Structured Decision Making Examples: Small Scale

I. Managing Disturbance of Golden Eagle Nest Sites at a National Park

Problem I: Statement

- Setting: Large Alaskan National Park
- 100 potential golden eagle nesting sites
- About 60 (average) sites are used for nesting each year
- Park visitors and potential disturbance
- Visitors hiking into nest sites may disturb nesting eagles, thus reducing nest success
- Want to permit visitor access while maintaining viable eagle population

Objective Function

- Minimize restriction of hiker access, subject to constraint (eagle status)
- Constraint: predicted proportion of potential nesting sites with successful eagle reproduction must be at least 0.4

Management Action(s)

- Actions:
- (1) Prohibit hiking near potential nest sites for the spring-summer season
- (2) No restriction of hiking
- Decision timing and basis:
- Annually, in late winter, just before the breeding season
- Based on eagle monitoring information from previous spring-summer

2 Models: Shared Basic Bookkeeping

- Both models, 2 key transition parameters for potential nesting sites:
- Probability of successful reproduction next year, given
- (1) successful reproduction this year
- (2) no successful reproduction this year
- Proportion of sites with successful reproduction this year is determined by:
- Proportion of sites with successful reproduction last year
- Parameters 1 and 2 above

2 Models: Differences

- Model 1:
- Transition parameters (probabilities of successful reproduction next year) do not vary with management decision:
- Disturbance does not influence eagle reproduction
- Model 2:
- Transition parameters are influenced by management decision
- This year's reproduction influenced by mgmt:
- Larger when hiking is restricted
- Smaller when hiking is not restricted

Monitoring Program

- Survey of all potential nest sites
- Repeated visits during spring-summer season
- Estimation using occupancy models that account for detection probabilities <1
- Yields estimates of proportion of sites at which successful reproduction occurs

Decision Step

- Decide (e.g., using optimization) whether or not to restrict hiking based on:
- Objective function
- Models
- Current system state (proportion sites with successful reproduction the previous season)

Decision Table: Result of Optimization

Prop. Successful Last Year	Decision This Year
0.1	Restrict
0.2	Restrict
0.3	Restrict
0.4	Restrict
0.5	Restrict
0.6	No Restrict
0.7	No Restrict

Learning to Make Better Decisions

- Each winter, management decision uses weighted (based on faith in model predictions) average of the 2 models
- Each model makes prediction for the next season
- Monitoring the next season provides an estimate of "truth"
- Degree of faith in each model is modified based on how well it predicts

Structured Decision Making Examples: Small Scale

II. Fish Hatchery Management: Stocking

Problem II: Statement

- Setting: eastern state(s) streams and lakes
- Population fluctuations of a salmonid species cause difficulties in maintaining a viable fishery

Problem II: Statement

- Hatchery provides ability to stock a fixed number (based on hatchery capacity) of either:
- age 0 fish (greater number, smaller cost, stock this year), or
- age 1 fish (smaller number, greater cost, stock next year)
- Want to stock fish of appropriate age, when needed to maintain fishery
- Want to minimize stocking costs

Objective Function

- Minimize stocking costs
- Cost per released fish is fixed
- Cost is larger for release at age 1 than for release at age 0
- Constraint: predicted abundance of adults (age 2+ breeding size) must be at least as large as some threshold value

Management Action(s)

- Actions:
- (1) No stocking
- (2) Stock age 0 fish (fingerlings) this year
- (3) Stock age 1 fish (subadults) next year
- Decision timing:
- Annually, winter or early spring
- Decision based on abundance estimates of adult fish from previous spring-summer

2 Models: Shared Basic Bookkeeping

- Both models predict adult population size in subsequent years based on:
- (1) Adult population size last year,
- (2) Number of age 0 and age 1 fish stocked last year, plus this year's decision:
- number age 0 stocked this year, or
- number age 1 to be stocked next year
- (3) Survival rates of age 0 and age 1 stocked fish

2 Models: Differences

- Model 1:
- Relatively small difference between annual survival rate of age 0 releases and age 1 releases
- Model 2:
- Relatively large difference between annual survival rate of age 0 releases and age 1 releases

Monitoring Program

- Survey managed streams and lakes
- Stratified random sampling of specific sites within water bodies
- Use 3-pass removal sampling (electrofishing or nets)
- Estimation using removal models (deal with nondetection)
- Yields estimates of abundance of adult fish for the managed water bodies

Decision Step

- Decide (e.g., using optimization) to:
- Not stock
- Stock age 0 fish this year
- Rear age 0 fish and release as age 1 next year
- Decision based on:
- Objective function
- Models
- Current system state (estimated adult abundance the previous season)

Learning to Make Better Decisions

- Each spring-summer, management decision uses weighted average of the 2 models
- Each model makes predictions for the subsequent spring-summer seasons
- Monitoring the each spring-summer provides an estimate of "truth"
- Degree of faith in the models is modified based on how well they predict

