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Abstract

Although the mathematical foundations of common value auctions have been well understood since

Milgrom and Weber (1982), equilibrium bidding strategies are computationally complex. Very few

calculated examples can be found in the literature, and only for highly specialized cases. This

paper introduces two sets of distributional assumptions that are 
exible enough for theoretical and

empirical applications and yet permit straightforward calculation of equilibrium bidding strategies.
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In many of the most prominent auction settings, bidders share a common ex-post valuation for

the good for sale, but ex-ante do not know what that value is. Examples of common value (\CV")

auctions occur in primary markets for Treasury bills, timber tracts and oil exploration leases. The

mathematical foundations of CV auctions have been well understood since Milgrom and Weber

(1982) (\M-W"), and there is a large experimental and empirical literature as well.1

Nonetheless, examples of calculated equilibrium bidding strategies are quite rare. Although the

M-W solution to the CV auction has an intuitively straightforward form, in practice it is di�cult to

specify distributional assumptions that yield closed form or nearly closed form solutions, even for

the simplest case of a sealed-bid CV auction of a single unit with an exogenous number of bidders.

Matthews (1984, x5) provides a model with closed form solution in which the value of the good is

drawn from a Pareto distribution. Matthews derives a number of interesting theoretical results from

his solution. For empirical work, however, this speci�cation is likely to be too restrictive, because

the Pareto density is strictly decreasing over its entire support. In most empirical settings, one

would expect the density for the value of the good to have some sort of bell shape (not necessarily

symmetric) centered near its mean. Paarsch (1992, x2.1.1) presents a similar speci�cation with

similar limitations.2

The few other known examples in the literature are still more restrictive. Fully closed form

solutions exist for a class of models in which each bidder draws an independent random variable

and the value of the good is the average of the draws (see, e.g., Vincent 1995). These models are

peculiar in that public information cannot be distinguished from private signals, and are thus not

well suited for empirical work. Closed form solutions also can be found when the prior is assumed to

be di�use; see Engelbrecht-Wiggans and Weber (1979) and Levin and Smith (1991) on this special

1For a general introduction to the auction literature, see McAfee and McMillan (1987) and Milgrom (1989).
2Preston McAfee has pointed out that a binomial common value, combined with a power function distribution for

the signal, allows for computationally straightforward examples of bidding strategies. This too is quite restrictive.

1



case. For most CV auctions, however, the assumption of no public information is untenable.3

Perhaps surprisingly, numerical solution by direct methods is typically quite di�cult. Com-

putation of the M-W equilibrium strategy involves nested de�nite integrals. In general, some of

the integrands will tend to in�nity at the lower limit of integration, which complicates numerical

solution. Furthermore, integration can magnify any inaccuracy in the integrand, which itself may

be the result of a numerical approximation. La�ont and Vuoung (1993) suggest a method based on

simulated moments, but it is not clear how the simulator could be constructed without resolving

the same numerical problems as arise in direct methods.

This paper presents two sets of distributional assumptions that yield computationally convenient

solutions for both �rst-price and second-price sealed-bid common value auctions. Each set of

assumptions is consistent in spirit with the M-W framework, in that there is a non-di�use public

prior and private signals are conditionally independent and increasing in expected value with the

true value of the good. Each also is parametrically 
exible, in that the mean and precision of the

prior and the precision of private signals can each be varied independently, and the equilibrium

strategy can be computed for any number of bidders n � 2. This parametric 
exibility is especially

valuable for empirical applications.

Section 1 brie
y summarizes the M-W framework and solution under risk neutrality. Sections 2

and 3 show how the M-W equilibrium strategy is easily computed under two sets of distributional

assumptions. Comparative statics for the bidding strategies are explored in Section 4. Compar-

ative statics for bidder pro�ts and seller revenue are discussed in Section 5. In Section 6 I show

that a reserve price can easily be accomodated under these speci�cations. Further extensions and

applications are discussed in the Conclusion.

3In U.S. Treasury auctions, for example, the great majority of relevant information is incorporated in publicly

observed pre-auction when-issued prices.
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1 Milgrom-Weber common value auction model

In the simplest CV auction, n risk-neutral bidders compete for a single good of unknown value V .

The bidders share a prior distribution on its ex-post value, and each bidder receives a private signal

X such that XijV is independent of Xj jV for all bidders i 6= j. Each bidder submits a single sealed

bid. The good is awarded to the highest bidder, who pays either her own bid (under �rst-price

rules) or the bid of the next highest bidder (under second-price rules).

Let f(v) and F (v) denote the density and c.d.f. of the prior distribution, and let g(xjv) and

G(xjv) denote the conditional density and c.d.f. of a bidder's signal. Without loss of generality,

I take the perspective of bidder 1. Let Y1 denote the highest among the other bidders' signals

X2; : : : ;Xn. Then M-W (Theorem 14) show that the equilibrium bidding strategy for the �rst-

price auction is given by the �rst-order linear di�erential equation

B1
0(x) = (�(x; x)�B1(x))�(x; x) (1)

where

�(x; y) � E[V jX1 = x; Y1 = y]

�(y; x) � gY1(Y1 = yjX1 = x)=GY1(Y1 = yjX1 = x)

and where gY1 denotes the density of order statistic Y1. The boundary condition for equation (1)

is B1(x) = �(x; x), where x is the in�mum of the support of g. The solution to the di�erential

equation can then be written as

B1(x) =

Z x

x
�(t; t)�(t; t)L(tjx)dt (2)
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where

L(tjx) � exp

�
�

Z x

t
�(s; s)ds

�
:

The equilibrium strategy for the second-price auction is simply

B2(x) = �(x; x): (3)

2 Gamma Prior, Inverse Gamma Signal (GIG)

Let the prior for V be the Gamma(�; �) distribution for � > 0; � > 0. The p.d.f. is given by

f(v) =
��

�(�)
v��1 exp(��v):

Let the private signals be conditionally independent and distributed \inverse Gamma," i.e., such

that 1=X given V =v is distributed Gamma(�; �v). The parameter � measures the precision of the

signal. It is straightforward to check that the expectation of X is increasing in the realization of

V , and that the signals satisfy the a�liation property discussed in M-W.4 Thus, our distributional

choices satisfy the assumptions in M-W's analysis. It is also easily checked that the posterior

distribution of V is also Gamma, i.e., V j(X=x) � Gamma(�+ �; � + �x�1).

For tractability, it is necessary to restrict � to the set of positive integers.5 In this case, the

conditional c.d.f. of X is given by

G(xjv) � Pr(X � xjV = v) = 1� Pr(X�1
� x�1jV = v) = e��1(�vx

�1) exp(��vx�1)

where ek(z) � 1 + z + z2=2! + : : :+ zk=k! (see Abramowitz and Stegun, eds 1968, 6.5.1,6.5.13). In

4The conditional distribution of private signals satis�es the monotone likelihood ratio property, which M-W show

is a su�cient condition (see pages 1098-99).
5The Gamma distribution with an integer �rst parameter is also known as the Erlang distribution.

4



calculating the functions � and �, the only di�culty is the distribution for order statistic Y1, which

is

GY1(Y1 = yjV = v) = G(X = yjV = v)n�1 = e��1(�vx
�1)n�1 exp(�(n� 1)�vx�1):

Let c
(k;n)
j denote the coe�cient on zj in the polynomial expansion of ek(z)

n. As ek has only k + 1

terms, the polynomial expansion is quickly computed. The integrals needed to obtain gY1(Y1=

yjX=x) and other constituent parts of � and � can then be expressed as a �nite sum of integrals

of the form
R
1

0 va�1 exp(�bv)dv which has solution �(a)=ba.

For notational convenience, let (a)k be the Pochhammer symbol, i.e., (a)0 = 1; (a)1 = a; (a)k =

(a)k�1(a+ k � 1), and de�ne the function

 (x; a; b; �;m; n) �

m�(��1)X
j=0

c
(��1;m)
j (a+ (n�m)�)j

�
�

bx+ n�

�j
:

Calculations outlined in Appendix A.1 give

B2(x) = �(x; x) =
(�+ 2�)x

�x+ n�

 (x; � + 1; �; �; n � 2; n)

 (x; �; �; �; n � 2; n)
(4)

�(x; x) =
(n� 1)

B(�+ �; �)

� �

x(�x+ n�)�
 (x; �; �; �; n � 2; n)

 (x; �; �; �; n � 1; n)
: (5)

where B denotes the beta function, B(a; b) � �(a)�(b)=�(a + b).

Computation of B2(x) is quite simple and fast. All summation terms in the  function are

positive, so 
oating point round-o� error is not an issue. In general, there does not appear to be a

closed form solution for B1(x), but numerical solution presents only minor di�culty. In practice,

solution of di�erential equation (1) by Runge-Kutta seems to be the easiest way to obtain B1(x).

At the boundary point x = 0, �(0; 0) = 0 so B1(0) = B2(0) = 0. Although �(0; 0) = 1, the
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gradient of B1 at x = 0 is bounded by

0 � B0

1(0) � �(0; 0)�(0; 0) =
(n� 1)

B(�+ �; �)

(�+ 2�)

�n�+1
 (0; � + 1; �; �; n � 2; n)

 (0; �; �; �; n � 1; n)
<1:

It makes no discernable di�erence to the overall solution whether B0

1(0) is set to its upper or lower

bound. I �nd that solution using Matlab on a SparcStation5 typically takes less than two seconds.6

Special case: When � = 1, the conditional distribution of the signal simpli�es to the exponential

distribution. In this case, � and � both have simple forms, the function L(tjx) has closed form

solution, and even B1(x) has a simple closed form expression. These are given by

B2(x) = �(x; x) =
(�+ 2)x

�x+ n

�(x; x) =
(n� 1)(� + 1)

x(�x+ n)

L(tjx) =

�
t

x

�x+ n

�t+ n

�(�+1)(n�1)=n

B1(x) =

�
1�

1

1 + (�+ 1)(n� 1)=n

�
(�+ 2)x

�x+ n
:

Special case: When n = 2, B2(x) has the simple form

B2(x) = �(x; x) =
(�+ 2�)x

�x+ 2�

which holds for any � 2 <+. The remaining calculations to obtain B1(x) do not appear to simplify

signi�cantly.

6Although time for evaluation of � and � increases with � and n, total time for Runge-Kutta solution need not.

Rather, time to solution seems to be determined mainly by the degree of curvature near the origin. Matlab and C

routines are available from the author.
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3 Beta Prior, Negative Log Gamma Signal (BNLG)

It is often desirable to assume that the value of the good has bounded support. For example,

the discount price of a Treasury bill must always be in [0; 1]. An appealing and computationally

convenient assumption is that the prior on V is the Beta(�; �) distribution for � > 0; � > 0. Let

the private signals be conditionally independent and distributed \negative log Gamma," i.e., such

that � ln(X) given V = v is distributed Gamma(�; �v). It is easily checked that the signals are

a�liated and increase in expectation with the realization of V , so the M-W framework applies.

Application of Bayes' rule gives the posterior of V as a con
uent hypergeometric distribution

(see Appendix A.2), which is conjugate for gamma-distributed signals. Remaining calculations are

similar to those in Section 2. The conditional c.d.f. of order statistic Y1 is expanded as a �nite sum,

GY1(Y1 = yjV = v) = G(X = yjV = v)n�1 = e��1(��v ln(x))
n�1 exp((n� 1)�v ln(x))

= exp((n� 1)�v ln(y))

(��1)(n�1)X
j=0

c
(��1;n�1)
j (��v ln(y))j

where c
(k;n)
j is (as above) the coe�cient on zj in the polynomial expansion of ek(z)

n. The counter-

part in this speci�cation of the  function in the GIG speci�cation is

�(x; a; b; �;m; n) � B(a+ (n�m)�; b)

�

m�(��1)X
j=0

c
(��1;m)
j (�� ln(x))j

(a+ (n�m)�)j

(b+ a+ (n�m)�)j
M(b; b+ a+ (n�m)� + j;�n� ln(x)) (6)

where M(a; b; z) is the con
uent hypergeometric function (see Abramowitz and Stegun, eds 1968,
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x13) and B is the beta function. Straightforward calculations, outlined in Appendix A.2, give

B2(x) = �(x; x) =
�(x; �+ 1; �; �; n � 2; n)

�(x; �; �; �; n� 2; n)
(7)

�(x; x) =
(n� 1)� �

�(�)

(� ln(x))��1

x

�(x; �; �; �; n� 2; n)

�(x; �; �; �; n� 1; n)
: (8)

Although there does not appear to be a closed form solution for B1(x), numerical solution can

be obtained with only minor di�culty. At the boundary point x = 0, �(0; 0) = 0 so B1(0) =

B2(0) = 0.7 The gradient for B1(x) is in�nite at x = 0, so Runge-Kutta must be initialized at some

small � > 0, say � = 10�8.8 On a SparcStation5, solution in Matlab requires three to 25 seconds

for parameter values in the range explored in Section 5.

Special case: When � = 1, the conditional distribution of the signal simpli�es to the power func-

tion distribution, G(xjv) = xv, and �(x; x), �(x; x) and L(tjx) have simple closed form expressions.

The integral in equation (2) does not appear to have a closed form solution even in this special

case, so B1(x) still must be solved numerically.

4 Comparative Statics for Bidding Strategies

The complexity of CV auctions for both the bidder and the theorist is inherent in the bidders'

statistical �lter. If each bidder receives an unbiased private signal of the true value, then the

winning bidder's signal is an order statistic of the set of private signals, and thus biased upwards.

In order to avoid winner's curse, the bidder must interpret her private information as if she had

the highest of the n bidders' signals. Some intuition for this complicated Bayesian problem can be

7As x ! 0, the argument �n� ln(x) goes to in�nity in the argument of the hypergeometric function in equation

(6). Apply the limiting form given in Abramowitz and Stegun, eds (1968, 13.1.4) to show that � must go to zero.
8The starting value B1(�) is bounded by 0 = �(0; 0) < B1(�) < �(�; �), and it makes very little di�erence to the

overall solution whether the lower or upper bound is used.

8



gained from exploring how bidding strategies change with changes in the parameters.

Figure 1 shows the e�ect on B1(x) in the GIG speci�cation of changes in the parameters

(�; �; �; n). The upper right panel shows the e�ect of changing the precision of private signals while

holding constant � = 8; � = 2; n = 5. Increasing � makes the signal more precise, and so increases

the weight given to the signal. Therefore, B1(x) twists counter-clockwise so that the bid for low

signal values decreases and for high signal values increases. The upper left panel shows the e�ect

of varying n. Increasing n increases the potential for winner's curse, which should lower bids, but

also increases competition among the bidders. At low signal values, expected bidder rents are low,

so the former e�ect dominates. At higher signal values, expected rents to the winner increase, so

the competition e�ect becomes stronger. Therefore, the bidding strategy twists counter-clockwise.

It is convenient to re-parameterize (�; �) as (��; �), so that the mean is � and changing �

changes only the variance �=�.9 The lower left panel shows that increasing � increases B1(x). The

e�ect of changing �, which acts as a precision parameter for the prior, is the opposite of the e�ect

of increasing � . As � increases, the bidder places greater weight on the public information relative

to private signals. Therefore, the lower right panel shows that B1(x) twists clockwise so that the

bid for low signal values increases and for high signal values decreases.

I �nd similar comparative statics for the GIG second-price auction and the BNLG �rst- and

second-price auctions.

5 Comparative Statics for Bidder Pro�ts and Seller Revenue

Common value auctions do not, in general, yield neat comparative statics for bidder pro�ts and

seller revenue. It might be expected, for example, that expected seller revenue strictly increases

9If (�; �) is re-parameterized as (�2=�2; �=�2), then mean � can be varied independently from variance �2.

However, the resulting comparative statics are less clean because changing either � or �2 changes the shape of the

prior distribution in unintuitive ways.
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Figure 1: Bidding Strategies for GIG First-Price Model
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In the upper left panel, n 2 f2; 5; 8g with other parameters held constant at � = 8; � = 2; � = 4.

In the upper right panel, � 2 f1; 4; 8g with other parameters held constant at � = 8; � = 2; n = 5.

In the lower left panel, � is set to �� for � 2 f2; 4; 6g with � = 2; n = 5; � = 4 are held constant.

In the lower right panel, � is set to �� for � 2 f1; 2; 3g with � = 4; n = 5; � = 4 held constant.
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with the number of competing bidders. While it is true that competition must drive expected seller

revenue to E[V ] as n ! 1, Matthews (1984) shows that seller revenue falls with n at low values

of n in his Pareto example. Similarly, intuition from the mechanism design literature might lead

one to expect a bidder's expected rent to increase with the magnitude of his signal. Here too,

counter-examples are available. In this section, I explore these comparative statics for the GIG and

BNLG speci�cations, and �nd no evidence of pathological behavior.

In the �rst-price auction, the bidder's expected pro�t for a given signal x is

�1(x) =

Z x

0
(�(x; y)�B1(x))gY1(yjx)dy

=

Z x

0

Z
V
v(gY1(yjv)f(vjx)=gY1 (yjx))dvgY1 (yjx)dy �B1(x)GY1(xjx)

=

Z
V
vG(xjv)n�1f(vjx)dv �B1(x)GY1(xjx):

Under the GIG speci�cation, this expression reduces to

�1(x) =

�
�x+ �

�x+ n�

��+� � (�+ �)x

�x+ n�
 (x; � + 1; �; �; n� 1; n)�B1(x) (x; �; �; �; n � 1; n)

�
:

It is di�cult to sign the derivative �1
0(x) analytically, but in numerical explorations it appears

always to be positive. In Figure 2, I plot bidder pro�t as a function of x for parameter values

used in Figure 1. In all cases, the bidder's expected pro�t increases with the level of the signal.

Pro�t decreases with the number of competing bidders and increases with the precision of private

information.10

10For the parameter values used in the right window of Figure 2, �1(x) increases at least through � = 20. Intuition

suggests, however, that �1(x) must eventually decline with � . At � ! 1, signals become perfectly precise, so the

true value becomes common knowledge. In the limit, the bidders face Bertrand competition, and so receive zero rent.
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Figure 2: Comparative Statics for Bidder Pro�ts
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Under the BNLG speci�cation, �1(x) takes the form

�1(x) =
x� �(n�1)(�(x; �+ 1; �; �; n� 1; n)�B1(x)�(x; �; �; �; n � 1; n))

B(�+ �; �)M(�; � + � + �;�� ln(x))

and displays the same comparative statics as the GIG case. In the second-price auction, the bidder's

expected pro�t for a given signal x is

�2(x) =

Z x

0
(�(x; y)�B2(y))gY1(yjx)dy:

This integral appears not to have a closed form solution under either speci�cation, but can be

solved by quadrature.

Expected seller revenue is in practice most easily estimated by Monte Carlo simulation. For

each speci�cation, I estimate E[Rj ] for j 2 f1; 2g, n 2 f2; 3; 4; 6g, � 2 f1; 2; 3; 5; 8g, and a variety

of �; � pairs.11 Without exception, I �nd that E[Rj ] increases with n.

6 Reserve Prices

Reserve prices are commonly employed by sellers to raise expected revenue. Extension of the

M-W model to include reserve prices is useful both for policy purposes, e.g., to approximate an

optimal reserve price, and for structural estimation of the model when the auction data include

an announced reserve price. Reserve prices can be accommodated under both the GIG and BNLG

speci�cations with little additional computational complexity.

The announcement of a reserve price r induces potential bidders to drop out when private

information indicates that the good is worth less than the reserve price. Given r, let x�(r) be the

11For GIG, I set (�; �) = (��; �) for each combination of � 2 f0:5; 1; 2; 4; 8g and � 2 f1; 2; 4; 8g. For BNLG, I set

(�; �) = (��; (1� �)�) for each combination of � 2 f0:05; 0:20; 0:50; 0:8; 0:95g and � 2 f1; 4; 8; 25g. I draw T = 30000

random auctions for each set of parameters, and take average revenue.
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screening level for x below which the bidder will drop out. This is given in M-W as

r = E[V jX1 = x�; Y1 < x�] =

Z
V
vf(vjX1 = x�; Y1 < x�)dv

=

R
V vG(x

�jv)n�1g(x�jv)f(v)dvR
V G(x

�jv)n�1g(x�jv)f(v)dv
:

For the GIG speci�cation, x� has implicit solution

r =
(�+ �)x�

�x� + n�

 (x�; �+ 1; �; �; n� 1; n)

 (x�; �; �; �; n � 1; n)
:

For the BNLG speci�cation, the solution is

r =
�(x�; �+ 1; �; �; n � 1; n)

�(x�; �; �; �; n � 1; n)
:

Note the close structural similarity of these screening equations both to one another and to the

respective equations for �(x; x).

Once the screening level is obtained, solution of the equilibrium strategies is straightforward.

In the �rst-price auction, one solves di�erential equation (1) with initial value B1(x
�) = r. The

second-price solution is unchanged, except that bidders with x < x� drop out.

Conclusion

This paper introduces two sets of distributional assumptions that yield computationally convenient

equilibrium strategies in the �rst- and second-price sealed bid common value auction. These results

present new opportunities for structural estimation of auction models. Both speci�cations can be

computed quickly and accurately, and can be parameterized 
exibly. Moreover, both speci�cations

are plausible representations of important classes of CV auctions. The gamma prior in the GIG
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speci�cation is convenient for modeling an auction of a good with a natural lower bound on value

(typically zero) but not a natural upper bound, e.g., an oil exploration tract. The beta prior in the

BNLG speci�cation is appropriate when there are natural lower and upper bounds, e.g., a Treasury

bill. Both the gamma and beta allow for a density that is roughly bell-shaped and centered near the

mean. Both speci�cations easily accomodate a reserve price, and both appear to be well behaved

with respect to comparative statics for bidder pro�ts and seller revenue.

The restriction of precision parameter � to the set of positive integers can be overcome easily.

The conditional density of the signals changes smoothly with � , so the bidding strategy must as

well. Therefore, bidding strategies for non-integer values of � can be approximated by interpolation.

Some further extensions are possible. In some CV auctions, multiple units are o�ered for

simultaneous sale. The equilibrium bidding strategy is similar in form to the single unit case, but

with the order statistic Ym (where m is the number of units) replacing Y1 in functions � and �

(see Bikhchandani and Huang 1989). The GIG and BNLG speci�cations can be extended to the

multiple unit case, although possibly with numerical problems.12 Both speci�cations can also be

used to derive computationally feasible equilibrium solutions when bidders have constant absolute

risk aversion.

A Intermediate calculations

This appendix lists the most important intermediate results not reported in the main text. As

above, V represents the true value with c.d.f. F (p.d.f. f), X1 the signal of our representative

bidder (without loss of generality) with c.d.f. G (p.d.f. g), and Y1 the highest of the other signals

X2; : : : ;Xn. To simplify notation, lower case x and y will stand for realizations of X1 and Y1.

12Speci�cally, the � and � functions will contain negative, as well as positive, terms. Round-o� error occurs in

taking the di�erence of two terms of roughly equal magnitude.
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A.1 GIG speci�cation

The conditional and unconditional distributions of the bidder's signal X1 are given by

g(xjv) =
(�v)�

�(�)
x�(�+1) exp(��vx�1)

G(xjv) = e��1(�vx
�1) exp(��vx�1)

g(x) =

Z
1

0
g(xjv)f(v)dv =

��� �

B(�; �)

x��1

(�x+ �)�+�

G(x) =

Z
1

0
G(xjv)f(v)dv =

�
�x

�x+ �

��
 (x; �; �; �; 1; 1)

Generalizing the  function to

~ (y; x; a; b; �;m; n) �

m�(��1)X
j=0

c
(��1;m)
j (a+ (n�m)�)j

�
�

y(b+ �x�1 + (n� 1)�y�1)

�j

allows compact expression of the distribution of Y1 given X1 as

gY1(yjx) =

Z
1

0
gY1(yjv)f(vjx)dv = (n� 1)

Z
1

0
GY1(yjv)

n�2gY1(yjv)f(vjx)dv

=
(n� 1)� � (� + �x�1)�+�

y�+1�(�+ �)�(�)

�

(n�2)(��1)X
j=0

c
(��1;n�2)
j (�y�1)j

Z
1

0
v�+2�+j�1 exp(�(� + �x�1 + (n� 1)�y�1)v)dv

=
(n� 1)� �

y�+1B(�+ �; �)

(� + �x�1)�+�

(� + �x�1 + (n� 1)�y�1)�+2�
~ (y; x; �; �; �; n � 2; n)

GY1(yjx) =

Z
1

0
GY1(yjv)f(vjx)dv =

Z
1

0
G(yjv)n�1f(vjx)dv

=

 
� + �x�1

� + �x�1 + (n� 1)�y�1

!�+�

~ (y; x; �; �; �; n � 1; n)

Noting that ~ (x; x; a; b; �;m; n) =  (x; a; b; �;m; n) and re-arranging lead to the simple forms for

�(x; x) and �(x; x) in Section 2.
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A.2 BNLG speci�cation

The mechanics of the BNLG calculations are quite similar to those of the GIG case. The true value

V is integrated out of distributions for the signals by employing the identity

Z 1

0
va�1(1� v)b�1 exp(zv)dv = exp(z)B(a; b)M(b; a + b;�z) (9)

where M(a; b; z) is the con
uent hypergeometric function (also written 1F1) and B is the beta

function (see Abramowitz and Stegun, eds 1968, 13.2.1,13.1.27). The conditional and unconditional

distributions of the bidder's signal X1 are given by

g(xjv) =
(�v)�

�(�)

(� ln(x))��1

x
exp(�v ln(x))

G(xjv) = e��1(��v ln(x)) exp(�v ln(x))

g(x) =
� �

�(�)

(�)�

(� + �)�
(�x ln(x))��1M(�; � + �+ �;�� ln(x))

G(x) =
x�

B(�; �)
�(x; �; �; �; 1; 1)

The form of the posterior f(vjx) may be of independent interest. De�ne the con
uent hyperge-

ometric distribution by the p.d.f.

fCH(zja; b; s) �
za�1(1� z)b�1

B(a; b)

exp(�sz)

M(a; a+ b;�s)
:

This generalizes the beta density using the con
uent hypergeometric equation (9) in the way Armero

and Bayarri (1994) use the 2F1 function to generalize the beta to the Gaussian hypergeometric dis-

tribution. It is straightforward to show that if Z � Beta(�; �) and signal Sj(Z = z) � Gamma(�; z),

then the posterior Zj(S = s) � CH(�+�; �; s). Furthermore, the CH distribution itself is conjugate

for gamma signals, so that if Z is distributed CH(�; �; s1) and signal S2j(Z = z) � Gamma(�; z),
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then Zj(S2 = s2) � CH(�+ �; �; s1+ s2). The CH distribution appears to be new to the literature.

Applying the de�nition of the CH distribution, f(vjx) may be written as

f(vjx) = g(xjv)f(v)=g(x) = fCH(vj� + �; �;�� ln(x)):

The conjugate property of the CH distribution for gamma signals underpins the tractability of the

BNLG speci�cation.

Generalizing the � function to

~�(y; x; a; b; �;m; n) � B(a+ (n�m)�; b)

�

m�(��1)X
j=0

c
(��1;m)
j (�� ln(y))j

(a+ (n�m)�)j

(b+ a+ (n�m)�)j
M(b; b+a+(n�m)�+j;��(ln(x)+(n�1) ln(y))):

allows compact expression of the distribution of Y1 given X1 as

gY1(yjx) =
(n� 1)� �

�(�)

(� ln(x))��1

x

y(n�1)� ~�(y; x; �; �; �; n � 2; n)

B(� + �; �)M(�; � + �+ �;�� ln(x))

GY1(yjx) =
y(n�1)� ~�(y; x; �; �; �; n � 1; n)

B(�+ �; �)M(�; � + �+ �;�� ln(x))

Noting that ~�(x; x; a; b; �;m; n) = �(x; a; b; �;m; n) and re-arranging lead to the simple forms for

�(x; x) and �(x; x) in Section 3.
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