

Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

Winifred Lambert and David Short

Applied Meteorology Unit (AMU)/ENSCO, Inc. Cape Canaveral Air Force Station, FL

Matthew Volkmer, David Sharp, and Scott Spratt

National Weather Service, Melbourne, FL IMPACT Meteorology Unit (IMU)

Presentation Outline

- Describe the daily lightning threat index map
- How and why the map is created
- Motivation for developing lightning climatologies
- Two types of climatologies
- Case Study
- Summary

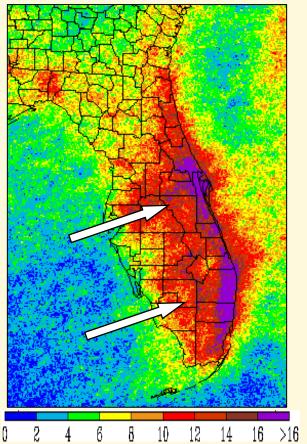
Lightning Threat Index

- Cloud-to-Ground (CG) Lightning Threat Index Map at NWS Melbourne
 - Issued daily by 1200 UTC
 - 5 color-coded threat levels at 5 x 5 km
 - Probability of thunderstorms
 - Expected amount of CG activity
- Created on AWIPS/GFE
- Adjusted by assessing observations, spatial patterns of thunderstorm formation parameters

Lightning Threat Indices

- Threat levels depend on
 - Probability of thunderstorms
 - Expected amount of CG
- Range of CG probabilities and amounts within each level

Threat Level	Threat Level Descriptions
Extreme	50% probability, excessive CG 60 - 70% probability, frequent CG 80 - 90% probability, occasional CG
High	30 - 40% probability, excessive CG50% probability, frequent CG60 - 70% probability, occasional CG
Moderate	10 - 20% probability, excessive CG30 - 40% probability, frequent CG50% probability, occasional CG
Low	10 - 20% probability, frequent CG 30 - 40% probability, occasional CG
Very Low	10 - 20% probability, occasional CG
None	No Threat



Motivation

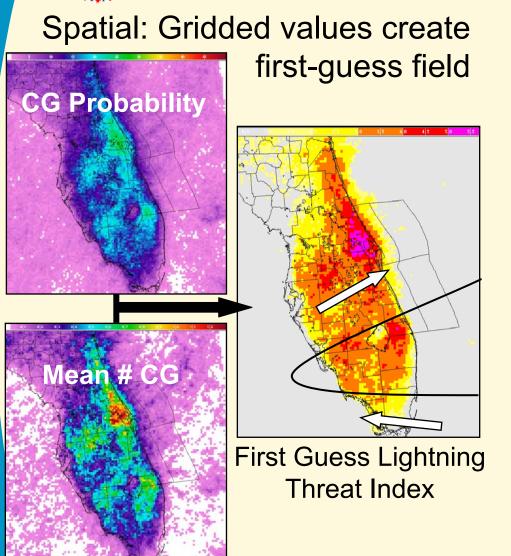
- NWS MLB requested:
 - Spatial climatologies of CG probability and amount to create first guess field
 - Climatological soundings to help adjust first guess field
- Climatologies stratified by synoptic flow regime
 - Previous work shows connection between flow regime and CG occurrence
 - 1200 UTC soundings used to determine flow-regime-of-the-day

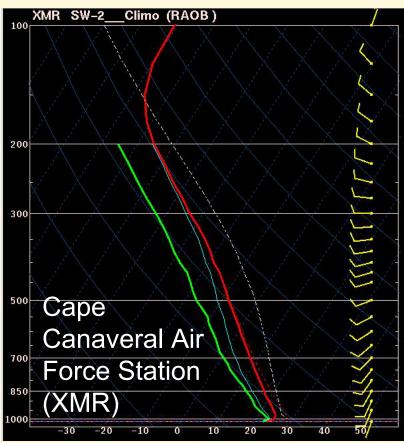
24-hour CG Probability for Southwest Flow (Stroupe 2003)

Flow Regimes

- 1000–700 mb average wind direction 1200 UTC soundings at MFL / TBW / JAX
- Combination of 3 directions determined flow regime
- 7 flow regimes:
 - 1) Ridge south of MFL
 - 2) Ridge btwn MFL/TBW
 - 3) Ridge btwn TBW/JAX
 - 4) Ridge north of JAX
 - 5) Ridge over Florida Panhandle
 - 6) Northwest flow
 - 7) Northeast flow

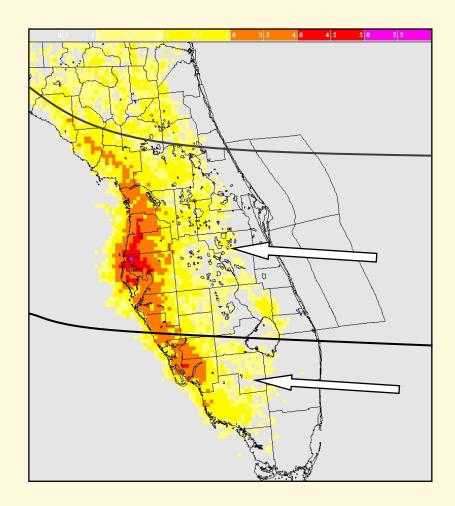
Data


- Warm season (May September) 1989 2004
- Data/code provided by FSU and NWS TAE to create spatial lightning climatologies
 - Hourly lightning data grids created from NLDN data
 - Flow regime dates of occurrence
 - Code to read and process data
- Soundings for vertical profile climatologies
 - 1200 UTC MFL, TBW, JAX
 - 1000 UTC XMR (Time due to operational requirements)
- Flow regime dates used to stratify grids and soundings



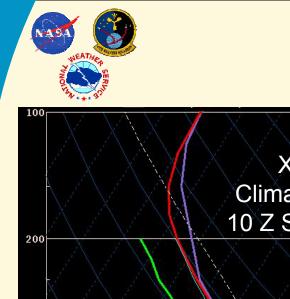
Climatologies

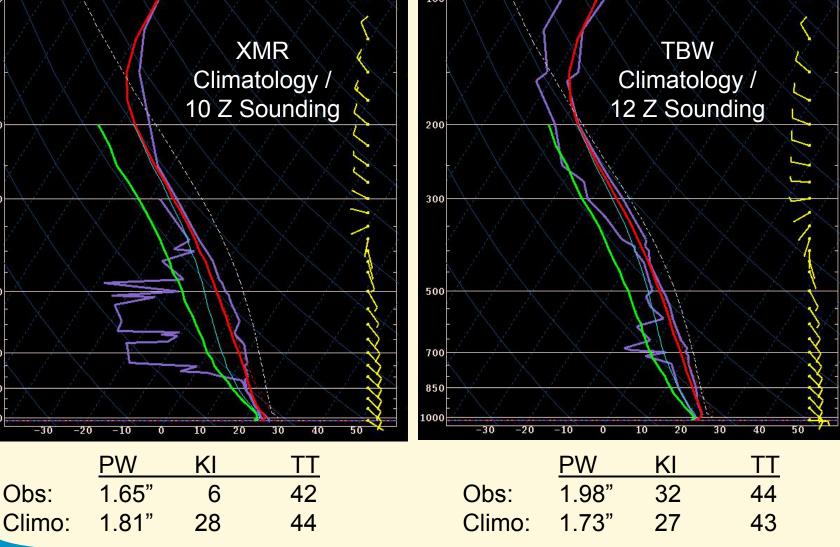
Soundings: Average vertical profiles for 4 sites



Sample Case: 13 July 2006

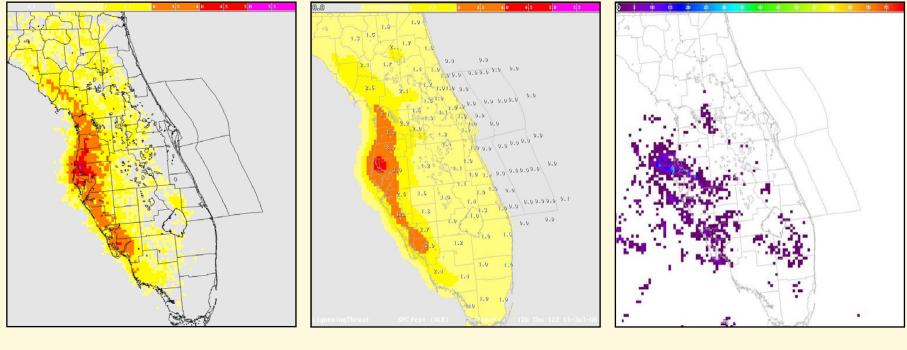
- Ridge north of Florida
- SE flow regime
- Lightning more likely on west coast
- Forecasters start with first-guess threat map
- Climatological soundings adjust first guess map





ENSCO, Inc.

13 July 2006


Applied Meteorology Unit

13 July 2006

Lightning Threat Index Forecast Verification

First Guess Field

Forecaster-Adjusted Field

Observed Lightning

Summary

- Created climatologies based on flow regime:
 - Gridded CG probabilities and number of strikes
 - Morning soundings at 4 Florida locations
 - 1200 UTC MFL TBW JAX
 - 1000 UTC XMR
- Gridded climatologies used to create a first-guess lightning threat index map
- Soundings compared to observations to determine deviation from mean

Lightning Threat Map: <u>http://www.srh.noaa.gov/mlb/ghwo/lightning.shtml</u> IMU: <u>http://www.srh.noaa.gov/mlb/amu_mlb/IMU2.html</u> AMU: <u>http://science.ksc.nasa.gov/amu</u>