russell. 2006. The eradication of mammals from New Zealand Islands. In: Assessment and control of biological invasion risks. F. Koike, M.N. Clout, M. Kawamichi, M. De Poorter, and K. Iwatsuki, Eds. Shoukadoh Book

- Sellers, Kyoto, Japan and World Conservation Union (IUCN), Gland, Switzerland.
- Cole, R.F., L.L. Loope, A.C. Medeiros, C.E. Howe and L.J. Anderson. 2000. Food habits of introduced rodents in high elevation shrubland of Haleakala National Park, Hawaii. Pacific Science 54(4):313-329.
- Courchamp, F., J-L. Chapuis, and M. Pascal. 2002. Mammal invaders on islands: Impact, control and control impact. Biological Review 78:347-383.
- Cox, P.R. and R.H. Smith. 1990. Rodenticide ecotoxicology: Assessing non-target population effects. Functional Ecology 4:315-320.
- Cromarty, P.L., K.G. Broome, A. Cox, R.A. Empson, W.M. Hutchison, and I. McFadden. 2002. Eradication planning for invasive alien animal species on islands the approach developed by the New Zealand Department of Conservation. In: *Turning the Tide: The Eradication of Invasive Species.* C.R. Veitch and M.N. Clout, Eds. IUCN Invasive Species Specialist Group, Gland, Switzerland and Cambridge, UK. p. 85-91.
- Daniel, E. 1993. An oral teratology study in rats with technical diphacinone: final report: lab project number 3284.3. Unpublished study prepared by Springborn Labs, Inc. 320 pp.
- Donlan, C.J., G.R. Howald, B.R. Tershy, and D.A. Croll. 2003. Evaluating alternative rodenticides for island conservation: roof rat eradication from the San Jorge Islands, Mexico. Biological Conservation 114:29-34
- Dowding, J.E., E.C. Murphy, and C.R. Veitch. 1999. Brodifacoum residues in target and non-target species following an aerial poisoning operation on Motuihe Island, Hauraki Gulf, New Zealand. New Zealand Journal of Ecology 23(2):207-214.
- Dowding, J.E., T.G. Lovegrove, J. Ritchie, S.N. Kast, and M. Puckett. 2006. Mortality of northern New Zealand dotterels (*Charadrius obscurus aquilonius*) following an aerial poisoning operation. Notornis 53:235-239.
- Drever, M.C. and A.S. Harestad. 1998. Diets of Norway rats, *Rattus norvegicus*, on Langara Island, Queen Charlotte Islands, British Columbia: Implications for conservation of breeding seabirds. Canadian Field-Naturalist 112:676-683.
- Drummond, D.C. 1960. The food of *Rattus norvegicus* Berk. in an area of sea wall, saltmarsh and mudflat. Journal of Animal Ecology 29(2):341-347.
- Dunlevy, P.A., E.W. Campbell III, and G.D. Lindsey. 2000. Broadcast application of a placebo rodenticide bait in a native Hawaiian forest. International Biodeterioration and Biodegradation 45:199-208.
- Dunlevy, P.A. and E.W. Campbell III. 2002. Assessment of hazards to non-native mongooses (*Herpestes auropunctatus*) and feral cats (*Felis catus*) from broadcast application of rodenticide bait in native Hawaiian forests. In: *Proceedings 20th Vertebrate Pest Conference*. R.M. Timm and R.H. Schmidt, Eds. University of California, Davis. p. 277-281.

- Dunlevy, P. 2007. Draft Operational Plan to Eradicate Polynesian rats (*Rattus exulans*) from Lehua Island, Hawai'i. USDA-APHIS-Wildlife Services Hawai'i/Guam/Pacific Islands.
- Dunlevy, P. 2008. Rat abundance, breeding and distribution on Lehua, 2007/2008. USDA APHIS Wildlife Services Hawai'i/Guam/Pacific Islands memorandum.
- Dunlevy, P. and L. Scharf. 2008. Alaska Maritime NWR Invasive Rodent Program, 2003-2005 Field Work Report; *Rattus norvegicus*: Initial surveys, feasibility studies and eradication methods development in the Bay of Islands, Adak Island, Alaska. U.S. Fish and Wildlife Service Report, AMNWR 08/06. Homer, AK.
- Eason, C.T. and E. Spurr. 1995. Review of the toxicity and impacts of brodifacoum on nontarget wildlife in New Zealand. New Zealand Journal of Zoology 22:371-379.
- Eason, C.T., L. Milne, M. Potts, G. Morriss, G.R.G. Wright and O.R.W. Sutherland. 1999. Secondary and tertiary poisoning risks associated with brodifacoum. New Zealand Journal of Ecology 23(2):219-224.
- Eason, C.T. and E. Murphy. 2001. Recognizing and reducing secondary and tertiary poisoning risks associated with brodifacoum. *Pesticides and Wildlife*, Ch. 12. J. Johnston, Ed. American Chemical Society Symposium Series 771. p. 157-163.
- Eason, C.T. and M. Wickstrom. 2001. Vertebrate Pesticide Toxicology Manual (poisons), 2nd ed. New Zealand Department of Conservation Technical Series 23. 122 pp.
- Eisemann, J.D. and C.E. Swift. 2006. Ecological and human health hazards from broadcast application of 0.005% diphacinone baits in native Hawaiian ecosystems.. Proc. 22nd Vertebrate Pest Conf, R.M. Timm and J. M. O'Brien, Eds. University of California, Davis. p. 413-433.
- Empson, R.A. and C.M. Miskelly. 1999. The risks, costs and benefits of using brodifacoum to eradicate rats from Kapiti Island, New Zealand. New Zealand Journal of Ecology 23(2):241-254.
- Erickson, W. and D. Urban. 2004. Potential risks of nine rodenticides to birds and nontarget mammals: A comparative approach. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. 153 pp.
- Fall, M.W., A.B. Medina, and W.B. Jackson. 1971. Feeding patterns of *Rattus rattus* and *Rattus exulans* on Eniwetok Atoll, Marshall Islands. Journal of Mammalogy 52(1):69-76.
- Fisher, P., C. O'Connor, G. Wright, and C.T. Eason. 2003. Persistence of four anticoagulant rodenticides in the livers of laboratory rats. New Zealand Dept. of Conservation Science Internal Series No. 139. 74 pp.
- Fisher, P., C. O'Connor, G. Wright, and C.T. Eason. 2004. Anticoagulant residues in rats and secondary non-target risk. New Zealand Dept. of Conservation Science Internal Series No. 188. 29 pp.

- Fisher, P. 2005. Review of house mouse (*Mus musculus*) susceptibility to anticoagulant poisons. New Zealand Department of Conservation Internal Science Series No. 198. 18 pp.
- Gillies, C., A. Styche, P. Bradfield, K. Chalmers, M. Leach, E. Murphy, T. Ward-Smith, and R. Warne. 2006. Diphacinone bait for ground control of rats on mainland conservation land. New Zealand Department of Conservation Science for Conservation Report 270. Wellington, New Zealand.
- Hegdal, P.L. 1985. Primary hazards to game birds associated with the use of Ramik Brown (diphacinone bait) for controlling voles in orchards. Denver Wildlife Research Center Unpubl. Report U02591. U.S. Fish and Wildlife Service.
- Hess, S.C., C.E. Swift, E.W. Campbell III, R.T. Sugihara, and G.D. Lindsey. Chapter 18: History and development of techniques for controlling small mammals in Hawaii. In: Small Mammal Control in Hawaii. *In press*.
- Hoare, J.M. and K.M. Hare. 2006. The impact of brodifacoum on non-target wildlife: gaps in knowledge. New Zealand Journal of Ecology 30(2).
- Hobson, K.A., M.C. Drever, and G.W. Kaiser. 1999. Norway rats as predators of burrow-nesting seabirds: Insights from stable isotope analyses. Journal of Wildlife Management 63(1):14-25.
- Howald, G.R. et al. 2004. Palmyra Atoll rat eradication assessment trip report August 2004. Unpublished report prepared by Island Conservation Northwest. 61 pp.
- ICI Americas, Inc. 1981. VOLAC: Potential hazard of the 50 ppm black pellet broadcast at three rates as indicated by ten ringnecked pheasants (Virginia). ICI Americas, Inc. Unpublished Report, Goldsboro, NC. In: Erickson, W. and D. Urban. 2004. Potential risks of nine rodenticides to birds and nontarget mammals: A comparative approach. US Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. 153 pp.
- Innes, J. and Gary Barker. 1999. Ecological consequences of toxin use for mammalian pest control in New Zealand an overview. New Zealand Journal of Ecology 23(2):111-127.
- Innes, J. 2001. Advances in New Zealand mammalogy 1990-2000: European rats. Journal of Royal Society of New Zealand 31(1):111-125.
- Jackson, W.B. 1982. Norway rat and allies. In: Wild Mammals of North America. J.A. Chapman and G.A. Feldhamer, Eds. Johns Hopkins University Press, Baltimore. p. 1077-1088.
- Kalmbach, E.R. 1943. Birds, rodents, and colored lethal baits. Transaction North American Wildlife Conference 8:408-416.
- Kaufman, K. 1996. *Lives of North American Birds*. Houghton Mifflin, New York. 675 pp.
- King, C.M. 1990. Ship Rat. In: *The Handbook of New Zealand Mammals*. Oxford University Press, Auckland. p. 206-225.

- King, C.M. and H. Moller. 1997. Distribution and response of rats *Rattus rattus*, *R. exulans* to seedfall in New Zealand beech forests. Pacific Conservation Biology 3:143-155.
- Lindsey, G.D. and C. Forbes. 2000. Effectiveness of hand broadcast baiting in 0.005% diphacinone bait pellets in reducing rat populations in Hawaiian forests. Unpublished Report. 23 pp.
- Lund, M. 1981. Hens, eggs and anticoagulants. International Pest Control, Vol. 5. p. 127-128.
- Marsh, R.E. 1985. Techniques used in rodent control to safeguard nontarget wildlife.

 Transactions Western Section of the Wildlife Society Annual Meeting. Monterey,
 CA. 93 pp.
- McClelland, P. 2001. Operational report for rat (*Rattus norvegicus*) eradication on the Campbell Island Nature Reserve. New Zealand Department of Conservation. 22 pp.
- Mitchell, C. C. Ogura, D. Meadows, A. Kane, L. Strommer, S. Fretz, D. Leonard, and A. McClung. 2005. Hawaii's Comprehensive Wildlife Conservation Strategy. Department of Land and Natural Resources, Honolulu, Hawaii.
- Murphy, E. C., B.K. Clapperton, P.M.F. Bradfield, H.J. Speed. 1998. Brodifacoum residues in target and non-target animals following large-scale poison operations in New Zealand podocarp-hardwood forests. New Zealand Journal of Zoology 25: 307-314.
- NMFS. 1991. Recovery Plan for the Humpback Whale (*Megaptera novaeangliae*). National Marine Fisheries Service, Silver Spring, Maryland. 105 pp.
- NMFS. 2007. Recovery Plan for the Hawaiian Monk Seal (*Monachus schauinslandi*). Second Revision. National Marine Fisheries Service, Silver Spring, Maryland. 165 pp.
- NMFS and U.S. Fish and Wildlife Service. 1998. Recovery Plan for U.S. Pacific Populations of the Green Turtle (*Chelonia mydas*). National Marine Fisheries Service, Silver Spring, Maryland. 97 pp.
- Navarrete, S.A. and J.C. Castilla. 1993. Predation by Norway rats in the intertidal zone of central Chile. Marine Ecology Progress Series 92:187-199.
- Nelson, J.T., L. Bethany, S.G. Fancy, G.D. Lindsey, and E.J. Tweed. 2002. Effectiveness of rodent control and monitoring techniques for a montane forest. Wildlife Society Bulletin 30(1):82-92.
- Newton, I., I. Wyllie, and P. Freestone. 1990. Rodenticides in British barn owls. Environmental Pollution 68:101-117.
- New Zealand Department of Conservation. 2000. Assessment of Environmental Effects for Norway Rat (*Rattus norvegicus*) Eradication in the Campbell island National Nature Reserve Operational Area. 61 pp.

- New Zealand Department of Conservation. 2001. Brodifacoum (TALON®, PESTOFF®), and Diphacinone (DITRAC®, LIQUATOX®, PESTOFF®. Pesticide Toxicology Manual Information on Poisons Used in New Zealand as Vertebrate Pesticides, Sections 2.1 and 2.5. 28 pp.
- Norman, F.I. 1970. Food preferences of an insular population of *Rattus rattus*. London Journal of Zoology 162:493-503.
- Orueta, J.F. and Y.A. Ramos. 2001. Methods to control and eradicate non-native terrestrial vertebrate species. Nature and environment No. 118, Council of Europe Publishing, Spain.
- Parmar, G., H. Bratt, R. Moore, and P.L. Batten. 1987. Evidence for a common binding site in vivo for the retention of anticoagulants in rat liver. Human Toxicology 6:431-432.
- Primus, T., G. Wright, and P. Fisher. 2005. Accidental discharge of brodifacoum baits in a tidal marine environment: A case study. Bulletin of Environmental Containment and Toxicology 74:913-919.
- Ross, D.B., N.L. Roberts, and C.N.K. Phillips. 1979a. Assessment of the palatability of "Talon" pellets containing 0.005% (50 ppm) brodifacoum to the bobwhite quail. Unpublished report submitted to EAP by ICI Americas, Inc., Goldsboro, NC. 16 pp.
- Ross, D.B., N.L. Roberts, and C.N.K. Phillips. 1979b. Assessment of the palatability of "Talon" pellets containing 0.005% (50 ppm) brodifacoum to the ring-necked pheasant. Unpublished report submitted to EAP by ICI Americas, Inc., Goldsboro, NC. 16 pp.
- Savarie, P.J., D.J. Hayes, R.T. McBride and J.D. Roberts. 1979. Efficacy and safety of diphacinone as a predacide. Pages 69-79 in E.E. Kenaga (ed.), Avian and Mammalian Wildlife Toxicology, ASTM STP 693, American Society for Testing and Materials.
- Seto, N.W.H. and S. Conant. 1996. The effects of rat (*Rattus rattus*) predation on the reproductive success of the Bonin petrel (*Pterodroma hypoleuca*) on Midway Atoll. Colonial Waterbirds 19:171-322.
- Smit, A.M. 2003. Adaptive monitoring: an overview. DOC Science Internal Series 138. Department of Conservation, Wellington, New Zealand. 16 pp.
- Smythe, W.R. 1967. The use of live traps to determine population fluctuations, density, and home ranges of rats in a macadamia nut orchard. M.S. Thesis, unpubl. University of Hawaii, Honolulu. 28pp. Cited in: Tamarin, R.H. and S.R. Malecha. 1972. Reproductive parameters in *Rattus rattus* and *Rattus exulans* of Hawaii, 1968 to 1970. Journal of Mammology 53(3):513-528.
- Spurr, E.B. and R.G. Powlesland. 2000. Monitoring the impacts of vertebrate pest control operations on non-target wildlife species. New Zealand Department of Conservation. 52 pp.

- Spurr, E.B., G.D. Lindsey, P.C. Forbes, D. Foote. 2003a. Effectiveness of hand broadcast application of baits containing 0.005% diphacinone in reducing rat populations in Hawaiian forests. Pacific Island Ecosystems Research Center, US Geological Survey, Unpubl. Report QA-01.
- Spurr, E.B., D. Foote, C.F. Perry, and G.D. Lindsey. 2003b. Efficacy of aerial broadcast application of baits containing 0.005% diphacinone in reducing rat populations in Hawaiian forests. Pacific Island Ecosystems Research Center, US Geological Survey, Unpubl. Report QA-02.
- Stapp, P. 2002. Stable isotopes reveal evidence of predation by ship rats on seabirds on the Shiant Islands, Scotland. Journal of Applied Zoology 39:831-840.
- Stephenson, B.M., E.O. Minot, and D.P. Armstrong. 1999. Fate of moreporks (*Ninox novaeseelandiae*) during a pest control operation on Mokoia Island, Lake Rotorua, North Island, New Zealand. New Zealand Journal of Ecology 23(2):233-240.
- Sterner, R.T. and C.A. Ramey. 2002. An index technique to monitor broadcast calibration and bait pick up, plus rodent and avian sign under arid conditions. Pest Management Science 58:385-391.
- Stone, W.B., J.C. Okoniewski, and J.R. Stedelin. 1999. Poisoning of wildlife with anticoagulant rodenticides in New York. Journal of Wildlife Diseases 35(2):187-193.
- Sugihara, R.T. 1997. Abundance and diet of rats in two native Hawaiian forests. Pacific Science 51(2):189-198.
- Svircev, N. 1992. Ramik[®] Green commensal rodenticide efficacy data wax block and wax pellet. HACCO Rodenticide Efficacy Facility, Unpublished Report. 14 pp.
- Swenson, C. 2007. Ecosystem restoration plan for Lehua Island, Kaua'i, Hawai'i. USFWS and Hawai'i Department of Land and Natural Resources, Division of Forestry and Wildlife.
- Swift, C.E. 1998. Laboratory bioassays with wild-caught black (*Rattus rattus*) and Polynesian (*R. exulans*) rats to determine minimum amounts of Ramik Green (0.005% diphacinone) and exposure times for field broadcast applications in Hawai'i. M.S. Thesis, University of Hawai'i Manoa, Honolulu, HI. 92 pp.
- Tamarin, R.H. and S. R. Malecha. 1971. The population biology of Hawaiian rodents: Demographic parameters. Ecology 52(3):383-394.
- Tamarin, R.H. and S.R. Malecha. 1972. Reproductive parameters in *Rattus rattus* and *Rattus exulans* of Hawaii, 1968 to 1970. Journal of Mammology 53(3):513-528.
- Taylor, D.P. 1984. The identification and detection of the rats in New Zealand and the eradication of ship rats on Tawhitiwini Island. Ph.D. dissertation, Lincoln College, Canterbury, New Zealand.
- Taylor, R.W. and B.W. Thomas. 1989. Eradication of Norway rats (*Rattus norvegicus*) from Hawea Island, Fiordland, using brodifacoum. New Zealand Journal of Ecology 12:23-32.

- Taylor, R.H. and B.W. Thomas. 1993. Rats eradicated from rugged Breaksea Island (170 ha), Fiordland, New Zealand. Biological Conservation 65:191-198.
- Tobin, M.E. 1994. Mitigating rat depredation in native Hawaiian habitats. Trans. Western Section of the Wildlife Society 30:15-20.
- Tomich, P.Q. 1986. *Mammals in Hawaii: A Synopsis and Notational Bibliography*. Bishop Museum Special Publication 76, second ed. Bishop Museum Press, Honolulu, Hawaii.
- Tyrrell, C.L., A. Cree, D.R. Towns. 2000. Variation in reproduction and condition of northern tuatara (*Sphenodon punctatus punctatus*) in the presence and absence of kiori. Science for Conservation Vol. 153. 42 pp.
- U.S. Environmental Protection Agency. 1998. Reregistration Eligibility Decision (RED): Rodenticide Cluster. EPA 738-R-98-007. 319 pp.
- U.S. Fish and Wildlife Service. 2005. Pacific Region Seabird Conservation Plan.
- VanderWerf, E.A., K. R. Wood, C. Swenson, M. LeGrande, H. Eijzenga, and R.L. Walker. 2007. Avifauna of Lehua Islet, Hawai'i: Conservation value and management needs. Pacific Science 61(1):39-52.
- Veitch, C.R. 2002. Eradication of Norway Rats (*Rattus norvegicus*) and house mouse (*Mus musculus*) from Motuihe Island, New Zealand. In: *Turning the Tide: The Eradication of Invasive Species*. C.R. Veitch and M.N. Clout, Eds. IUCN Invasive Species Specialist Group, Gland, Switzerland and Cambridge, UK. p. 353-356.
- Witmer, G.W., F. Boyd, J. Wakefield, and Z. Hillis-Starr. 2001. The eradication of introduced rats on Buck Island Reef National Monument, St. Croix, U.S. Virgin Islands: Final Report. USDA National Wildlife Research Center, Fort Collins, CO. 23 pp. plus appendices.
- Whittow, G.C. 1993a. Black-footed Albatross (*Diomedea nigripes*). In *The Birds of North America*, *No. 65* (A. Poole and F. Gill, eds.). Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union.
- Whittow, G.C. 1993b. Laysan Albatross (*Diomedea immutabilis*). In *The Birds of North America*, *No.* 66 (A. Poole and F. Gill, eds.). Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union.
- Wood, K.R. and M. LeGrande. 2006. An annotated checklist and new island records of flowering plants from Lehua Islet, Niihau, Hawaii. In: N.L. Evenhuis and L.G. Eldredge, eds. Records of the Hawaii Biological Survey for 2004-2005. Occasional Paper Bernice P. Bishop Museum 86:19-29.

APPENDIX A

INTRODUCTION TO RODENTICIDES AND RODENTICIDE HAZARD ANALYSIS, WITH SPECIAL REFERENCE TO BIRDS

Both diphacinone and brodifacoum are chronic rodenticides, meaning that the onset of symptoms only begins sometime after the lethal dosage has been ingested. If a rat does not experience symptoms until long after ingesting a lethal dose of the rodenticide, it can not associate the symptoms with the new food item, causing the rat to continue eating the bait until or even long after a lethal dose has been ingested.

Diphacinone and brodifacoum are anticoagulants which act by disrupting the normal blood-clotting mechanisms of vertebrates by competing with vitamin K, a chemical necessary for clotting of blood, for receptor sites in the liver. Death in animals receiving a lethal dose of an anticoagulant rodenticide typically occurs from shock due to excessive blood loss through internal and sometimes external hemorrhaging eventually causing severe anemia. Prior to dying, between the time of ingestion and actual death (latent period), poisoned animals may exhibit increasing weakness and behavioral changes such as acting sluggish, changes in activity time, and reduced predator avoidance ability. This behavior can make target rodents more susceptible to predation (Cox and Smith 1990, Newton et al. 1990, Innes and Barker 1999).

Anticoagulant rodenticides are divided into two chemical groups, the indandiones, such as diphacinone; and the coumarins, which includes brodifacoum. More informally, anticoagulant rodenticides are also described either as "first generation" or "second generation" rodenticides, simply referring to the time period during which they were developed. Diphacinone is a first generation and brodifacoum a second generation rodenticide. Second generation compounds were specifically designed to overcome resistance to warfarin (an early "first generation" compound) and are therefore generally more toxic than the first generation rodenticides. The coumarins in general, but especially brodifacoum, are characterized by an increased potential for accumulation and persistence in body tissues. This is due primarily to their greater affinity to bind to receptors in the liver and the long latent period during which rodents continue to feed on the toxicant (Eason and Wickstrom 2001, Fisher et al. 2003).

Comparison of Brodifacoum and Diphacinone Characteristics

Brodifacoum is more toxic than diphacinone and is retained much longer in the body tissues of exposed animals, especially the liver, than diphacinone. Animals may ingest a lethal dose of brodifacoum more quickly than with diphacinone; however, death is still typically delayed from 4 days to about 2 weeks for both rodenticides. During this extended latent period between ingestion of the lethal dose and death, the animals continue to feed on the brodifacoum bait and build up ever higher levels of toxic residues in their tissues. In contrast, diphacinone, because it is less toxic and more rapidly metabolized and excreted, accumulates in body tissues less readily and in lower concentrations (Erickson and Urban 2004).

Products containing diphacinone were first registered for rodent control in 1960 at active ingredient concentrations of 0.005% to 0.01 % (50 to 100 ppm). Diphacinone (0.005% active ingredient) is currently registered for use for conservation purposes in the United States. Brodifacoum was first registered for rodent control in and around buildings in 1979 and is now registered for conservation purposes in the United States.

In general, the median oral lethal dosage of diphacinone for rats is about 3.0 mg/kg, while for brodifacoum it is roughly 0.3 mg/kg. Brodifacoum is about ten times more toxic on a weight/weight basis to rats than diphacinone. However, as previously mentioned, there is a similar latent period between the time of ingestion and death between the two toxicants. Many factors influence this delay, but in general the latent period is about seven days and ranges from three to 14 days for both of these rodenticides (Eason and Wickstrom 2001, Erickson and Urban 2004).

A rodenticide that is rapidly metabolized and/or excreted from the primary consumer (the animal directly ingesting the rodenticide) poses fewer hazards to secondary consumers than one that is readily retained in tissues and therefore accumulates in the bodies of animals over time. Sublethal exposure to anticoagulants can produce significant blood clotting abnormalities and internal and external hemorrhaging. Such chronic hemorrhaging might be especially detrimental if combined with other factors such as adverse weather, food shortages, pregnancy or predation stressors, and could predispose an animal to death from other sources, such as bruising, food stress, and reduced potential for recovery from wounds and accidents.

Most rodents will continue eating for several days or more after ingesting a lethal dose of an anticoagulant rodenticide. In a laboratory study with wild caught brown rats the average number of LD₅₀ doses of brodifacoum (50 ppm bait) ingested was 80 if feeding only on bait, and as many as 40 LD₅₀ doses were ingested prior to dying if offered a choice of bait or nontoxic food (after ICI Americas, Inc. 1978b, cited in Erickson and Urban 2004). Another similar laboratory study found that rats (*Rattus norvegicus* Wistar) in an *ad libitum* 2-choice study ate almost 25 LD₅₀ doses of a brodifacoum (20 ppm) bait formulation resulting in liver residues of 10.7 mg/g (Fisher et al. 2004). For comparison, Brodifacoum-25D is 0.0025% (25 ppm) a.i. or 2.5 mg/g of bait. Therefore, the livers of these rats contained more than four times the active ingredient concentration of the actual brodifacoum bait formulation

Using the same procedures, the same study found that rats ate over twelve LD_{50} doses of a diphacinone bait formulation resulting in liver residues of 4.7 mg/g. For comparison, Diphacinone--50 is 0.005% a.i. or 5 mg/g (Fisher et al. 2004). Therefore, the livers of these rats actually contained slightly less than the active ingredient concentration of the actual bait formulation.

Generally, repeated exposures to small doses of anticoagulants over several days pose a greater hazard than larger single doses. Anticoagulants bind to receptors in the liver and other tissues, including the kidneys, pancreas, lungs, brain, fat and muscles and are eliminated from the liver last. The length of time a rodenticide is retained in tissues or how quickly it is eliminated (half-life) greatly influences accumulation of rodenticides in tissues and, therefore, nontarget hazards.

Elimination of anticoagulant rodenticides from tissues is biphasic, with a proportion of the toxicant excreted within a shorter time and the remainder bound in the tissues and excreted over a much longer period of time (Parmer et al. 1987, cited in Fisher et al. 2003). The first phase of brodifacoum excretion from tissues takes about 60 days, with the second phase lasting almost 300 days. In contrast, 70% of a single dose of diphacinone may be excreted in about 8 days. In a laboratory test, 0.1 mg/kg of brodifacoum was administered to rats, resulting in mean liver residue concentrations of 1.27 mg/kg at one week, 0.59 mg/kg at 18 weeks and 0.49mg/kg at 24 weeks. The study estimated the liver elimination half-life of brodifacoum to be 113.5 days. In the same test, 0.8 mg/kg of diphacinone was administered to rats, resulting in mean liver residue concentrations of 0.08 mg/kg at one week and below the detectable limit at six weeks. Further trials of diphacinone resulted in the estimated liver elimination half-life 3 days (Fisher et al. 2003). In addition, the range of whole carcass residues reported by the EPA in primary consumers was 2.07 to 25.97 ppm for brodifacoum and 0.48 to 3.4 ppm for diphacinone.

Therefore, brodifacoum presents a substantially higher potential for causing secondary exposure to predators and scavengers than diphacinone.

Efficacy Studies of Brodifacoum and Diphacinone

The following information is compiled from Erickson and Urban (2004) and the New Zealand Pesticide Toxicology Manual (New Zealand Department of Conservation 2001).

Brodifacoum has been used for most rat eradication projects worldwide because its far greater toxicity is perceived to impart a greater probability of success. However, it is important to remember that toxicity and efficacy are not synonymous terms. Efficacy is a complex interaction of many factors, including bait acceptance, application rate, application method, toxicity, and timing of application when rodent populations, reproduction and alternate foods are lowest to ensure eradication. The eradication of rodents on islands has been successfully implemented using the generally less toxic anticoagulant rodenticides warfarin, pindone, diphacinone and bromadiolone (Witmer et al. 2001, Donlan et al. 2003, Dunlevy and Scharf 2008) and some eradication efforts have failed during operations using brodifacoum (Tyrell et al. 2000, Clout and Russell 2006, Howald et al. 2004).

Recently, however, an increasing number of experts in island rodent eradication and control have recommended using less toxic rodenticides such as diphacinone, and decreasing the use of more persistent and toxic rodenticides such as brodifacoum on future projects because of the greater risk to nontarget species associated with brodifacoum, including both primary hazards (when nontarget species feed directly on the bait) and secondary hazards (when nontarget species feed on rodenticide-exposed animals with rodenticide residues in their tissues) (Tobin 1994, Eason et al. 1999, Fisher et al. 2003). New Zealand has a policy of reducing brodifacoum use on mainland sites, but still only uses brodifacoum in offshore island eradications (Hoare and Hare 2006). Fisher et al. (2004), recommend conducting additional field studies using diphacinone to further determine efficacy and validate estimates of lower risk for secondary poisoning of nontarget species.

A number of laboratory and field studies in the United States have evaluated the effectiveness of various application methods and the efficacy of diphacinone for control of rat populations, especially in Hawai'i:

- Laboratory trials using Sprague-Dawley strain laboratory rats found that 100% of 20 laboratory-bred brown rats died after consuming an average of 42 grams of bait (0.21 g of the a.i. diphacinone), 7 g per day per animal over an average of six days (Svircev 1992).
- Laboratory trials found that 100% of 20 Hawaiian wild-caught Polynesian rats died over two to ten days after consuming an average of 19.7 grams of bait (0.099 g of diphacinone) per animal and 95% of 20 wild-caught black rats died over four to 17 days after consuming an average of 21.2 grams of bait (0.106 g of diphacinone) per animal. These trials indicated that a minimum average exposure time of 7 days with 37.5 g of bait is needed for effective control of black rats, and 6 days and 30 g are needed for effective control of Polynesian rats (Swift 1998).
- A broadcast application rate study using a nontoxic formulation of Ramik[®] Green and a biomarker determined the optimal application rate, 22.5 kg/ha or 20 lb/ac, which exposed 100% of Polynesian rats and 94.4% of black rats over a 14-day period (Dunlevy et al. 2000), even though immigration could not be eliminated. Bait disappearance was most rapid at the 22.5 kg/ha application rate with 50% of the bait disappearing by day 6 and 80% disappearing by day 12.
- An exposure study using remote cameras found that 98.98% of vertebrates photographed at placebo rodenticide pellets were the target species, rats and mice (Dunlevy and Campbell 2002).
- A hand broadcast trial, using Ramik[®] Green bait containing 0.005% (50 ppm) diphacinone, resulted in 100% mortality of radio-collared Polynesian and black rats in two 4-ha study areas in Hawai'i (Lindsey and Forbes 2000). Follow-up broadcasts in the same study areas were also highly effective in controlling subsequent rat immigration.
- A trial of Ramik[®] Green aerially broadcast into a 45.5 ha forested area in Hawai'i also achieved 100% mortality of 21 radio-collared rats within one week of application. Three weeks after bait application, based on trapping and chew blocks, rat abundance was still reduced by 99% relative to reference areas (Spurr et al. 2003a and 2003b) despite the immigration issues of this main island study site.
- In the Bay of Islands, Adak, Alaska, a three-year study evaluated Ramik[®] Green and various application methods on several small islands and concluded that rats had been eradicated (Dunlevy and Scharf 2008).

These successful laboratory trials and field studies strongly suggest that well planned rat eradication projects utilizing diphacinone have a very high probability of eradicating rats on islands if used appropriately.

Rodenticide Hazard Analysis

The US Environmental Protection Agency (EPA) evaluates the hazards associated with the use of rodenticides. Standard evaluation tests of hazard include a toxicity assessment of rodenticides from a single ingestion (acute toxicity) as well as with repeat ingestion over time (chronic toxicity), mortality of nontarget species, retention time of rodenticide residues in primary consumers (animals that eat the bait directly) and indirect exposure of predators and scavengers that eat exposed primary consumers. Because of these concerns, EPA requires standardized studies for determining the toxicity of compounds and their impacts on fish, birds and mammals prior to registration of a particular rodenticide formulation under FIFRA. EPA has two recent documents outlining study methodologies, overall results of studies, and resultant hazards of various rodenticides, including brodifacoum and diphacinone (Reregistration Eligibility Decision (US Environmental Protection Agency 1998) and Potential Risks of Nine Rodenticides to Birds and Nontarget Mammals: A Comparative Approach (Erickson and Urban 2004)). The following summary of study approaches and terms is primarily from Erickson and Urban (2004), which summarizes the findings of studies regarding diphacinone and brodifacoum, as well as other rodenticides.

The EPA limits their definition of nontarget hazard to a product of toxicity and exposure. The level of exposure is determined by the amount of active ingredient (a.i.) ingested.

Hazard can be characterized and assessed by many measures, including:

- Acute oral toxicity or LD₅₀- A single dose that is lethal to 50% of the test subjects in the population or study group under consideration, expressed as milligram(s) of active ingredient per kilogram of test subject body weight;
- Dietary toxicity or LC₅₀— The concentration of rodenticide in the diet (multiple feedings) that is lethal to 50% of test subjects in the population or study group under consideration, expressed as parts per million of the daily diet.
- Lowest observed effects level or LOEL- The lowest dosage at which measurable
 effects, such as increased blood-clotting times, are documented. This is not a
 mortality threshold and no negative impacts are necessarily derived at this hazard
 level. Diphacinone has LOELs calculated; brodifacoum does not because of its
 substantially higher toxicity.
- The dietary risk quotient (RQ) was developed by the EPA to compare hazards among different rodenticides. The ratio of the concentration of any rodenticide (ppm of active ingredient) to the dietary toxicity (LC₅₀) of the rodenticide provides a relative index of hazard. This allows for the comparison of the hazards among various rodenticides. The Level of Concern (LOC) is an RQ threshold used by the EPA to determine if unacceptable risk exists for a particular species. The index allows for comparisons among risks for different species. Risk is presumed for non-endangered species if the RQ is ≥0.5 and for an endangered species if the RQ >0.1.
- Half life The length of time that rodenticide residues persist in tissues or the environment is calculated in terms of the time until only half of the original concentration of residue still persists.

• Total daily food intake for a particular species compared to the animals weight can be used to gauge the possibility that an animal is physically capable of eating the amount of rodenticide (at any particular concentration of the active ingredient) required to deliver an LD₅₀ dosage.

To describe the range of potential hazards to nontarget species from rodenticide applications, this analysis discusses the acute oral toxicity of both diphacinone and brodifacoum for the species of concern. We can determine the amounts of bait and/or rodenticide residue in tissues of prey that an individual of a nontarget species would be required to eat to obtain the LD₅₀. Using this information we can assess the potential for this level of exposure based on knowledge of the biology of the nontarget species, such as behavior and daily food intake. Another very useful way of evaluating the potential hazards associated with rodenticide use is to describe the lowest dosage which results in any measurable effect and assess the potential for this level of exposure. Using laboratory and field data accepted by the EPA, quantitative characterizations of rodenticide nontarget hazards can be made and assessed in conjunction with the known biology of the species of concern.

Standardized laboratory studies are used to determine the acute oral and dietary toxicity of vertebrate pesticides for some standard test subjects, such as Norway rats, and sometimes for other species. These studies produce a range of values, sometimes with considerable variation. The details and assessments by the US EPA of these studies are discussed in the Reregistration Eligibility Decision (US EPA 1998) and Erickson and Urban (2004).

The determinations of the EPA in these documents are utilized in the analyses presented here. For untested mammals, a theoretical LD_{50} can be calculated, based on the weight of the animal, using the laboratory documented LD_{50} , accepted by the US EPA, for a Norway rat for any particular compound. For a Norway rat, the LD_{50} of diphacinone is 2.3 mg/kg; for brodifacoum it is 0.4 mg/kg, indicating the substantially greater relative toxicity for brodifacoum. A 100 kg mammal would, therefore, require 230 mg of diphacinone, or 40 mg of brodifacoum to ingest the projected LD_{50} dosages.

EPA calculates hazards for nontarget bird species the same way, using a known laboratory-derived LD₅₀ from representative birds: the northern bobwhite quail (*Colinus virginianus*) and mallard duck (*Anas platyrhynchos*). Some studies have also documented, in the laboratory, LD₅₀ and LC₅₀ values for some other species besides the standard species consistently used by EPA in toxicity studies.

Methodology Used in This Document to Analyze Rodenticide Impacts to Birds & Mammals

The analyses of the direct and indirect impacts of diphacinone and brodifacoum on nontarget birds are based on the known laboratory LD_{50} and LC_{50} information documented by the US Environmental Protection Agency (US EPA 1998, Erickson and Urban 2004).

Broadcast applications of diphacinone bait at the maximum rate of 22.5 kg/ha (20 lb/ac); result in approximately one 2-gram pellet distributed about every square meter. The

maximum proposed broadcast rate of brodifacoum bait is 18 kg/ha (16 pounds bait/acre), resulting in a density of just under one 2-gram pellet per square meter (see Section 2.1.3 for label requirements).

The analyses of the primary hazards of brodifacoum and diphacinone use a computed LD_{50} -equivalent dose. This is based on laboratory studies in species such as the rat, a surrogate for other mammals, and bobwhite or mallard for other avian species. The average weight of an adult female animal of concern and the established LD_{50} of the surrogate species studied are used to calculate the amount of each rodenticide that would need to be ingested to reach the LD_{50} -equivalent dosage. This is compared to the area over which that amount would be distributed during an aerial application and the likelihood of an animal eating every bait pellet within that area. If it is highly unlikely that the animal would directly eat bait pellets based on its dietary habits, the calculated results are evaluated in that context.

The analyses of the secondary impacts of brodifacoum and diphacinone assume that the adult female animal of average weight feeds exclusively in an area massively contaminated to the extent documented at the spill site in New Zealand and exclusively on the most contaminated samples collected during the monitoring of the incident: mussels and fish liver. One day after the accident, mussels contained brodifacoum residues of 0.41 ppm and a butterfish sampled nine days after the spill had brodifacoum liver residues of 0.04 ppm. This is then used to calculate the amounts of these prey items secondary nontarget species would need to eat in order to ingest the computed LD_{50} for the species of concern. This is then compared to either the animal's average daily food intake or body weight to determine if eating such a quantity is probable or even possible.

The evaluation and comparison of LD_{50} values and risk quotients provides a good description of the upper end of the hazard spectrum associated with rodenticide use. However, because anticoagulants are far more toxic when administered over multiple days with smaller exposures, to fully characterize the range of possible hazard the lower end of the hazard potential needs to be assessed. To do this we will examine the Lowest Observed Effect Level (LOEL) for all nontarget species that we know are at the highest risk of exposure. Assessing the LOEL will illustrate the minimum amount of exposure necessary to produce a measurable effect, such as increased blood-clotting time. This is not a mortality threshold and no negative impacts are necessarily derived at this hazard level.

In a laboratory study using golden eagles fed diphacinone-laced sheep muscle (2.7 ppm) Savarie et al. (1979) established the LOEL for golden eagles at 0.11 mg/kg/day in a 7-day exposure study. The EPA reports the LOEL of diphacinone for rats in a 14-day subchronic lab study as 0.085 mg/kg/day (EPA 1998).

The LOELs of brodifacoum are not as well documented as those of diphacinone. No LOEL of brodifacoum for birds has been established because effects have been observed for all doses administered in all tests. The EPA reports the LOEL of brodifacoum for rabbits in a developmental lab study as 0.005 mg/kg/day (EPA 1998). The lower limit of potential hazard can be assessed by using these available figures to extrapolate the LOELs for each of the species of concern.

Effects on Birds from Ingestion of Rodenticides by Eating Bait (Direct Effect)

Standard EPA studies of the acute oral toxicity of diphacinone have been conducted for two avian species. A study using brodifacoum was done on one species. For diphacinone, the LD₅₀ for the mallard duck is 3,158 mg/kg and for the northern bobwhite 400 mg/kg <LD₅₀<2000 mg/kg. For brodifacoum, the LD₅₀ for the mallard is 0.26 mg/kg (no documentation for the bobwhite) (Erickson and Urban 2004). The dietary (chronic) toxicity studies of diphacinone for mallard (*Anas* platyrhynchos) and bobwhite quail (*Colinus virginianus*) documented LC₅₀ values of 906 ppm for the mallard and >5,000 ppm for the bobwhite quail. For brodifacoum, the LC₅₀ reported for the mallard is 2.0 ppm and for the northern bobwhite it is 0.8 ppm, many orders of magnitude lower than the LC₅₀ for diphacinone (Erickson and Urban 2004).

Primary and secondary hazard calculations of diphacinone acute oral toxicity for nongame birds weighing \leq 0.22 pounds (\leq 3.5 ounces) were made for the equivalent of Hawaiian passerine birds. In order to consume sufficient diphacinone bait to reach a dose equivalent to the LD₅₀ for the northern bobwhite, a passerine bird would have to eat 0.53 pounds of bait or 5,027 pounds of invertebrates in one day. Neither of these amounts is even physically possible. While to obtain the LC₅₀ for diphacinone, the bird would have to consume 0.36 g of bait or 3.59 g of invertebrates per day over several days. However, hazard calculations for sublethal exposure show that a 30 g bird would only need to eat 0.07 g (a 100^{th} of a bait pellet, or 0.2% of its body weight) or 0.65 g of invertebrates per day for multiple days to ingest a dose that resulted in measurable blood clotting effects in golden eagles. Therefore, small passerine birds could be vulnerable to sublethal or possibly lethal effects through both primary and secondary exposure if they forage on diphacinone bait or contaminated invertebrates over time (Eisemann and Swift 2006).

Birds that are most at risk from feeding directly on rodenticides are those that are naturally inquisitive, which are terrestrial ground-feeders, and that have a diet that includes grains and seeds. The risk of secondary poisoning is greatest for predatory and scavenging birds, especially those that feed directly on the target rodent species, such as owls. Brodifacoum has a far greater potential for primary and secondary poisoning of nontarget bird species than diphacinone because of its much higher toxicity, longer retention time in tissues, and higher rate of bioaccumulation (Erickson and Urban 2004, Eason and Wickstrom 2001, Fisher et al. 2003, Fisher et al. 2004). Combined with an extremely long half-life of residues in tissues, the general characteristic of anticoagulants for delayed symptoms and mortality after exposure results in target animals ingesting many lethal doses before death (Erickson and Urban 2004).

Erickson and Urban (2004) provide this useful discussion of potential effects of brodifacoum and diphacinone on avian nontarget species found during field operations:

Eason and Spurr (1995) reviewed the impacts of brodifacoum baiting on nontarget birds during baiting programs in New Zealand, where bait is applied in bait stations (50 ppm cereal-based wax blocks) or aerially broadcast (20 ppm pellets). They report mortality of a wide range of bird species, including 33 indigenous species or subspecies and 8 introduced species or subspecies, and presume most resulted from primary exposure. Populations of indigenous rails (weka, *Gallirallus australus*; pukeko,

Porphyrio porphyrio) monitored during rodenticide baiting operations were severely reduced: "For example, the entire population of western weka on Tawhitinui island were exterminated by consumption of Talon® 50WB intended for ship rats, which they obtained by reaching into bait stations, eating bait dropped by rats, and eating dead or dying rats (Taylor 1984)."

On another island, 80% to 90% of the Stewart Island weka population was killed by brodifacoum bait applied for brown rats. Aerial application of 0.002% brodifacoum bait on two other islands reduced a weka population by about 98% and a pukeko population by >90%. Numbers of quail, blackbirds, sparrows and myna were markedly reduced on another island. Some other species suffered no apparent adverse effects. Dowding et al. (1999) and Veitch (2002) found numerous dead birds after an aerial baiting operation to eradicate rats and mice and reduce rabbit numbers on Motuihe Island, New Zealand. Brodifacoum bait (20ppm) was applied twice, with 9 days between applications. Nontarget species were monitored, including pukeka (3 groups of 98 birds), a flock of 52 paradise shelducks (Tadorna variegata), 8 New Zealand dotterels (Charadrius obscurus), and 14 variable oystercatchers (Haematopus unicolor). There was no evidence that dotterels or ovstercatchers were adversely affected. but mortality of pukeko and shelducks was 49% and 60%, respectively. Birds of 10 species were found dead. The liver from each of 29 dead birds of 10 species was analyzed. All livers contained brodifacoum residue, with mean levels per species ranging from 0.56 to 1.43 ppm. Chaffinch (Fringilla coelebs), North Island robin (Petroica australis longipes), North Island weka, and North Island saddleback (Philesturnus carunculatus rufusater) also were found dead after a brodifacoum baiting on Mokoia Island, New Zealand (Stephenson et al. 1999).

Hegdal (1985) conducted a field study in Washington to examine the risk to game birds from the broadcast application of 0.005% diphacinone bait applied for vole control in orchards. Most orchards were treated twice, with 20 to 30 days between treatments; at an average rate of 12.9 kg/ha (11.5 lb/acre). Telemetry was used to monitor the fate of 52 ring-necked pheasants, 18 California quail, and 30 chukar potentially exposed to the bait. About half of the quail and all chukar were pen-raised and had been released into the orchards. Dead game birds and other animals found were necropsied and any available tissue collected for residue analysis. Eight of 30 pheasants, 9 of 15 quail and one of ten chukar collected by the researchers or shot by hunters contained diphacinone residue in the liver but no mortalities were attributed to diphacinone. Bait made up as much as 90% of crop contents of some birds. No residue was detected in four passerines collected 31 to 73 days after treatment. The author concluded that risk to game birds in orchards appeared to be low but emphasized that substantial quantities of bait were eaten and longer-term behavioral and physiological effects, such as susceptibility to predation, need to be

considered along with direct mortality in order to evaluate potential hazards from exposure.

Several laboratory studies document data assessing the hazards of rodenticides ingested by birds. Chickens (*Gallus gallus*) were fed a rodenticide containing 50 ppm brodifacoum by Lund (1981). This study was a choice test and included offering of the toxic bait as well as untreated chicken food for up to 15 days. The four chickens offered brodifacoum bait died within 6 to 12 days. A similar study with chickens by Christopher et al. (1984) offered brodifacoum bait every other day for one to four feedings and documented 50% mortality. Ten northern bobwhites and 10 ring-necked pheasants were exposed to a 50 ppm brodifacoum rodenticide for 14 days in an *ad libitum* feeding choice including the toxic pellets and untreated food by Ross et al. (1979a) and Ross et al. (1979(b)). Six each of the bobwhites and pheasants died. In addition, several pheasants died when exposed to 50 ppm brodifacoum pellets in a broadcast pen trial conducted by ICI Americas, Inc (1981). Diphacinone was not tested in any of these studies.

During field studies using diphacinone, searches for nontarget carcasses after baiting found one dove and two roadrunners (Geococcyx californicus); however there was no evidence that these birds were exposed to the rodenticide (Baroch 1994 and 1996). No avian nontarget mortality was observed during rodent eradication operations using a diphacinone rodenticide conducted on Buck Island in the Virgin Islands (Witmer et al. 2001) or Canna Island in Scotland (Elizabeth Bell, pers. comm., February 2006). Throughout two years of studies using a diphacinone rodenticide in the Aleutian Islands only one bird carcass was documented, though two ravens shot during this work also contained diphacinone residues and winter wrens, song sparrows and ptarmigan were also documented to eat the bait (Dunlevy and Scharf 2008). Two studies evaluated diphacinone residues in game birds captured from sites in Hawai'i that had been treated by hand or aerial broadcasting 0.005% diphacinone bait. The first study utilized hand broadcast techniques on a 10-acre treatment area (Spurr et al. 2003a). Five Kalij pheasants (Lophura leucomelana) were collected within the treatment area between 2 and 6 weeks after treatment. Of the five, only one contained detectable diphacinone residues. The liver of this bird contained 0.09 ppm diphacinone. The second study was an aerial broadcast trial of Ramik Green (Spurr et al. 2003b). Two Kalij pheasants were collected within the 112 acre treatment area one month after treatment. Diphacinone residues of 0.12 and 0.18 ppm were found in the livers of these birds. Though extensive carcass searches were conducted during both studies no avian mortality due to diphacinone was found

Effects on Birds from Rodenticide Ingestion by Eating Prey (Indirect Effect)

Incident reports submitted to EPA indicate that nontarget birds and mammals are being secondarily exposed to rodenticides, especially brodifacoum, in the field. Brodifacoum is widely used for control of rodents in protective stations around buildings and human habitation; while diphacinone products are also available for this use pattern they are used less for this purpose. Diphacinone products are also registered for some field uses, such as in the agriculture industry. In 264 reported incidents, 20 animals had diphacinone residues and 244 animals had brodifacoum residues. The birds most commonly exposed to brodifacoum include great horned owls and red-tailed hawks, but multiple incidents

are reported for bald and golden eagles, crows, barn owls, screech owls, hawks, falcons, kestrels and vultures.

Erickson and Urban (2004) found eleven laboratory studies which have investigated brodifacoum secondary hazards in eight nontarget avian species. These studies recorded that out of a total of 149 individuals that were exposed to brodifacoum-poisoned prey, 63 birds (42% of the total) died, including: eleven of twenty barn owls, six of six red-tailed hawks (*Buteo jamaicensis*) and red-shouldered hawks (*Buteo lineatus*), thirteen of 65 American kestrels (*Falco sparverius*), one of four Eurasian harriers (*Circus pygargus*), and 32 of 50 laughing gulls (*Larus atricilla*). However, no deaths occurred in four golden eagles tested (*Aquila chrysactos*), although three showed external symptoms of anticoagulant toxicosis such as bleeding. Some studies did not report whether evidence of toxicosis was observed in surviving birds. Of studies that examined survivors, about one-third exhibited symptoms of toxicosis. Stone et al. (1999) also found brodifacoum residues in wildlife carcasses submitted for testing in New York State.

Three laboratory studies report the secondary toxicity of diphacinone to birds. Test species were barn owls, great horned owls (*Bubo virginianus*), saw-whet owls (*Aegolius acadicus*), golden eagles (*Aquila chrysaetos*), and American crows (*Corvus brachyrhynchos*). A total of 34 individuals were exposed to diphacinone-poisoned prey during these studies and three (9%) birds died, including two of three great horned owls and the only saw-whet owl tested. Symptoms of anticoagulant poisoning were noted in 13 (42%) of the survivors, indicating that raptors can recover from sublethal doses. The highest dosage administered to an eagle was 0.23 mg/kg/day for 10 consecutive days and the LOEL was determined to be 0.11 mg/kg/day. If it is assumed that the great horned owls ate equal quantities of treated mice each day, they would have consumed a maximum dose of 0.78 mg/kg/day for 5 days. Using the same methods, it can be calculated that the saw-whet owl consumed a dose of 11.1 mg/kg/day (Erickson and Urban 2004).

Hazard calculations for the short-eared owl (*Asio flammeus*, pueo) from eating contaminated rats were calculated for the secondary effects of diphacinone as there is an extremely low probability that an owl would feed directly on bait pellets. A 0.77 pound bird would have to consume at least 90.5 pounds of rodents containing 3.4 ppm diphacinone (the highest whole-carcass residue found in a rat) in one day to ingest a dose equivalent to the LD_{50} for the northern bobwhite. Hazard calculations for sublethal exposure show that an owl would only need to eat 11 g of rodent tissue containing 3.4 ppm diphacinone per day for multiple days to ingest a LOEL dose. This amount is less than one rodent per day (Eisemann and Swift 2006). The assessments in Eisemann and Swift (2006) are based on very conservative assumptions and are assumed to overestimate the actual hazard of aerial broadcast of diphacinone.

Conclusion on Rodenticide Toxicity to Birds

The EPA (1998) states that brodifacoum is "very highly toxic" to both bobwhite quail and mallard duck for both acute and dietary exposure. Diphacinone is "moderately toxic" in acute tests of bobwhite quail, "practically nontoxic" to quail in dietary tests, and "moderately toxic" to mallard in dietary tests. Brodifacoum toxicity in birds is two

orders of magnitude more toxic than required for the category "very highly toxic." The EPA declares a potential primary hazard to nontarget birds when their dietary risk quotient equals or exceeds 0.5 for non-endangered species and 0.1 for endangered species. Brodifacoum exceeds this level of concern for non-endangered species by 126-fold using the northern bobwhite LC₅₀ and 50-fold using the mallard LC₅₀. For endangered species, the level of concern is exceeded by 630 times and 250 times, respectively. Diphacinone does not exceed these levels of concern for either endangered or non-endangered species using the mallard LC₅₀. Using the northern bobwhite LC₅₀, diphacinone is considered "practically nontoxic" to birds by the EPA. The LOEL of brodifacoum for birds has not been determined; where efforts to establish this have been made, all dosages administered produced measurable effects; therefore a dosage where no observed effects (NOEL) have been measured has not been documented. A dosage of no observed effects is necessary to establish the lowest observable effects level.

Although individuals of avian nontarget species can die during eradication operations, especially associated with the use of brodifacoum, if the nontarget population is not extirpated and is healthy and viable it usually recovers. However, if the population is an endangered species or a small isolated island population, it may be driven too low to recover or experience negative population-level genetic effects. In most cases the longterm ecosystem benefits probably outweigh the initial nontarget mortality caused by rodenticides during eradication operations (Taylor and Thomas 1993, Eason and Spurr 1995, Dowding et al. 1999). Stephenson et al. (1999) found that passerine populations can recover naturally from a 30% decrease in populations within one to two breeding seasons following a rodenticide operation because passerine species typically have several clutches per year and successfully fledge several young per clutch. Populations of owls, because they live longer and typically fledge less than one chick per year, may recover more slowly, taking two to three seasons (also Murphy et al. 1998). The relative resilience of a species to recover after large population declines depends on the species' capacity to compensate for density independent perturbations in abundance, such as the broad-scale application of rodenticides. Species with a high intrinsic rate of increase and strong-density dependent links between their demographics and factors that regulate their abundance will typically be more resilient than species without these population dynamics. Species for which there is clear evidence of a high intrinsic capacity for increase and strong density-dependence in their dynamics should be able to sustain higher levels of reduction from poisoning without any undue threat to their long-term viability (Choquenot and Ruscoe 1999).

Erickson and Urban (2004) conclude that potential primary risks are higher for second generation rodenticides, including brodifacoum, than for first generation rodenticides, including diphacinone. A small bird finding and eating just a small pellet or two of brodifacoum is likely to ingest a lethal dose, and a few small pellets could provide a lethal dose to larger birds. In contrast, it seems highly unlikely that any small bird could eat 100 to 1000 pellets of diphacinone in a single feeding which would be needed to provide an LD₅₀ dose from a first-generation anticoagulant. Eason et al. (1999) and Eason and Wickstrom (2001) state: "the recorded mortality of birds after some control operations, coupled with the detection of brodifacoum residues in a range of wildlife including native birds and feral game animals raises serious concerns about the long-term effects of the targeted field use of brodifacoum... where wildlife might encounter

poisoned carcasses." New Zealand is recommending reducing the field use of brodifacoum because of the high risk of poisoning nontarget species, especially secondary poisoning (Eason and Wickstrom 2001, Eason and Murphy 2001, Hoare and Hare 2006).

APPENDIX B

APPROVED PESTICIDE LABELS FOR DIPHACINONE AND BRODIFACOUM

RESTRICTED USE PESTICIDE DUE TO HAZARDS TO NON-TARGET SPECIES

For retail sale to and use only by Certified Applicators or persons under their direct supervision and only for those uses covered by the Certified Applicators certification

For use by or in cooperation with government conservation agencies.

LICENSED

PERIOD 2008-2010 LIC. NO.

8600.1

Diphacinone-50: Pelleted Rodenticide Bait for Conservation Purposes

Fish Flavored, Weather-resistant Rodenticide for Control or Eradication of Invasive Rodents on Islands or Vessels for Conservation Purposes

ACTIVE INGREDIENT:

of prothrombin times.

Diphacinone (2-Diphenylacetyl-1,3-Indandio	ne)0.005%
INERT INGREDIENTS:	99.995%
TOTAL	100.000%

KEEP OUT OF REACH OF CHILDREN

CAUTION

PRECAUTIONARY STATEMENTS

HAZARD TO HUMANS AND DOMESTIC ANIMALS

Caution: Keep away from humans, domestic animals and pets. If swallowed, this material may reduce the clotting ability of the blood and cause bleeding. Wear protective gloves when applying or loading bait. With a detergent and hot water, wash all implements used for applying bait. Do not use these implements for mixing, holding or transferring food or feed.

	FIRST AID
	Have label with you when obtaining treatment advice.
If swallowed	 Call a poison control center, doctor, or 1-800-222-1222 immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by the poison control center or doctor.
lf on skin or clothing	 Take off contaminated clothing. Rinse skin immediately with plenty of water for 15-20 minutes. Call a poison control center, doctor, or 1-800-222-1222 immediately for treatment advice.
	sician: If ingested, administer Vitamin K ₁ , intramuscularly or orally as bishydroxycoumarin overdose. Repeat as necessary based on monitoring

For a medical emergency involving this product, call 1-800-222-1222.

ENVIRONMENTAL HAZARDS

This product is toxic to mammals and birds. Predatory and scavenging mammals and birds might be poisoned if they feed upon animals that have eaten bait.

STORAGE AND DISPOSAL

Do not contaminate water, food or feed by storage or disposal.

STORAGE: Store only in original closed container in a cool, dry place inaccessible to children and pets. Store separately from fertilizer and away from products with strong odors which may contaminate the bait and reduce acceptability. Spillage should be carefully swept up and collected for disposal.

PESTICIDE DISPOSAL: Wastes resulting from the use of this product may be disposed of on site or at an approved waste disposal facility.

PLASTIC CONTAINER DISPOSAL: Triple rinse (or equivalent). Then offer for recycling or reconditioning, or puncture and dispose of in a sanitary landfill, or, if allowed by state and local authorities, by burning. If burned, stay out of smoke.

DIRECTIONS FOR USE

It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

READ THIS LABEL: Read this entire label and follow all use directions and use precautions.

IMPORTANT: Do not expose children or pets to this product. Take all appropriate steps to limit exposure to and impacts on nontarget species, especially those for which special conservation efforts are planned or ongoing. To help to prevent accidents:

- 1) Store product not in use in a location out of reach of children and pets.
- 2) Apply bait only as specified on this label and in strict accordance with the "USE RESTRICTIONS:" and "APPLICATION DIRECTIONS:". For applications involving bait stations, the bait stations must be tamper-resistant. The bait stations must deny access to bait compartments by children, pets, and other non-target species larger in body size than the type(s) of rats or mice being targeted by the bait program. Lock and secure bait stations, as necessary, to exclude such nontarget species. In locations where captive or feral livestock occur, either remove and exclude such animals from the application site prior to treatment or make sure that the bait stations used are capable of denying them access to bait compartments, and
- 3) Dispose of product container, and unused, spoiled and unconsumed bait as specified on this label.

USE RESTRICTIONS: This product may be used only to control or eradicate Norway rats (*Rattus norvegicus*), roof rats (*Rattus rattus*), Polynesian rats (*Rattus exulans*), house mice (*Mus musculus*) or other types of invasive rodents for conservation purposes on islands, grounded vessels or vessels in peril of grounding. This product may be applied only using bait stations, burrow baiting, canopy baiting or aerial and ground broadcast application techniques.

This product is to be used for the protection of State or Federally-listed Threatened or Endangered Species or other species determined to require special protection.

Do not apply this product to food or feed.

Treated areas must be posted with warning signs appropriate to the current rodent control project.

APPLICATION DIRECTIONS:

Bait Stations: Tamper-resistant bait stations must be used when applying this product on grounded vessels or vessels in peril of grounding or when used in areas of human habitation. See Item 2) under "IMPORT ANT:" regarding the performance characteristics needed for tamper-resistant bait stations. To bait rats: Apply 4 to 16 ounces (113 to 454 grams) of bait per placement. Space placements should be made in a grid over the area for which rodent control is desired. Space placements at intervals of 2 to 4 meters. Placements should be made in a grid over the area for which rodent control is desired. Larger placements (up to 2 ounces) may be needed at points of very high mouse activity. For both rat and mouse baiting: Maintain an uninterrupted supply of fresh bait for at least 15 days or until signs of rodent activity cease. Where a continuous source of infestation is present, permanent bait stations may be established and bait replenished as needed.

Burrow-baiting: Place bait in burrows only if this can be done in a way that minimizes potential for ejection of bait and exposure of bait to seed-eating birds and other nontarget species. To bait rats: place 3 to 4 ounces (85 to 113 g) of bait inside each burrow entrance. Baits used in burrows may be applied in piles or in cloth or reasealable plastic bags. The bags should be knotted or otherwise sealed to avoid spillage and holes should be made in plastic bags to allow the bait odor to escape. To bait mice: place approximately 0.25 ounces (7 grams) of bait in each active burrow. For both rat and mouse baiting: place one such bag or placement in each active burrow opening and push bag into burrow far enough so that its presence can barely be seen. Do not plug burrows. Flag treated burrows and inspect them frequently, daily if possible. Maintain an uninterrupted supply of bait for at least 15 days or until rodent activity ceases. Remove bait from burrows if there is evidence that bags are ejected.

Canopy Baiting (bait placement in the canopy of trees and shrubs): In areas where sufficient food and cover are available to harbor populations of rodents in canopies of trees and shrubs, canopy baiting should be included in the baiting strategy. Approximately 4 to 7 ounces (113 g to 200 g) of bait should be placed in a cloth or resealable plastic bag. The bags should be knotted or otherwise sealed to avoid spillage and holes should be made in plastic bags to allow the bait odor to escape. Using long poles (or other devices) or by hand, bait filled bags should be placed in the canopy of trees or shrubs. Baits should be placed in the canopy at intervals of 50 meters or less, depending upon the level of rodent infestation in these habitats. In

some vegetation types, bait stations may need to be used to ensure bait will stay in the canopy.

Aerial and Ground Broadcast: Broadcast applications are prohibited on vessels or in areas of human habitation. Broadcast bait pellets by helicopter or manually at a rate of 10 to 12.5 lbs. of bait per acre (11.1 to 13.8 kg/ha) per treatment. Make a second broadcast application typically 5 to 7 days after the first application, depending upon local weather conditions, at a rate no higher than 12.5 lbs. (13.8 g/ha) of bait per acre. In situations where weather or logistics only allow one bait application, a single application may be made at a rate no higher than 20.0 lbs. bait per acre (22.5 kg/ha).

Aerial (helicopter) applications may not be made in winds higher than 35 mph (30 knots). Pilot in command has final authority for determining safe flying conditions. However, aerial applications will be terminated when the following conditions are met:

• Windspeed in excess of 25 knots with an evaluation of the terrain and impact of the wind conditions and not to exceed a steady wind velocity of 30 knots.

If rat activity persists after broadcast application, set up and maintain tamper-resistant bait stations or apply bait directly to rodent burrows in areas where rodents remain active. If terrain does not permit use of bait station or burrow baiting, continue with broadcast baiting, limiting such treatments to areas where active signs of rats are seen. Maintain treatments for as long as rodent activity is evident in the area and rodents appear to be accepting bait.

For all methods of baiting, monitor the baited area periodically and, using gloves, collect and dispose of any dead animals and spilled bait properly. Dead animals and spilled bait may be buried on site if the depth of burial makes excavation by nontarget animals extremely unlikely.

UNITED STATES DEPARTMENT OF AGRICULTURE ANIMAL AND PLANT HEALTH INSPECTION SERVICE 4700 River Road, Unit 149 Riverdale, MD 20737-1237 EPA Reg. No 56228-35 EPA Est. No. 61282-WI-1

Net Contents: 20 lbs. (9.07 Kg)

Label Revised: 12/07/2007

PRECAUTIONARY STATEMENTS

HAZARDS TO HUMANS AND DOMESTIC ANIMALS

Keep away from humans, domestic animals and pets. If swallowed, this material may reduce the clotting ability of the blood and cause bleeding. Wear protective gloves when applying or loading bait. With detergent and hot water, wash all implements used for applying bait. Do not use these implements for mixing, holding, or transferring food or feed.

ENVIRONMENTAL HAZARDS

This pesticide is toxic to birds, mammals and aquatic organisms. Predatory and scavenging mammals and birds might be poisoned if they feed upon animals that have eaten bait.

PERSONAL PROTECTIVE EQUIPMENT (PPE)

Applicators and other handlers must wear:

- -long sleeved shirt and long pants
- -gloves
- -shoes plus socks

For aerial application, in addition to the above PPE, loaders must wear protective eyewear or a face shield and a dust/mist filtering respirator (MSHA/NIOSH TC-21C).

USE RESTRICTIONS

It is a violation of Federal law to use this product in a manner inconsistent with its labeling. A copy of this label must be in the possession of the user at the time that the product is applied.

READ THIS LABEL: Read this entire label and follow all use directions and precautions.

IMPORTANT: Do not expose children, pets or other nontarget animals to rodenticides. To help prevent accidents:

- 1) Keep children out of areas where this product is used or deny them access to bait by use of tamper resistant bait stations.
- 2) Store this product in locations out of reach of children, pets, and other nontarget animals.
- 3) Apply bait only according to the directions authorized.
- 4) Dispose of product container and unused, spoiled, or unconsumed bait as specified in the "STORAGE AND DISPOSAL" section.

(SEE RIGHT PANEL FOR ADDITIONAL USE RESTRICTIONS)

RESTRICTED USE PESTICIDE

DUE TO HAZARDS TO NON-TARGET SPECIES

For retail sale to and use only by Certified Applicators or persons under their direct supervision and only for those uses covered by the Certified Applicators certification.

For use by or in cooperation with government conservation agencies.

BRODIFACOUM-25D CONSERVATION

PELLETED RODENTICIDE BAIT FOR CONSERVATION PURPOSES

For control or eradication of invasive rodents in dry climates on islands or vessels for conservation purposes

ACTIVE INGREDIENT

KEEP OUT OF REACH OF CHILDREN CAUTION

First Aid

FIISt Alu	
If swallowed	-Call a physician or poison control center immediately for treatment adviceHave person sip a glass of water if able to swallowDo not induce vomiting unless told to do so by a poison control center or doctorDo not give anything by mouth to an unconscious person.
If on skin or clothing	-Take off contaminated clothingRinse skin immediately with plenty of water for 15-20 minutesCall a poison control center or doctor for treatment advice.
If inhaled	 -Move person to fresh air. -If person is not breathing, call 911 or an ambulance, then give artificial respiration, preferably mouth-to-mouth if possible. -Call a poison control center or doctor for further treatment advice.
If in eyes	-Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. -Call a poison control center or doctor for treatment advice.

Have the product container or label with you when calling a poison control center or doctor, or when going for treatment.

For a medical emergency involving this product, call (877) 854-2494

NOTE TO PHYSICIAN: If swallowed, this material may reduce the clotting ability of blood and cause bleeding. If ingested, administer Vitamin K₁, intramuscularly or orally, as indicated in bishydroxycoumarin overdose. Repeat as necessary based on monitoring of prothrombin times.

USE RESTRICTIONS, (CONT)

This product may be used to control or eradicate Norway rats (*Rattus norvegicus*), roof rats (*Rattus rattus*), Polynesian rats (*Rattus exulans*), house mice (*Mus musculus*) or other types of invasive rodents on islands for conservation purposes, or on grounded vessels or vessels in peril of grounding.

This product may be applied using bait stations, burrow baiting, canopy baiting or by aerial and ground broadcast application techniques.

This product is to be used for the protection of State or Federally-listed Threatened or Endangered Species or other species determined to require special protection.

Do not apply this product to food or feed.

Treated areas must be posted with warning signs appropriate to the current rodent control project.

This product is for use in dry climates.

DIRECTIONS FOR USE

BAIT STATIONS: Tamper-resistant bait stations must be used when applying this product to grounded vessels or vessels in peril of grounding, or when used in areas of human habitation. Bait must be applied in locations out of reach of children, non-target wildlife, or domestic animals, or in tamper-resistant bait stations.

<u>TO BAIT RATS</u>: Apply 4 to 16 ounces (113 to 454 grams) of bait per placement. Space placements at intervals of 16 to 160 ft (about 5 to 50 meters). Placements should be made in a grid over the area for which rodent control is desired.

TO BAIT MICE: Apply 0.25 to 0.5 ounces (7 to 14 grams) of bait per placement. Space placements at intervals of 6 to 12 ft (about 2 to 4 meters). Larger placements, up to 2 ounces (57 grams) may be needed at points of very high mouse activity. Placements should be made in a grid over the area for which rodent control is desired.

FOR BOTH RAT AND MOUSE BAITING: Maintain an uninterrupted supply of fresh bait for at least 15 days or until signs of rodent activity cease. Where a continuous source of infestation is present, permanent bait stations may be established and bait replenished as needed.

Page 1 of 2 EPA Approved 03/18/08 EPA Reg. No. 56228-37

DIRECTIONS FOR USE (CONT.)

BURROW-BAITING: Place bait in burrows only if this can be done in a way that minimizes potential for ejection of bait and exposure of bait non-target species.

<u>TÓ BAIT RATS:</u> Place 3 to 4 ounces (85 to 113 g) of bait inside each burrow entrance. Baits used in burrows may be applied in piles or in cloth or resealable plastic bags. The bags should be knotted or otherwise sealed to avoid spillage and holes should be made in plastic bags to allow the bait odor to escape.

TO BAIT MICE: Place approximately 0.25 ounces (7 grams) of bait in a cloth or resealable bag in each active burrow. FOR BOTH RAT AND MOUSE BAITING: Place one such bag or placement in each active burrow opening and push bag into burrow far enough so that its presence can barely be seen. Do not plug burrows. Flag treated burrows and inspect them frequently, daily if possible. Maintain an uninterrupted supply of bait for at least 15 days or until rodent activity ceases. Remove bait from burrows if there is evidence that bags are eiected.

CANOPY BAITING (bait placement in the canopy of trees and shrubs): In areas where sufficient food and cover are available to harbor populations of rodents in canopies of trees and shrubs, canopy baiting should be included in the baiting strategy. Approximately 4 to 7 ounces (113 to 200 grams) of bait should be placed in a cloth or resealable plastic bag. The bags should be knotted or otherwise sealed to avoid spillage and holes should be made in plastic bags to allow the bait odor to escape. Using long poles (or other devices) or by hand, bait filled bags should be placed in the canopy of trees or shrubs. Baits should be placed in the canopy at intervals of 160 ft (about 50 meters) or less, depending upon the level of rodent infestation in these habitats. In some vegetation types, bait stations may need to be used to ensure bait will stay in the canopy.

DIRECTIONS FOR USE (CONT.)

BROADCAST APPLICATION: Broadcast applications are prohibited on vessels or in areas of human habitation. Broadcast bait using aircraft, ground-based mechanical equipment, or by gloved hand at a rate no greater than 16 lbs of bait per acre (18 kg bait/hectare) per application. Make a second broadcast application, typically 5 to 7 days after the first application, depending on local weather conditions, at a rate no higher than 8 lbs. of bait per acre (9 kg bait/hectare). In situations where weather or logistics only allow one bait application, a single application may be made at a rate no higher than 16 lbs. bait per acre (18 kg/ha).

Aerial (helicopter) applications may not be made in winds higher than 35 mph (30 knots). Pilot in command has final authority for determining safe flying conditions. However, aerial applications will be terminated when the following conditions are present:

Windspeed in excess of 25 knots with an evaluation of the terrain and impact of the wind conditions and not to exceed a steady wind velocity of 30 knots.

Set the application rate according to the extent of the infestation and apparent population density. For eradication operations, treat entire land masses.

Assess baited areas for signs of residual rodent activity (typically 7 to 10 days post-treatment). If rodent activity persists, set up and maintain tamper-resistant bait stations or apply bait directly to rodent burrows in areas where rodents remain active. If terrain does not permit use of bait stations or burrow baiting, continue with broadcast baiting, limiting such treatments to areas where active signs of rodents are seen. Maintain treatments for as long as rodent activity is evident in the area and rodents appear to be accepting bait.

For all methods of baiting, monitor the baited area periodically and, using gloves, collect and dispose of any dead animals and spilled bait properly.

STORAGE AND DISPOSAL

Do not contaminate water, food, or feed by storage or disposal.

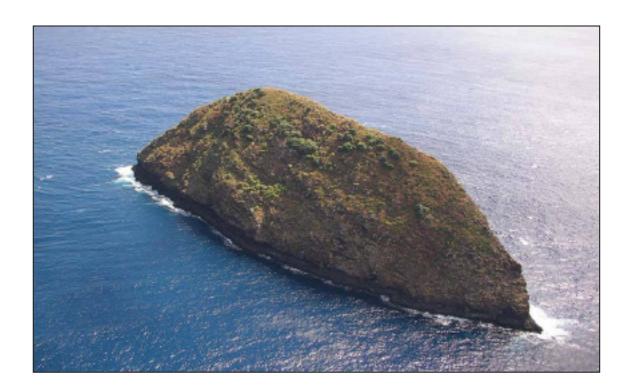
STORAGE: Store only in original closed container in a cool, dry place inaccessible to unauthorized people, children and pets. Store separately from fertilizer and away from products with strong odors, which may contaminate the bait and reduce acceptability. Spillage should be carefully swept up and collected for disposal.

PESTICIDE DISPOSAL: Wastes resulting from the use of this product may be disposed of at an approved waste disposal facility.

CONTAINER DISPOSAL: Completely empty container. Then dispose of empty container in sanitary landfill or by incineration, or, if allowed by State and local authorities, by burning. If burned, stay out of smoke.

NOTICE: Buyer assumes all risks of use, storage, or handling of the material not in strict accordance with directions given herewith. The efficacy of the product may be reduced under high moisture conditions.

UNITED STATES DEPARTMENT OF AGRICULTURE ANIMAL AND PLANT HEALTH INSPECTION SERVICE Riverdale, MD 20737-1237 EPA Est. No. 56228-ID-1 EPA Reg. No. 56228-37 Net Weight


APPENDIX C

RESULTS OF LABORATORY ANALYSIS OF MARINE SAMPLES
COLLECTED AFTER THE 2008 AERIAL DIPHACINONE APPLICATION TO
MOKAPU ISLAND, MOLOKA'I

Prepared in cooperation with the U.S. Fish and Wildlife Service, Region 1

Determination of Diphacinone in Sea Water, Vertebrates, Invertebrates, and Bait Pellet Formulations Following Aerial Broadcast on Mokapu Island, Molokai, Hawai'i

Open-File Report 2008–1285

Determination of Diphacinone in Sea Water, Vertebrates, Invertebrates, and Bait Pellet Formulations Following Aerial Broadcast on Mokapu Island, Molokai, Hawai'i

on Mokapu Island, Molokai, Hawai'i	
By Robert W. Gale, Michael Tanner, Carl E. Orazio	
Prepared in cooperation with the U.S. Fish and Wildlife Service, Region 1	
Open-File Report 2008–1285	

U.S. Department of the Interior DIRK KEMPTHORNE, Secretary

U.S. Geological Survey

Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2008

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod

Telephone: 1-888-ASK-USGS

For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment:

World Wide Web: http://www.usgs.gov

Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Gale, R.W., Tanner, M., and Orazio, C.E., 2008, Determination of diphacinone in sea water, vertebrates, invertebrates, and bait pellet formulations following aerial broadcast on Mokapu Island, Molokai, Hawai'i: U.S. Geological Survey Open-File Report 2008–1285, 16 p.

Contents

Abstract		1
Introduc	tion	1
Pur	pose and Scope	3
Methods	3	3
Mo	kapu Sample History	3
Sar	nple Preparation	4
	Materials	4
	Sample Preparation for Diphacinone in Sea-Water Samples	4
	Sample Preparation and Quantification of Diphacinone in Tissues	
	Fish: Ta`ape, A`awa, and Hagi Fillets	6
	Limpet: Whole Opihi	7
	Sample Preparation for Diphacinone in Ramik® Green Bait	
Inst	trumental Analysis and Data Reduction	8
	Final Sample Preparation	8
	HPLC-PDA Analysis	
Qua	ality Assurance and Quality Control	8
	Sea Water Holding Time	8
	Negative Control Bait Matrix	
	Criteria for Quantification of HPLC-PDA Data	
	Acceptance or Rejection Criteria for Results	
Results.		9
	a Waters	
	n Fillets	
	pets	
	nik® Green Diphacinone Bait Pellets	
	ons	
	ledgements	
Referen	Ces	15
Eiaur		
Figur	62	
1.	Screen shot of Mokapu, Island, Molokai, Hawai'i	2
2.	Aerial photograph of Mokapu Island, Molokai, Hawai'i	
3.	Chart showing preparatory methods for diphacinone in the various matrices	
4–5.	Graphs showing—	
	High performance liquid chromatography-photodiode array (HPLC-PDA) chromatogram of diphacinone	۵
	Photodiode array (PDA) spectrum of diphacinone	
	J. I HOLOUIOUE ATTAY (FUA) Spectrum of diphracifione	10

Tables

1.	Sample collection information	5
	Quality-control sample types for analysis of environmental samples	
3.	Quality-control sample types and levels selected for study	11
4.	Diphacinone concentrations in sea water	12
5.	Diphacinone concentrations in fish fillets	13
6.	Diphacinone concentrations in whole Opihi limpets	14
7	Dinhacinone concentrations in Ramik® Green hait lot composites	15

Conversion Factors

Multiply	Ву	To obtain
	Length	
meter (m)	0.3048	feet (ft)
kilometer (km)	0.621388	mile (mi)
nanometer (nm)	=	10 ⁻⁹ meter
	Volume	
microliter (µL)	0.00003382	ounce, fluid (fl. oz)
milliliter (mL)	0.03382	ounce, fluid (fl. oz)
liter (L)	33.82	ounce, fluid (fl. oz)
	Mass	
gram (g)	0.03527	ounce, avoirdupois (oz)
microgram (μg)	=	1 x 10 ⁻⁶ grams
nanogram (ng)	=	1 x 10 ⁻⁹ grams
	Concentration	
molar (M)	=	moles per liter
millimolar (mM)	=	millimoles per liter (10 ⁻³ M)
micromolar (μM)	=	micromoles per liter (10 ⁻⁶ M)
microgram per gram (μg/g)	=	parts per million (ppm: 10 ⁶)
nanogram per gram (ng/g)	=	part per billion (ppb; 10°)
microgram per milliliter (μg/mL)	=	parts per million (ppm: 10 ⁶)
microgram per liter (μg/L)	=	parts per billion (ppb: 10°)
nanogram per milliliter (ng/mL)	=	part per billion (ppb; 109)
	Application rate	
pounds per acre (lb/acre)	1.125	kilograms per hectare (kg/ha)
	Electrical resistance	
mega-ohms (mΩ)	=	10 ⁶ ohms

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

Concentrations of chemical constituents in solid materials (tissues) are given in nanogram per gram (ng/g, or parts per billion, ppb). Concentrations of chemical constituents in calibration standard solutions and in liquid samples (sea water) are given in nanograms per milliliter (ng/mL, or parts per billion, ppb).

Determination of Diphacinone in Sea Water, Vertebrates, Invertebrates, and Bait Pellet Formulations Following Aerial Broadcast on Mokapu Island, Molokai, Hawai'i

By Robert W. Gale, Michael Tanner, and Carl E. Orazio

Abstract

This report presents the results of a study to determine diphacinone concentrations in samples of sea water and in fillet samples of fish and in limpets from the ocean adjacent to Mokapu Island and from reference samples from Molokai, Hawai'i; concentrations of the active ingredient (diphacinone) were also determined in samples of the Ramik® Green bait pellets used for the broadcast study. After preparation, diphacinone concentrations were determined with high-performance liquid chromatography with photodiode array detection. No detectable concentrations of diphacinone were found in the fish, limpets, or sea-water samples from Mokapu Island or from the reference sites. The limit of detection for diphacinone in sea water was 18 nanograms per milliliter (parts per billion); the limit of detection in fish fillets was 10 nanograms per gram (parts per billion); and the limit of detection in limpets was 17 nanograms per gram. The average concentration of diphacinone in the Ramik® Green bait pellets was 45 micrograms per gram (parts per million), which represents 90 percent of the nominal concentration stated for the product by the manufacturer.

Introduction

Oceanic islands contain a disproportionate share of the world's unique terrestrial species and are especially vulnerable to the impacts of invasions by nonnative species, including rats. More than 80 percent of all oceanic islands worldwide have been infested by some species of invasive rodent. The ecosystems on oceanic islands are extremely susceptible to disturbances caused by infestations of invasive species because of their limited habitat coverage and the close integration of niche species. Most species extinction events that have occurred or are occurring in these isolated ecosystems are caused by invasive species. Many island rodent eradication projects have been successfully conducted worldwide using anticoagulant rodenticides.

Mokapu is an approximately 10-acre island located approximately 1 kilometer (km) off the north coast of Molokai just east of the Kalaupapa Peninsula (figs. 1 and 2). The island is a Hawai'i State Seabird Sanctuary managed by the Hawai'i Department of Land and Natural Resources, Division of Forestry and Wildlife (DOFAW); the island supports native populations of white-tailed tropicbirds (*Phaethon lepturus*), red-tailed tropicbirds (P. rubricauda), black noddies (Anous minutus), and wedge-tailed shearwaters (Puffinus pacificus). Like the nearby islands of Okala and Huelo, Mokapu supports some of the most diverse native coastal plant communities in Hawai'i. For example, Mokapu contains 29 native plant species; several of these species are rare and vulnerable to extinction. The island is dominated by native shrubs, but retains small groves of native lama trees (Diospyros spp.), some native palm trees (Pritchardii hillebrandii), which dominate nearby Huelo, and 11 of the last 14 individuals of the shrub Pittosporum halophilum that is endemic to Molokai. Peucedanum sandwicense, a large perennial herbaceous plant, is listed as threatened under the Endangered Species Act of 1973, and Lepidium bidentatum var. o-waihiense, a succulent herbaceous plant, also is a species of concern on the island. In 2003, the U.S. Fish and Wildlife Service (USFWS) designated Mokapu Island as critical habitat for P. sandwicense and Tetramolopium rockii (perennial shrubs) and Brighamia rockii, a succulent perennial plant present on nearby adjacent islands.

It is extremely likely that the presence of rats has terminated or slowed the recruitment of the threatened *Peucedanum sandwicense* as well as *Pritchardia, Pittosporum*, and *Diospyros* along with other native plant taxa on Mokapu. Rats are known to eat *Pritchardia* seeds, and their presence on Mokapu is believed to be contributing to the decline of this rare, endemic species. In 2006, only 12 mature *Pritchardia* palms and one seedling were present on Mokapu.

Likewise, only 11 individuals of *Pittosporum*, 20 individuals of *Peucedanum*, and two small groves of *Diospyros* remain on Mokapu. In addition, observations from other Pacific islands document that rats depredate eggs, and sometimes prey upon the young and adults of three of the seabird species known to nest on Mokapu: red-tailed and white-tailed

2 Determination of Diphacinone Following Aerial Broadcast on Mokapu Island, Molokai, Hawai'i

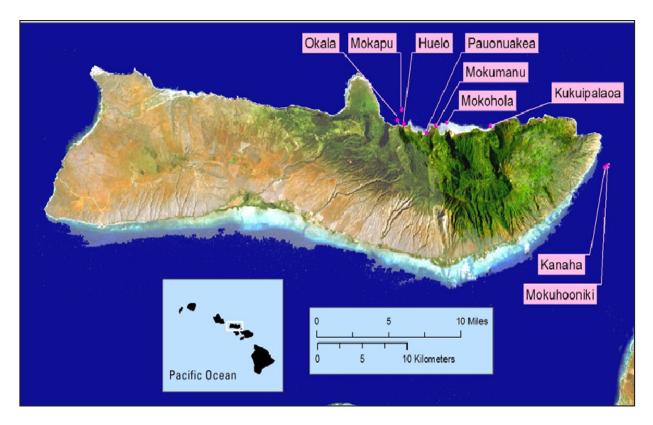


Figure 1. Screen shot of Mokapu, Island, Molokai, Hawai'i (courtesy of GoogleEarth©).

Figure 2. Aerial photograph of Mokapu Island, Molokai, Hawai'i. (Photo by C. Swenson, U.S. Fish and Wildlife Service).

tropicbirds and wedge-tailed shearwaters; therefore, rodent control is a critical management objective for maintaining and/ or restoring the ecological integrity of Mokapu Island.

Diphacinone is a chronic anticoagulant rodenticide that acts by disrupting the normal blood clotting mechanisms of vertebrates; competing at receptor sites in the liver with vitamin K, a necessary chemical for blood clotting. Diphacinone has been shown to be an effective toxicant for rats in Hawai'i and elsewhere. It is efficacious, yet has relatively low risk of impacts to nontarget species through consumption of bait pellets (direct impacts) and/or through consumption of prey that have consumed the bait pellets (secondary impacts).

The USFWS, the DOFAW, and the U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services (USDA–APHIS–WS) proposed to eradicate Polynesian rats from Mokapu Island using the anticoagulant rodenticide diphacinone (0.005 percent active ingredient) applied by aerial broadcast. Operations were conducted only during the winter months (December through March) when alternate rat foods and rat populations are lowest and migratory native nontarget species were not present, or were present only in low numbers.

Toxic bait pellets containing the active ingredient diphacinone at 50 parts per million (ppm) were used to exterminate rats. The bait is dyed green by the manufacturer to reduce dietary exposure to birds. The rodenticide was broadcast uniformly across the emergent land area of the island at the approved application rate in an attempt to expose all rats to a lethal dose. Applications were completed by aerial broadcast across 100 percent of the land area of the island at a nominal rate of 10 pounds per acre (lb/acre) in two separate broadcast applications on February 6 and February 12, 2008. Coastlines and steep areas were treated with twice the rodenticide for each application.

Monitoring for primary and secondary adverse impacts of diphacinone on nontarget species was one of the foremost concerns for this rodent eradication project. Populations of desired nontarget species, including nesting seabirds and protected plants, were monitored actively for a sufficient period (approximately 2 years) to produce reliable population estimates of adverse impacts before and after rodenticide treatments. The preceding text was condensed from Swenson and Duvall, 2007.

This report presents the development of analytical chemistry methods for determining diphacinone concentrations in sea water, fish tissues, and limpets, and the quantification of diphacinone concentrations in these samples after application of the rodenticide to Mokapu Island. Sea water, fish, and limpets from Kalaupapa National Historical Park and from commercial sources were used as negative control (reference) samples. The results are intended to provide the program managers and other resource managers in the study area with reference data regarding the fate and effects of diphacinone on Mokapu Island. Additionally, the procedures developed for the various matrices could serve as prototypes for the develop-

ment of similar methods on other matrices where diphacinone contamination may be an issue in the future.

Purpose and Scope

The objectives of this study were to assess the levels of diphacinone present in sea water and biota as a consequence of aerial broadcast of Ramik Green® rodenticide to exterminate Polynesian rats from Mokapu Island. These results will serve as a demonstration of the actual risk of exposure of non-target organisms to the use of diphacinone in the proposed rodent eradication strategy. The study consisted of several analytical sample sets, each addressing the post-broadcast diphacinone exposure levels in the immediate environment.

Methods

Mokapu Sample History

Personnel from the USFWS, DOFAW, and/or USDA–APHIS–WS collected grab samples of reference sea water on January 23, 2008, at Kalaupapa National Historical Park (Ka Laea Point) for diphacinone analysis. Aerial broadcasts of Ramik® Green rodenticide bait were conducted on February 6 and February 12, 2008. On February 17, after aerial broadcasts were completed, sea-water samples were collected from several points surrounding Mokapu Island for diphacinone analysis.

Following aerial broadcast of Ramik® Green, surface water grab samples were collected within 30 feet (ft) of the eastern and western sides of Mokapu Island. Six 250 milliliter (mL) samples were collected at each of the six stations. Three stations were located off the eastern shore and three off the western shore. Parts of each sample were shipped cold [4 °Celsius (°C)] to the U.S. Geological Survey (USGS) and the other participating laboratories using chain of custody protocols. Two samples from each site were provided to the USGS for analysis. An additional experiment was incorporated to validate the effect of holding time for the analysis of diphacinone in sea-water samples (stored at 4 °C for 53 days).

Diphacinone was determined in invertebrates (limpets) and vertebrates (fish) from reference sites and from Mokapu Island following aerial broadcast of Ramik® Green to quantify reference and post-broadcast diphacinone levels. Personnel from the USFWS, DOFAW, and/or USDA-APHIS-WS collected one species of mollusk (Opihi, the Hawai'ian Limpet) from a reference location (Kalaupapa) and from Mokapu sites after aerial broadcast on February 17, 2008. Six individual fish samples (duplicate samples of three separate species, i.e. Ta`ape, A`awa, and Hagi) were collected from within 50 ft of the western shore of Mokapu on February 17, 2008, following aerial broadcast. Reference samples of Ta`ape were purchased from a commercial Oahu market. Fish and limpet samples were packaged in aluminum foil packets sealed in zip-lock bags and stored frozen. Whole limpet carcasses and fillet

portions of each fish were shipped frozen to the participating laboratories under chain of custody on March 17, 2008 (table 1).

The diphacinone content of Ramik® Green rodenticide bait samples stored at the Maui DOFAW base yard and subsequently used in the rat eradication efforts on Mokapu Island, Hawai'i, was verified. Personnel from the USFWS, DOFAW and/or USDA-APHIS-WS collected 10 random Ramik® Green rodenticide bait samples from the Maui DOFAW base yard on February 12, 2008. Parts [~30 2-gram (g) pellets] of each sample were shipped frozen to the participating laboratories under chain of custody, and were received by March 17, 2008 (table 1).

Upon receipt at the USGS, the sea-water samples were logged in to the sample data-base system, assigned a unique identification number, and stored refrigerated at 4 °C until analysis. The tissue and bait samples were logged and stored in the dark at -20 °C until analysis.

Sample Preparation

Sample preparation methods for diphacinone are matrix-dependent and were developed for each target matrix: sea water, fillet, whole limpet, and bait. The general method consisted of extraction of diphacinone from the matrix of interest, and subsequent concentration and purification of the extract by solid-phase extraction (SPE) or low performance size-exclusion chromatography (LP-SEC). The general schemes developed are presented in figure 3.

Analytical separation of diphacinone was performed by high performance liquid chromatography (HPLC) followed by ultraviolet-visible photodiode array absorbance (PDA) detection and quantification after the methods of Yang and others (2001). Coumarin was used as the instrumental internal standard.

Materials

Solid-phase extraction cartridges [Oasis-HLB (hydrophilic/lipophilic balance) 6 mL x 500 milligrams (mg)] were purchased from Waters Corp., Milford, Massachusetts. Octadecyl SPE cartridges [Isolute C18(EC) 6 mL x 1 g] were purchased from International Sorbent Technology, Mid Glamorgan, United Kingdom. The size exclusion material (SX-3 biobeads 200–400 mesh) was purchased from Bio-Rad Co. Richmond, California. Acetone, acetonitrile, dichloromethane, methanol (OPTIMA grade), acetic acid (HPLC-grade), anhydrous sodium sulfate, ascorbic acid (reagent grade), and 2 N o-phosphoric acid were purchased from Fisher Scientific, Fair Lawn, New Jersey. Whatman 0.45 micrometer (µm) polytetrafluoroethylene (PTFE) syringe filters were purchased from Whatman, Inc., Sanford, Maine. Tetrabutylammonium hydroxide (TBAH) was purchased from Sigma-Aldrich, St. Louis, Missouri. Tetrabutylammonium phosphate (TBAP) was purchased from ACROS Organics, Somerville, New Jersey.

Diphacinone and coumarin standard solutions (in methanol) were purchased from AccuStandard, New Haven, Connecticut. Milli-Q water [18 mega-ohms (m Ω), Millipore Synergy UV, Millipore Corp., Bedford, Massachusetts] was used throughout the analytical process.

Aqueous tetrabutylammonium hydroxide ion pair (TBAH-IP) solutions used for HPLC and for SPE were prepared at 0.1 molar (M) and 0.03 M in water and pH adjusted to 6.0 with *o*-phosphoric acid. Solid TBAP (not pH adjusted) was used to prepare the methanolic 5 millimolar (mM) tetrabutylammonium phosphate solution used for the bait reflux-extractions.

Sample Preparation for Diphacinone in Sea-Water Samples

Diphacinone has a water solubility of 30 ppm and is subject to hydrolysis at pH 5 or less; however, it is stable to hydrolysis from pH 7 to 9 (U.S. Environmental Protection Agency, 1998). The sea-water samples collected for this study were stored refrigerated at 4 °C and in the dark for 53 days before analysis. The samples were collected on February 17, 2008, shipped to USGS on March 17, 2008, and extracted on April 10, 2008, following method development and validation. The storage stability of diphacinone in sea water for a similar period was investigated to ensure that the holding time for diphacinone was not exceeded. A 200 mL aliquot of Kalaupapa reference sea water (pH 8.1) was fortified with about 5 micrograms (µg) of diphacinone and was returned to refrigerated storage to simulate the holding times for the samples. Another 200 mL volume of Kalaupapa reference sea water (pH 8.1) was fortified with about 5 µg diphacinone at the time of analysis to determine recovery efficiency. The storage stability sample was analyzed on May 19, 2008 (53 days post fortification), using the methods described for sea-water samples.

A solid phase extraction method was developed for the isolation of diphacinone from sea water. Although the isolation of diphacinone from coconut crab (*Birgus latro*) tissues is well understood (Tanner and Orazio, written commun., 2008), no work has been reported to assess the recovery of diphacinone from sea water. Generally, the water samples were extracted by an appropriate SPE cartridge to adsorb diphacinone that was then recovered by elution of the SPE and quantified by HPLC with PDA detection. Potential matrix effects from salts on recovery of diphacinone from the SPE sorbent or the retention of diphacinone were investigated and determined to be negligible.

The pH of the Mokapu Island water samples was determined using a Mettler-Toledo Seven Easy pH meter (Schwerzenbach, Inc., Switzerland). The pH meter was calibrated with 4.00 and 7.00 buffer solutions (Fisher Scientific, Fair Lawn, New Jersey) before pH determinations. Fortified samples were prepared using 200 mL of Kalaupapa reference sea water or $100\ mL$ of aqueous Oceanic Natural Sea Salt solution and adding $2.5\ \mu g$ diphacinone. The final concentrations of the fortified reference sea-water samples and the Oceanic Natural

[USGS, U.S. Geological Survey; ID, identification; mL, milliliters; Al, aluminum; g, grams]

Collection date	USGS ID	Site	Sample description	Sample type	Sample container	Amount	Notes
1/23/2008	42033	Kalaupapa National Historical Park (at Ka Laea Point), Molokai	Sea water	Water	250-mL wide- mouth jars	3x250 mL	Reference site; white lids letter "R"
1/23/2008	42034	Kalaupapa National Historical Park (at Ka Laea Point), Molokai	Limpet, Opihi (Cellata exarata)	Whole organism (incl. shell)	Al-foil/Ziploc	3 individuals—about 10 g each	Reference site
3/17/2008	42035	Oahu Commercial Fish Market	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	Skin-on fillet	Al-foil/Ziploc	4 individuals—about 50 g each	Reference site
2/17/2008	42036	Mokapu Station 1	Sea water	Water	250-mL wide- mouth jars	2x250 mL	Site 1 of 6
2/17/2008	42037	Mokapu Station 2	Sea water	Water	250-mL wide- mouth jars	2x250 mL	Site 2 of 6
2/17/2008	42038	Mokapu Station 3	Sea water	Water	250-mL wide- mouth jars	2x250 mL	Site 3 of 6
2/17/2008	42039	Mokapu Station 4	Sea water	Water	250-mL wide- mouth jars	2x250 mL	Site 4 of 6
2/17/2008	42040	Mokapu Station 5	Sea water	Water	250-mL wide- mouth jars	2x250 mL	Site 5 of 6
2/17/2008	42041	Mokapu Station 6	Sea water	Water	250-mL wide- mouth jars	2x250 mL	Site 6 of 6
2/17/2008	42042	Mokapu Station 1	Limpet, Opihi (Cellata exarata)	Whole organism (without shell)	Al-foil/Ziploc	~4 individuals—about 10 g total	Site 1 of 3
2/17/2008	42043	Mokapu Station 2	Limpet, Opihi (Cellata exarata)	Whole organism (without shell)	Al-foil/Ziploc	~4 individuals—about 10 g total	Site 2 of 3
2/17/2008	42044	Mokapu Station 3	Limpet, Opihi (Cellata exarata)	Whole organism (without shell)	Al-foil/Ziploc	~4 individuals—about 10 g total	Site 3 of 3
2/17/2008	42045	Mokapu Station 1-A	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	Skinless fillet	Al-foil/Ziploc	1 individual—about 50 g	Site 1 Fish-1
2/17/2008	42046	Mokapu Station 1-B	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	Skinless fillet	Al-foil/Ziploc	1 individual—about 50 g	Site 1 Fish-2
2/17/2008	42047	Mokapu Station 1-C	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	Skinless fillet	Al-foil/Ziploc	1 individual—about 50 g	Site 1 Fish-3
2/17/2008	42048	Mokapu Station 1-D	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	Skinless fillet	Al-foil/Ziploc	1 individual—about 50 g	Site 1 Fish-4
2/17/2008	42049	Mokapu Station -E	Hogfish, A`awa (Bodianus bilunulatus)	Skinless fillet	Al-foil/Ziploc	1 individual—about 50 g	Site 1 Fish-5
2/17/2008	42050	Mokapu Station 1-F	Bridled triggerfish, Hagi (Sufflamen fraenatus)	Skinless fillet	Al-foil/Ziploc	1 individual—about 50 g	Site 1 Fish-6
2/17/2008	42051	Maui-1	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #1	Ziploc	~25–30 pellets 30 g	Box 1:2
2/17/2008	42052	Maui-2	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #2	Ziploc	~25–30 pellets 30 g	Box 2:2
2/17/2008	42053	Maui-3	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #3	Ziploc	~25–30 pellets 30 g	Box 3:2
2/17/2008	42054	Maui-4	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #\$	Ziploc	~25–30 pellets 30 g	Box 4:2
2/17/2008	42055	Maui-5	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #5	Ziploc	~25–30 pellets 30 g	Box 5:2
2/17/2008	42056	Maui-6	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #6	Ziploc	~25–30 pellets 30 g	Box 6:2
2/17/2008	42057	Maui-7	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #7	Ziploc	~25–30 pellets 30 g	Box 7:2
2/17/2008	42058	Maui-8	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #8	Ziploc	~25–30 pellets 30 g	Box 8:2
2/17/2008	42059	Maui-9	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #9	Ziploc	~25–30 pellets 30 g	Box 9:2
2/17/2008	42060	Maui-10	Ramik® Green (diphacinone bait pellets)	Individual box of pellets #10	Ziploc	~25–30 pellets 30 g	Box 10:2

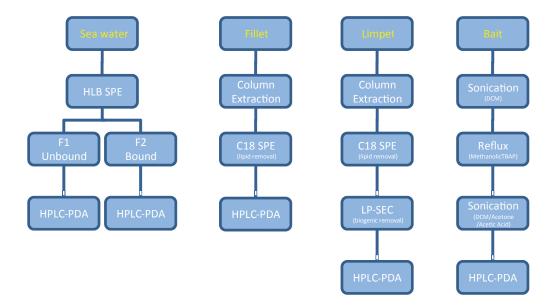


Figure 3. Preparatory methods for diphacinone in the various matrices.

Sea Salt water samples were 12.5 nanograms per milliliter (ng/mL) and 25 ng/mL, respectively.

Oasis-HLB SPE cartridges were cleaned and preconditioned with 10 mL acetonitrile followed by 10 mL methanol at a flow rate of about 1 mL/minute and then dried under vacuum for about 3 minutes. Immediately before extraction, the SPE cartridge was conditioned with 10 mL aqueous TBAH-IP reagent followed by 20 mL of Milli-Q water, at about 1 mL/minute (cartridge remained wet). A 200 mL water sample (100 mL for replicates, laboratory blanks, and laboratory-fortified samples) was applied to the cartridge at about 3 mL/minute. The sample container was rinsed quantitatively with about 20 mL Milli-Q water, which then was applied to the cartridge. Next, the cartridge was washed with 3 mL Milli-Q water and dried under vacuum for about 3 minutes.

Diphacinone was recovered from the cartridge with 13 mL acetonitrile; the eluant was collected in a 15-mL amber culture tube (fraction 1). Any more strongly bound diphacinone was recovered from the cartridge with 5 mL 70:30 (methanol:aqueous TBAH-IP reagent; volume:volume); this eluant was collected in a separate 15-mL amber culture tube (fraction 2).

The first diphacinone eluants (fraction 1) were evaporated to dryness using nitrogen with a water bath temperature of $<50\,^{\circ}\text{C}$ (N-EVAP, Organomation, Inc., Berlin, Massachusetts). The residues were dissolved in 700 microliters (μL) methanol, 300 μL of the aqueous TBAH-IP reagent was added to match the liquid chromatography mobile phase, and 1 μg coumarin (instrumental internal standard) was added. The residual diphacinone eluants (fraction 2) were fortified with 5 μg coumarin and analyzed directly.

Sample Preparation and Quantification of Diphacinone in Tissues

Hunter and Sharp (1988) described the addition of ascorbic acid to the extraction solvent, as well as to the matrix before dehydration for extractions from vertebrate liver samples. This increased the recovery of indandione-group anticoagulant rodenticides in all of the liver samples tested. Before analysis of Mokapu field samples, it was established that ascorbic acid treatment was not required to achieve adequate recoveries of any diphacinone from the fish and limpet matrices. Further method development efforts established that a C18 SPE cleanup was necessary for fish fillet samples, whereas both C18 SPE and LP-SEC cleanup steps were necessary to remove residual lipid materials from the limpet matrix.

Fish: Ta`ape, A`awa, and Hagi Fillets

Fortified fish fillet samples were prepared in about 5 g of reference Ta`ape matrix or sodium sulfate (procedural spikes) by adding 2.5 μ g diphacinone to the dehydrated reference material. The final concentration of the fortified matrix samples was 500 nanograms per gram (ng/g) wet-weight.

Homogenized Ta`ape (*Lutjanus kasmira*), A`awa (*Bodianus bilunulatus*), or Hagi (*Sufflamen fraenatus*) fillet tissue samples (5 g fish skinless fillet) were dehydrated with 25 g anhydrous sodium sulfate. The mixture was allowed to dehydrate at least 2 hours, and then was blended with stainless steel blades and a commercial blender until a free flowing powder was obtained.

The dehydrated sample was loaded into an extraction column with a total of about 20 mL of acetonitrile rinses of the sample container and then saturated with acetonitrile. The acetonitrile saturated dehydrated matrix was allowed to interact approximately 1 hour before extraction. Additional acetonitrile

(150 mL) was added to the column, and the sample extracted at a flow rate of approximately 2 mL/minute until flow ceased; additional acetonitrile (100 mL) was added to the column, the extraction continued, and the eluant collected with the original extract. The extracts were rotary evaporated under vacuum (< 50 °C) to approximately 3 mL, and quantitatively transferred to 15-mL culture tubes with three sequential 2-mL rinses with acetonitrile. The sample extracts were evaporated by nitrogen stream to 2 mL and mixed thoroughly.

Some co-extracted interferences (mainly lipid material) were removed by C18 SPE. The cartridges were conditioned with 10 mL methanol followed by 10 mL 0.03 M TBAH-IP, dried under vacuum for about 1 minute, and finally by rinsing with 10 mL acetonitrile (the cartridge remained wet). The 2 mL sample extracts were applied to the cartridge at about 2 mL/minute (with three 1-mL acetonitrile rinses). Diphacinone was recovered from the cartridge with 7-mL acetonitrile (total acetonitrile 10 mL: three 1-mL rinses plus 7 mL for elution). The eluant was collected in a 15-mL amber culture tube.

The diphacinone eluants were evaporated to dryness with nitrogen. The residues were dissolved in 700 μ L methanol, 300 μ L of the aqueous TBAH-IP reagent was added to match the liquid chromatography mobile phase, and 1 μ g coumarin (instrumental internal standard) was added.

Limpet: Whole Opihi

Fortified samples were prepared with about 3 g of reference limpet matrix or sodium sulfate (procedural spikes) by adding 2.5 μ g diphacinone to the dehydrated reference material. The final concentration of the fortified matrix samples was 830 ng/g.

Whole Opihi (*Cellata exarata*) limpet sample homogenates (about 3 g) were dehydrated with 30 g anhydrous sodium sulfate. The mixture was allowed to dehydrate at least 2 hours, and then was blended with stainless steel blades and a commercial blender until a free flowing powder was obtained.

The dehydrated sample was loaded into an extraction column with a total of about 20 mL of acetonitrile rinses of the sample container and then saturated with acetonitrile. The acetonitrile saturated dehydrated matrix was allowed to interact approximately 1 hour before extraction. Additional acetonitrile (150 mL) was added to the column and the sample extracted at a flow rate of approximately 2 mL/minute until flow ceased; additional acetonitrile (100 mL) was added to the column, the extraction continued, and the eluant collected with the original extract. The extracts were rotary evaporated under vacuum (< 50 °C) to approximately 3 mL, and quantitatively transferred to 15-mL culture tubes with three sequential 2-mL rinses with acetonitrile. The sample extracts were evaporated by nitrogen stream to 2 mL and mixed thoroughly.

Some co-extracted interferences (mainly lipid material) were removed by C18 SPE. The cartridges were conditioned with 10 mL methanol followed by 10 mL 0.03 M TBAH-IP, dried under vacuum for about 1 minute, and finally by rinsing with 10 mL acetonitrile (the cartridge remained wet). The

2 mL sample extracts were applied to the cartridge at about 2 mL/minute (with three 1-mL acetonitrile rinses). Diphacinone was recovered from the cartridge with 7 mL acetonitrile (total acetonitrile 10 mL: three 1-mL rinses plus 7 mL for elution). The eluant was collected in a 15-mL amber culture tube.

The diphacinone eluants were evaporated to dryness with nitrogen. The residues were dissolved in 3 mL dichloromethane. Additional lipids and other biogenic material were removed by low-performance size-exclusion chromatography (SX-3 biobeads, dichloromethane mobile phase at a flow of 3.5 mL/minute). The diphacinone fractions (LP-SEC collect window from 40 to 60 minutes) were rotary evaporated under vacuum (< 50 °C) to approximately 3 mL, and quantitatively transferred to 15-mL culture tubes with three sequential 2-mL rinses with dichloromethane. The dichloromethane sample extracts were evaporated to dryness with nitrogen. The residues were dissolved in 700 μ L methanol, 300 μ L of the aqueous TBAH-IP reagent was added to match the liquid chromatography mobile phase, and 1 μ g coumarin (instrumental internal standard) was added.

Sample Preparation for Diphacinone in Ramik® Green Bait

Primus and others (1998) described the extraction of diphacinone from steam rolled oat baits using 5 mM methanolic tetrabutylammonium phosphate ion pairing solution. Mesmer and Flurer (2000) described the extraction of diphacinone by sonication of commercial indanedione rodenticides with methanol containing 2 percent formic acid. The extraction recovery of diphacinone from the Ramik® Green formulation was established in this study before analysis of field samples. The removal of co-extracted inert ingredients (green dye, waxes, etc.) using suitable SPE and other techniques also was investigated.

No reference material without active ingredient was available; therefore, no method quality-control samples were analyzed with the sample set. Instead, steps were taken to optimize extraction efficiency based on the nominal active ingredient concentration of diphacinone reported by the manufacturer in Ramik® Green bait (50 ppm).

Three composites of the bait samples were prepared containing two baits from each sample-lot submitted as follows: Lots 1, 2, and 3; Lots 4, 5, and 6; Lots 7, 8, 9, and 10. Two bait pellets were removed from each of the zip-lock bags, individual weights recorded, and the pellets were transferred to a ceramic mortar. The individual pellets were chopped into smaller pieces using a stainless steel knife, and the composite samples were ground to a fine powder using a ceramic pestle.

Approximately 2 g portions of each composite were weighed into 250-mL boiling flasks, approximately 15 mL dichloromethane added, and the composites sonicated for 1 hour. Next, the dichloromethane extracted samples were extracted by reflux with 5 mM methanolic tetrabutylammonium phosphate (TBAP; 55 mL) for 8 hours. The extracts were

filtered through Whatman 41 ashless filter paper with repeated rinses of the boiling flask with extraction solvent.

A second extraction was performed by soncating the post-refluxed composite bait samples with 15 mL dichloromethane:acetone:acetic acid (1:1:2%; volume:volume:volume) for 2 hours to recover any residual diphacinone. This second extract was filtered with repeated rinses with the extraction solvent. Final volumes were adjusted to 100 mL (for the reflux extract) or 25 mL (for the sonicated extract) using the appropriate extraction solvent and the solutions were thoroughly mixed. Sub-samples of each of the first extracts (2 mL) and each of the second extracts (10 mL) were transferred to 15-mL amber culture tubes.

The first and second extracts of the composite bait samples were evaporated individually to dryness with nitrogen. The residues were dissolved in 700 μ L methanol, 300 μ L of the aqueous TBAH-IP reagent was added to match the liquid chromatography mobile phase, and 1 μ g coumarin (instrumental internal standard) was added.

Instrumental Analysis and Data Reduction

Final Sample Preparation

As per previous discussion, all extracts were evaporated to approximately 3 mL by rotary evaporation and transferred to 15-mL screw capped amber culture tubes with three sequential 2-mL acetonitrile rinses. The concentrated extracts were evaporated to dryness by nitrogen evaporation and reconstituted in 700 μL of methanol. Once the residues were dissolved, 300 μL of 0.03 M tetrabutylammonium hydroxide ion pair reagent (TBAP-IP) in water was added and mixed thoroughly. The samples were filtered through 0.45 μm PTFE syringe filters directly in to 1-mL amber autosampler vials.

HPLC-PDA Analysis

Quantification of diphacinone was performed with a Surveyor® HPLC system (Thermo-Fisher, Inc., San Jose, California), consisting of an autosampler, gradient pump, PDA detector, and XCalibur® chromatography data collection and processing software. A Luna® C18(2) 100 Å, 150 x 2 millimeter (mm) x 3 µm analytical column with a Security-Guard® C18 guard column cartridge (Phenomenex. Torrance, California) was used for the separation of diphacinone. The ion-pair reagent for the mobile phase was 0.03 M TBAH-IP in water adjusted to a pH of 6.0 using 2 N o-phosphoric acid. The mobile phase, methanol/0.03 M TBAH-IP (70:30 volume:volume), was delivered isocratically at 0.8 mL/minute. The sample was applied onto the column via 20 µL full-loop injections. Diphacinone was detected by wavelength scanning from 230 to 400 nanometers (nm) with quantification at the primary wavelength (286 nm) and confirmation at the two secondary wavelengths (314 and 326 nm). The primary wavelength for the instrumental internal standard, coumarin

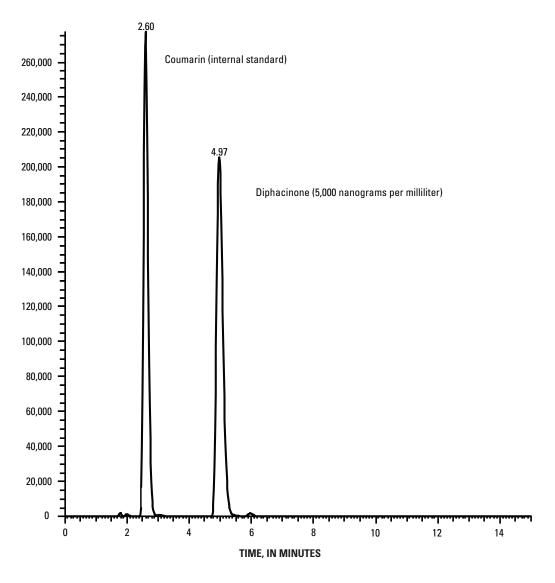
was 276 nm with a secondary wavelength of 312 nm. A diphacinone standard chromatogram is shown in figure 4; a photodiode array detector spectrum is shown in figure 5. Calibration of the instrument was achieved through a range of standards from just above the limit of quantification of about 10 ng/mL to 5,000 ng/mL diphacinone [and coumarin].

Quality Assurance and Quality Control

All research was conducted in accordance with the USGS Quality Assurance Plan, a system of checks managed by a Quality-Assurance system that assures that defined standards of quality are being met (at stated levels of confidence). The objective of the quality assurance plan for this study was to assure that the analytical and/or biochemical analyses provided accurate and precise measurements of the samples collected in this study. The general scheme included replication of various stages (table 2), comparison and calibration against known standards, proper maintenance and calibration of equipment, accurate sample tracking and custody, proper documentation at all steps of sample processing, and other considerations of Good Laboratory Practice.

The accuracy and precision of analytical methods for this study was assessed by the following checks of sample preparation and instrumental analysis: replicated sample or reference matrices, procedural blanks, fortified procedural samples, negative control (reference) matrix blanks, and fortified negative control matrix samples. The fortified matrix samples were amended with native analyte(s) during sample preparation. The numbers of quality control samples of each type are presented in table 3.

Sea Water Holding Time


Because of questions related to the storage of sea-water samples (dark, refrigerated at 4 °C), a stability check experiment was conducted to determine the feasibility of the approximately 50 day holding time from sample collection (February 17, 2008), shipping to the USGS (March 17, 2008), and subsequent analysis (April 10, 2008).

Negative Control Bait Matrix

The lack of a reference bait material without active ingredient limited the quality control samples to be analyzed with the bait sample set. Steps were taken to maximize extraction efficiency, based on the manufacturer's nominal active ingredient concentration of 50 ppm diphacinone in Ramik® Green bait.

Criteria for Quantification of HPLC-PDA Data

Method limits of detection (LOD) and limits of quantification (LOQ) were estimated from low-level standards and

Figure 4. High performance liquid chromatography-photodiode array (HPLC-PDA) chromatogram of diphacinone (wavelength range 230 to 400 nanometers).

determined by the signal-to-noise ratio of the peak. Keith and others (1983; 1991) established the LOD as 3 times the background signal, and the LOQ as 10 times background signal. For the positive identification and quantification of each analyte, the following criteria were established:

- The analyte peak area must be greater than 10 times background signal (LOQ) for quantification, or 3 times background signal (LOD) to be considered detected, but <LOQ. If a peak is not present, or is less than three times background signal, it will be considered "Not Detected".
- The analyte elution must occur at retention times that are equivalent to those for the corresponding calibration standards (within ± 3 seconds or < 1 percent difference, as established by the method validation).
- 3. The spectrum of an unknown analyte must be comparable to the spectrum of a corresponding calibration

standard (within purity factors established by the method validation and the expertise of the analyst).

Acceptance or Rejection Criteria for Results

Background responses from procedural and matrix blanks were quantified and used to estimate method limits of detection and quantification. Acceptable recoveries of spiked samples were determined by diphacinone methods development studies as 50 to 150 percent.

Results

Final analytical results were adjusted using the response of the instrumental internal standard and then adjusted for any

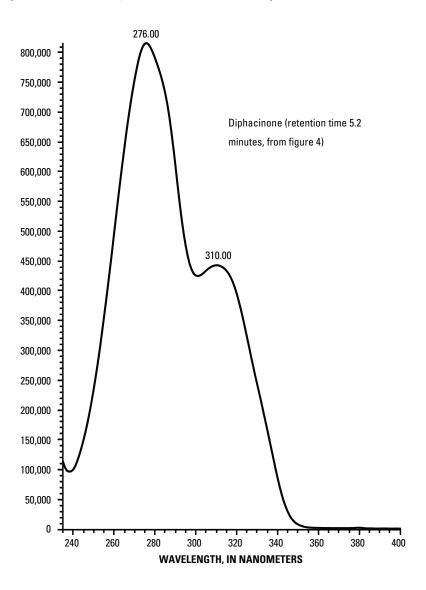


Figure 5. Photodiode array (PDA) spectrum of diphacinone.

background levels of analytes by subtraction of mass-weighted procedural blank amounts. Similarly, matrix spike recoveries were estimated after any necessary corrections.

The sample preparation methods increased in their complexity as the complexity of the sample matrices increased, generally in the order: sea water < fillet < limpet. Preparation of bait composite samples required strong and specific reaction conditions to completely release diphacinone bound in the bait matrix and the wax-like coating materials. The efficiency and selectivity of the preparatory methods that were developed for this study was reflected in the achievement of consistently low detection limits without background interferences for all matrices.

Sea Waters

The concentrations of diphacinone in Mokapu Island seawater samples were below the LOD determined for this matrix

and method (table 4). The LOD was 18 ng/mL (or parts per billion), and the LOQ was 61 ng/mL according to the methods of Keith et al. (1983; 1991). Fraction 1 contained greater than 98 percent of the diphacinone in fortified sea-water samples. The instrumental internal standard (coumarin) response ranged from 96 to 108 percent of standards. Instrumental blanks, procedural blanks, and negative control samples for the seawater analyses did not have any detectable concentrations of diphacinone.

Fish Fillets

The concentrations of diphacinone in Mokapu Island Ta`ape, A'awa, and Hagi skinless fillet samples were below the LOD [table 5; 10 nanograms per gram (ng/g), or ppb]. The instrumental internal standard (coumarin) responses ranged from 96 to 104 percent. Instrumental blanks, procedural blanks, and negative control (reference) samples for the fish

 Table 2.
 Quality-control sample types for analysis of environmental samples.

Sample type	Quality-control function
Procedural blank	Determines analyte laboratory background levels or background interferences with analyte signal.
Negative control material (Matrix blank)	Determines background interferences with analyte signal related to a representative and controllable sample matrix.
Fortified negative control material (Matrix spike)	Determines analyte recovery and assesses potential signal enhancement or suppression from a representative and controllable sample matrix.
Replicate sample—within set	Determines repeatability analyte signal associated with a specific environmental matrix.
Replicate sample—between sets	Determines the reproducibility of analyte signal associated with a specific environmental matrix.
Positive control material	Determines analyte recovery and assesses potential signal enhance- ment or suppression from a representative and controllable sample matrix on an ongoing basis within or between laboratories.

 Table 3.
 Quality-control sample types and levels selected for study.

[--, not applicable]

	Quality-control level (number of samples)				
Sample type	Sea water	Fish fillet	Whole limpet	Ramik® Green Bait	
Mock fortification solutions	1	1	1	1	
Procedural blanks	1	1	1	1	
Fortified procedural blanks		1	1	1	
Negative control (reference) matrices	1	1	1		
Fortified negative control (reference) matrices	1	1	1		
Replicate samples within set	3	3	3	3	
Total	7	8	8	6	

 Table 4.
 Diphacinone concentrations in sea water.

 $[USGS, U.S.\ Geological\ Survey;\ ID,\ identification;\ ng/mL,\ nanograms\ per\ milliliter\ (parts\ per\ billion,\ ppb);\ <,\ less\ than;\ ND,\ not\ detected;\ --,\ not\ applicable]$

USGS ID	Field label	рН	Diphacinone (ng/mL)	Recovery (percent)
42033	Kalaupapa National Historical Park Ka Laea Point, Molokai	8.10	< 18 (ND)	
42036	Mokapu Station 1	8.20	< 18 (ND)	
42037	Mokapu Station 2	8.17	< 18 (ND)	
42038	Mokapu Station 3	8.10	< 18 (ND)	
42039	Mokapu Station 4	8.21	< 18 (ND)	
42040	Mokapu Station 5	8.16	< 18 (ND)	
42041-1	Mokapu Station 6—replicate 1	8.17	< 18 (ND)	
42041-2	Mokapu Station 6—replicate 2	8.17	< 18 (ND)	
42041-3	Mokapu Station 6—replicate 3	8.17	< 18 (ND)	
	HPLC blank		< 18 (ND)	
	SPE blank		< 18 (ND)	
	Procedural blank		< 18 (ND)	
42033	Negative control (reference) sea water blank Kalaupapa National Historical Park	7.96	< 18 (ND)	
	Fortified procedural Ocean Sea Salt solution	7.96		88
42033-fortified	Fortified negative control (reference) sea water Kalaupapa National Historical Park	8.11		86

 Table 5.
 Diphacinone concentrations in fish fillets.

[USGS, U.S. Geological Survey; ID, identification; ng/g, nanograms per gram (parts per billion, ppb); values reported on a wet-tissue weight basis; <, less than; ND, not detected; --, not applicable]

USGS ID	Field label	Sample type	Diphacinone (ng/g)	Recovery (percent)
42035	Oahu Commercial Fish Market	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
42045	Mokapu Station 1-A	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
42046-1	Mokapu Station 1-B—replicate 1	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
42046-2	Mokapu Station 1-B—replicate 2	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
42046-3	Mokapu Station 1-B—replicate 3	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
42047	Mokapu Station 1-C	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
42048	Mokapu Station 1-D	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
42049	Mokapu Station E	Hogfish, A`awa (Bodianus bilunulatus)	< 10 (ND)	
42050	Mokapu Station 1-F	Bridled Triggerfish, Hagi (Sufflamen fraenatus)	< 10 (ND)	
	Procedural blank		< 10 (ND)	
42035	Negative control Ta`ape (reference)	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)	< 10 (ND)	
	Fortified procedural sample			102
42035-fortified	Fortified negative control Ta`ape (reference)	Blue-lined Snapper, Ta`ape (Lutjanus kasmira)		100

fillet analyses did not have any detectable concentrations of diphacinone.

The performance throughout the method was monitored by fortified procedural samples and fortified reference Ta`ape matrix samples. No diphacinone residues were detected in the procedural blanks or reference Ta`ape samples. Method recoveries ranged from 100 to 102 percent.

Limpets

The concentrations of diphacinone in Mokapu Island limpet (whole body Opihi) samples were below the LOD (table 6; 17 ng/g). The instrumental internal standard (coumarin) responses ranged from 99 to 101 percent. Instrumental blanks, procedural blanks, and negative control (reference) samples for the whole Opihi limpet analyses did not have any detectable concentrations of diphacinone.

The performance throughout the method was monitored by fortified procedural samples and fortified field Opihi limpet matrix. No diphacinone residues were detected in the procedural or reference Opihi blanks. Method recovery was 102 percent for the fortified procedural samples and the fortified Opihi sample.

Ramik® Green Diphacinone Bait Pellets

The concentrations of diphacinone in the three composited lots of Ramik® Green baits used for the Mokapu Island rat eradication study were determined to contain from 44 to 46 μg/g (parts per million) diphacinone as determined by this methodology (table 7). The LOD and LOQ were not established because negative control bait (without diphacinone) was unavailable. The nominal concentration for the baits as reported by the manufacturer was 50 µg/g (parts per million); thus, the concentrations of diphacinone in composited lots of baits ranged from 88 to 92 percent of the nominal concentration. The amount of diphacinone recovered by reflux extraction averaged 99.4 percent of the total extractable diphacinone determined by combined reflux and sonication extraction steps. The instrumental internal standard (coumarin) responses ranged from 97 to 99 percent.

Conclusions

The analytical part of this study demonstrated that there were no matrices that contained diphacinone at or above the

Table 6. Diphacinone concentrations in whole Opihi limpets.

[USGS, U.S. Geological Survey; ID, identification; ng/g, nanograms per gram (parts per billion, ppb); values reported on a wet-tissue weight basis; <, less than; ND, not detected; --, not applicable]

USGS ID	Field label	Sample description	Diphacinone (ng/g)	Recovery (percent)
42034	Kalaupapa National Historical Park Ka Laea Point, Molokai	Limpet, Opihi (<i>Cellata</i> exarata)	< 17 (ND)	
42042	Mokapu Station 1	Limpet, Opihi (<i>Cellata</i> exarata)	< 17 (ND)	
42043	Mokapu Station 2	Limpet, Opihi (<i>Cellata</i> exarata)	< 17 (ND)	
42044-1	Mokapu Station 3—replicate 1	Limpet, Opihi (<i>Cellata</i> exarata)	< 17 (ND)	
42044-2	Mokapu Station 3—replicate 2	Limpet, Opihi (<i>Cellata</i> exarata)	< 17 (ND)	
42044-3	Mokapu Station 3—replicate 3	Limpet, Opihi (<i>Cellata</i> exarata)	< 17 (ND)	
	Fortified C18 SPE procedural sample			99
	Fortified LP-SEC procedural sample			100
	Procedural blank		< 17 (ND)	
	Fortified procedural sample			102
42034-fortified	Fortified field Opihi (reference)	Limpet, Opihi (Cellata exarata)		102

IISGS Dir	nhacinon
[USGS, U.S. Geological Survey; ID, identification; $\mu g/g$, micrograms per gram (parts per million, ppm reported on an as-received weight basis]	n); values

Table 7. Diphacinone concentrations in Ramik® Green bait lot composites.

USGS composite ID	Field label	Sample type	Diphacinone (µg/g)
42051/42052/42053	Maui-1/-2/-3	Ramik® Green (diphacinone bait pellets)	44
42054/42055/42056	Maui-4/-5/-6	Ramik® Green (diphacinone bait pellets)	45
42057/42058/42059/42060	Maui-7/-8/-9/-10	Ramik® Green (diphacinone bait pellets)	46

method limit of detection, which ranged from about 10 to 18 parts per billion (nanograms per milliliter for sea-water samples, or nanograms per gram for tissue samples). The methods developed were satisfactory, with negligible background interferences being encountered and efficient recoveries of diphacinone, which ranged from about 86 to 102 percent in fortified matrix samples.

Concentrations of diphacinone, the active ingredient, in Ramik® Green bait samples, averaged 45 micrograms per gram (parts per million), which was 90 percent of the nominal concentration. Refluxing for 8 hours with methanolic solutions of the tetrabutylammonium phosphate (TBAP) ion-pairing reagent was required for efficient recovery of diphacinone from the bait samples.

For quality control, confirmation of peak identity and purity was made by comparing the retention times and peak spectra to diphacinone standards. All samples with diphacinone concentrations less than the limit of detection did not have peaks that matched the retention times or spectra of diphacinone standards. Additionally, the area ratios of the primary and secondary quantitation wavelengths did not correspond to known diphacinone standards, with the exception of diphacinone fortified quality-control samples

The isolation, concentration, and high performance liquid chromatography-photodiode array (HPLC-PDA) method performed well throughout the analyses of all sample matrices (sea water, fish fillet, whole limpet, and Ramik® Green bait samples). No instances of interfering compounds co-eluting with diphacinone (or with coumarin) were noted. The co-elution of compounds that interfere with analyte response (quantitation) or analyte spectra (identification) typically results in reporting an analyte as not quantifiable at an increased limit of quantification.

Acknowledgements

The authors thank Peter Dunlevy (USDA-APHIS-WS) and Cathrine Swift (USFWS) for their contributions in this effort. They have made the primary selection of the study area,

and continued to work on logistics, sampling, site assessment, and other aspects of this study.

References

Hunter, K. and Sharp, E.A., 1988, Modification to procedures for the determination of chlorophacinone and for multiresidue analysis of rodenticides in animal tissue: Journal of Chromatography A, v. 437, p. 301–305.

Keith, L.H., Crummet, W., Deegan, J., Jr., Libby, R.A., Taylor, J.K., and Wentler, G.,1983, Principles of environmental analysis: Analytical Chemistry, v. 55, p. 2,210–2,218.

Keith, L.H., 1991, Environmental sampling and analysis—A practical guide: Boca Raton, Fla., Lewis Publishers, Inc., 143 p.

Mesmer, M.Z., and Flurer, R.A., 2000, Determination of chlorophacinone and diphacinone in commercial rodenticides by liquid chromatography-UV detection and liquid chromatography-electrospray ionization mass spectrometry: Journal of Chromatography A, v. 89, p. 249–255.

Primus, T.M., Griffin, D.L., Volz, S.A., and Johnston, J.J., 1998, Reversed-phase ion-pair liquid chromatographic determination of chlorophacinone and diphacinone in steam-rolled oat baits and steam-rolled oat/wax baits: Journal of the Association of Official Analytical Chemists International, v. 81, p. 349–357.

Swenson, C., and Duvall, F.P., II, 2007, Draft environmental assessment—Eradication of Polynesian rats (*Rattus exulans*) from Mokapu and Alau Islands, Hawai'i. accessed April 18, 2008, at URL: www.fws.gov/pacificislands/FinalEAMokapuRatEradication.pdf

U.S. Environmental Protection Agency, 1998, Reregistration Eligibility Decision (RED)—Rodenticide Cluster: EPA 738–R–98–007.

16 Determination of Diphacinone Following Aerial Broadcast on Mokapu Island, Molokai, Hawai'i

Yang, S.Y., Pan, G.M., Meng, G.F., Zhang, D.M., 2001, Study of diphacinone in biological samples by high performance liquid chromatography/diode array detection: Separations and Purifications, v. 19, p. 245–247.

Publishing support provided by: Rolla Publishing Service Center

For more information concerning this publication, contact: Director, USGS Columbia Environmental Research Center 4200 New Haven Road Columbia, MO 65201 (573) 875–5399

Or visit the Columbia Environmental Research Center Web site at: http://www.cerc.usgs.gov

Analytical Services Report

United States Department of Agriculture Animal Plant Health Inspection Service Wildlife Services

National Wildlife Research Center
Invasive Species and Technology Development
Research Program
Analytical Chemistry Project

Page: 1 of 2

Invoice #: 08-025/2

Date: 04/03/2008

To: Chris Swenson

Pacific Islands Coastal Program US Fish and Wildlife Service

Peter Dunlevy

Pacific Islands Fish and Wildlife Office USDA – APHIS – Wildlife Services

Katie Swift

Ecological Services Office US Fish and Wildlife Service

Subject: Determination of Diphacinone in Fish Tissue

Method: 159A - Modified

Analysis Date: 3/31/08

AC Notebook Reference: AC 137 pp. 171-173

QC Notebook Reference: QC 26 p. 67

Analyst: Chad Wermager, Tom Primus

Sample Description: Fish samples arrived 03/20/08 and were logged into our sample tracking system. Samples arrived in Ziploc bags according to sample number with fish fillet individually wrapped in aluminum foil. Each tissue sample was homogenized in a SPEX liquid nitrogen freezer mill. Each homogenized sample was placed in a labeled bag, vacuum sealed and frozen (-30 °C) until analyzed.

Additional Comments: The MLOD was determined to be 0.013 ppm Diphacinone and 0.003 ppm Chlorophacinone. Modifications to method 159A included the following. After evaporating the extraction solution, each sample residue was reconstituted with 2 mL chloroform and 3 mL hexanes. During filtering before cleanup, each sample tube was rinsed with 1 mL of both chloroform and hexanes. The solid phase extraction (SPE) cleanup procedure was completed with Phenomenex Strata X-AW 33 μ m polymeric weak anion (200 mg) SPE columns conditioned with 0.5 mL methanol, 1.0 mL chloroform and 1.5 mL hexanes. After loading each SPE column with the sample extract, each column was washed with a solution used to rinse the sample tube consisting of 0.25 mL methanol, 0.5 mL chloroform and 0.75 mL hexanes. The analyte was eluted off each SPE column with 12 mL of 15 mM TBA in methanol and collected in a 10 mL screw top tube.

The mobile phase was replaced with 60% 5 mM TBA in Methanol : 40% Aqueous IPCA Solution with pH \sim 8.5. High performance liquid chromatograph used UV detection @ 325 nm for the analytical wavelength with 360 nm as the reference.

Analyst 4/4/08	Den Sellen	4/9/08	The M. h	4/19/08
	QC Specialist	Date	Reviewer	Date

Invoice #: 08-025/2 Date: 04/03/08 Page: 2 of 2

Results:

<u>Table 1</u>. Diphacinone concentration in analyzed fish samples.

Sample Description	<u>Lab ID</u>	Diphacinone Conc. (ppm)
Oahu Fish Market Reference Fish	S080320-14	<mlod< td=""></mlod<>
Mokapu 2/17 Fish 1	S080320-15	<mlod< td=""></mlod<>
Mokapu 2/17 Fish 2	S080320-16	<mlod< td=""></mlod<>
Mokapu 2/17 Fish 3	S080320-17	<mlod< td=""></mlod<>
Mokapu 2/17 Fish 4	S080320-18	<mlod< td=""></mlod<>
Mokapu 2/17 Fish 5	S080320-19	<mlod< td=""></mlod<>
Mokapu 2/17 Fish 6	S080320-20	<mlod< td=""></mlod<>

<u>Table 2.</u> Quality Control Recovery for Diphacinone (Surrogate Corrected).

<u>ID</u>	Fortification Level (ppm)	% Recovery (surrogate corrected)
QF 1	Blank	
QF 2	Blank	
QF 3	0.100	97.5
QF 4	0.0947	100
QF 5	0.237	103
QF 6	0.244	100
Mean		100 ± 2.3

Oahu Fish Market Reference Fish used for all QC samples (S080320-14)

Cc: Tom Primus Doreen Griffin John Johnston

Analytical Services Report

United States Department of Agriculture Animal Plant Health Inspection Service Wildlife Services

National Wildlife Research Center Invasive Species and Technology Development Research Program

Analytical Chemistry Project

Invoice #: 08-025/3

Date: 04/21/2008

Page: 1 of 2

To: Chris Swenson

Pacific Islands Coastal Program US Fish and Wildlife Service

Peter Dunlevy

Pacific Islands Fish and Wildlife Office USDA – APHIS – Wildlife Services

Katie Swift

Ecological Services Office US Fish and Wildlife Service

Subject: Determination of Diphacinone in Limpets

Method: 159A - Modified

Analysis Date: 4/14/08

AC Notebook Reference: AC 137 pp. 171, 175

QC Notebook Reference: QC 26 p. 71

Analyst: Chad Wermager, Tom Primus

Sample Description: Limpet samples arrived 03/20/08 and were logged into our sample tracking system. Samples arrived in Ziploc bags according to sample number with limpet soft tissue wrapped in aluminum foil. Samples had no shell. Reference limpets (S080320-21) required soft tissue to be removed from shell before homogenization. Each tissue sample was homogenized in a SPEX liquid nitrogen freezer mill. Each homogenized sample was placed in a labeled bag, vacuum sealed and frozen (-30 °C) until analyzed.

Additional Comments: The MLOD was determined to be 0.059 ppm Diphacinone. Modifications to method 159A included the following. Methanol was used as the extraction solution. After evaporating the extraction solution, each sample residue was reconstituted with 2 mL chloroform and 3 mL hexanes. During filtering before cleanup, each sample tube was rinsed with 1 mL of both chloroform and hexanes. The solid phase extraction (SPE) cleanup procedure was completed with Phenomenex Strata X-AW 33 μ m polymeric weak anion (500 mg) SPE columns conditioned with 1.5 mL chloroform and 1.75 mL hexanes. After loading each SPE column with the sample extract, each column was washed with a solution used to rinse the sample tube consisting of 1.5 mL chloroform and 1.75 mL hexanes. The analyte was eluted off each SPE column with 12 mL of 15 mM TBA in methanol and collected in a 10 mL screw top tube.

The mobile phase was replaced with 60% 5 mM TBA in Methanol : 40% Aqueous IPCA Solution with pH \sim 8.5. High performance liquid chromatograph used UV detection @ 325 nm for the analytical wavelength with 360 nm as the reference.

Analyst Date OC Specialist Date Reviewer Date

Invoice #: 08-025/3 Date: 04/21/08 Page: 2 of 2

Results:

<u>Table 1</u>. Diphacinone concentration in analyzed limpet samples.

Sample Description	<u>Lab ID</u>	Diphacinone Conc. (ppm)
Kalaupapa Reference Limpets	S080320-21	<mlod< td=""></mlod<>
Mokapu 2/17 Limpet 1	S080320-22	<mlod< td=""></mlod<>
Mokapu 2/17 Limpet 2	S080320-23	<mlod< td=""></mlod<>
Mokapu 2/17 Limpet 3	S080320-24	<mlod< td=""></mlod<>

<u>Table 2.</u> Quality Control Recovery for Diphacinone.

<u>ID</u>	Fortification Level (ppm)	% Recovery
QL 1	Blank	
QL 2	Blank	
QL 3	0.195	113
QL 4	0.201	101
QL 5	0.965	90.3
QL 6	0.975	101
Mean		101 ± 9.3

Kalaupapa Reference Limpets used for all QC samples (S080320-21)

Cc: Tom Primus Doreen Griffin John Johnston

Analytical Services Report

United States Department of Agriculture Animal Plant Health Inspection Service Wildlife Services

National Wildlife Research Center Invasive Species and Technology Development Research Program

Analytical Chemistry Project

Invoice #: 08-025/1

Date: 04/03/08

Page: 1 of 2

To: Chris Swenson

Pacific Islands Coastal Program US Fish and Wildlife Service

Peter Dunlevy

Pacific Islands Fish and Wildlife Office USDA – APHIS – Wildlife Services

Katie Swift

Ecological Services Office US Fish and Wildlife Service

Subject: Determination of Diphacinone in Seawater

Method: 158A - Modified

Analysis Date: 03/27/08

AC Notebook Reference: AC 137 pp. 169-170

QC Notebook Reference: QC 26 pp. 66

Analyst: Chad Wermager, Tom Primus

Sample Description: Water samples arrived 03/20/2008 and were logged into our sample tracking system. Water samples were in 250 mL screw top jars. Water samples were stored in a refrigerator at 4 °C until analyzed. All samples were analyzed with a modified version of method 158A. The method uses 150 mL of sample. As specified 75 mL of each set of two replicates from each sample location (total of six) were composited into a 150 mL sample. The remaining water from each of 12 samples (two from each location) was composited after the final results were tabulated. This composited sample will be used for a storage stability study.

Additional Comments: The MLOD was 0.029 ppb Diphacinone and 0.058 ppb Chlorophacinone. Method 158A modifications included omitting step 3 (addition of salt to the sample to increase ionic strength of the sample) and replacing the mobile phase with 60% 5 mM TBA in Methanol: 40% Aqueous IPCA Solution with pH ~ 8.5 . High performance liquid chromatograph used UV detection @ 325 nm for the analytical wavelength with 360 nm as the reference.

Analyst Date OC Specialist Date Reviewer Date

Invoice #: 08-025/1 Date: 04/03/08 Page: 2 of 2

Results:

<u>Table 1</u>. Diphacinone concentration in analyzed water samples.

Sample Description	Lab ID	Diphacinone Conc. (ppb)	
Kalaupapa Reference Sea Water	S080320-01	<mlod< td=""></mlod<>	
Mokapu Sea Water 2/17 1A	S080320-02	<mlod< td=""></mlod<>	
Mokapu Sea Water 2/17 1B	S080320-03	<wilod< td=""></wilod<>	
Mokapu Sea Water 2/17 2A	S080320-04	<mlod< td=""></mlod<>	
Mokapu Sea Water 2/17 2B	S080320-05	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Mokapu Sea Water 2/17 3A	S080320-06	<mlod< td=""></mlod<>	
Mokapu Sea Water 2/17 3B	S080320-07	- WILOD	
Mokapu Sea Water 2/17 4A	S080320-08	<mlod< td=""></mlod<>	
Mokapu Sea Water 2/17 4B	S080320-09	(WILOD	
Mokapu Sea Water 2/17 5A	S080320-10	<mlod< td=""></mlod<>	
Mokapu Sea Water 2/17 5B	S080320-11	\wildow	
Mokapu Sea Water 2/17 6A	S080320-12	<mlod< td=""></mlod<>	
Mokapu Sea Water 2/17 6B	S080320-13	- <wlod< td=""></wlod<>	

⁷⁵ mL of each sample designated as A and B were composited together for each 150 mL sample.

<u>Table 2.</u> Quality Control Recovery for Diphacinone (Surrogate Corrected).

<u>ID</u>	Fortification Level (ppb)	% Recovery (surrogate corrected)
QW 1	Blank	
QW 2	Blank	
QW 3	0.502	115
QW 4	0.500	114
QW 5	2.00	111
QW 6	2.00	103
Mean		111 ± 5.4

Kalaupapa Reference Sea Water used for all QC samples (S080320-01

Cc:

Tom Primus Doreen Griffin

APPENDIX D

2008 ENDANGERED SPECIES ACT SECTION 7 CONSULTATION WITH NATIONAL MARINE FISHERIES SERVICE

RECEIVED

SEP 0 5 2008

U.S. FISH & WILDLIFE SVC PACIFIC ISLANDS FWD HONOLULU, HI 96850

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE

Pacific Islands Regional Office 1601 Kapiolani Blvd., Suite 1110 Honolulu, Hawaii 96814-4700 (808) 944-2200 ● Fax (808) 973-2941

SEP - 3 2008

Patrick Leonard Fish and Wildlife Service Pacific Islands Fish and Wildlife Office 300 Ala Moana Blvd., Room 3-122, Box 50088 Honolulu, HI 96850

Dear Mr. Leonard:

This letter responds to your letter dated August 22, 2008, requesting reinitiation of consultation under Section 7 of the Endangered Species Act of 1973 (ESA), as amended (16 U.S.C. §1531 et seq.), on the effects of your proposed Lehua Island Ecosystem Restoration Project on ESA-listed marine species. The proposed action consists of eradication of invasive rabbits and rats by aerial rodenticide application. In our letter dated July 5, 2005, we concurred that this proposed action is not likely to adversely affect any ESA-listed marine species. The proposed action has not changed, except the seasonality of rodenticide application, prompting your reinitiation of consultation. However, the proposed action has not been altered in a manner that would change the effects to ESA-listed marine species that were considered in our July 5, 2005 concurrence letter. Thus, the rationale provided in our original letter for concurring that this action is not likely to adversely affect ESA-listed marine species remains unchanged. Therefore, we concur that the proposed action, as currently revised, is not likely to adversely affect ESA-listed marine species.

If you have further questions please contact Lance Smith of my staff at (808) 944-2258. Thank you for working with NMFS to protect our nation's living marine resources.

Sincerely,

William L. Robinson Regional Administrator

Cc:

Chris Yates

– ARA PR, PIRO

Gerry Davis

- ARA HC, PIRO

NMFS File No. (PCTS): I/PIR/2008/05404 PIRO Reference No.: I-PI-08-701-LVA

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Pacific Islands Fish and Wildlife Office 300 Ala Moana Boulevard, Room 3-122, Box 50088 Honolulu, Hawaii 96850

In Reply Refer To: 12200-2008-FA-152

AUG 2.2 2008

Chris Yates, Assistant Regional Administrator Protected Resources Division National Marine Fisheries Service Pacific Islands Regional Office 1601 Kapiolani Blvd., Suite 1110 Honolulu, Hawaii 96814

Subject: Request for Informal Consultation under Section 7 of the Endangered Species Act for

Proposed Ecosystem Restoration of Lehua Island, Hawaii

Dear Mr. Yates:

The U.S. Fish and Wildlife Service (Service) is requesting informal consultation under section 7 of the Endangered Species Act of 1973, as amended (ESA), regarding the Service's proposal to fund and carry out ecosystem restoration on Lehua Island. The proposed action is being conducted by the Service in partnership with the Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife (DOFAW). In addition, the U.S. Coast Guard, which administers Lehua and maintains a navigational facility on the island, is a cooperating agency for the National Environmental Policy Act process associated with this action. The Service will also contract the U.S. Department of Agriculture to oversee technical aspects of the aerial rodenticide application on Lehua.

The Service is requesting your concurrence with our determination that the proposed action may affect, but is not likely to adversely affect, the following ESA-listed marine species known to be present in the project area: the endangered Hawaiian Monk Seal (*Monachus schauinslandi*), the threatened Green Sea Turtle (*Chelonia mydas*), and the endangered Humpback Whale (*Megaptera novaeangliae*). The project area does not include any designated critical habitat for these species and is also outside the boundaries of the Hawaiian Islands Humpback Whale National Marine Sanctuary.

Background

The Service completed an informal ESA section 7 consultation with your office in 2005 on this project for Hawaiian Monks Seals and Green Sea Turtles. In a letter dated July 5, 2005 (Attachment #1), your office concurred with our determination that the project may affect, but was not likely to adversely affect, these two species. The rabbit eradication portion of this

2

project was completed but the rat eradication and subsequent native species restoration actions are still pending. The Service and DOFAW also completed a joint State-Federal Environmental Assessment (EA) for Lehua Island restoration in 2005, and issued respective findings of no significant impact.

The Service is re-initiating consultation with your office because the proposed seasonal timing of the rat eradication has been changed from summer to winter. New data has shown that the best time to conduct rat eradication on Lehua is during the winter, not during the summer as proposed in 2005. Research has shown that rats on Lehua are more susceptible to eradication during the winter when their populations are low and they are not breeding. Because of this proposed project change, we are re-initiating informal consultation and are including Humpback Whales, a species that would not have been present during a summer operation. Service staff provided a briefing on the Lehua project to members of your office on June 19, 2008.

We are also in the process of finalizing a joint State-Federal Draft Supplemental EA to address the proposed project changes (Attachment #2). The Draft Supplemental EA was sent out for public review on July 8, 2008, and the Service notified your office by letter that this document was available for review. The Final Supplemental EA will incorporate by reference relevant information in the 2005 Final EA, and will supplement the 2005 analysis of impacts to marine species. Several mitigation measures to avoid or minimize impacts to Monk Seals, Green Sea Turtles and Humpback Whales are identified in this letter and will be included in the Final Supplemental EA.

Description of the Action and the Action Area

Lehua Island is a Federally owned island administered by the U.S. Coast Guard. It is approximately 310 acres in size and is located in Kauai County approximately 34 mile north of Niihau. Lehua is the site of one of the largest seabird colonies in the main Hawaiian Islands. However, Lehua's ecosystem continues to be damaged by alien rats (*Rattus exulans*) that were first documented on Lehua in the 1930s. The Service proposes to restore Lehua Island by eradicating rats, thereby allowing recovery of the many species of seabirds, coastal plants and insects routinely preyed upon by rats. We anticipate that removing rats will also increase plant cover, thus stabilizing soils, reducing sediment runoff into the ocean, and improving the quality of nearshore water and benthic habitats. This will have a beneficial effect on many marine species, including turtles, seals, and possibly whales. Many native terrestrial species are expected to recolonize Lehua after rats are removed, including several ESA-listed threatened and endangered plants and seabirds. Native species that are unable to effectively re-colonize the island will be re-introduced and monitored as part of the restoration program.

We propose to eradicate rats by aerial broadcast of 2-3 gram pellets containing 50ppm of the anticoagulant diphacinone. The pellets are 99.995% inert materials, primarily pressed grain. Pellets would be applied at a density of 10 to 12.5 pounds per acre. The average bait density resulting from each bait application would be approximately one bait pellet every 15 square feet. Diphacinone is an effective yet far less toxic rodenticide than that most often used for rat eradication. However, if eradication is not achieved and diphacinone is shown to be the cause of failure, then brodifacoum, a more powerful toxicant, would be considered for use the following

winter. We anticipate applying diphacinone bait on two different occasions, approximately 5-7 days apart, although there could be up to four applications if rodents are detected after the first two applications. Aerial broadcast would be accomplished by a helicopter carrying a hopper containing bait pellets, which would be distributed at low densities over the island. Each bait application will take less than a day, so the helicopter will conduct baiting operations on two (but possibly up to four) non-consecutive days. Bait bucket re-loading will be done either on Lehua or on a vessel near the island. A second helicopter may be present at the same time during the bait application for short periods in order to transport project personnel to and from the island.

One or two vessels may be present near the island for a total of a few days to support bait application, follow-up monitoring on the island, and marine sampling. Subsequent restoration actions on the island would require crews to access the island by boat, generally every one to two months. In addition, project personnel working on long-term restoration projects may be dropped off and picked up from Lehua by helicopter if the seas are rough. If this occurs, the helicopter will load, unload and then fly directly from the island back to Kauai. Field crews will sometimes stay on Lehua for multiple days but will not camp near the shoreline areas where seals haul out.

Aerial rodenticide application has successfully been used on 58 islands throughout the world to eradicate rats, including Mokapu Island off the north shore of Molokai. It is the most effective method for achieving complete removal of rats from Lehua with the least amount of environmental impact, as discussed in the Draft Supplemental EA. The pesticide label registration process for this type of pesticide use, the label requirements for users, and the licensing of pesticide applicators are all highly regulated and all operations will be in full compliance with Federal and State laws. The tentative schedule, dependent on weather conditions, is to eradicate rats in early 2009, between January and March. Re-introduction of native species and follow-up monitoring could continue for several years after that.

Baseline Human Use Conditions

Ongoing human uses at Lehua, not associated with the proposed action, include fishing from boats, gathering opihi on the Lehua shoreline, and commercial diving, snorkeling, and tour boat activities. These activities occur primarily in the summer when the channel between Kauai and Niihau is calm, although boats will go over on calm winter days as well. Niihau residents also conduct subsistence fishing and gathering in the waters around Lehua whenever waters are calm. Human activities during favorable sea conditions can be characterized as occurring at low but consistent levels.

Effects of the Action

Potential effects on Hawaiian Monk Seals and Green Sea Turtles are discussed in the 2005 Final EA, the 2008 Supplemental Draft EA, and the 2005 informal section 7 consultation with your office. The proposed change in project timing will not increase potential interactions with or risks to either of these species and, therefore, does not alter the conclusions of the original analyses, which are hereby incorporated by reference. In fact, the new project schedule may further reduce the potential for seal interactions, based on anecdotal information from Kauai boat captains familiar with Lehua waters, indicating that monk seals rarely if ever haul out on Lehua during the winter months when the rat eradication would occur. Because rabbit eradication was

Chris Yates 4

successfully completed in 2006, the 2005 analyses and mitigation measures associated with hunters and their dogs on Lehua no longer apply.

Humpback Whales were not included in the 2005 discussions since they are not present in Hawaii during the summer months when the rat eradication was originally proposed to occur. They are, however, present around Hawaii during the winter and have been documented in waters around Niihau and Lehua. The following analysis of the potential for impacts to Humpback Whales is new and will also be included in the 2008 Final Supplemental EA.

Species impacts identified in 1991 NMFS *Final Recovery Plan for the Humpback Whale* that are potentially relevant to this project include acoustic disturbance caused by boats and aircraft, collisions with boats, and habitat degradation from chemical pollution (*i.e.*, rodenticides).

Acoustic disturbance would be minimal due to the small number of vessels and helicopters involved in the project and the short amount of time they would be present, generally on non-consecutive days. Their impacts would be further reduced by mitigation measures prohibiting helicopters from flying over whales and boats from approaching within 100 yards of whales.

Risks of boats colliding with whales are likewise minimal due to the low number of boats present for short periods. Any boat captains employed for the project would be aware of the presence of whales in Hawaiian waters in general and specifically around Niihau. The mitigation measure prohibiting boats from approaching within 100 yards of Humpback Whales will further reduce risks to whales.

There is no risk of rodenticide poisoning to Humpback Whales resulting from this project because there is no pathway of exposure to toxins. Whales will not be affected by rodenticide use at Lehua because: a) Humpback Whales rarely if ever feed during the time they are in Hawaiian waters; b) diphacinone and brodifacoum are virtually insoluble in water, thus precluding any risk of dermal absorption posed by pellets that accidentally fell in the water; c) field feeding trials with placebo bait pellets conducted by the Service at Lehua in 2004 indicate that nearshore fishes are not interested in eating bait pellets; and d) no impacts to or exposure of marine life were documented as a result of aerial rodenticide broadcasts in numerous rat eradications from islands worldwide, including the recently completed rat eradication at Mokapu Island, located off the north shore of Molokai. Laboratory analyses of seawater, intertidal limpets and fishes collected after the Mokapu broadcast did not detect any traces of diphacinone in any of the samples (the lab results are included as an appendix to the attached Draft Supplemental EA). In addition, project mitigation measures will be in place to help avoid accidental spread of bait into the water, including not broadcasting bait when winds exceed 35 mph or heavy rains are forecast, and using a helicopter GPS system to track flight paths and avoid over-application of bait.

During the public comment period on the Draft Supplemental EA, we received a comment letter expressing concern about the fact that a Humpback Whale calf stranded and died on Maui on February 25, 2008, 13 days after the Mokapu Island rat eradication was completed off the north shore of Molokai. Because of the concerns raised about the timing of this incident, the Service arranged for testing of liver samples taken from the calf for diphacinone residues just after the stranding occurred and prior to receipt of this comment letter. Diphacinone concentrates in the

Chris Yates 5

liver and would be expected to be present if the calf had been directly exposed to diphacinone either in utero or after birth via ingestion or dermal absorption, or if it had been indirectly exposed through its mother's milk.

The liver samples were analyzed for diphacinone residues by laboratories at the U.S. Department of Agriculture's National Wildlife Research Center and the U.S. Geological Survey-Biological Resources Division's Columbia Environmental Research Center. Neither laboratory detected any diphacinone residues. Laboratory detection limits for diphacinone were 77 parts per billion (ppb) and 15 ppb, respectively. In addition, verbal communications and emails from the NOAA Marine Mammal Stranding Coordinator in Hawaii stated that the gross necropsy of the calf showed nothing abnormal and that there is no evidence of a causal connection between the Mokapu diphacinone application and the calf's death. For these reasons, coupled with the lack of any feasible exposure pathway (as discussed above) to the whale calf or its mother through ingestion or dermal absorption of diphacinone, there is no reason to suspect that the incident was associated with the Mokapu Island rat eradication. Therefore, this incident does not provide any reason to alter the conclusion that rodenticide use at Lehua poses no risk to Humpback Whales.

Project Mitigation Measures for ESA-listed Marine Species

The following mitigation measures will be implemented to avoid project-related impacts or minimize them to insignificant or discountable levels:

- Ground crews conducting monitoring or other restoration activities on Lehua will maintain a 100 foot distance from Hawaiian Monk Seals hauled out on the shoreline.
- The helicopter will be required to avoid flying over or spreading bait onto any Hawaiian Monk Seals hauled out on Lehua.
- The helicopter will be required to avoid flying over Humpback Whales.
- No vessel associated with the project will approach within 100 yards of Humpback Whales.
- The helicopter will fly over land when distributing bait pellets.
- Diphacinone, an effective yet far less toxic rodenticide than that most often used for rat eradication, will be the first choice for use on Lehua.
- The helicopter pilot will guide and record bait application with an on-board differential global positioning system (GPS), assuring uniform and complete coverage of the island without over-application.
- To avoid bait being washed into the ocean by rain before it is consumed by rats, bait will only be applied when no significant rainfall is forecasted.
- To avoid uncontrolled bait spread and to comply with pesticide label requirements, bait will not be applied when winds exceed 35 mph (30 knots).
- Marine monitoring will be conducted following bait application and nearshore samples of water, fish, and invertebrates will be tested for rodenticide residues. Test results will immediately be made available to agencies and the public.

Conclusion

We have determined that the proposed ecosystem restoration actions at Lehua Island may affect, but are not likely to adversely affect, Hawaiian Monk Seals, Green Sea Turtles, and Humpback Whales. This project will benefit ESA-listed marine species by reducing sediment runoff into the ocean and improving the quality of nearshore waters and benthic habitats. If you have

questions or comments, please contact Coastal Program Coordinator Chris Swenson by telephone at (808) 792-9400 or by fax at (808) 792-9581.

Sincerely,

Patrick Leonard
Field Supervisor

Attachments (2)

cc w/out attachments: Paul Conry, DOFAW

Thomas Kaiakapu, DOFAW Jay Silberman, USCG Mike Pitzler, USDA

APPENDIX E

COPIES OF PUBLIC COMMENT LETTERS RECEIVED

DEPARTMENT OF BUSINESS, ECONOMIC DEVELOPMENT & TOURISM

GOVERNOR
THEODORE E. LIU
DIRECTOR
MARK K. ANDERSON
DEPUTY DIRECTOR
ABBEY SETH MAYER
DIRECTOR
OFFICE OF PLANNING

Telephone: (808) 587-2846 Fax: (808) 587-2824

File y

OFFICE OF PLANNING

235 South Beretania Street, 6th Floor, Honolulu, Hawaii 96813 Mailing Address: P.O. Box 2359, Honolulu, Hawaii 96804

Ref. No. P-12195

July 23, 2008

Mr. Chris Swenson U.S. Fish and Wildlife Service 300 Ala Moana Boulevard, #3-122 Honolulu, Hawaii 96850

Dear Mr. Swenson:

Subject: Hawaii Coastal Zone Management (CZM) Program Federal Consistency

Review for Rat Eradication on Lehua Island, North of Niihau

The proposal to use rodenticides to eradicate rats from Lehua Island (north of Niihau), which is a designated State Seabird Sanctuary, has been reviewed for consistency with the Hawaii CZM Program. It is our understanding that the aerial broadcast of rodenticide will occur over a maximum of four days in the winter of 2008-2009. We concur with your determination that the activity is consistent to the maximum extent practicable with the Hawaii CZM Program enforceable policies.

CZM consistency concurrence is not an endorsement of the project nor does it convey approval with any other regulations administered by any State or County agency. Thank you for your cooperation in complying with the Hawaii CZM Program. If you have any questions, please call John Nakagawa of our CZM Program at 587-2878.

Sincerely,

Abbey Seth Mayer

Director

c: Department of Land and Natural Resources, Division of Forestry and Wildlife Department of Planning, County of Kauai BILL "KAIPO" ASING

GARY K. HEU ADMINISTRATIVE ASSISTANT

RECEIVED

IAN K. COSTA

DIRECTOR OF PLANNING

IMAIKALANI P. AIU

DEPUTY DIRECTOR OF PLANNING

COUNTY OF KAUA'I PLANNING DEPARTMENT

4444 RICE STREET KAPULE BUILDING, SUITE A473 LIHU'E, KAUA'I, HAWAI'I 96766-1326

August 4, 2008

Chris Swenson Fish and Wildlife Services Pacific Islands Fish and Wildlife Office 300 Ala Moana Boulevard, Room 3-122 Honolulu, HI 96850

Subject: Response to Request for Public Comment on Draft Supplemental Environmental Assessment for the Lehua Island Ecosystem Restoration Project, Kaua'i County

Dear Mr. Swenson:

Thank you for the United States Department of Interior request for Fish and Wildlife Services review and comment, pursuant to the National Environmental Policy Act on the Draft Supplemental Environmental Assessment. The County of Kaua'i Planning Department has reviewed the above referenced Environmental Assessment for consistency with the County of Kaua'i General Plan Objectives and Policies and has determined that the EA for the Lehua Island Ecosystem Restoration Project falls within the stated policies and objectives. The project goals to restore an environmentally sensitive area and to reverse negative impacts caused by the invasive rodents are consistent with the General Plan.

Planning Director

RECEIVED

AUG 0.7.2008

Conservation Council for Hawai'i

August 7, 2008

Patrick Leonard Field Supervisor Pacific Islands Fish and Wildlife Office U.S. Fish and Wildlife Service 300 Ala Moana Blvd., Room 3-122 Honolulu, HI 96850

Via Facsimile Transmittal: 808 792-9581

Comments on Lehua Island Ecosystem Restoration Plan

Aloka. Conservation Council for Hawai'i supports efforts by the U.S. Fish and Wildlife Service and Hawai'i Department of Land and Natural Resources to restore habitat for native Hawaiian scabirds, plants, and other wildlife on Lehua Island, and the proposed use of diphacinone to eradicate introduced rats.

Based on the research and testing required to use diphacinone and information provided in the Draft Supplemental Environmental Assessment for the Lehua Island Ecosystem Restoration Project, we believe the proposed action will greatly benefit 16 seabird species and other Hawaiian wildlife, and will not harm non-target species. Monitoring the proposed action will provide additional safeguards. Given everything we know about the harm rats cause to native Hawaiian birds, tree snalls, plants, and ecosystems, we believe the proposed action is necessary to save Lehua Island. No action is not an option if we are going to save what little remains of our unique flora and fauna. We urge you to move forward.

Thank you for the opportunity to comment.

Sincerely

Mariorle Ziegler

Working Today for the Nature of Tomorrow

Telephone/Fax 808.593.0266 • email: info@conservehl.org • web: www@conservehl.org P.O. Box 2923 • Honolulu, Hi 98802 • Office: 250 Ward Ave., Suite 212 • Honolulu, Hi 96814

Hawal'i Affiliate of the National Wildlife Federation

President: Julie Leigiche * Vice-President: Nelson Ho * Secretary/Treasurer: Kim Remos * Directors: Fred Kraus, Ph.D. * Douglas Lamerson, Maura O'Connor * George Robertson * Claire Shimabukuro * Helene Takernoto .* Executive Director: Merjorie Ziegier

Nick Holmes <ndholmes@hawaii.edu> 07/28/2008 09:08 AM

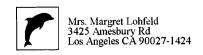
To Chris_Swenson@fws.gov

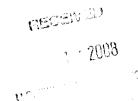
cc Thomas.J.Kaiakapu@hawaii.gov, Scott.Fretz@hawaii.gov

bcc

Subject Comments for Lehua EA

Hi Chris


Please consider these my comments for the Lehua EA. I'm not sure if they need to go via an official DOFAW comment list, so cc'd in Thomas and Scott as well.


The proposed Lehua rat eradication is of immense value for Hawaiian seabirds. Removal of rats will allow smaller species unable to breed with rat predation to return, with potential re-colonizers / colonizers including Grey-backed Tern, Sooty Tern, Brown Noddy, Blue Grey Noddy and Christmas Shearwater. Rat removal will also create habitat for including endangered species of Newell's shearwater and Band-rumped storm-petrel, and potentially Hawaiian petrel. Given the immense difficulty in protecting these endangered species on the main Hawaiian Islands, and the absence of other common predation threats to these species on Lehua (cats, pigs, dogs), Lehua represents an invaluable exercise in potentially creating / restoring a new colonies of these birds.

The monitoring procedures both during and after the rodenticide drop are sound and adequately meet the objectives of ensuring a safe and successful drop.

Best	
Nick	
Nick Holmes PhD	

Coordinator
Kauai Endangered Seabird Recovery Project
PO Box 458
4622 Waimea Canyon Drive
Waimea HI 96796
P. 808 338 1361
C. 808 346 3782

July 10, 2008

To: U.S. Fish and Wildlife Service reg. Lehna Island Ecosystem Restoration Plan

First off: Thank you for sending me your NEWS RELEASE. From that information sheet I gather that the rateractication will be performed properly, at the proper time, causing little or no environmental damage so that mative species can flourish.

Since I am hot a biologist I have to trust that you will use the most effective method and chemicals to get rid of the rats on

Lehna Island.

Sincerely,

Mrs. Margret Lou fleld Member The Ocean Conservancy Chris Swenson USFWS 300 Ala Moana Blvd. Rm 3-122 Honolulu, HI 96850

July 10, 2008

Dear Sir:

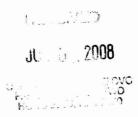
I support the proposed Lehua Pacific Rat eradication efforts in order to conserve seabirds and their habitat. Rats are notorious for their depredations on individual bird chicks, eggs and plants that hold the ground in place. Island restoration is an on-going effort throughout the World, and in Hawaii, especially; the offshore islands need and deserve the attention proposed by this project. I urge you to consider the entire ecosystem effects of these introduced predators, their effect on seeds, seedlings, erosion, insects, an rare and endangered plants and of course seabirds.

JU 1 2008

The complete eradication of small mammals from Lehua will make his island a literal ark for endangered species found on other islands in the Northwest Hawaiian Islands. For example, s recent sighting of a Blue Noddy off Niihau where they have not been seen breeding since around 1923 suggests they may be prospecting nesting sites. These smallest of terms are extremely susceptible to rodent depredation. The elimination of rats from Lehua will make this island a potential and only nesting site for them in the main Hawaiian Islands. Lehua will also become a plant refuge and a place where the Nihoa Finch might be placed in case of disaster there.

I believe that with final eradication of rodents, Lehua will become an important seabird colony on par with Moku Manu, a State seabird sanctuary off Oahu and the other Federal refuges in the Northwestern Hawaiian Islands.

Good Luck.


Sincerely,

Mark Rauzon

Marine Endeavors 4701 Edgewood Ave.

Oakland, CA 94602

July 9, 2008

U.S. Fish and Wildlife Service Pacific Islands office 300 Ala Moana Boulevard, Room 3-122 Honolulu, HI 96850

Dear Sir:

I fully support the proposed project that would eradicate non-native rats on Lehua Island, Kauai. Through the years, man has made many devastating changes to the natural environment. It's great that in this isolated instance corrections can be made that will help return the island to a more natural state for both plant and animal life.

Sincerely yours,

Melvin L. Gabel

3-3400 Kuhio Hwy C102

Lihue, HI 96766

LINDA LINGLE Governor

SANDRA LEE KUNIMOTO Chairperson, Board of Agriculture

DUANE K. OKAMOTODeputy to the Chairperson

State of Hawaii **DEPARTMENT OF AGRICULTURE**1428 South King Street

Honolulu, Hawaii 96814-2512

August 4, 2008

U.S. FICH A WILDLIFE CVC

RECEIVED

Mr. Chris Swenson U.S. Fish and Wildlife Service 300 Ala Moana Boulevard, Room 3-122 Honolulu, Hawaii 96850

Dear Mr. Swenson:

Thank you for the opportunity to comment on the Draft Supplemental Environmental Assessment (DSEA) for the Lehua Island Ecosystem Restoration Plan. The Hawaii Department of Agriculture has the following comments on the assessment:

There are significant concerns regarding the aerial application of restricted-use pesticides in a situation where there are no enforceable slope requirements and when there is allowance of wind speeds up to 35 knots. There is also no toxicity data for marine mammals or comprehensive review of exposure pathways. While the National Marine Fisheries Service was consulted for the Hawaiian monk seal and sea turtles, all other marine mammals were not addressed in the information presented in the DSEA.

A summary of the Hawaii Department of Agriculture's concerns with the label proposed for use are attached to these comments.

There have been problems in Hawaii with uniform applications with the bait hopper carried under a helicopter. Uneven distribution occurred at the Keauhou Ranch in September 2003. One of the outcomes was a significant improvement of non-target toxicity information to mammals because a number of feral pigs were unexpectedly poisoned during that study.

There is no discussion about unacceptable operating conditions except with wind exceeding 35 miles per hour. Since only aerial applications will be conducted all alternative application methods have been removed from the DSEA. There appear to be slopes on Lehua which would result in uneven distribution of baits. How will uniform distribution (a stated objective of the study) be assured? Will less bait be deposited on steeper slopes? If so, what will the rate of application be for the different slopes on Lehua Island? Will the pilot determine this in flight?

No spray adjuvants such as stickers are discussed. Stickers would assist in uniform bait distribution. Normally stickers are used with aerosols or particle pesticide applications. There may be no commercially available stickers for pellets. Consideration should be given to develop a sticker for pellets that is palatable to rats and provides for more uniform distribution of the pellets when applied by air (especially where there are significant slopes that would favor uneven distribution of baits).

There were several water and tissues results of analyses presented for the February 6 and 12, 2008 Mokapu Island applications. Among the restrictions on the aerial permit issued by the

Department of Agriculture on February 5, 2008 was the statement, "Do not allow pellets/bait to enter water during application." See aerial permit attached. With this restriction, no residues would be expected in marine ecosystems. The small amount of diphacinone that would enter the water from the degradation of baits is unlikely to be detected in any marine ecosystem. The bait has 50 parts per million diphacinone. Residues of diphacinone may be detected in run-off from precipitation, but are unlikely to be detected once the run-off is diluted with sea water. There were also no results provided from the humpback whale calf that was reported to have beached on Puamana Beach, Maui on February 25, 2008 (an unfortunate coincidence or connection to the rodenticide applications). This concern was specifically identified to the National Marine Fisheries Services and the U.S. Fish and Wildlife Services. We were informed that tissue samples would be collected from the humpback whale calf. What were the results?

It should be noted that anticoagulants act to prevent blood clotting. Different species are more susceptible than others. However, some events may result in a species that is not particularly susceptible to be affected. Warfarin (Coumarin), one of the first anticoagulants, was identified when calves fed fermented alfalfa suffered uncontrolled bleeding following dehorning operations. A later use was to dose cattle in areas with vampire bats with anticoagulant to control (kill) bats feeding on cattle. Birthing can trigger a bleeding event. LD 50 values are important in assessing hazards to mammals or other animals not at risk or subject to bleeding events. However, an entirely different set of values should be applied for anticoagulants to susceptible individuals (pregnant female mammals that bleed during birth).

The American Association of Poison Control Centers reported 18 human fatalities associated with anticoagulants during 2006. What was the number of fatalities when Dipaxin was used?

Although there is extensive human exposure data with anticoagulants, there is very limited information on the toxicity of diphacinone to marine mammals. One way to mitigate this lack of information is to prohibit its application to water. This restriction will continue until better information on toxicity and exposure of anticoagulants to endemic Hawaiian marine mammals is available.

Thank you for the opportunity to comment.

Sincerely,

Robert A. Boesch

Pesticides Program Manager

Robert A. 1808/6

Enclosures:

Letter to Debra Edwards, Office Director, Office of Pesticides Programs, dated July 11, 2008 Permit to Apply Restricted Use Pesticides by Aircraft, Permit No. MA-08-01 dated 2/5/08 Printout of abc KITV.com story entitled "Beached Whale Calf Found On Maui Shore", posted February 25, 2008

Map with Locations of Mokapu Island and Puamana Beach

2006 Annual Report of the American Association of Poison Control Center's National Poison Data System, A.C. Bronstein, et.al., page 832.

LINDA LINGLE Governor

SANDRA LEE KUNIMOTO

Chairperson, Board of Agricultu

DUANE K. OKAMOTODeputy to the Chairperson

State of Hawaii DEPARTMENT OF AGRICULTURE 1428 South King Street Honolulu, Hawaii 96814-2512

July 11, 2008

Ms. Debra Edwards
Office Director
Office of Pesticides Program
USEPA Headquarters
Ariel Rios Building
1200 Pennsylvania Avenue, N. W. *Mail Code:* 7501P
Washington, DC 20460

Dear Ms. Edwards:

The U.S. Fish and Wildlife Services and other wildlife protection agencies are using anticoagulant rodenticides to control rats that prey on birds and damage vegetation on off-shore islands. In some locations, aerial broadcast of rodenticide pellets is employed. Some of these islands have steep slopes and pellets are likely to fall into the ocean. Much of the ocean around Maui and portions of Oahu, Kauai, and Big Island is humpback whale sanctuary. Humpback whales migrate to Hawaii during the winter and give birth to calves. Hawaiian Monk Seals are another marine mammal that is endemic to the Hawaiian Islands. Both mammals are endangered species. Conditions placed on permits to prohibit the application or drift of pellets to the ocean has met considerable resistance from the wildlife conservation agencies

The following are what we understand to be the key issues:

- 1. The Office of Pesticides Programs has no testing guidelines designed to determine the risks of pesticides to marine mammals;
- 2. Because there are no pesticides currently registered for use in oceans, seas, or other deep ocean areas, any registration for these areas should receive registration from the U.S. Environmental Protection Agency;
- 3. State agencies may be authorized to implement the Clean Water Act, including the National Pollution Discharge Elimination System (NPDES). The NPDES programs are designed to regulate discharges to any waterway of the United States. Oceans, seas, straits, reefs, and other marine environments are waterways within the recognized territorial boundaries are waterways of the United States.
- 4. Authorized States may issue NPDES permits for marine environments.
- 5. Authorized states are likely to have knowledge of the impact of contaminants on receiving waters they regulate

- 6. The application of pesticides to control terrestrial pests is not addressed by EPA's rules and policies concerning FIFRA/Clean Water Act coordination.
- 7. The HDA does not have the expertise needed to determine impact of rodenticides on marine mammals and would require external review to assure that agencies knowledgeable in marine mammals and/or regulating discharges to the ocean are included in the review.
- 8. The HDA places a condition on aerial permits near coastal waters to prohibit application to water.

This is to request data or rationale submitted in support of removal of the prohibition "Do not apply this product directly to water, or to areas where surface water is present or to intertidal areas below the mean high water mark", especially data or rationale concerning effects on endangered marine mammals. This data is critical to determine whether or not we will continue to include the prohibition on application to water as a condition of aerial permits issued by the State for restricted-use pesticides.

Please contact me at 808-973-9404 should you have any questions concerning this request.

Sincerely,

Robert A. Boesch Pesticides Program Manager

Enclosure: Amended label for Diphacinone-50: Conservation Pelleted Rodenticide

Bait for Conservation Purposes

C: Clean Water Branch, Department of Health Larry Lau, Deputy Director of Health

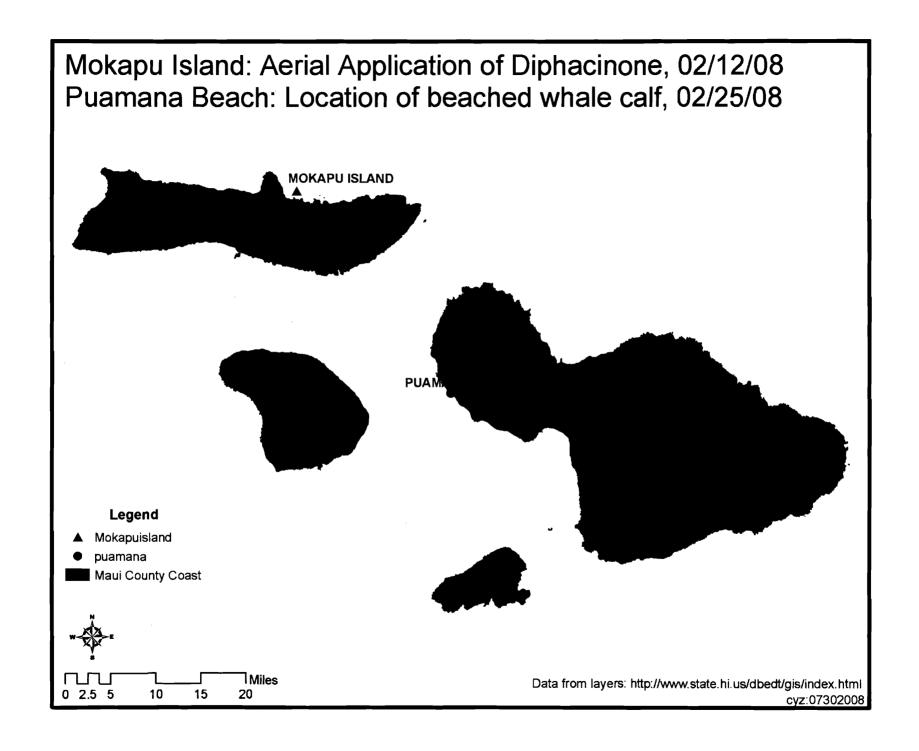
U.S. Fish and Wildlife Services

U. S. Environmental Protection Agency, Region IX

U.S. Environmental Protection Agency, Registration Division Insecticide-Rodenticide Branch (7504C)

U.S. Environmental Protection Agency, Environmental Fate and Effects Division (7507P)

LINDA LINGLE Gevernor


SANDRA LEE KUNIMOTO CHAIPERSON, BOARD OF AGRICULTURO

DUANE K. OKAMOTO Deputy to the Chairperson

Sigle of Hawaii
DEPARTMENT OF AGRICULTURE
POSIGICES Brench
1428 South King Street
Honolulu, Hawaii 98814-2512
Phone: (808) 973-9401 Fax: (808) 973-9418

PERMIT TO APPLY RESTRICTED USE PESTICIDES BY AIRCRAFT

Permit No.	MA-08-01	Certification No.	H72166/A15048
Date Issued	02/05/08	Expiration Date	03/05/08
To: (Name)		Wildlife Services	
(Address)	3375 Koapaka	St., H-420, Honolulu,	HI 96819
Permission is horeb	y given to apply a rest	tricted use pesticide by uircr	aft as specified in your
application of	02/04/08		
	(Date)		
Department of Agri	iculture applicable to	nce with the Adolinistrative in a control applications of reatric and a cold unreased accessary to avoid unreased accessary to avoid unreased accessary to a cold	
A responsibl	e certified supervisor s	hall be present at the site durit	ng aircrast operations.
	praying shall be conductions of diphacinone re	cted when wind volocity exceeded when wind volocity exceeded to the control of th	eds 10 MPH (25 MPH for
Additional restriction		Please notify Lester Chir	ı, HDOA when you
plan to apply at (8	08) 873-3557/(808) 2	283-9122. Pilot: David Ok	ita (H72166 cat. 4).
Do not allow pelle	ts/buit to enter wate	r during application.	
• FOLLOW A	LL PESTICIDE LABI	EL, DIRECTIONS.	
		procedures and conditions of	
• •	-	cides Branch at 973-9401 of a	• -
 Applicant m application. 	ust notify the Pesticide	s Branch, in writing, at least th	ree (3) days prior to each
		lyle	Work
		LYLE.	WONG
		Plant In	idustry Administrator
Form P-24		_₩.	
(Rev. 01/08)		Colonel adams	

Clinical Toxicology (2007) 45, 815–917 Copyright © American Association of Poison Control Centers ISSN: 1556-3650 print / 1556-9519 online DOI: 10.1080/155636500701754763

AAPCC 2006 ANNUAL REPORT OF THE NPDS

2006 Annual Report of the American Association of Poison Control Centers' National Poison Data System (NPDS)

ALVIN C. BRONSTEIN, M.D., DANIEL A. SPYKER, PH.D., M.D., LOUIS R. CANTILENA, JR, M.D., PH.D., JODY GREEN, PH.D., BARRY H. RUMACK, M.D., and STUART E. HEARD, PHARM.D.

832 A.C. Bronstein et al.

Table 17C. Substances most frequently involved in adult* (> 19 years) exposures (Top 25)

Substance	Number	% **
Analgesics	127,135	15,1
Sedative/hypnotics/antipsychotics	106,705	12.7
Cleaning substances (household)	74,926	8.9
Antidepressants	64,145	7.6
Bites and envenomations	53,715	6.4
Cardiovascular drugs	50,643	6.0
Alcohols	45,448	5.4
Pesticides	41,487	4.9
Food products/food poisoning	37,497	4.5
Cosmetics/personal care products	33,633	4.0
Chemicals	28,525	3.4
Anticonvulsants	27,108	3.2
Fumes/gases/vapors	26,691	3.2
Hydrocarbons	25.745	3.
Antihistamines	24,341	2.9
Hormones and hormone antagonists	23,506	2.8
Antimicrobials	23,381	2.8
Stimulants and street drugs	22,949	2,
Cold and cough preparations	20,576	2.:
Muscle relaxants	18,209	2,3
Topical preparations	17,193	2.0
Gastrointestinal preparations	13,036	1.6
Miscellaneous drugs	12,620	1.3
Foreign bodies/toys/miscellaneous	11,121	1.3

^{*}Includes all adults with actual or estimated ages > 19 years old. Results also include "Unknown Adult" but do not include "Unknown Ages"

Table 18. Categories associated with largest number of fatalities (Top 25)

Substance	Number	% of all exposurcs in category
Sedative/hypnotics/antipsychotics	382	0.280
Opioids	307	1.030
Cardiovascular drugs	252	0.310
Acetaminophen in combination	214	0.300
Antidepressants	210	0.250
Stimulants and street drugs	203	0.450
Alcohols	139	0.210
Acetaminophen only	138	0.200
Muscle relaxants	98	0.410
Anticonvulsants	93	0.230
Cyclic antidepressants	75	0.720
Fumes/gases/vapors	69	0.170
Antihistamines	66	0.096
Aspirin alone	61	0.350
Other nonsteroidal anti-inflammatory drugs	55	0.060
Unknown drug	49	0.280
Chemicals	38	0.100
Oral hypoglycemics	35	0.300
Miscellaneous drugs	27	0.120
Diuretics	25	0.240
Automotive/aircraft/boat products	25	0.180
Antihistamine/decongestant, without phenylpropanolamine	22	0.040
Hormones and hormone antagonists	20	0.050
Anticoagulants	18	0.290

- Undoubtedly responsible (and Proximate Cause of Death)
 In the opinion of the Case Review Team the Clinical Case Evidence established beyond a reasonable doubt that the SUBSTANCES actually caused the death.
- 2. Probably responsible In the opinion of the Case Review Team the Clinical Case Evidence suggests that the SUB-STANCES caused the death, but some reasonable doubt remained.
- 3. Contributory In the opinion of the Case Review Team the Clinical Case Evidence establishes that the SUB-STANCES contributed to the death, but did not solely

Table 19. Comparisons of fatality data (1985-2006)

Year	Total fatalities		Suicides		Pediatric death	
	No.	% of cases	No.	% of deaths	No.	% of deaths
1985	328	0.037	174	(53.0)	20	(6.1)
1986	406	0.037	223	(54.9)	15	(3.7)
1987	398	0.034	227	(57.0)	22	(5.5)
1988	544	0.040	296	(54.4)	30	(5.5)
1989	590	0.037	323	(54.7)	24	(4.1)
1990	553	0.034	320	(57.9)	21	(3.8)
1991	764	0.042	408	(53.4)	44	(5.8)
1992	705	0.038	395	(56.0)	29	(4.1)
1993	626	0.036	338	(54.0)	27	(4.3)
1994	766	0.040	410	(53.5)	26	(3.4)
1995	724	0.036	405	(55.9)	20	(2.8)
1996	726	0.034	358	(49.3)	29	(4.0)
1997	786	0.036	418	(53.2)	25	(3.2)
1998	775	0.035	421	(54.3)	16	(2.1)
1999	873	0.040	472	(54.1)	24	(2.7)
2000	921	0.042	477	(51.8)	20	(2.2)
2001	1085	0.048	553	(51.0)	27	(2.5)
2002	1169	0.049	635	(54.3)	27	(2.3)
2003	1109	0.046	592	(53.4)	35	(3.2)
2004	1190	0.049	642	(53.9)	27	(2.3)
2005	1,261	0.052	623	(49.4)	24	(1.9)
2006	1,229	0.050	611	(49.7)	29	(2.4)

Table 20. Frequency of plant exposures (Top 25)

Botanical name	Number
Spathiphyllum species	2,133
Euphorbia pulcherrima	1,615
llex species	1,572
Philodendron spp	1,514
Phytolacca americana	1,358
Toxicodendron radicans	1,194
Schlumbergera bridgesii	705
Hex opaca	608
Crassula argentea	604
Plants-cardiac glycosides	583
Matus species	582
Taraxacum officinale	581
Pepper mace	566
Epipremnum areum	566
Plants-cyanogenic glycosides	555
Plants-pokeweed	543
Mold	538
Caladium spp	533
Nandina domestica	530
Narcissus pseudonarcissus	474
Spinacia oleracea	467
Cactus (Unknown type or name)	460
Rosa spp	450
Quercus spp	447
Hedera helix	446

cause the death. That is, the SUBSTANCES alone would not have caused the death, but combined with other factors, were partially responsible for the death.

- 4. Probably not responsible In the opinion of the Case Review Team the Clinical Case Evidence, established to a reasonable probability, but not conclusively, that the SUB-STANCES associated with the death did not cause the death
- Clearly not responsible (and Not Contributory) In the opinion of the Case Review Team the Clinical Case Evidence establishes beyond a reasonable doubt that the SUB-STANCES did not cause this death.
- 6. Unknown In the opinion of the Case Review Team the Clinical Case Evidence was insufficient to impute or refute a causative relationship for the SUBSTANCES in this death.

^{**}Percentages are based on the total number of human exposures (2,403,539) rather than the total number of substances.

GO

SEARCH

Homepage > MOST POPULAR

Site Web

Beached Whale Calf Found On Maui Shore

Local News News Archive Politics Helen Thomas Island Television News Team This Morning Mixed Plate Good Question Most Popular

This Morning
Mixed Plate
Good Question
Most Popular
Slideshows
As Seen On KITV
Iraq War
Political Web

Home
Weather
Local News
National News
Politics
Sports
Entertainment
Food
Health
Keiki Hula
Hawaii Going Green
Money
Weird News

MARKETPLACE
Hawaii Experts
eCouponsHawaii
UH Centennial
Small Business
Auto
Dating
Jobs
Real Estate
House & Home

Education

Travel

ಾ ≓ದ್ದರ ನಿ⊴್ತ

HONOLULU — A humpback whale calf beached itself on Maui on Monday morning and later died, officials with the Pacific Whale Foundation said.

The 8- to 10-foot whale calf came onto shore at Puamana Beach. Officials with the foundation estimated the calf is a couple of weeks old.

There were no signs of cuts or shark bites, they said. Researchers said the calf looked emaciated and unhealthy.

Department of Land and Natural Resources teams went up and down the shoreline to prevent any sharks from going close to the beaches.

The carcass will be removed, and a necropsy will be performed by DLNR.

Beached whales are rare on Maui, according to a researcher with the foundation. Most ill whales are normally attacked by sharks before coming to shore, she said.

Copyright 2008 by <u>KITV com</u> All rights reserved. This material may not be published, broadcast, rewritten or redistributed

Most Popular Stories

Environmentalists Blame RIMPAC For Beached Whale

Ewa Man Faces 2nd Trial In Murder, Arson Case

Sacred Falls Reopening Plans Receive Mixed Reaction

Hawaii Tourism Officials Look To Avoid Crisis

Hundreds Of Jellyfish Wash Up On Oahu Shore

Man Drowns In Waters At China Walls

Police Arrest Ewa Beach Man In Fatal Stabbing

Island Charities Feel Pinch From Slowing Economy

'Extreme Makeover' Home Faces Foreclosure

Hawaiian Word Of The

Most Popular Video

44-Pound Cat Seeking Home, Cheeseburger?

House Mistakenly Sold

High Surf Kills

Oliver Stone's 'W' Portrays Bush As Partier

Jesus' Likeness Spotted

In Kitten's Fur

Volunteers Help Institute For Human Services

Study Says Trains Save Time And Money

Many Favor Rail Transit System

Trades Return With Wet Conditions

Calif. Group Makes Its Own Electric Cars

Most Popular Slideshows

20 Most Dangerous Autos

Ugliest Car 1

Not All Vegetable Dishes Good For You

Cutest Kitten Winner

Cutest Kitten Winn And Finalists

See July '08 Pictures

YOU WORK HARD DURING THE DAY.
YOUR SPRINKLER SHOULDN'T.

DON'T WATER YOUR LAWNS BETWEEN 9AM AND 5PM.

202

APPENDIX F

COPY OF RESPONSE TO PUBLIC COMMENT LETTER

LINDA LINGLE

STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES

DIVISION OF FORESTRY AND WILDLIFE 1151 PUNCHBOWL ST., ROOM 325 HONOLULU, HAWAII 96813 TEL (808) 587-0166 FAX (808) 587-0160

October 8, 2008

LAURA H. THIELEN
CHAIRPERSON
BOARD OF LAND AND NATURAL RESOURCES
COMMISSION ON WATER RESOURCE MANAGEMEN

RUSSELL Y. TSUJI FIRST DEPUTY

KEN C. KAWAHARA DEPUTY DIRECTOR - WATER

AQUATIC RESOURCES
BOATING AND OCEAN RECREATION
BUREAU OF CONVEY ANCES
COMMISSION ON WATER RESOURCE MANAGEMENT
CONSERVATION AND COASTAL LANDS
CONSERVATION AND RESOURCES ENFORCEMENT
INSTORIC PRESERVATION
FORESTRY AND WILDLIFE
HISTORIC PRESERVATION
KAHOOLAWE ISLAND RESERVE COMMISSION
LAND
STATE PARKS

Mr. Robert Boesch Manager, Pesticide Branch Department of Health 1428 S. King Street Honolulu, HI 96814-2512

Dear Mr. Boesch:

Subject:

Response to Comments on the Draft Environmental Assessment for a Proposed Ecosystem Restoration Project on Lehua Island, Kaua'i County

This letter is in response to your August 4, 2008, comment letter on the Draft Supplemental Environmental Assessment (EA) for the Lehua Island Ecosystem Restoration Project. An italicized summary of each of your comments and a reference to its location in your letter is included, followed by our response.

Lack of information for other marine mammals besides seals (Paragraph 2, sentence 3)

- The Service recently completed an informal consultation with the National Marine Fisheries Service (NMFS), under section 7 of the Federal Endangered Species Act (ESA), on the potential effects of the Lehua project on threatened and endangered marine species, including humpback whales. NMFS' response letter (included as Appendix D in the final Supplemental EA) concurs with the Service's determination that the project is unlikely to adversely affect any ESA-listed marine species, including humpback whales.
- A new section was added to Chapter 3 of the Final Supplemental EA to provide additional risk analysis for humpback whales.

Concern about a lack of data on rodenticide toxicity to marine mammals (Paragraph 2, sentence 1 and Paragraph 10, sentence 1)

 According to the NMFS recovery plan for humpback whales, they do not feed in Hawaii so there is no viable pathway by which humpback whales can ingest rodenticide pellets. Therefore, precise estimations of toxicity of the compound to that animal are not required to determine risk. No exposure pathway exists because: a) they are not known to feed when they
are in Hawaii; b) diphacinone is almost completely insoluble in water; and c)
there is no evidence of marine contamination resulting from any previous aerial
rodenticide broadcast, including the one done at Mokapu Island. Seawater, fish
and invertebrates collected at Mokapu all tested negative for diphacinone
residues.

Concerns about uneven bait distribution at Keauhou Ranch and toxicity to non-target mammals (Paragraph 4, sentences 1-2)

- Many improvements have been made since the misapplication of bait occurred at Keauhou Ranch in 2003. These include safeguards that will ensure that bait is evenly and correctly applied at Lehua. Now regarded as standard operating procedures, safeguards such as the use of differential GPS and GIS to track bait application were not used at Keauhou. Also, the bait bucket used for Keauhou was old, had been stored under poor conditions, and had not been properly maintained or repaired. Consequently, it malfunctioned during the application.
- The final report on the Keauhou operation concluded that: "Numerous deviations from the study protocol and from the terms of the EPA permit, such as pigs tampering with bait stations, bait spillage, and an uneven broadcast application rate likely allowed pigs to efficiently forage on concentrated sources of diphacinone bait."
- New buckets with current technology that ensures even bait distribution were purchased in 2007 and will be used on Lehua. The bucket is calibrated prior to each use to confirm that bait is being distributed at the desired application rate and a differential GPS is used to accurately record the location of application swaths. The pilot will use the real-time display of this information to ensure that there are no gaps between application swaths or overlap application swaths by too much. Pellet counts on the ground will confirm that the desired and correct application rate is being achieved.
- There are no non-target terrestrial mammals present on Lehua and no exposure pathway for marine mammals.

No discussion of unacceptable aerial broadcast operating conditions (Paragraph 5, sentence 1)

- All relevant operating conditions were discussed in the Draft Supplemental EA.
 In addition to not flying when winds exceed 35 mph, no broadcast will occur
 when heavy rains are forecasted. Also, the pilot has the final authority for
 determining safe flying conditions and will not fly if he is uncomfortable with the
 any of the conditions.
- An experienced pilot with specialized training in the aerial application of rodenticides, and a State-issued pesticide application certification, was used for Mokapu and the same pilot will be used for Lehua.

Concerns about uniform bait distribution on slopes (Paragraph 5, sentences 3-7)

- Experience from bait applications onto steep islands throughout the world has
 demonstrated that sufficiently uniform bait coverage can be achieved and result
 in complete rat eradication. The pilot for Lehua has been instructed on treatment
 methodology for slopes by the project manager and an experienced broadcast
 application pilot from New Zealand who has conducted successful bait
 applications in steep areas.
- Sufficiently uniform bait distribution on slopes will be ensured by calibrating the
 bucket with placebo bait prior to the application, using specialized application
 equipment, and using a differential GPS to guide the pilot on systematic flight
 lines and GIS to document and check where bait was applied. Per the
 suggestion of the Hawaii Department of Agriculture's Pesticides Branch, bait
 density on steep slopes will be measured following each broadcast.
- Pellets moving downhill during each individual application swath will be a
 relatively uniform factor throughout all swaths and is accounted for, resulting in
 overall uniformity of bait across the island. Although a small amount of fine scale
 variation resulting from differences in physical topography will occur, the average
 bait density on steep slopes will remain relatively uniform and within label
 application rates. In addition, pellet accumulation at the base of a selected steep
 slope will be measured to determine if a disproportionate amount of pellets roll
 downslope and accumulate at the base.
- Aerial broadcast was the only application method considered because many areas of Lehua are too dangerous or physically impossible to reach on foot.

Suggestion to use spray adjuvants (Paragraph 6, sentences 1-5)

- The use of a spray adjuvant is not practical because sticky bait pellets would clog the bucket. Any pellets that make it out of the bucket will stick together in clumps, making uniform bait distribution impossible. Per the suggestion of the Hawaii Department of Agriculture's Pesticides Branch, planning for any future operations on steep-sloped offshore islands will include investigation into types of bait likely to lodge well on slopes.
- None of the other 58 islands that have been treated with aerial broadcast used sticky bait pellets and no adverse impacts to the nearshore marine environment or pelagic marine life has been documented.

Concerns about death of humpback whale calf and results of sampling (Paragraph 7, sentences 8-11)

Liver samples were collected from the humpback whale calf that beached and died on Maui in February 2008. Samples were analyzed for diphacinone residues by laboratories at the U.S. Department of Agriculture's National Wildlife Research Center and the U.S. Geological Survey-Biological Resources Division's Columbia Environmental Research Center. The laboratories' detection limits for diphacinone were 77 parts per billion (ppb) and 15 ppb, respectively. Neither laboratory detected diphacinone residues in the samples. Diphacinone

concentrates in the liver and would be expected to be present if the calf had been exposed to diphacinone.

• The NOAA Marine Mammal Stranding Coordinator for Hawaii stated that "this death is likely a case of normal rate of infant mortality. The gross necropsy showed nothing abnormal..." NOAA found no causal link between the diphacinone bait used on Mokapu and the death of the whale on Maui. This conclusion was based on the gross necropsy, the negative lab results on tests for diphacinone in the calf's liver, and the lack of a feasible pathway for ingestion or dermal absorption of diphacinone.

Susceptibility of pregnant mammals to diphacinone (Paragraph 8, sentences 7-8)

- While a NOEL (no observable effects level) has not been established for maternal toxicity of diphacinone, the risk to pregnant marine mammals is minimal because there is no likely exposure pathway, for the reasons discussed above.
- Extrapolating EPA-approved toxicity test results for rats to whales, a 45-ton adult female Humpback Whale would have to find and ingest 8 kilograms (4,080 twogram pellets) every day over multiple days to cause excess maternal bleeding during birth. It is extremely unlikely that a whale would be able to find (or be attracted to) this many bait pellets over multiple days.

Concerns about human fatalities associated with anticoagulants in 2006 (Paragraph 9, sentence 1)

• All of the 18 human fatalities associated with anticoagulants documented in the 2006 AAPCC report cited in the comment letter resulted from anticoagulant pharmaceuticals (e.g., acetaminophen), not rodenticides. Diphacinone was not contained in any of these pharmaceuticals.

Question about the number of fatalities when Dipaxin was used medicinally (Paragraph 9, sentence 2)

 According to the records of the Pharmacia Corporation, there were no deaths associated with Dipaxin during 23 years of use as a human medication in the United States.

Thank you for your comments on the Draft EA for the Lehua Island Ecosystem Restoration Project. Please contact me at 587-0166 with any questions regarding this Response. I look forward to working closely with you and your staff as we implement this important restoration project.

Sincerely,

Paul J. Conry Administrator

APPENDIX G

ORGANIZATIONS AND INDIVIDUALS CONTACTED

Organizations

Hawaii Department of Agriculture, Pesticides Branch

Animal Rights Hawaii

Office of Hawaiian Affairs

Earthjustice Legal Defense Fund

Hawaii Department of Health

- Clean Water Branch
- Environmental Planning Office

NOAA Fisheries Pacific Islands Regional Office

Kauai County Planning Department

Hawaii State Office of Planning, Coastal Zone Management Program

Carroll Cox. Envirowatch

Hawaii Department of Land and Natural Resources

- Division of Aquatic Resources, Director
- Division of Aquatic Resources, Kauai biologist
- State Parks Division, Administrator
- State Historic Preservation Division

Kauai Burial Council

University of Hawaii

- Environmental Center
- Chair, UH Manoa Zoology Department

Kauai Visitors Bureau

United States Navy, Command Pacific Division, Naval Facilities Engineering Command United States Coast Guard, 14th District (Honolulu, HI)

- Commander
- Civil Engineering Unit

Hawaii Chapter of the Wildlife Society

Acting Mayor, County of Kauai

Kauai County Council, Council Services

State Senator Gary Hooser

State Representative Hermina Morita

State Representative Roland Sagum

State Representative James Tokioka

U.S. Congresswoman Mazie Hirono

U.S. Senator Daniel Inouve

U.S. Senator Daniel Akaka

Hawaii Audubon Society

National Tropical Botanical Garden

Hawaii Conservation Alliance

The Nature Conservancy of Hawaii

- Statewide Office, Honolulu
- Kauai Program Director

Environment Hawaii

Kauai Hunting Association

U.S. Environmental Protection Agency

- Office of Pesticide Programs, Washington, D.C.
- Region IX Headquarters, Sand Francisco, CA
- Pacific Islands Contact Office, Honolulu, HI

University of Hawaii Sea Grant Program

Kahea

Pacific Seabird Group

Waipa Community Foundation

Kai Makana

U.S. Department of Agriculture

- APHIS/Wildlife Services Honolulu Office
- USDA Kauai Office
- NRCS Lihue Service Center

Kauai Invasive Species Committee

Conservation Council of Hawaii

American Bird Conservancy

Kauai Public Land Trust

Kilauea Point Natural History Association

Garden Island Newspaper

Surfrider Foundation

Hanalei Watershed Hui

Kauai Westside Watershed Council

Na Pali Coast Ohana

Ke Kula Niihau O Kekaha

Kula Aupuni Niihau A Kahelela

Kauai Aquatic Life and Wildlife Advisory Committee

Hawaii State Library System

- Hawaii Documents Center, Honolulu
- Lihue Public Library
- Waimea Public Library

Holoholo Charters

Mauka Makai Fishing Tours

Kai Bear

Action Plus Adventures

Sea Lure Fishing Charters

Captain Don's Sportfishing

Deep Sea Fishing Kauai

Hana Pa'a Sportfishing Charters

True Blue Charters

Na Pali Explorer

Open Sea Charter Fishing

Breakaway Fishing Charters

AAA Napali Riders Ocean Rafting

Captain Andy's

Kauai Sea Tours

Kauai Seariders Adventures

Seasport Divers Bubbles Below Scuba Charters Dive Kauai Scuba Center Snorkel Bob's Kauai Inc

Individuals

Bruce Robinson

Margeret Lohfeld

Mike Ord

Forest and Kim Starr

Cheryl Chung

Craig Harrison

David Kuhn

Kenneth Wood

Mark Rauzon

Melvin Gabel

Gregg Howald