Skip Navigation

We have also pursued a flow of information back and forth with other Federal agencies, with whom we have been collaborating under the Interagency Working Group that was established by the MINER Act. Our Federal partners have made us aware of technologies currently used in other applications that may be adaptable to our needs in the mining environment, and are helping us to see how they may fit. For example, the Naval Research Laboratory and NASA have offered their knowledge on human performance and survivability in closed systems that protect humans from hostile environments, such as submarines and spacecraft. They have worked with us to see how this knowledge may advance our research on refuge chambers. The U.S. Army and the Department of Homeland Security are leveraging their knowledge and needs in regard to communications and tracking systems with ours. These and other partnerships will save time, resources, and trial-and-error for NIOSH, and we hope that these collaborating agencies will benefit similarly. The partnerships will also help us meet our duties under the MINER Act more quickly and efficiently.

Ground Control in Underground Mining

The recent disaster at the Crandall Canyon Mine in Utah has brought several topics to national attention in the area of ground control in underground mining. The prevention of fatalities and injuries from failures of the roof, pillars or floor has been a priority area of research, development, demonstration, and research to practice activities at NIOSH for many years. Significant safety improvements have been achieved. Coal bumps, bounces, and outbursts have been a longstanding safety hazard in some mines in the Southern Appalachian, Colorado, and Utah coalfields. A coal bump is the sudden and violent failure of highly stressed coal or surrounding strata. Bumps caused many fatalities in past decades, and were the subject of intensive research by NIOSH and its predecessor agencies. The results of this research were best practices documents and mine planning tools, such as computer models. Over the past decade, for example, many workshops have been conducted and now the NIOSH tools are widely used to improve ground control in the mines.

NIOSH has developed several computer programs to help mine planners design coal pillars. For longwall mining, there is the Analysis of Longwall Pillar Stability (ALPS). For room-and-pillar and retreat mines, there is the Analysis of Retreat Mining Pillar Stability (ARMPS). Both of the programs are widely used throughout the U.S. These programs, along with others developed by industry or academia, provide an excellent methodology for properly designing coal mine pillars for a wide range of mining conditions. Important enhancements to the NIOSH models are the associated databases, which document observed in-mine failures and successes of various designs.

The application of seismic monitoring has been mentioned in recent weeks as a potential technology for predicting coal bumps. For more than thirty years scientists and engineers around the world have invested hundreds of millions of dollars attempting to understand coal bumps and rock bursts, and to develop systems that could predict or warn of impending events. Much has been learned about the events and how to reduce their occurrence through engineering design, but no success has been achieved in prediction. Today, seismic monitoring is used more in hardrock mining, as part of a risk management program, but very infrequently in coal mining. Despite advances in technologies, such as geophones, signal processing equipment and computers, many of the fundamental barriers that existed 30 years ago remain today.

Notwithstanding, there could be value in applying seismic monitoring at mines with a history of bumps, as part of a larger risk management program, as is done in Australian and many European coal mines.

Conclusion

In closing, NIOSH continues to work diligently to protect the safety and health of mineworkers. The relevance of our past work and continued need for further safety and health research is highlighted by the recent mine disasters. We have made significant improvements in the areas of communication and tracking, oxygen supply, and refuge alternatives. Moreover, our safety and health research program is addressing the critical areas identified by our customers and stakeholders, and through our research, development, demonstration, and diffusion activities, we are enabling a shift to a prospective harm reduction culture in the mining industry. I appreciate the opportunity to present our work to you and thank you for your continued support. I am pleased to answer any questions you may have.

 

1 The docking port mechanism is designed to allow the user to plug in additional oxygen units without opening the breathing circuit to the potentially poisonous atmosphere.

Last revised: August 29,2008