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ABSTRACT 
For the purpose of validating rainfall estimates from the Tropical Rainfall Measurement 
Mission's (TRMM) spaceborne precipitation radar, and from the National Weather Service's 
WSR-88D radar covering east central Florida, correlation with ground based rain gauge data is 
needed.  However, a problem regularly encountered when correlating radar rainfall estimates 
with gauge measurements is the difference in measurement geometry.  A gauge measures point 
rainfall, whereas radar estimates the average in a conical volume (the sample volume for WSR-
88D rainfall estimation is 1° x 1 km, with computed estimates available for each 5 min volume 
scan).  Unfortunately, individual gauge positioning strategies for operational networks are often 
based on a combination of geopolitical factors, hydrologic reasoning, and the attempt to 
uniformly cover as much area as possible with a given number of gauges.  Local examples 
include the St. Johns River Water Management District's network and the network at Kennedy 
Space Center (KSC) which have average site separations of 20 km and 5 km, respectively.  Such 
spacing is generally sufficient for stratiform precipitation events since associated rainfall tends to 
be more spatially and temporally uniform.  But for convective rains, the predominant form of 
precipitation in the tropics, the time rate of change of Z can be quite large.  Moreover, 
precipitation cores of discrete convective cells could pass undetected between gauges while the 
occasional rapid movement of others could cause additional correlation errors.   We propose to 
mitigate these difficulties by comparing spatially averaged rainfall rates derived from gauge 
measurements with corresponding spatially averaged radar estimates.  Gauges are arranged in 
clusters of three with separations corresponding to convective cell dimensions, about 1 to 2 km.  
Using an root mean square error function of spatially and temporally averaged rainfall estimates, 
optimized model parameters can be found for any Z-R relationship.  This method can be used 
both for research relating to Z-R relationships and to improve real-time radar rainfall estimates. 

1.0  INTRODUCTION 

In many applications of water resources management, such as in agriculture and forestry, it is desirable to 
accurately determine areal rainfall amounts with a high temporal and spatial resolution.   A microscale 
network (separations on the order of 1 to 3 km) of rain gauges provides a reliable solution to detailed 
rainfall mapping for city size areas, farms, or park lands.  However, dense rain gauge networks are not 
cost effective or practical for larger geographical areas such as counties, states, or regional areas due to 
the shear number of gauges required.  After all, one of the primary justifications for the development of 
the National Weather Service (NWS) network of NEXRAD radar was that it would provide improved 
rainfall information by filling in estimates over areas where large gaps in gauges exist. 

There are two issues associated with weather radar rainfall estimation; scan strategy and calibration of the 
rainfall estimation algorithm.  Since the primary aim of the NWS is public safety, the chosen radar 
scanning technique is optimized for surveillance and warning of severe weather conditions.  The 
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resulting volume scan strategy, beam width, and range resolution are therefore not optimized for rainfall 
estimation.  The issue of radar rainfall algorithm calibration is a more complex problem.  In the early days 
of weather radar, it was believed that a simple Z-R relation (Z is radar reflectivity and R is rainfall rate) 
would suffice to accurately estimate rainfall amounts from radar measurements.  Previously, most 
research focused on finding the “best” Z-R relation.  However, it is now common knowledge that this 
approach is a gross over simplification of the problem (Atlas, 1997).  Recent work in this area has split 
into three directions:  (1) a comprehensive data analysis based on the complete volume scan and time 
series of radar images; (2) the assumption that only a statistical approach will yield useful results, based 
on long time averages and large areas of measurement; and (3) the application of other measurement 
techniques and instruments such as polarimetric radar (Zrnic, 1997) and ground based disdrometers 
(Schönhuber, 1997) to enhance present capabilities. 

The primary motivation of the work presented in this paper was to develop a useful method of combining 
and interpolating rain gauge data for the purpose of real-time rainfall mapping.  For any geographical area 
larger than a few hundred square kilometers, the network of NWS radar provides the best available 
solution for rainfall mapping.  In this case, clusters of densely spaced rain gauges, as well as single 
isolated gauges in the radar service area (Krajewski, 1997), may be used to improve radar rainfall 
algorithm calibration and subsequent real-time rainfall estimation accuracy. 

For global coverage (macro or synoptic scale), NASA’s Tropical Rainfall Measurement Mission 
(TRMM) satellite radar provides the best rainfall mapping solution.  Calibration and verification of the 
satellite radar measurements are performed by specific Ground Validation (GV) sites consisting of rain 
gauge networks and NWS WSR-88D radar.  A robust gauge interpolation algorithm is essential to the 
successful implementation of reliable ground truth for calibration of the NWS rainfall algorithm and 
subsequent calibration of the TRMM satellite radar. 

2.0  MATHEMATICAL DEVELOPMENT 

2.1 CONSERVATION EQUATION 

The general differential equation for conservation of a field variable is: 
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where f (r, t) may be a meteorological quantity such as radar reflectivity Z or rainfall rate R, at a point in 
space defined by the location vector r and time t.  f (r, t)  is moving with an advection velocity u(r, t)  
which is in general also a function of the location vector r and time t. 

In order to evaluate the total time derivative term, , it is often convenient to transform to a 
Lagrangian frame of reference that is traveling with the advection velocity u(r, t).  If at t = 0, the origin 
of the earth coordinate system, or Eulerian frame of reference, and Lagrangian system coincide, then the 
location vector r  in the Lagrangian frame is related to  in the Eulerian frame by   in the 
case of constant advection velocity (space and time independent).  Since by definition the advection 
velocity is zero in the Lagrangian frame, Equation (1) reduces to: 
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According to Equation (2), determination of the total time derivative of a atmospheric quantity such as Z 
or R is most easily accomplished in an Lagrangian coordinate system. 



A useful approximation, which will lead to a spatial and temporal interpolation method for radar and rain 
gauge data, is to assume that the total time derivative term in Equation (1) is small compared to the 
advective term: 
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There are two cases to consider: (1) temporal interpolation of radar data, and (2) spatial interpolation of 
rain gauge data. 

2.2  INTERPOLATION OF RADAR DATA 

Radar data can be treated as discrete time samples of two-dimensional functions of reflectivity data, 
 where n is the time frame index and x and y are projections of the spherical coordinate data from 

three-dimensional space onto a two-dimensional ground coordinate system.  The radar base product data 
are discrete samples of a volume scan , where  is calculated from a vertical composite 
of reflectivity, such as the maximum Z value in the z direction:  Z x
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1996).  Given , where  T  is the frame interval time (radar volume scan period), a 
solution to Equation (3) is: 
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( )f t Z tnr r, ( u )= −                                                                    (4) 
Radar data, in its original form, is not a continuous function of x and y.  If an arbitrary area is considered, 
consisting of k = 1... N  radar samples {xkn , ykn , Zkn} where xkn and ykn  are the Cartesian coordinates of 
the projection of the reflectivity value Zkn onto the x-y ground plane, Shepard’s interpolation formula 
(Shepard, 1968) can be combined with Equation (4) for each time frame n : 
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x x t t u t t tkn kn n n n' ( ) cos= + − ≤ < +  ,         θ 1                                         (6a) 
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where θ  is the angle of u measured from the x-axis so that u = {u, θ}.  Note that a typical value for q is 2  
(Shepard, 1968).  Practical conditions on the choice of number of radar samples N  in Equation (5) is 
based on the requirement that the interpolated section should be well within the area enclosed by the 
{xkn , ykn} coordinates. 

In practice, Equation (5) must be cross-faded with consecutive radar frames Z x  and  in 
order to prevent discontinuities in the interpolation, due to the total time derivative term, Z  , which was 
ignored in the preceding derivation: 
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The advection velocity can be estimated (Ciach, 1997) by performing a cross-correlation between 
consecutive frames of reflectivity  and , based on Equations (5) and (6): Z x y tn n( , , )+1 Z x y tn+1( , , )n+1
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where ηn  is the average value of  and Z x y tn( , , )n µ n+1  is the average value of Z x  over a 
region of area A.  The best estimate for advection velocity is that which maximizes 

y tn+1( , , )n+1

ρn( )u . 

2.3 INTERPOLATION OF RAIN GAUGE DATA 

Rain gauge data can be treated as discrete spatial samples of a continuous time function of rainfall rate 
 where the ith gauge position is located at rR tj ( ) j jx y j= { , }
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Rain gauge data, in its original form, is not a continuous function of  t.  If a time sequence of rain rate 
data, consisting of i = 1... M  samples {tij , Rij} where tij is the ith time at which the jth gauge acquires a 
rain rate sample of Rij, Shepard’s interpolation formula can be used with Equation (9) for each gauge 
location j: 
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where a value of  p = 3 seems to produce good results.  The final interpolated rainfall rate is a 
superposition of the from all L gauges of the network, again using Shepard’s formula: R x y tj ( , , ) 
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A method of determining the advection velocity requires only a simple trigonometric computation.  For 
example, note the cluster of three gauges shown in Figure 1.  The advection time delay between gauges i 
and j can be formally found by performing a cross-correlation between the two gauges: 

ρ τ τ   ( ) ( ) ( )ij i ij jR t R t dt= −∫                                                       (13) 

where the maximum of ρ τ ( ij )  gives the best estimate of the time delay τ ij .  Equation (13) is 
approximately equivalent to simply measuring the distance (in time) between correlated features of 

and , such as the rainfall rate peaks, as illustrated in Figure 2.  The advection velocity can be 
estimated from the time delays determined from Equation (13), or by the graphical technique 
demonstrated in Figure 2: 
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Figure 1. Determination of Advection Velocity from 

Adjacent Gauges Using Triangulation. 

 
Figure 2. Three Adjacent Gauges Showing Delay Time 

Between Correlated Features of Rainfall Rate. 

3.0 EXPERIMENTAL RESULTS 

3.1  INTERPOLATION OF NWS RADAR AND TRMM RAIN GAUGE DATA 

The data that will be used to demonstrate the concepts from the previous section was acquired on June 14, 
1997, 18:00 through 18:40 UTC at KSC.  Three TRMM/KSC rain gauges were used for this analysis, 
corresponding to site numbers 017, 018, and 020.  The gauges are tipping buckets (manufactured by 
Qualimetric), physically located at the lightening detection sites as shown on the map of Figure 3.  The 
circle surrounding the gauges in Figure 3 is the interpolation area that was used to process and compare 
the gauge and radar data.  The corresponding radar is from the Melbourne WSR-88D (KMLB) station. 

Using the rain gauge interpolation formula, Equation (12), R(xj, yj, t) for the three TRMM/KSC gauges is 
plotted in Figures 4, where j = 1, 2, 3 corresponds to locations of gauges 017, 018, and 020.  The rain rate 
in Figures 4 is equivalent to the raw tipping bucket data interpolated in time using a constant sample 
interval of 60 s.  Also shown in Figures 4 is the interpolated NWS radar reflectivity, Z(xj, yj, t), using 
Equations (7) and the lowest elevation scan data (base scan, 0.5° elevation), and again applying a sample 
interval of 60 s.  Figures 5 show 120 s time intervals, again using Equations (7) and (12) to interpolate the 
rainfall and radar data over the circle surrounding the TRMM gauge locations.  The rainfall rate map is 
converted to dBZ in Figures 5, using a power-law Z-R relation: 

Z a Rb=                                                                     (15) 

(a = 60 and b = 1.7) so that the radar and gauge data can be easily compared.  Note that black is 
equivalent to 45 dBZ, while white is equal to 30 dBZ, with shades of gray in between those values.  This 
choice of gray level shading makes for easier comparison of the rain rate maps. 

3.2  RMS GAUGE-RADAR ERROR 

In order to determine an optimum set of Z-R coefficients a and b in Equation (15), a root-mean-square 
(RMS) error function can be defined, based on the differences between the jth rain gauge data and radar 
data (base scan or vertical reflectivity composite) above the jth gauge location: 
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Figure 3.  Map of TRMM/KSC Gauge Test Site. 

where again the interpolation formulas from 
Equation (7) and (12) are used.  Plots of Ej(a, b) 
for j = 1, 2, and 3 are shown in Figures 6a, 6c, 
and 6e.  Note that N is the number of 60 s time 
intervals in Figures 4. An RMS error function 
based on the arithmetic average of three gauge 
locations can also be defined as: 

 

 

 
Figure 4. TRMM/KSC Rain Gauge  and Melbourne 
NEXRAD Interpolated Data, June 14, 1997;   (a) 
Gauge 017; (b) Gauge 018; and (c) Gauge 020. 
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A plot of EA(a, b) for the data of Figures 4, is shown in Figure 6g.  Finally, an RMS error function can be 
defined, based on the area averaged interpolated rain gauge and interpolated radar reflectivity: 
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Figure 5.  Interpolated Rainfall Maps 



 

Figure 5 (continued).  Interpolated Rainfall, Based on TRMM/KSC and Melbourne NEXRAD Data,  June 14, 1997. 

A plot of E(a,b) for the data of Figures 4, is shown in Figure 6h.  The RMS error and linear regression 
plots of Figures 6, based on Equations (16) through (18), immediately reveal an error surface minimum, 
representing the optimal choice of the Z-R coefficients a and b in Equation (15).  When the optimal Z-R 
coefficients from Figures 6a, 6c, and 6e are used to calculate radar rainfall rate from reflectivity data 
above the jth gauge, the best possible match, in a least squares sense, results as shown in Figures 7.  Note 
that the RMS surface minimum agrees with the linear regression results of Figures 6b, 6d, and 6f, within 
quantization error of the RMS surface plots.  (Also, note the time delay in Figure 7c between gauge and 
radar data, most likely due to advection and/or the fall time of drops above the gauge). 

Another conclusion that can be inferred from the error surface plots of Figures 6, is the relative 
improvement of gauge rainfall to radar rainfall correlation.  Figure 8a shows comparison of the minimum 
RMS error based on Equations (16) through (18) for the June 14, 1997 KSC data.  It is clear from this 
graph that the spatial averaging method results in a choice of Z-R parameters which yield the minimum 
RMS error.  Figures 8b and 8c show similar comparisons for two other rainfall events. 



4.0 VALIDATING RADAR RAINFALL DATA 

Rainfall is estimated by the Weather Service Radar 1988 Doppler (WSR-88D) by processing base 
reflectivity data taken from a 1 km x 1 km sample volume at  approximately 3000 ft. (1 km).  The data is 
processed through a series of algorithms and output is available each volume scan (5 min).  From the 
output base reflectivity Z, rainfall rates R are computed using the system default equation,  Z = 300R1.4. 
Past radar rainfall studies conducted at the National Weather Service Office in Melbourne, Florida 
(NWSO MLB) used a network of more than 120 rain gauges to validate radar rainfall estimates.  Rainfall 
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Figure 6.  RMS and Linear Regression Plots Based on Data from Figures 4. 
  (a) and (b) Gauge 017; (c) and (d) Gauge 018; (e) and (f) Gauge 020. 

 Also Plotted (dashed lines) is Linear Regression with Equally Weighted R and Z (see Appendix). 
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Figure 6 (continued).  (g) RMS Error Based on Arithmetic Average of Gauges and Radar Data Using Equation (17) 
and (h) RMS Error Based on Spatial Integral of Gauges and Radar Data Using Equation (18). 
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data was archived during two tropical systems that affected east central Florida, Tropical Cyclone Gordon 
(1994) and Tropical Cyclone Jerry (1995).  From the archived data, a file that contained a running total of 
estimated rainfall was compared with correspondent rain gauge locations. 

There are many inherent problems with comparing a point measurement from a rain gauge with a radar 
estimate, taken instantaneously over a volume every 5 min.  While the studies yielded results that were 
beneficial to NWS MLB operations (through algorithm adaptable parameter and Z-R relationship 
adjustments), there were still several limitations with rainfall validation procedures that needed to be 
improved upon.  Since it was unlikely that the actual rain gauge location was always centered under a 
particular radar data bin, an array of nine radar data bins was centered over the rain gauge location. 
Comparisons were made using the center bin and the best fit of the nine bins (best bin).  The best bin was 
the best match of the nine bins centered over the gauge location.  For example, if the rain gauge total was 
between the maximum and minimum values of the nine bins, then the gauge value was used as the best 
bin.  If the gauge value was lower (higher) than the minimum (maximum) of the nine bins, the minimum 
(maximum) was used as the best bin.  Calculations of mean radar bias, variance, and average difference 
were performed in these studies. 

4.1  SPATIAL AVERAGING APPROACH 
The spatial averaging presented in this paper could decrease some of the problems noted in the studies 
conducted at NWSO MLB.  By clustering the rain gauges close together and interpolating radar data 
between volume scans, the radar data may be considered a continuous function for any given x,y,t.  
Interpolating the radar data  between radar scans to correspond with the gauge readings taken every 60 s 
has some advantages over a comparison based on a radar sample taken every 5 min.  Since rainfall is 
advecting (or partially advecting) across a gauge, a single “snapshot” taken by the radar each 5 min could 
miss heavy rainfall between samples.  Gauge clusters better accommodate convective rainfall where 
tighter gradients of reflectivity and dynamic changes in rainfall rate can be more reasonably estimated.  
Interpolating between scans serves to decrease the differences between the gauge and the radar.  By 
clustering three gauges close together, difficulties with a single gauge comparison (such as the gauge 
location not corresponding to radar bin location or gauge malfunction) will be minimized. 

The NWS is moving forward quickly in its effort to integrate into operations mosaicing of rainfall data, 
where data from several radar are composited.   The rainfall mosaic will benefit greatly from improved 
radar rainfall estimates.  In the rainfall mosaic, radar rainfall estimates will have overlap with adjacent 
radar in many areas.  In the locations that overlap, the forecaster at the River Forecast Center (RFC) will 
use either an average of estimates between the radar that overlap, or the maximum value.  Often the 
overlap will occur at ranges beyond 90 nm (167 km), where severe underestimation and a large variance 
in rainfall estimates was shown to exist during two tropical systems (Glitto, 1997).  The error associated 
with a cell with heavy rain moving over a gauge between volume scans could be reduced by interpolating 
the radar data between volume scans.   By interpolating the radar data between 5 min scans and 
comparing with the average of 3 gauge readings taken every 60 s, a better estimate may be obtained.  
Furthermore, by comparing one gauge with a radar bin, problems may arise with the gauge location not 
always corresponding with the bin location.  Even if the gauge is compared with an array of radar bins, 
the “best” of the nine bins may be well above or below the gauge reading.  In mosaicing radar estimated 
rainfall, using an average or maximum between overlapping radar sites may not work out well in many 
cases, since overlap is often at ranges beyond 90 nm, where a large variance in values and 
underestimation may exist.  For instance, the maximum from three radar that are all severely 
underestimating rainfall is often still a poor estimate.  By reducing the temporal scale and clustered spatial 
scale of the radar-gauge comparisons, better rainfall estimates may be obtained. 



4.2  GAUGE SPACING 
The question of optimum gauge spacing can be addressed by examining the correlation of adjacent 
gauges as defined by Equation (13).  This is graphically shown by superimposing rainfall rate plots from 
adjacent gauges, such as that shown in Figure 2.  As the separation of gauges is increased, the time delay 
of correlated features of the rainfall rates also increases.  As the separation continues to increase, the rates 
become uncorrelated so that it is no longer possible to identify related features and is therefore not 
possible to extract a physically meaningful time delay.  Another way of looking at the question of gauge 
spacing is to compare the total time derivative term of Equation (1) to the advective term.  When the 
spacing is small, the advective term dominates and Equation (3) is an approximation of the rainfall at 
adjacent gauge sites.   Physically, the concept of gauge correlation is simply that the gauges should be far 
enough apart to get a good “view” of a single convective cell as it passes over a gauge cluster site.  When 
the distance is too large, adjacent gauge sites are no longer measuring the same convective cell.  These 
qualitative specifications for spacing are very dependent on the extent of the convective cells within a  
storm system. The best strategy is to find a spacing small enough that satisfies these requirements for 
most storm systems, while maintaining the maximum separation possible.  Based on the results presented 
in this work, a recommended spacing is 0.5 to 2 km.  These distances are based on Florida summer 
thunderstorm characteristics, and may be different for other locations and time of year.  This question will 
undoubtedly be a topic for future work. 

5.0  SUMMARY 

An algorithm for combining and interpolating rain gauge data for the purpose of real-time rainfall 
mapping, based on an advection transformation and Shepard’s formula, has been presented in this paper.  
Preliminary data provides evidence that this interpolation processing scheme can lead to improved 
charting of areal rainfall over microscale gauge networks, with immediate applications in forestry and 
agriculture. By integrating the spatially interpolated gauge and radar rainfall rates over microscale gauge 
clusters, the effects of advection and gravitational sorting of drops are reduced so that accurate areal 
average rainfalls may be generated with high temporal resolution. This method of gauge to radar 
comparison is suggestive of the Window Probability Matching Method (WPMM; Rosenfeld, 1994), but in 
this case both the gauge and radar are windowed in space. When spatially averaged gauge and radar 
rainfalls are compared in this way, other useful applications may be sought such as radar algorithm 
calibration, compositing of multiple weather radar, and calibration and verification of NASA’s TRMM 
satellite.  These topics of investigation represent areas of future work. 
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7.0  APPENDIX - DETERMINING COEFFICIENTS OF THE Z-R POWER-LAW 
Determining the coefficients a and b of the Z-R power-law Z aRb=  can be performed by fitting the measured data 
points of logZ and logR to a straight line: 

y y m x= +0                                                                      (A-1) 

where , , , and y Z= log x R= log a y= 10 0 b m= .  This curve fitting procedure is often referred to as linear 
regression for historical reasons.  For a set of N data points (xi, yi), the following sums can be defined: 
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Standard linear regression results in solutions for y0 and m : 
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Equation (3) is the result of minimizing the  error defined as: χ 2
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The preceding procedure minimizes the vertical distance between the data point yi and the calculated point y(xi).  
The implication of this method is that all of the error in the data is contained in yi .  If the error is assumed to be 
equally distributed among both xi and yi , an alternate procedure is to minimize the perpendicular distance between 
(xi, yi) and the line y y m x= +0  .  In this case, the  error is defined as: χ 2
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The new solutions for y0  and m  are now: 
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Interpolated Melbourne NEXRAD Data over KSC Gauges, June 14, 1997. 



 
 

Interpolated Gauge Rainfall, Based on KSC Rain Gauge Data, June 14, 1997. 
 


