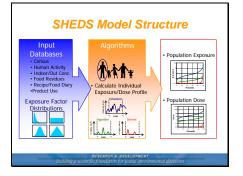
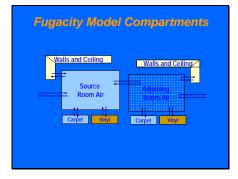

Presentation entitled "Modeling Children's Exposure to Pesticides: Issues and Challenges" by Dr. Halûk Özkaynak

Exposure Modeling Steps

- Evaluate potential exposure scenarios to single or multiple pesticides (what, where, when, why and by whom)
- Select and apply appropriate aggregate or cumulative exposure/dose model (s) for the scenario (s) of interest
- Evaluate conditions (subjects, locations, sources, pathways) that result in typical and high-end exposures to pesticides of
- concern Determine the intensity, duration, frequency, route and timing of exposures
- Evaluate the health significance of modeled exposures and do

Elements of Modeling Analysis

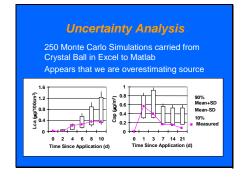

- · Identify population groups/ages and microenvironments of concern · Estimate exposure factors
- Time-activity data by age, gender, region, etc.
 Contact/transfer/uptake/PBPK rates or parameters
- Estimate physical factors
 - Source use and emissions
 - Penetration, Infiltration, re-suspension, track-in, volatilization, decay and migration rates
- · Application of data and algorithms using a selected modeling structure

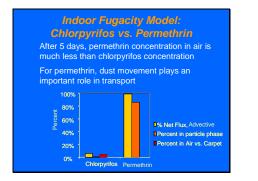

	Mechanistic	Empirical
Deterministic	Mathematical constructs of physical/chemical processes that predict fixed outputs for a fixed set of inputs	Statistical models based on measured inpu and output values (e.g., regression models that relate air concentrations and blood levels of a chemical or ambient pollutant concentrations with personal exposures)
Stochastic	Mathematical constructs of physical/chemical processes that predict the range and probability density distribution of an exposure model outcome (e.g., predicted distribution of personal exposures within a study population)	Regression-based models, where model variables and coefficients are represented by probability distributions, representing variability and/or uncertainty in the model inputs and parameters.

Typical Microenvironments

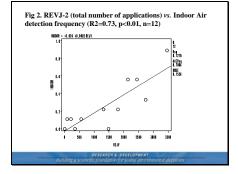
• Indoors

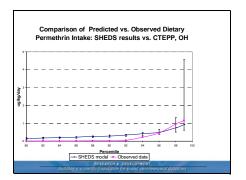
- Home, office, school, day care centers, public buildings, etc.
- Outdoors
- residential lawn/yard, near home, school, day care centers, recreation grounds, etc.
- In-Vehicle
- car, bus, subway/train, etc.

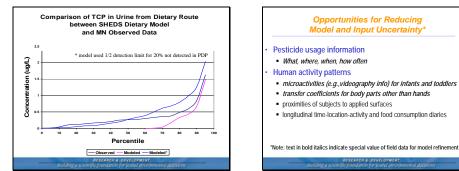



Chlorpyrifos Case Study

EPA applied a crack and crevice application to their test house We considered a treated and an untreated region


		ORTHO
Allethrin	Ortho Flying Insect Killer	INDOOR INSECT FOCO
	Hot Shot Flying Insect Killer	A
Cyfluthrin	Raid Ant and Roach	
Cypermethrin	Raid Ant and Roach Fogger	BATTE A
Esfenvalerate	Ortho Roach, Ant, and Spider	Killer
Permethrin	Raid Fumigator; Ant Killer	
	Hot Shot Flying Insect; Fogger	
	Spectracide BugStop	
Tralomethrin	Raid Wasp, Hot Shot Insect, S BugStop Fogger	pectracide


with 12 month REJV survey data					
chem	Total No. of Applications	Number of Homes applied	Average number of applications/home/year		
allethrin	2741	437	6.3		
bifenthrin	563	99	5.7		
cyfluthrin	219	46	4.8		
cyhalothrin	7	4	1.8		
cypermethrin	1319	163	8.1		
deltamethrin	131	22	6.0		
esvenvalerate	91	25	3.6		
envalerate	130	37	3.5		
permethrin	3461	518	6.7		
ohenothrin	1805	293	6.2		
piperonyl_butoxide	2759	461	6.0		
orallethrin	59	13	4.5		
oyrethrin_LII	2447	472	5.2		
esmethrin	355	106	3.3		
etramethrin	2141	342	6.3		
ralomethrin	1356	279	4.9		


	%		%		%
	homes		homes		wipe
utdoor Air	(n⊨9)	Indoor Air	(n=9)	Surface wipes	(n⇒46)
xal Permethrin	100.0%	total Permethrin	88.9%	Total_Permethrin	91%
tal Cypermethrin	22.2%	total Tetramethrin	55.6%	Total_Oypermethrin	80%
xal Tetramethrin	22.2%	Pyrethrin I	44.4%	Esfenvalerate	30%
xtal Allethrin	0.0%	total Allethrin	33.3%	Total_Allethrin	22%
lifenthrin	0.0%	total Cypermethrin	22.2%	Bifenthrin	20%
xtal Cyfluthrin	0.0%	Sumithrin	22.2%	Total_Cyfluthrin	20%
amda-Cyhalothrin	0.0%	Bifenthrin	11.1%	Delta_Tralomethrin	15%
elta/Tralomethrin	0.0%	total Cyfluthrin	11.1%	Total_Tetramethrin	13%
sferivalerate	0.0%	Esfenvalerate	11.1%	lamda_Cyhalothrin	9%
yrethrin I	0.0%	Pyrethrin II	11.1%	Sumithrin	4%
yrethrin II	0.0%	lamda-Cyhalothrin	0.0%	Pyrethrin_II	2%
tesmethrin	0	Delta/Tralomethrin	0.0%	Pyrethrin_I	0%
umithrin	0.0%	Resmethrin	0	Resmethrin	0%

Г

	Average food	Average permethrin
Food items	consumption per day (g)	intake per day (ug)
Lettuce, raw	8.05	0.73
Spinach, cooked, from canned, fat not added in cooking	0.24	0.32
Apple juice	13.60	0.20
Tomatoes, raw	8.54	0.19
Spinach, cooked, from fresh, fat not added in cooking	0.15	0.19
Apple juice, with added vitamin C	11.11	0.15
Spinach, raw	0.13	0.16
Spinach, cooked, from frozen, fat not added in cooking	0.21	0.14
Cucumber, raw	2.25	0.09
Apple, raw	14.68	0.0
Spinach, cooked, NS as to form, fat not added in cooking	0.03	0.04
Celery, raw	0.58	0.0
Pear, raw	2.14	0.0
Carrots, raw	2.41	0.03
Spinach, cooked, from canned, fat added in cooking	0.04	0.03

Opportunities for Reducing Model and Input Uncertainty (Cont'd)*

Exposure Factors

TC vs. TE and differences between studies Pooled analysis of all available data to fit more robust variability distributions to TC and TE estimates Analyze statistically study-to-study differences to fit uncertainty distributions to TC and TE values

- transfer efficiency, demail absorption as a function of pesticide residue type/composition surface area contact fraction
- factors affecting surface-to-skin (e.g., # contacts) and skin-to-surface residue transfer (off-loading) efficiency
 saliva and water removal efficiency as a function of contact duration

*Note: text in bold italics indicate special value of field data for model refinement

Opportunities for Reducing Model and Input Uncertainty (Cont'd)*

Opportunities for Reducing

Model and Input Uncertainty (Cont.)*

 measure both concentrations rather and mass loading at skin surface residues by: different types of surfaces, post-application times, proximities to application

 pesticide residues and their transformation products in environmental samples and in food and beverages
 Need reliable approaches for dealing with non-detects in residue data *Note: text in bold italics indicate special value of field data for model refinement

Pesticide concentrations and residues

pesticide concentrations in non-home environments

 pesticide concentrations due to track-in and pets phase changes of pesticides over time distribution of pesticides indoors after an application

- Refined Concentration and Exposure Algorithms develop, test and implement indoor fugacity based source-concentrations models
- · incorporate environmental metabolite ingestion pathway in models more accurate dermal exposure models (e.g., clothing, evaporation, deposition, skin-to-surface transfer)
- methods to extrapolate cross-sectional to longitudinal estimates
 co-occurrence algorithms based on multiple pesticide use (field study data and IREJV survey)
- new techniques for sensitivity analysis (e.g., SOBOL method)
 develop and incorporate more complex and physiologically based PK/PBPK modules

*Note: text in bold italics indicate special value of field data for model refinement

Opportunities for Reducing Model and Input Uncertainty (Cont'd)*

Model Evaluation

- Compare modeled dose predictions against biomarker measurements (e.g., urine, blood, hair, saliva, nail, etc.)
- · Compare hand/body loading estimates to field measurements · Compare inhalation exposure estimates to personal air
- measurements
- Individually evaluate each model component (inhalation, ingestion, dermal)
- Contrast results to alternative model predictions

*Note: text in bold italics indicate special value of field data for model refinement

Disclaimer

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.