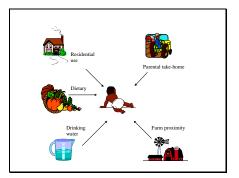
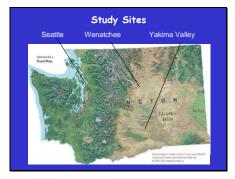

Presentation entitled "Children's Exposure to Pesticides: Studies from Washington State" by Dr. Richard Fenske

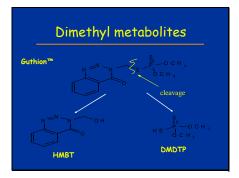
 Cynthia Curl Kai Elgethun Kit Galvin Vince Hebert John Kissel Chengsheng Lu Jaya Ramaprasad Jeff Shirai Rene Showlund-Irish Ming Tsai Sarah Weppner Michael Yost 	 NIOSH Agricultural Centers Program EPA STAR Grant Program EPA/NIEHS Center for Child Health Risks Research Dept of Environmental and Occupational Health Sciences
---	--

Guiding Principles of the UW Research Program on Children's Pesticide Exposure

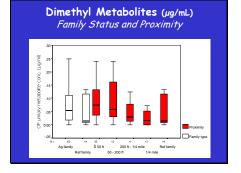
- Identify high risk populations
- ✓ Evaluate exposure to a common class of chemicals
- ✓ Measure multiple exposure pathways
- ✓ Identify opportunities for intervention


Pesticide Exposure Assessment


- » Biological Monitoring Approaches » Pesticide metabolites in urine
- Pesticide inelabolites in unitie
 Pesticides in body fluids (blood, saliva)
 Biomarkers of effect (e.g., cholinesterase)
 Environmental Exposure Assessment
 Measure environmental concentrations
- - » Characterize time-location and personal activities
 - » Exposure and dose modeling

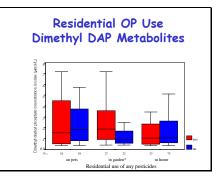


Captan						
Azinpho	osmethyl					
		P	nosmet			
Chlorpy	rifos	_				
Diazino	n	_				
		M	alathion			
		M	ethyl Par	athion		
Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.

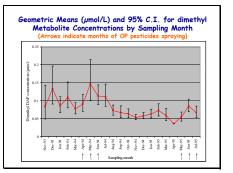


Biological Monitoring Study 1995

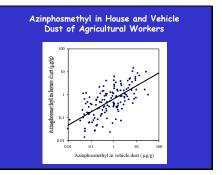
- Children 0-6 years of age
 91 children of agricultural workers
- ✓ 18 reference children
- 2 spot urine samples per child during spraying season


Study Group Definitions

- Agricultural Families
 One or more household member engaged in pesticide application or field work
- ✓ Reference Families
- No household members engaged in agricultural work
- Residence >400 m (1/4 mile) from treated farmland

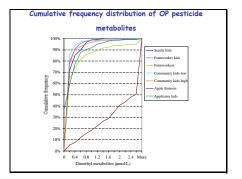

Seattle Metropolitan Area Study 1998

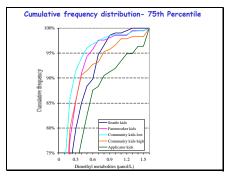
- Study population: 50 children from each of two communities
- ✓ Urine sample collection: fall and spring ✓ Questionnaire data: residential
- environment, parental occupation, income level, and pesticide use patterns

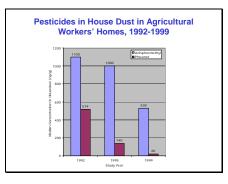

Longitudinal Biomonitoring Study in an Agricultural Community Koch et al. Environ Health Perspect 110:829-33, 2002

- ✓ Agricultural community in E. Washington state
- OP pesticide exposure monitored in 44 preschool children for one year
- ✓ Spot urine samples collected on a bi-weekly basis ✓ Pesticide spray patterns documented by cooperative extension
- ✓ Para-occupational and proximity factors not significant predictors

Yakima Valley Study of Take Home Pesticide Exposure 1999


- Children 0-6 years of age
 211 children of agricultural workers
- Vehicle and house dust samples for each agricultural worker
- Composite urine sample from each child after peak spray season




Study Populations

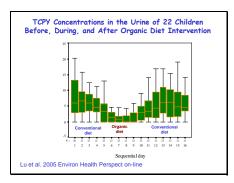
- ✓ Apple thinners
- ✓ Farm workers
- ✓ Farm applicator kids
- ✓ Farm worker kids
- ✓ Kids in an agricultural community
- ✓ Kids in the Seattle metropolitan area

Concentrations (nmol/L) for Seattle, Yakima Valley and NHANES-III Children				
Population		Percentiles		
	N	50th	90th	
Seattle kids	110	117	453	
Farmworker kids	211	87	378	
NHANES (6-11 yrs)	471	91	460	

Dietary Exposure to OP Pesticides Curl et al. Environ Health Perspect 111:377-82 (2003)

 Recruitment from two Seattle grocery stores 39 Pre-school children (2-5 yrs old)
3-day diet log kept by parents

Conclusions


- Agricultural workers are more highly exposed than children, regardless of risk factors Elevated exposures of children in agricultural communities are associated with agricultural spraying Most children of farm workers and children in agricultural communities have exposures similar to urban children for much of the year Additionel studies chaud focus on identification of

- Additional studies should focus on identification of highly exposed sub-populations
- Timing of sampling is critical for exposure studies
- Children classified by consumption of organic or conventional produce

• 24 hour urine sample

• Residential pesticide use minimal

	Median (µmol/L)		
	Dimethyl	Diethyl	
Conventional	0.17	0.02	
Drganic	0.03	0.02	

Chensheng (Alex) Lu, Ph.D. Assistant Professor Emory University

Feasibility Studies in Animals

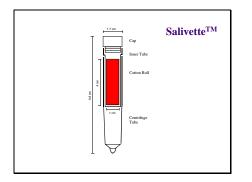
- Intracellular passive diffusion determines appearance of pesticides in saliva
 Lipid solubility Degree of ionization (pKa)
 Molecular weight
 Protein binding
 Rodent selected as model animal

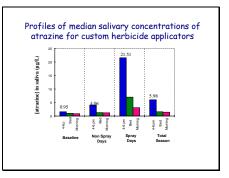
- Pesticide administration through i.v. injection, skin or gavage (oral) ingestion
- Simultaneous arterial blood and saliva collection

Observed and predicted saliva and plasma concentration-time profiles for diazinon in rats after I.V. bolus injection of 1 mg/kg diazinon □ plasma △ saliva \$0 100 150 time post administration (minutes) Solid line indicates the model fit using a two-con 200

Conclusions from Animal Studies

- Both atrazine and diazinon excreted into saliva, Salivary excretion of atrazine and diazinon unaffected by the dose, route of administration or salivary flow rate,
- Significant correlation of atrazine and diazinon concentration in saliva and plasma samples
- Findings suggest that salivary concentrations can be used to predict plasma levels for both pesticides.


Preliminary Survey of Atrazine Exposure Among Herbicide Applicators


in collaboration with the National Institute for Occupational Safety and Health Denovan et al., Environ Health Perpsect 73:457-462

- Evaluate sampling protocol for saliva collection in the field
- Measure atrazine concentrations in saliva for a cohort of herbicide applicators

Study Design

- Baseline (3 months prior to application)
- ✓ 15 applicators
- ✓ Sampled every fourth day; 103 events
- Sampling schedule included post-shift, before bed, and next morning samples Urine, hand wash, skin patches collected by
- NIOSH

Conclusions from Field Study

- Saliva sampling is practical in the field
 Saliva captures the trends of atrazine exposure and elimination in the body
 Urine data confirmed the exposure even without atrazine spraying in the field
- Lack of plasma samples to confirm the validity of saliva biomonitoring

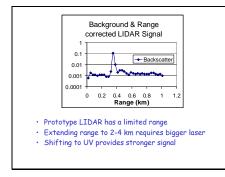
On-going Saliva Biomonitoring Studies

- ✓ Human exposure studies
- Children's dietary study, Seattle
- Farm worker family study, Nicaragua
 Human controlled-exposure study (UC Davis)
- Explore other pesticides
 - Chlorpyrifos
- Permethrin

Acknowledgments

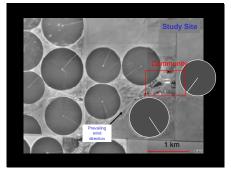
✓ US EPA STAR Grant R828606 2001 - 2004 ✓ US EPA STAR Grant R829364 2002 - 2006 ✓ Dr. Dana Barr, CDC Laboratory National Center for Environmental Health

Environmental Monitoring Studies


Pesticide Spray Drift Characterization with LIDAR

Michael Yost Professor Dept of Environmental and Occupational Health Sciences University of Washington

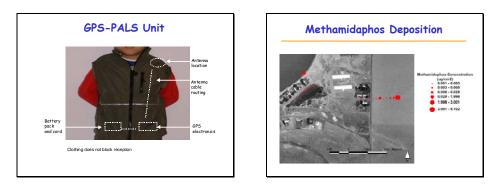
Pesticide Spray Drift and Children's Exposure


Kai Elgethun Doctoral Candidate Dept of Environmental and Occupational Health Sciences University of Washington

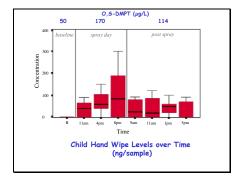
Spray Drift Studies

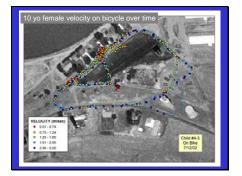
- Spray Drift Modeling Studies
 Human exposure not measured directly
- > Human exposure not measured direct
 > Spray Drift Incident Studies
- » Exposure estimated after-the-fact
- » Washington Aerial Spray Drift Study
- Measure and model spray event
 Measure community and residential air and surface levels
- surface levels » Measure and model children's activities and exposures





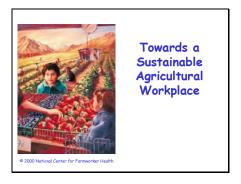
Informed consent/assent obtained from all parents and children




Morning Spray			
Sampler Location	Loading (ng/cm ²		
North field boundary	2,131		
East field boundary	5,653		
Soccer field (median)	2.9		
East housing (median)	2.4		

Sample Source	Morning	Afternoon
Monkey bars - 1	2.09	2.00
Nonkey bars - 2	0.57	1.04
ire swing	0.36	0.98
Baby swing	2.96	5.10

Indoor Surfaces (ng/cm2)			
Sample Source	Baseline	Post-Spray	
Toy - Side yard	nd	0.19	
Toy - Back yard	nd	0.37	
Toy - Playground	nd	0.14	
Apples	nd	nd	
Indoor surfaces	nd	nd	



Key Findings

- Well controlled aerial application
 Levels at field boundary 1,000X greater than off-target
 Low levels on surfaces in community
 Low ng/cm² on ploy equipment and autdoor toys
 No detectable residues on indoor surfaces
 Ochildren contact with residues
 Oc.S-DMPT metabolite associated with hand wipe levels and
 time spent outdoors
 Child activities an important component of
 exposure analysis
 » 8-fold difference between high and low child exposures

Work in Progress

- Develop dispersion models for vapors and particles
 Estimate dermal contact via deposition modeling and children's activities
 Estimate respiratory exposure via air modeling and children's activities
 Mass balance analysis of aggregate exposure and biological monitoring
 Risk analysis and communication to agricultural community

