Structured Decision Making Examples: Large Scale

Harvest Management for Mid-Continent Mallards U.S. Fish and Wildlife Service

Problem Statement

- Each year, federal hunting regulations are established for waterfowl in 4 administrative flyways in North America
- Want to provide sustainable harvesting opportunities for waterfowl hunters

What's at Stake?

- >50 million birds in spring
- 2 million hunters
- 13 million birds harvested/year
- \$1.6 billion/yr economic output

Brief History of N.A. Duck Harvest Management

- Migratory Bird Treaty Act (1918): hunting permitted if compatible with population maintenance
- **1930-1960**:
 - Commonsense management (restrictive regulations when populations were low)
 - Development of comprehensive monitoring programs

Brief History of N.A. Duck Harvest Management

- **1960-75**:
 - Final development of monitoring programs
 - Mallard population model developed and used to guide hunting regulations
 - Controversy and politics
- **1975-85**:
 - Development of alternative models
 - Uncertain harvest effects
 - Controversy remained

Adaptive Harvest Management (AHM) Working Group

- 1985-90:
 - FWS and CWS adopted a general policy of conservative regulatory response to uncertainty
 - Many stakeholders did not agree with this conservative approach
- 1992:
 - Fred Johnson convened an *ad hoc* group of federal and state biologists and managers to explore AHM concepts and develop an approach

Adoption of AHM, 1995

- 1994-95 waterfowl hunting season:
 - Political intervention bypassed Flyway Council system
 - Led to frustration with regulatory system and desire for a more objective approach
- 1995:
 - FWS group developed approach
 - Approach implemented for mid-continent mallards
 - Selective pressures:
 - uncertainty about effects of hunting
 - stakeholder dissatisfaction with political intervention
 - stakeholder desire for objectivity

Objective Function

- Maximize harvest over long term, giving equal value to harvested birds now and in future years
- Devalue harvest when predicted spring population size is below goal set by the North American Waterfowl Management Plan

Management Actions

- Actions are sets of hunting regulations defined by season length and daily bag limit:
 - Restrictive (short season, small daily bag)
 - Moderate (moderate season and daily bag)
 - Liberal (long season, large daily bag)

Mid-continent Mallard Regulations

Management Actions

- Decision timing:
 - Annually, in summer, preceding the fall hunting season
 - Based on breeding ground surveys of ducks and ponds the previous spring

4 Population Models

- Life-cycle models with:
 - Reproductive rate determined by number of ponds, duck density
 - (1) Strongly density dependent (lower reproductive rate with more ducks)
 - ■(2) Weakly density dependent
 - Annual survival determined by harvest rate
 (1) Compensatory mortality (minimal effect of harvest)
 - (2) Additive mortality (near maximal effect of harvest)

- North American waterfowl monitoring is the most comprehensive program for terrestrial wildlife populations in the world!
 - May breeding ground survey (abundance)
 - Banding program (survival and harvest rates)
 - Harvest survey (harvest and age ratio)
 - Ancillary surveys (winter survey, July breeding ground surveys)

Decision Step

- Decide (using optimization) which package of hunting regulations to implement, based on:
 - Objective function
 - Models
 - Current system state (estimated number of ponds and ducks the previous spring)

Adaptive Management: Outline of Iterative Process

- Iterative process
 - Observe state of system (pond and duck numbers)
 - Assess model performance
 - Derive and implement optimal management action based on:
 - Objective function
 - Available management actions
 - Model set
 - Past performance of the different models
 - Current state of system
 - Implement optimal management action

- Decision is made each summer, and each model makes a prediction about what the duck population will be the next spring
- May aerial survey provides an estimate of spring duck numbers
- Compare predictions with the estimate:
 - increase faith in models that predict well
 decrease faith in models that predict poorly

Learning

- Since 1995, the 2 models with weakly density-dependent reproductive rates have been the better predictors
- Hence, these models are more important in the determination of annual hunting regulations

Double-Loop Learning

- In addition to the iterative regulations cycle (annual), it is possible to revisit start-up phase decisions periodically
- Waterfowl managers (federal, state, private) are now revisiting objectives and management actions
- For example, there is a desire to incorporate habitat management into management actions, treating hunting regulations and habitat within the same adaptive framework

AHM: Mid-Continent Mallards, 1995-2007

- Decisions have been transparent and optimal
- Approach has been well received and has survived politically and institutionally
- Structural/ecological uncertainty has been reduced
- Debate among stakeholders has appropriately moved from ecological uncertainty to discussion of appropriate objectives and actions
- Efforts to extend to other species and populations