Skip Navigation to main content U.S. Department of Energy U.S. Department of Energy Energy Efficiency and Renewable Energy
Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable EERE Home
Geothermal Technologies Program
 
About the ProgramProgram AreasInformation ResourcesFinancial OpportunitiesTechnologiesDeploymentHome
Publications Maps Software and Data Laws and Standards Related Links

How an Enhanced Geothermal System Works

The Potential

Enhanced geothermal systems (EGS), also sometimes called engineered geothermal systems, offer great potential for dramatically expanding the use of geothermal energy. Present geothermal power generation comes from hydrothermal reservoirs, and is somewhat limited in geographic application to specific ideal places in the western U.S. This represents the 'low-hanging fruit' of geothermal energy potential.

EGS offers the chance to extend use of geothermal resources to larger areas of the western U.S., as well as into new geographic areas of the entire U.S. More than 100,000 MWe of economically viable capacity may be available in the continental United States, representing a 40-fold increase over present geothermal power generating capacity. This potential is about 10% of the overall U.S. electric capacity today, and represents a domestic energy source that is clean, reliable, and proven.

The Concept

The EGS concept is to extract heat by creating a subsurface fracture system to which water can be added through injection wells. Creating an enhanced, or engineered, geothermal system requires improving the natural permeability of rock. Rocks are permeable due to minute fractures and pore spaces between mineral grains. Injected water is heated by contact with the rock and returns to the surface through production wells, as in naturally occurring hydrothermal systems. EGS are reservoirs created to improve the economics of resources without adequate water and/or permeability.


View text version of animation.