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Abstract: We compared four fire spread simulation methods (completely random, dynamic percolation. size-based mini- 
mum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods 
(Poisson fire frequency model and hierarchical fire frequency model) using a two- way factorial design. We examined these 
treatment effects on simulated forest succession dynamics and fire patterns including fire frequency. size, burned area, and 
shape complexity of burned patches. The comparison was carried out using a forest landscape model (LANDIS) for a sur- 
face fire regime in the Missouri Ozark Highlands. Results showed that incorporation of fuel into fire occurrence modeling 
significantly changed simulated dynamics of fire frequency and area burned. The duration-based minimum travel time algo- 
rithm produced the highest variability in fire size, and the dynamic percolation method produced the most irregular burned 
patch shapes. We also found that various fire modeling methods greatly affected temporal fire patterns in the short term, but 
such effects were less prominent in the long term. The simulated temporal changes in landscape-level species abundances 
were similar for different fire modeling methods, suggesting that a complex fire modeling method may not be necessary for 
examining coarse-scale vegetation dynamics. 

RCsumP : Nous avons compark quatre mkthodes de simulation de la propagation du feu (complktement alkatoire, percolation 
dynamique. algorithme du temps minimum de propagation base sur la dimension et algorithme du temps minin~unl de propa- 
gation bask sur la durie) et deux mkthodes de simulation de 170ccurrence des feux (modkle de frkquence des feux de Poisson 
et modkle hiirarchique de friquence des feux) ii l'aide d'un plan factollel i deux facteurs. Nous avons ktudiks les effets de 
ces traitements sur la dynamique simul6e de la succession forestiPre et le comportelnent des feux, incluant la frkquence des 
feux. leur dimension, la superficie bfilde et la complexit6 de la forme des parcelles brclies. La comparaison a it6 effectuke 
B l'aide du modkle de paysage brestier (LANDIS) pour un regime de feux de surface sur les hautes terres des monts Ozark 
au Missouri. Les rksultats montrent que l'introduction des combustibles dans la modklisation de I'occurrence des feux modi- 
fie de f a~on  significative la dynamique simulke de la frkquence des feux et des superficies briilkes. L'algorithme du temps 
minimum de propagation bas6 sur la durke a produit la plus forte variation dans la dimension des feux et la mithode de per- 
colation dynamique a produit les formes des parcelles briilkes les plus irrigulikres. Nous avons aussi observk que diffkrentes 
mithodes de rnodklisation des feux ont grandement affect6 le patron temporel des feux i court terme mais ces effets ktaient 
moins marquis i long terme. Les changements temporels simulis dans I'abondance des espkces ii I'kchelle du paysage 
dtaient semblables avec diffkrentes mkthodes de modklisation des feux. ce qui porte ii croire qu7une mkthode con~plexe de 
n~odklisation des feux n'est peut-&re pas nkcessaire pour itudier la dynamique de la vkgitation i une kchelle grossike. 
[Traduit par la Rkdaction] 

Introduction cies composition and age classes, and generate spatially 
heterogeneous fuel beds. The resulting fuel heterogeneity in 

Fire disturbance plays an important role in shaping ecosys- tuln influences the spatial pattern of subsequent fires (Turner 
tem dynamics and vegetation patterns in many forested land- and Romme 1994). The dynamic interaction of fire and veg- 
scapes (e.g., Romme 1982; Miller and Urban 1999; Ehle and etation at landscape scales is further complicated by other 
~ a k e r  2003). Small and large fires of varying intensities cre- 
ate a mosaic of burned and unburned patches, affect tree spe- 
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important ecological drivers such as tree species dispersal, 
successional recovery of disturbed landscapes, weather and 
clitnate shifts, and land management (Bessie and Johnson 
1995; Schoennagel et al. 2004). 

Simulation modeling is a valuable tool for studying the 
complex interaction of fire. vegetation, climate, and human 
activities over large areas and long time periods (Keane et 
al. 2004). A large variety of forest landscape fire succession 
models have been developed for various research purposes. 
such as reconstructing the historical range and variability of 
landscape patterns (Boychuk and Perera 1997; Keane et al. 
2002: Wirnberly 2002), examining human influence on fuel 
heterogeneity and fire patterns (Sturtevant et al. 2004), and 
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Table 1. The eight fire modeling methods varied by the way fire occurrence and fire spread are simu- 
lated using a two-way factorial design. 

Factor I (fire occurrence simulation method) 

Poisson tire Hierarchical fire 
Factor I1 (Sire spread silnulation method) frequency model (P) frequency model (H) 
Completely random (CR) PCR HCR 
Dynamic percolation (DP) PDP 
Size-based minimum travel time algorithm (SM) PS M 
Duration-based minimum travel time algorithm (DM) PDM 

HDP 
HSM 
HDM 

evaluating forest management alternatives and fire suppres- 
sion plans (Gustafson et al. 2004). These models use differ- 
ent methods to simulate fire occurrence and fire spread and 
are implemented with varying levels of ecological detail. 
Because of the prevalence of forest landscape fire succes- 
sion models and the diversity of simulation methods, it is 
important to understand the premise and behavior of various 
fire modeling methods. 

Fire modeling methods used in forest landscape fire 
succession models are different from those used in fire 
growth simulation models (e.g., FARSITE; Finney 1998). 
Fire growth models focus on the simulation of a single fire 
event in great detail with fine (e.g., hourly) time resolution. 
The purpose of these models is to predict the movement of 
fire fronts within a short time scale (usually a fire season). 
In contrast, forest landscape fire succession models simulate 
multiple fire events over long time scales (e.g., 1000 years) 
with coarse (e.g., yearly or decadal) time resolution. Their 
purpose is to simulate broad-scale fire patterns such as statis- 
tical descriptions of tire frequency and fire size (Li et al. 
2008). Our study focused on fire modeling methods for forest 
landscape fire succession models. 

Efforts have been made to classify landscape tire succes- 
sion models. For example, Keane et al. (2004) classified 
landscape fire succession models in terms of the gradient of 
stochasticity , complexity, and mechanism inherent in the 
each of the four simulation components (i.e., succession, fire 
ignition, fire spread, and fire effects). The classification 
schemes provide formal descriptions for objectively compar- 
ing a forest fire simulation model with others but do not pro- 
vide much information about how different fire modeling 
methods lead to different simulated fire and succession pat- 
terns. There are only a few published papers that compared 
simulated tire patterns across different methods. Li et al. 
(1997) compared mean interval between s~iccessive fires si- 
mulated with four fire probability functions to investigate 
modeling effects on simulated temporal patterns of fire dis- 
turbance. Cary et al. (2006) assessed the sensitivity of four 
existing models (EMBYR, FIRESCAPE, LANDSUM, and 
SEM-LAND), in terms of area burned, to variation in envi- 
ronmental factors and complexity of model formulation. 
Their studies laid groundwork for examining the effects of 
different modeling methods on fire patterns. However, these 
examinations were not comprehensive because there are 
other important aspects of fire patterns besides fire interval 
and area burned. 

Our study examined effects of fire modeling method on 
simulated vegetation dynamics and a wide range of measures 
of fire patterns, including fire frequency, fire size, burned 
area, and shape complexity of burned patches. A fire inodel- 

ing method consists of three fundamental components: fire 
occurrence, fire spread, and tke effects (Keane et al. 2004). 
Method for simulating fire effects was fixed in this study and 
we focused solely on fire occurrence and fire spread simula- 
tion methods. We hypothesized that certain aspects of simu- 
lated fire patterns are most likely affected by fire occurrence 
simulation method (e.g., fire frequency) and others are more 
affected by fire spread simulation method (e.g., fire size and 
tire shape). Interactions may also exist between fire spread 
and fire occurrence. For example, different fire spread simu- 
lation methods produce different fire shapes, resulting in dif- 
ferent fuel patterns, which may later modify simulated fire 
frequency. 

Our research questions include (i) how do different fire 
modeling methods affect fire patterns, (ii) do different fire 
spread simulation methods influence fire occurrence patterns 
and vice versa. and (iii) how do different tire modeling meth- 
ods affect simulated vegetation dynamics? To answer these 
questions, we compared simulated fire and succession pat- 
terns across a spectrum of tire spread simulation methods 
(from simple statistical methods to complicated physical 
methods) under two fire occurrence process scenarios (fire 
hazard being constant and being dependent on fuel). All of 
these tire modeling methods were implemented in one single 
spatially explicit and stochastic forest landscape model 
(LANDIS 4.0; He et al. 2005) that is capable of simulating 
the interaction of fire, fuel, and succession dynamics. The 
comparison was conducted for a typical surface fire regime 
in the Missouri Ozark Highlands. 

Methods 

Fire modeling methods 
We examined eight different fire modeling methods in a 

two-way factorial design that varied by fire occurrence and 
fire spread (Table 1). Here, fire occurrence refers to the ini- 
tiation of a fire event that burns an area of at least one cell on 
the simulated landscape (Keane et al. 2004). We investigated 
two fire occurrence simulation methods that applied either a 
fuel-independent Poisson fire frequency model or a fuel-de- 
pendent hierarchical fire frequency model in the simulation. 
The Poisson tire frequency model (P) assumes that fire haz- 
ard is constant and independent of fuel loads. The simulated 
fire frequency U (i.e., the number of f'ire occurrences per unit 
time per unit area) is distributed as a Poisson process with 
the parameter tire occurrence rate -/r (Van Wagner 1978): 

The hierarchical fire frequency model (H) assumes that fire 
hazard is a function of fuel loading. The model divides a fire 
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occurrence process into two consecutive stages: fire ignition 
and fire initiation. In a given time step, the number of igni- 
tions X is generated from a user-defined Poisson distribution 
with the parameter ignition rate A, which is the expected 
number of ignitions per unit time and unit area: 

Each of the simulated fire ignitions is modeled as a Bernoulli 
trial with the fire initiation probability parameter Pi, whose 
value is determined by fuel type and fuel loading on the ig- 
nited cell (see LANDIS model section for details about fuel 
tracking). The result of each Bernoulli trial can be either 1 if 
it results in a fire initiation or 0 otherwise. The sum of all of 
these Bernoulli trials is then the fire frequency U :  

The Poisson fire frequency model is a special case of the 
hierarchical fire frequency model when fire initiation prob- 
ability P is a constant (i.e., P I  = P2 = ... = P, = P). In this 
special case, fire occurrence rate ?r is a product of two com- 
ponents: fire ignition rate and initiation probability (i.e., .?r = 
XP) (Yang et al. 2004). 

Fire spread refers to the growth of individual fire events. 
There are many techniyues that require different levels of 
computation, parameterization effort, and input data prepa- 
ration to simulate fire spread. We examined four represen- 
tative methods in this study: (i) completely random (CR), 
(ii) dynamic percolation (DP), (iii) size- based minimum 
travel time algorithm (SM), and (iv) duration- based mini- 
mum travel time algorithm (DM). All of the methods repre- 
sent the landscape as a grid of square cells but use different 
techniques to simulate the propagation of fire over the land- 
scape. 

The CR method is the simplest and is often used when 
only the coarse-scale characteristics of a fire regime need to 
be simulated (Baker et al. 1991; Lenihan et al. 2003). The 
method first selects a maximum fire size from a user-defined 
size distribution and then simulates fire spread from the 
burning cell to its eight directional neighboring forested cells 
uniformly until the fire reaches the maximum fire size or all 
available burnable cells have been disturbed. The spread 
probability is considered to be the same for all of the for- 
ested cells. Therefore, forest types do not affect the simu- 
lated actual fire size and shape of burned patch. Only 
landscape configuration of forest/nonforest affects the propa- 
gation of fire in this method. 

The DP method simulates fire spread similar to the CR 
method. However, the direction of fire spread in the DP 
method is adjusted by a spread probability, which is calcu- 
lated from a set of environmental factors such as wind, top- 
ography, and fuel (Hargrove et al. 2000; Wimberly et al. 
2000). Here, we employed a self-organized version of dy- 
namic percolation modified from Caldarelli et al. (2001 ). 
The method assumes that the spread probability of each cell 
is dependent on not only fuel loading in the cell but also on 
the cumulative size of the fire event, which is a surrogate of 
time-elapsed since fire initiation. It uses an exponential func- 
tion to calculate spread probability P from fuel loads (F) and 
size of burned area (S): 

where Po(F) is a user-defined step function defining contri- 
bution of fuel loads to the spread probability and S,, is the 
maximum fire size that is randomly selected from a user-de- 
fined fire size distribution. Po(F) is usually set to be larger 
than P, (i.e., percolation threshold) so that the burned area 
is compact at the beginning stage of fire spread. A simu- 
lated fire will eventually extinguish because spread prob- 
ability decreases with the increase in size of burned area. 
The algorithm can produce burned patches with a compact 
interior and a fractal boundary, similar to the geometric fea- 
tures of real wildfires as shown by Caldarelli et al. (2001). 

The minimum travel time algorithm, proposed by Finney 
(2003, uses algorithms developed from graph theory (e.g., 
Dijkstra 1959) to search for minimum cumulative travel 
times of fires along straight-line paths among cells of a grid. 
Travel times along the line segments are calculated from rate 
of tire spread in the underlying cells of the grid using the 
Rothermel (1972) model in which the shapes of tires are as- 
sumed to be elliptical under uniform fuel conditions (An- 
drews 1986). The paths producing minimum travel time 
between cells were then interpolated to reveal the fire perim- 
eter positions. The method can produce spatial fire growth 
and behavior nearly identical to perimeter expansion techni- 
ques used in the complex model FARSITE (Fjnney 1998). 
The minimum travel time algorithm is easier to implement 
and is computationally faster than perimeter expansion tech- 
niques (Finney 2002). We designed two versions of rnini- 
mum travel time algorithms: (i) the "size-based" version 
uses a tire size randomly selected from a user-defined distri- 
bution to truncate the simulation of tke spread whenever the 
size of burned area reaches the preselected fire size and 
(ii) the "duration-based" version randomly selects a burning 
duration from a user-specified distribution and uses it to de- 
termine when to stop a fire growth simulation. 

LANDIS model 
All eight fire simulation methods were implemented in a 

raster-based spatially explicit model, LANDIS (v. 4.0). The 
LANDIS model simulates forest landscape change in re- 
sponse to disturbance, succession, and management at large 
extents (103-106 ha) over long periods of time (10'-10" 
years) (Mladenoff and He 1999). We used a 10-year time 
step and a cell size of 0.09 ha (30 m by 30 m) in this study. 
Each cell is a spatial object that tracks the presence or ab- 
sence of age cohorts of individual plant species. LANDIS 
simulates ecological processes occurring at a cell scale (e.g., 
competition, succession, seedling establishment, fuel accu- 
mulation. and decomposition) and at a landscape scale (e.g., 
seed dispersal and fire disturbance). 

LANDIS stratifies a heterogeneous landscape into land 
types, which are generated from GIs layers of climate, soil, 
or terrain attributes. The model requires parameters for spe- 
cies establishment. fire disturbance characteristics, and fuel 
accun>ulation regime for each land type. LANDIS is a sto- 
chastic model that uses random number generators to simu- 
late the stochastic processes of seed dispersal, seedling 
establishment, fuel accumulation. and fire disturbance. Seed 
dispersal is modeled as a function of species' effective and 
maximum seeding distances. A negative exponential distri- 
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bution is used to describe seeding probability in relation to 
distance from available seed source. Estimates of these seed 
dispersal parameters are based on generalized classification 
of seed dispersal mechanisms (Wimberly 2004). In this 
study. effective seed dispersal ranges were 50 m for gravity- 
dispersed species (e.g., oaks) and 100 m for wind-dispersed 
winged seeds (e.g., sugar maple). Seedling establishment is 
determined based on shade tolerance of the seeding species 
relative to the species already occurring on the cell. Details 
about LANDIS succession and seed dispersal are available 
from He and Mladenoff (1999). 

The LANDIS fuel module tracks fine fuels and coarse 
fuels for each cell. Fine fuels correspond to 1- and 10-h 
time lag fuels, which include leaves, twigs, ground litter, 
needles, and fine woody debris that fall from trees annually 
(He et al. 2004). Coarse fuels correspond to 100- and 1000-h 
time lag fuels, which include snags, logs, branches, stems, 
and coarse roots. Fine fuel loads are approximated by vege- 
tation types (species composition) and species age. In gen- 
eral, mature or old trees produce more fine fuels than small 
young trees. In LANDIS, a curve was defined for each spe- 
cies to approximate how fine fuel loads vary with species 
age (Fig. In). The relationship between fine fuel and species 
life span (which may include multiple peaks) for each spe- 
cies is derived from empirical data (He et al. 2004). Decom- 
position rates of fine fuels also vary by land types. 
Generally, most of the leaf litter in a hardwood forest de- 
composes in a few years (Kolaks et al. 2004). Therefore. the 
LANDIS fuel module assumes that most fine fuels decom- 
pose in less than 10 years, which is shorter than the LANDIS 
10-year time step. At each time step, fine fuels are recalcu- 
lated based on the live speciesfage cohorts (He et al. 2004). 

In contrast with the calculation of fine fuel loads, LANDIS 
does not use speciesfage cohorts to approximate coarse fuel 
loads. Instead, the model uses stand age (the oldest age co- 
horts in the stand) and disturbance history (e.g., time since 
last disturbance) to determine coarse fuel loads. In the ab- 
sence of disturbance, the accumulation process dominates 
until the amount of coarse fuel reaches a level where decom- 
position and accu~nulation rate are in balance (Fig. lb). In 
the LANDIS fuel module, coarse fuel accumulation is mod- 
eled as a continuous process in which the accumulations 
rates vary by land types, which encapsulate environmental 
variables (e.g., climate, soil, slope, and aspect). The decom- 
position process is modeled based on the decomposition 
curve (Hale and Pastor 1998; He et al. 2004), which is also 
user-defined for each land type (Fig. lc). Some disturbances 
(e.g., windthrow) add to the coarse fuel pool, while other 
disturbances (e.g., fire) can consume fuels. Due to the long 
temporal scales involved in estimating the amount of fine 
and coarse fuels, uncertainty is high. To reduce the potential 
false precision and the parameterization burden, LANDIS 
lumps fuel loads into five categorical classes (very low to 
very high). This is consistent with the design of disturbance 
intensity and severity in the LANDIS fire, wind, and insect 
modules (He et al. 2004). Details about the definition and pa- 
rameterization of the five fine and coarse fuel loading classes 
for this study area can be found in Shang et al. (2007). 

Within a 10-year time step, the LANDIS fire module sim- 
ulates a randoin number of fire events, which are randomly 
ignited on the landscape and burn a random number of cells. 

Fig. 1. Modeling fine fuel and coarse fuel accumulation and decom- 
position in LANDIS. (a) Fine fuel accumulation changes throughout 
the life span of a giken species. In this example, the amount of fine 
fuel created by each species (thin line) is positively correlated with 
age until approximately 70% of the species' life span is reached and 
is negatively correlated with age as the species' age approaches 
inaximun~ species longevity. In the LANDIS fuel module, fine fuel 
accumulation is converted into five categorical classes represented 
by the thick line. The relationship between fine fuel and species life 
span (which may i~lclude multiple peaks) for each species is derived 
from empirical data. (b) Coarse fuel accumulation on two land types 
(e.g.. mesic and xeric) in the absence of disturbances. (c) Coarse 
fuels decomposition after disturbance on two different land types. 

4 

Species percent life span 

t 
Time of accumulation (stand age) 

0 
Time since last disturbance 

Cells are not allowed to burn more than once during the 10- 
year time step in LANDIS to circumvent the inconsistency 
between the temporal scale used in fuel tracking (10 years) 
and the one used in tire spread simulation (<lo years). This 
model assumption is acceptable for our study landscape. 
which has a relatively long fire cycle (300-500 years). Hence, 
cells are seldom burned more than once within 10 years on 
this landscape. The combination of the fine and coarse fuel 
loads in each cell is used to determine tire intensity (five cate- 
gorical classes: very low to very high) if the cell is burned (He 
et al. 2004). Fire intensity is low to very low for surface fires 
and high to very high for crown fires. Fire is a bottom-up dis- 
turbance, and fires of increasing intensity affect younger age 
classes first. Also, fire tolerance varies among species. 
LANDIS uses species-specific fire-tolerance class combined 
with age-specific fire-susceptibility class to determine 
whether a species cohort of a certain age can survive a 
given fire intensity class (He and Mladenoff 1999). 

0 2008 NRC Canada 



1 294 Can. J. For. Res. Vol. 38, 2008 

Fig. 2. Study area, a portion of Mark Twain National Forest located within the sourthern Missouri Ozark Highlands. 
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A large heterogeneous landscape in LANDIS may be 
stratified with a few fire regimes characterized by ignition 
rate (expected number of fire ignition per unit time per unit 
area) and fire cycle (Li 2002). The fire regime map may be 
either the same as or different from the land type map. For 
each individual fire spread, LANDIS simulates a prevailing 
wind direction from a user-specified wind distribution. Var- 
iations in other weather factors such as temperature and rain- 
fall are not explicitly simulated in this version of LANDIS. 
The model uses fire size distribution or bum duration distri- 
bution to simulate when to stop a fire. LANDIS can simulate 
expected number of fires and fire size that agree with the 
historical fire statistics (Yang et al. 2004). However, the si- 
mulated temporal and spatial fire patterns can vary with the 
different tire simulation methods. 

Study area 
Our study area, 71 142 ha in size, is located within the 

southeastern Missouri Ozark Highlands (Fig. 2). The study 
area includes large, contiguous blocks of the Mark Twain 
National Forest that are surrounded by (and in some areas 
intermixed with) privately owned forests. The dominant tree 
species in this area include white oak (Quercus alba L.), 
post oak (Quercus stellata Wangenh.), black oak (Quercus 
velutina Lam.), and shortleaf pine (Pinrds echinnta P. Mill.). 
Heavy logging between 1890 and 1920 and continuing fire 
suppression since 1940 in this region have decreased the 
abundance of fire-favorable shortleaf pine to 25% of that 
ca. 1900 (Batek et al. 1999). The fire cicle (number of years 
necessary for an area equal to the entire area of interest to 
burn) was less than 20 years during the early 1900s (Guyette 
et al. 2002), but it is now approximately 300-500 years 
(Westin 1992). Fires are very frequent but most of them are 
small non-stand-replacing surface tires; the range of average 
fire size is about 8-10 ha (Guyette and Larsen 2000). 

Comparing effects of different fire simulation methods 
We conducted 10 replicates of 1000-year simulations us- 

ing each of the eight fire simulation scenarios (Table I). 
The parameters of the simulations (Table 2) were estimated 
from fire statistics reported in this region (Westin 1992) and 
the BEHAVE fire modeling system (Andrews 1986) and fur- 
ther calibrated interactively to produce acceptable simulated 
fire cycle and mean fire size. The simulated results were 
mainly analyzed using a two-way ANOVA to examine how 
fire occurrence simulation method and fire spread simulation 
method affected simulated fire and succession patterns, re- 
spectively. The response variables were fire frequency, fire 
size. burned area, shape index, and dynamic time warping 
(DTW) similarity index. 

Fire frequency, fire size, and burned area 
Fire frequency and fire size are two primary characteris- 

tics of a fire regime. In our analysis, fire frequency was de- 
fined as the number of fire occurrences per 1000 km2 per 
decade. Fire size was defined as the average simulated tire 
size (hectares) per decade. Although different fire modeling 
methods can all produce a similar mean fire frequency and 
mean tire size, we deemed that their simulated variability 
and temporal dynamics could still be different. In addition 
to fire frequency and fire size, we also used burned area, de- 
fined as the area (hectares) burned per 1 OOO km2 per decade, 
as a major response variable in the analysis of fire modeling 
comparison. Burned area equals the product of fire fre- 
quency and fire size in each I 0-year time step. It is a synthe- 
sis of both fire frequency and fire size. 

Shape index 
The shape of simulated burned patch is an important as- 

pect for describing the effects of fire simulation method. We 
hypothesized that fire spread simulation method greatly af- 
fects the shape complexity of simulated burned patches, 
while fire occurrence simulation exerts very little influence. 
We imported simulated burned patch maps into FRAG- 
STATS (McGarigal et al. 2002) to quantify the shape com- 
plexity of burned patches using the shape index. The shape 
index equals patch perimeter divided by the minimum pe- 
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Table 2. Parameters used in each individual fire modeling method. 

Parameter 
Simulation 

Units method Value(s1 
Parameters used in fire occurrence simulation 

Ignition rate No:ha-'-decade-' P 0.02832 
H 0.02840 

Initiation probability n a P 0.1 for all five fuel loads classes 
H 0.025, 0.05, 0.1, 0.2, and 0.4 for the five fuel load 

classes 
Parameters used in fire spread simulation 

Initialized mean fire size ha CR 8.12 
DP 7.27 
SM 8.00 

Initialized mean burn duration min DM 5 5 
Fire spread probability n a DP 0.26, 0.45, 0.59, 0.69, and 0.78 for the five fuel loads 

classes 
Rate of spread m-min-' SM, DM 1.2, 5.9, 18.3, 35.4, 56.5, and 81.2 for the five loads 

classes in a typical fire season 

rimeter possible for a maximally compact patch (i.e., a 
square) of the corresponding patch area. The shape index is 
the most straightforward measure of overall shape complex- 
ity. It equals 1 when the patch is maximally compact and in- 
creases as patch shape becomes more irregular (McGarigal et 
al. 2002). 

DTW similarity index 
We used the DTW technique to measure the similarity dis- 

tance of the simulated time series. A time series T = t l ,  ..., t,, 
is an ordered sequence of m real numbers representing meas- 
urements of a real variable at equal time intervals. LANDIS 
modeling results included many time series data such as 
chronologies of sim~~lated fire frequency, fii-e size, burned 
area size. and species abundance. These time series simu- 
lated using difference modeling methods may have similar 
means or variances, but they can have very different tempo- 
ral fluctuation patterns. In this study, we chose to use the 
DTW index (Berndt and Clifford 1994) to measure the 
amount of similarity among the simulated temporal patterns. 
Given two time series X of length rn and Y of length n, the 
DTW constructs an m by n cost matrix C where the (ith, 
jth) element of the matrix C[i, j] corresponds to the squared 
distance of data points Xi and Yi . The algorithm then re- 
trieves a warp path through the matrix starting from C[1, 11 
and ending at C[m, n] that minimizes the total cumulative 
distance between them. The warp path W of length K is de- 
noted by W = wl, ..., w ~ ,  where K is between max(m, n) and 
~ 7 1  + 11 ,  and the element of the warp path wk is also an ele- 
ment of the cost matrix C[i, j]. There is also a "monotonic 
condition" constraint on the warp path that forces i and j to 
be monotonically increasing in the warp path. The DTW dis- 
tance is the squared root of the sum of the warp path: 

K 

[5] DTW(X. Y )  = x w n  \ k = l  

Before calculating the DTW distance, we normalized the 
time series data to account for the shifting in the average 
and scaling in the deviation. Let p(T) and a(T) be the aver- 
age and standard deviation of a time series T. The normal- 

ized time series T is the one with the average 0 and 
standard deviation 1 by transforming ti' = (ti - p(T))Ia(T). 
By employing normalization, we were able to filter out the 
difference in offsets and amplitudes due to calibration pro- 
cess and to foc~is on comparing the pattern of time series 
dynamics, which was determined by the siinulation method 
itself (Goldin and Kanellakis 1995). We chose the average 
of 10 replicates of simulated time series using the method 
PCR, which is the simplest fire modeling method in our 
comparison, as a reference condition. The DTW distance 
ranges from 0 to 2 f i  for two normalized time series both 
of length 11. A larger DTW indicates a lower degree of simi- 
larity between the simulated time series and the reference 
condition. 

Results 
All fire modeling methods could produce the observed fire 

cycle (300-500 years) and mean fire size (8-10 ha), which 
are primary descriptors of a fire regime, after a careful cali- 
bration process (Fig. 3). There was a greater variability in si- 
mulated tire cycle when using the hierarchical fire frequency 
model (H) than with the Poisson tire frequency model (P) to 
simulate fire occurrence process (Fig. 3a). Simulated varia- 
bility in tire frequency and fire size was sensitive to fire oc- 
currence simulation method and fire spread simulation 
method, respectively. Fire occurrence simulation method ex- 
plained over 50% of total variance of simulated fire fre- 
quency, while tire spread simulation inethod explained 
about 30% of total variance of simulated average fire size 
per decade (Table 3). The interaction of fire occurrence sim- 
ulation method and fire spread method was also an important 
factor for simulated fire size, explaining >2.5% of the varia- 
bility of simulated fire size (Table 3). When the fire spread 
simulation method was fixed. the pairwise one-way ANOVA 
tests further showed that the fire occurrence simulation 
method using the hierarchical fire frequency model (H) sig- 
nificantly (p c 0.001) decreased the mean and variance of si- 
mulated tire size compared with the fire occurrence 
simulation method using the Poisson fire frequency model 
(P) (Fig. 36). The significance of fire occurrence simulation 
inethod on simulated fire size, in terms of the relative sums 
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Fig. 3. Box plots of simulated (a) fire cycle and (b) average fire 
size per decade with respect to various fire modeling methods. 
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Table 3. Relative sum of squares (%) attributed to different 
sources of variation in the colnparison of fire frequency, average 
fire size per decade, and burned area with respect to fire occur- 
rence simulation method, fire spread simulation method, and their 
interaction. 

Response variable 

(b) Fire size 

Fire Fire Burned 
Source df frequency size area 
Fire occurrence 1 50.2" 2.6 1 1.7" 
Fire spread 3 1.2 27.82: 19.4" 
Occurrence x spread 3 2.0 -. 3 3% 1.3 
Error 7992 46.6 66.3 67.6 
Total 7999 100.0 100.0 100.0 

Note: Factors and their interaction are considered important if they ex- 
plain i~lore than 5% and 2.5% of the total variance, respectively (Cary et al. 
2006). The important factors are indicated by an asterisk. 

- 

of squares calculated from the one-way ANOVA tests, is 
2.096, 6.1%. 5.696, and 8.3% for using fire spread simulation 
method CR, DP, SM, and DM. respectively. Fire spread sim- 
ulation method explained more variance in burned area than 
fire occurrence simulation method (1 9.4% versus 1 1.7%), 
but both were significantly important factors (Table 3). 

4 z I I I 

DP 

+;f 
CR 

Fig. 4. Box plots of shape index of burned patches simulated using 
various fire modeling methods. 
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Table 4. Relative sum of squares (%) attributed to 
different sources of variation in the shape index of 
simulated burned patches with respect to fire occur- 
rence simulation method, fire spread simulation 
method, and their interaction. 

Relative sum 
Source d f of squares (%j 
Fire occurrence I 0.1 
Fire spread 3 99.OX: 
Occurrence x spread 3 0.1 
Error 7992 0.8 
Total 7999 100.0 

Note: The important factors are indicated by an asterisk. 

The shapes of burned patches simulated using the mini- 
mum travel time algorithm (fire spread simulation methods 
SM and DM) exhibited much less complexity and were more 
compact than those simulated using the CR and DP methods 
(Fig. 4). This reflects the fact that the minimum travel time 
algorithm derives from the physical-based Rothermel (1972) 
model in which simulated fire shapes are assumed to be ellip- 
tical under uniform fuel conditions, while CR and DP are 
probabilistic-based percolation methods in which simulated 
fire shapes are irregular and fractal even under uniform fuel 
conditions due to the intrinsic randomness of percolation. 
The DP  method produced the most irregular burned patch 
shapes, and the SM method produced the most compact 
shapes (Fig. 4). Fire spread simulation method is the only im- 
portant factor in determining the complexity of simulated tire 
shapes and it explained 99% of total variance of the shape 
index (Table 4). 

The temporal pattern of fire frequency seiies simulated us- 
ing the same fire occurrence simulation method exhibited a 
great amount of similarity no matter which fire spread simu- 
lation method was used (Fig. 5). Fire occurrence simulation 
methods had a much greater effect on the simulated fire fre- 
quency series than fire spread simulation method in the short 
term (5500 years i.e., one fire cycle). but the ranking of the 
importance of these two factors was reversed in the long 
term (>500 years) (Table 5). Fire occurrence simulation 
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Fig. 5. Fire frequency series simulated by the eight fire modeling methods varied by the four fire spread simulation methods (a )  CR, (b) DP. 
( c )  SM, and (dl DM and the two fire occurrence simulation methods, the Poisson fire frequency model (P) and the hierarchical fire fre- 
quency model (H). 

0 200 400 600 800 1000 

Simulation year 

0 200 400 600 800 1000 

Simulation year 

Table 5. Relative sum of squares (96) attributed to different sources of variation in the DTW similarity index of short-term (years I 500) 
time series and long-term (500 < years 5 1000) norn~alized time series of simulated fire frequency, fire size, and burned area. 

- - - -- 

Fire frequency Fire size Burned area 

Source df Years 5 500 500 < years < 1000 Years I 500 500 < years 5 1000 Years 5 500 500 < years 5 1000 
Fire occurrence 1 94.2" 1.5 0.0 
Fire spread 3 0.1 13.2" 92.4" 
Occurrence x spread 3 0.5 1.1 0.3 
Error 7 2 5.2 84.2 7.3 
Total 79 100.0 100.0 100.0 I 

Note: The inlportant factors are indicated by an asterisk. 

method was never an important factor for either short-term 
or long-term time series of simulated fire size (Table 5). 
The significance of fire spread simulation method in deter- 
mining the temporal pattern of burned area size was greater 
than that for fire occurrence simulation method in the short 
term, but it was less than that of fire occurrence simulation 
  net hod in the long term (Table 5). The sum of squares for 
errors was less for the short-term time series of simulated 
fire frequency, fire size, and burned area than that for the 
long-term time series (Table 5). This indicated that si~nulated 

fire temporal patterns were greatly affected by fire modeling 
methods in the short term, but such effects were less promi- 
nent in the long term. 

Simulated succession dynamics showed that the abundance 
of shortleaf pine generally increased over simulation time 
and gradually reached an equilibrium stage whose values 
were larger than the equilibrium abundance of black oak 
when using fire spread simulation methods other than the 
CR method (Figs. 6c-6g). Moreover, the shortleaf pine in- 
creased more rapidly when using fire occurrence simulation 
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Fig. 6. Simulated species abundance (i.e., landscape coverage area of each dominant species) time series using the eight fire modeling 
methods. Each 0.09 ha pixel could contain up to all three of the dominant species groups. 
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method H than when using method P (e.g., Fig. 6e versus the simulated succession patterns was much less than that of 
Fig. 6f). There was a great degree of similarity in the simu- the simulated fire patterns (Fig. 7). This indicated that simu- 
lated succession patterns across all eight fire modeling meth- lated succession patterns over time across all fire modeling 
ods (Fig. 6). The average DTW similarity distance index of methods were more similar to each other than the simulated 
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Fig. 7. Box plots of the DTW similarity (distance) index of simu- 
lated time series of fire frequency (FF), fire size (FS), burtied area 
(AREA), and landscape coverage of white oak (WO), black oak 
(BO), and shortleaf pine (SP) using the eight fire modeling methods. 

FF FS AREA WO BO SP 

fire patterns over time. Fire spread simulation method had a 
greater effect on the simulated succession dynamics than fire 
occurrence simulation method at both short-term and long- 
term scales (Table 6). 

Discussion 
The variability of simulated fire frequency and its tempo- 

ral structure were most sensitive to the factor of fire occur- 
rence simulation method, while the variability of simulated 
fire size and its temporal structure were most sensitive to 
the factor of fire spread simulation method (Tables 3 and 5). 
This is somewhat expected. as fire frequency and tire size are 
highly related to fire occurrence and fire spread process, re- 
spectively. The fire occurrence simulation method H, in which 
fire hazard accumulation was modeled as a fuel-dependent 
process, greatly increased simulated variability in fire fre- 
quency distribution and imposed a conspicuous temporal 
structure in fire frequency time series (Fig. 5). 

We found very little interactive effects of tjre occurrence 
and fire spread simulation methods on simulated fire fre- 
quency and fire size (Table 5). Our explanation lies in the 
characteristics of the fire regime of our study area and the 
simulation time step that we chose for this study. The case 
study area (Missouri Central Hardwood region) has a pre- 
dominantly anthropogenic fire regime where ignitions are 
abundant and mostly caused by humans (Guyette et al. 
2002). Hence, the relative influence of fuel on fire occur- 
rence process has been mitigated by anthropogenic factors 
(Brosofske et al. 2007). In this region. fuel types are fairly 
simple (largely oak-pine forests) and low-intensity small- 
size fires are much more common than the catastrophic 
crown fires. Moreover, fine fuels in the most of the disturbed 
cells need only less than 10 years, which is the LANDIS 
(v. 4.0) simulation time step, to accumulate to the cells' un- 
disturbed levels (Kolaks et al. 2004). All of these factors 
contributed to make the presumed interactive effects of fire 
occurrence and fire spread imperceptible in this study. We 
intend to apply our comparison to other forest ecosystems 
with different fire regimes (e.g., crown fire regime) in the fu- 

ture to determine what fire regimes may make such interac- 
tive effects discernible. 

Statistical and probabilistic fire spread simulation methods 
(i.e., CR and DP). by their stochastic nature, produced a 
more irregular and fractal shape of burned patches than the 
physical methods such as the minimum travel time algorithm 
(Fig. 4). The duration based method produced the highest 
variability of simulated fire sizes among all four examined 
fire spread simulation methods (Fig. 3). Both fire size distri- 
bution and burn duration distribution can be used as a surro- 
gate to model climate effects on fire spread (Keane et al. 
CI 

2004). But the duration based method can also be used to 
model the effects of different fuel types on the rate of fire 
spread and on the variability of simulated fire sizes. In con- 
trast, size-based methods cannot capture such effects. This is 
because such methods allow simulated fires to spread to a 
preselected fire size as long as the cells surrounding fire 
fronts are covered by fuels. In this regard, duration-based 
methods are more appealing. However, duration-based meth- 
ods also impose a great challenge for users to calibrate the 
emergent fire regime characteristics due to the higher varia- 
bility in simulated fire size. In addition, duration-based 
methods are also computationally expensive in that calculat- 
ing the rate of spread for every cell on the landscape is very 
time-consuming (Finney 1998). 

Both fire occurrence simulation method and t7re spread 
simulation method were important factors contributing to the 
variance in simulated burned area, but fire spread simulation 
method was more important (Table 3). This finding is con- 
trary to the results of Cary et al. (2006) that little or no rela- 
tionship was observed between fire spread module and 
variance in area burned. There are at least two reasons for ex- 
plaining such a contradiction: (i) we examined a long-term 
(1000 years) simulation in which the effects of fire spread 
became accumulatively prominent, while Cary et al. (2006) 
examined a I-year-long simulation and (ii) the variability in 
simulated fire frequency was higher in the Cary et al. (2006) 
study, as they explicitly modeled the effects of daily weather 
variation in f7re ignition simulation. 

We concurred with Li et al. (2008) that although all fire 
modeling methods could produce the expected fire regime 
descriptors (e.g., mean fire size and fire cycle) after a careful 
calibration process, the dynamics of fire patterns simulated 
using different modeling methods varied. Fire modeling 
methods greatly affected temporal fire patterns in the short 
term. There was a larger degree of similarity of simulated 
temporal fire patterns in the long term than in the short term 
(Table 5). This was also found to be true for the temporal 
changes of simulated species abundance at landscape scales 
(Table 6). Furthermore, we found that succession patterns si- 
mulated with various fire modeling methods were much 
more similar than the simulated fire patterns (Fig. 7). These 
findings imply that when examining landscape-scale, long- 
term species changes for a fire-adapted forest ecosystem us- 
ing a landscape fire succession model, choosing a complex 
and con~putationally expensive fire modeling method may 
not be necessary. A fire modeling method that is easy to cal- 
ibrate and rapid in computation such as the CR method may 
be adequate for use with coarse-scale dynamic global vegeta- 
tion models. Cary et al. (2006) have suggested that because 
of the lack of sensitivity of burned area size to fine-scale fuel 
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Table 6. Relative sun1 of squares (5%) attributed to different sources of variation in the DTW similarity index of short-term (years 5 500) 
time series and long-term (500 < years I 1000) normalized time series of simulated abundance of the white oak group, black oak group, and 
short-leaf pine group. 

White oak Black oak Short-leaf pine 

Source df Years 5 500 500 < years I 1000 Years I 500 500 < years L. 1000 Years 5 500 500 < years I 1000 
Fire occurrence 1 7.2" 0.6 0.2 3 1 .b4: 9.9* 21.9" 
Fire spread 3 90.6" 79.3* 
Occurrence Y spread 3 1.8 4.4" 
Error 72 0.4 15.7 
Total 79 100.0 100.0 

Note: The important factors are indicated by an asterisk 

pattern within a 1-year simulation, the dynamic global vege- 
tation models may not need to incorporate pattern of vegeta- 
tion within simulation cells. They recognized that this 
speculation should be tested over a long time simulation. 
Our 1000-year simulations that used different fire modeling 
methods with varying levels of ecological details for model- 
ing the interaction of vegetation, fuel, and fire effectively 
demonstrate this supposition. 

Spatially explicit forest landscape models such as LANDIS 
are useful tools for exploring large-scale, long-term conse- 
quences of management practices and disturbances (natural 
or anthropogenic) on future landscape conditions. Such mod- 
els can describe the patterns that fire disturbances and suc- 
cession are likely to create on a forest landscape and provide 
important information that may aid land managers in the de- 
velopment of forest and fire management plans. However, as 
our study has clearly demonstrated, different models can pro- 
duce different simulated landscape patterns, which may even 
lead to conflicting conclusions. This suggests that researchers 
and users must understand the effect of alternative fire mod- 
eling methods on simulated f"le and succession patterns and 
take such modeling artifacts into account when evaluating re- 
source management plans from simulation results. Our model 
comparison sheds light on the premise and behavior of vari- 
ous fire modeling methods and provides guidance for users to 
select a suitable one to meet their specitic objective. For ex- 
ample, as our results suggest, if the modeling objective is to 
study the effects of fire suppression policy or fuel-treatment 
plans in reducing fire risk (e.g., Shang et al. 2007), then the 
hierarchical fire frequency model is superior to the Poisson 
fire frequency model because the prior is able to explicitly 
simulate the effect of fuel dynamics on fire occurrence 
(Fig. 5) and area burned (Table 5). If the modeling objective 
is to evaluate the effects of forest management alternatives 
(including fire disturbance) on future forest structure and 
habitat suitability (e.g., Shifley et al. 2006), then the Poisson 
fire frequency model, along with a simple-to-use fire spread 
simulation method (e.g., CR), is sufficient to simulate coarse- 
scale succession patterns (Fig. 6). 

Comparing fire modeling tnethods is an important issue, 
yet remains challenging. Previous multimodel comparison 
studies had difficulty filtering out the effect of fire modeling 
methods from the models' other components such as differ- 
ent succession simulation methods and various input data 
representation schemes (Cary et al. 2006). This study repre- 
sents a novel comparison in which all fire simulation meth- 
ods were implemented in one model (LANDIS) so that all 
other aspects of the fire succession simulation were constant. 

However. this design also has its limitations. For example, 
because we used a coarse temporal resolution (10-year time 
step) model, effects of weather on simulated fire patterns 
were not incorporated into these fire modeling methods. 
Also, LANDIS v. 4.0 only tracks the presence and absence 
of species/age cohorts. Without any quantity information for 
each present speciesfage cohort, the effects of fire on vegeta- 
tion dynamics could only be quantified at a very coarse level. 

Landscape structure is also an important factor that was 
not considered in our analysis. Our study area is a national 
forest landscape embedded in a matrix of private land. Be- 
cause we did not have detailed species composition and age 
structure information for the private land, we could not sim- 
ulate the succession dynamics on the private land as accu- 
rately as on the public land. Although we excluded private 
land in our results analysis, there might still remain some 
edge effects due to species dispersal and fire spread from 
the private land. Nevertheless, we deemed that such edge ef- 
fects were not significant because fire sizes in this region 
and the effective dispersal distances for the dominant oak- 
pine species were very small. 

Conclusions 
Fire shapes simulated using the probabilistic fire spread 

simulation methods are more irregular and fractal than those 
simulated using the physical methods. The method using a 
duration distribution to stop fire spreading produces larger 
variability in simulated fire size than that using a fire size 
distribution. Incorporating fuel into the fire occurrence simu- 
lation can significantly affect simulated variability in fire fre- 
quency. burned area, and their temporal structures. Various 
fire modeling methods greatly affect temporal fire patterns 
in the short term, but such effects are less prominent in the 
long term. Simulated landscape-level succession patterns are 
quite similar among different fire modeling methods, sug- 
gesting that a simple fire modeling method may be adequate 
to use with coarse-scale dynamic global vegetation models. 
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