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Linear Data Transformations Used in Economics

I.  Introduction 

Economists use many transformations of time series data to help extract economically

relevant information.  Such transformations include 4-quarter and 1-quarter growth rates, 

6-month and 3-month moving averages, trailing and centered moving averages, moving

averages of growth rates, and so on. 

Ultimately, the best data transformation or filter is the one that helps the most at

addressing the economic question of interest.  For example, when considering the cyclical

properties of the real economy, filters that highlight the cyclical features of the data are

desirable.  On the other hand, when considering whether price inflation is changing because

of cyclical or longer-term factors, it is desirable to apply filters that bring out the cyclical

and trend-like features of the data, together or separately.  Of course, choosing a good filter

should not be viewed as the only step in determining the economic significance of data;

rather it can complement economic insight and knowledge of other factors, such as how the

data are constructed.   

In the recent literature, the frequency-domain theory of linear filters has been used to 

develop approximations to “ideal” data transformations or filters.  Intuitively, ideal filters

pass through information without distortion from the frequencies that are of interest to the

analyst (such as business-cycle frequencies) and completely block out all other information. 

Indeed, the recently-developed filters have deepened our understanding of meaningful

historical economic relationships, discussed below. 

However, the new filters are of very limited use for economic agents such as

policymakers and financial-market participants, who devote many resources to

understanding the significance of incoming economic data, because the filters either

completely drop recent observations or generate unreliable estimates of them.  This paper

examines filters subject to the constraint that many economic analysts will continue to

utilize the latest published data, relying on less-than-ideal data filters.  It lays out the

properties of standard data transformations and suggests improvements using frequency-

domain techniques.  One property is the degree of bias, that is, the amount by which the
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1.  It is arguable that the strong negative correlation at the business cycle frequencies and non-negative

correlation at lower frequencies reflect the idea that inflation expectations are dominated by slow-

filter employed deviates from the “ideal” filter on average over the frequency range of

interest; to our knowledge, the concept of bias in the frequency domain has not been

examined before.  In addition, the timing or phase shift between a raw data series and its

filtered value is explored.  The key finding of this paper is that moving averages of multi-

period growth rates can attenuate the bias and phase shifts introduced by common data

filters.         

II.  A Brief History of Frequency

The idea that even simple transformations can change the properties of the underlying data

series in surprising and undesirable ways goes back to Slutzky’s work in the 1930s.  His

work implies, for example, that taking the 2-quarter moving average of the 1-quarter growth

rate of a white-noise quarterly series, ,t, creates a new series with a seasonal pattern, and

taking a 4-quarter growth rate of ,t creates a new series with a business cycle pattern but no

seasonal pattern.  

The message is that standard transformations may introduce “spurious” cycles in

economic data and thus possibly generate misleading economic interpretations.  However, if

the underlying series has pronounced cyclical and seasonal components, then data

transformations need not introduce spurious patterns.  The techniques of spectral analysis

discussed below are useful precisely because they allow us to determine whether cyclical or

seasonal patterns (or for that matter any other patterns of interest) in the data could have

been introduced inadvertently through a seemingly innocuous data transformation.      

Recent papers explore the possibility of approximating an ideal filter.  Indeed, papers

by Baxter and King (1999) and by Christiano and Fitzgerald (1999) provide finite-sample

approximations to an ideal filter.  Both Baxter-King (BK) and Christiano-Fitzgerald (CF) 

focus on ideal business-cycle filters and show that certain important economic relationships,

like the negative Phillips curve correlation between inflation and unemployment rates, show

up strongly at business cycle frequencies–i.e., when the “ideal” business-cycle filter has

been applied to the raw inflation and unemployment rate data–but not at lower frequencies.1  
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moving co mpone nts. 

Although the exact specifications of the ideal filters differ in the two papers for

technical reasons, both are two-sided moving averages.  With quarterly data, the BK ideal

business-cycle filter is a weighted sum of the current value and 12 leads and lags of the time

series with symmetric weights.  Through extensive experimentation with quarterly

macroeconomic data, it was determined that 12 was the value that produced filtered series

that best satisfied the BK optimization criteria.  A major disadvantage of the BK filter to

analysts who focus on recent observations of a time series is that three years worth of data at

the ends of the sample period are dropped in computing the filter.  

For most macroeconomic time series, the CF ideal business-cycle filter is a weighted

sum of the current and all leading and lagged values of the data.  In contrast to the BK filter,

the CF filter in these cases is asymmetric, discarding no data at the ends of the sample

period.  However, CF note that the filtered values of the last couple of observations of the

yts are not reliably estimated; put another way, their method yields reliable filtered values

for yT-2 and earlier observations.  Examples in the CF paper using monthly, quarterly, or

annual data each take yT-2 as the observation 2 years from the end of the sample; although

the filtered value of yT-2 makes use of all data subsequent to period T-2, it is implied that

filtered values subsequent to that period are not very reliable.  

In addition, the recent research establishes that the famous Hodrick-Prescott (HP)

filter–which also is a business cycle filter and does not discard data at the ends of the sample

period–is not “ideal” but, as a practical matter, appears to be a good approximation with

quarterly macroeconomic data.  In addition, the HP filter (with parameter 8 = 1600) appears

to be a reasonable approximation to the ideal filter that cuts off all information from periods

longer than 32 quarters and allows through all information from periods shorter than 32

quarters (a so-called “high-pass” filter).  However, the HP filter is not without problems:  its

filtered estimates become increasingly unreliable at the end of the sample period and it does

not appear appropriate to use with annual data.
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2.  In a simple case , yt = A1 cos(T1t + 21) + A2 cos(T2t + 22) + A3 cos(T3t + 23), that is, yt is the sum

of three cosine functions of different frequencies (Ti) and phases (2i), with each function multiplied by

A i (the amplitud e).  If 21 = 22, T1 = T2, T3 = 23 = 0, and A1 = -A 2 then yt is a horizon tal line.  Ch atfield

(1996) points out that in general, if the Ai’s and 2i’s are constants, E (yt) will ch ange w ith time, imp ly-

ing that y t is not stationary.  More  fundam entally, yt is not even a random process unless the Ai’s or

2i’s as random variables; further, the Ai’s or 2i’s must hav e properties that en sure the stationarity of y t.. 

   

3.  The spectrum technically is defined over frequencies ranging from -B to B (radians per u nit time),

and the  area und er the spe ctrum is th e total varian ce of the tim e series.  Be cause th e spectru m is

symmetric about the zero frequency, it normally is plotted only for frequencies from 0 to B, or

equivalently it is plotted for p eriods from infin ity to 2 periods.   

III.  A Brief Overview of Spectral Analysis

Spectral analysis provides the framework for addressing the key issues of this paper.  At its

most basic level, spectral analysis is based on a fundamental theorem that any stationary

time series, yt, loosely speaking, can be represented as the sum of (a possibly uncountably

infinite number of) uncorrelated cosine and sine waves of different frequencies and

amplitudes.2  A formal statement and proof of the representation theorem can be found in

Priestly (1981, chapter 4), for example.  Because of this result, the variance of a stationary

time series is related to the amplitudes–that is, the maximum heights and depths–of the

cosine (or sine) waves of all frequencies or equivalently, of all periods.  

Low frequencies capture data patterns that repeat only over long periods (i.e., that

capture trend or slow moving components of the data); business-cycle frequencies capture

data patterns or cycles that repeat roughly once every 6 to 32 quarters or 18 to 96 months

(values used in the recent literature and attributed by Baxter and King (1999) to the NBER

research of Arthur Burns and Wesley Mitchell); and seasonal frequencies capture cycles that

repeat within a year.  

The contributions that cycles of each frequency make to the total variance of a time

series is described by the spectrum, a curve that plots contributions to variance on the

vertical axis against frequency, measured from lowest to highest (or, equivalently, period

from longest to shortest), on the horizontal axis.3  In what follows, T denotes frequency,

measured in radians per unit time; thus 2B/T is the period, or length of time required for a

sinusoidal process to repeat a full cycle.  The spectrum can take many shapes.  For example,
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if the spectrum is a horizontal line, then fluctuations at each frequency contribute the same

amount to the overall variance of a series; in this case the series is white noise (just as the

color white is made up of equal contributions from all colors).  Granger (1966) argues that

the “typical spectral shape” of an economic series in level form, such as GDP, is very high

at low frequencies, falls steeply as frequency is increased, and eventually flattens out; such a

sample spectrum either means that the variance of the series is dominated by low frequency

(trend-like) cycles or that the series is non-stationary.

IV.  Data Transformations or Filters

Data transformations or filters modify the spectrum of the underlying series, multiplying

that spectrum by a factor greater than one at some frequencies and less than one at others.  If

the filter is linear (i.e., if the filtered series is a linear combination of elements of the

original series), then it is possible to determine analytically how much the underlying

theoretical spectrum is distorted at each frequency.  

An ideal filter only passes through the frequencies that are of interest to the analyst,

such as business-cycle frequencies, and completely blocks out all other information. 

Moreover, within the frequency band of interest, the ideal filter does not re-weight the

underlying information from each frequency.  Chart 1 illustrates an ideal business-cycle

filter function for quarterly data (top panel) and monthly data (bottom panel).  Owing to

limitations of our plotting software, the horizontal axis of the figures in Chart 1 (as well as

other figures in Charts 2 and 3) use “PI” to denote B.  The horizontal axis measures

frequency, T, from 0 to B (radians per quarter with quarterly data or radians per month with

monthly data) or equivalently measures  period from infinity to 2 (quarters or months,

depending on the data).   

In each case shown, the ideal filter function equals one inside the range of business-

cycle frequencies and zero outside the range.  Of course, many other ideal filters with this

one-zero property are possible:  these are referred to as ideal “low-pass” filters (that

highlight only the slow-moving components of the data), ideal “high-pass” filters (that

highlight only the high-frequency components of the data), and ideal “band-pass” filters (of

which the ideal business-cycle filter is a special case).  As shown below, the filter functions
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associated with standard data transformations are far from “ideal” but, with slight

modifications, can be made to much better approximate an ideal filter. 

V.  Bias in the Frequency Domain

We now introduce the concept of bias in the frequency domain.

Definition:  Denote the average value of the filter function over the frequency range of
interest as AvgF.  The bias of the filter function is AvgF - 1. 

That is, bias is the difference between the average value of the filter function and one (the

value of the ideal filter) over the frequency range of interest.  It follows almost trivially  that,

over the entire frequency range from 0 to B (radians per unit time), the ideal low-pass, high-

pass, and band-pass filter functions are biased (because each has a value of one 

only over a subset of the entire frequency range).  A more important result, presented in the

following proposition, is that the direction of bias determines whether the data

transformation leads to a more or less variable time series; as we will see below, growth-rate

filters have positive bias and, hence, are variance increasing, while moving average filters

have negative bias and are variance decreasing.  

Proposition 1:  The variance of the data series generated by a data transformation exceeds
that of the underlying stationary series if AvgF > 1 (over the entire range of frequencies) and
is less than that of the underlying series if AvgF < 1.

Proof:  Recall that the area under the spectrum is the variance of a series and that the
spectrum of a transformed data series in general exceeds the spectrum of the underlying
series for some frequencies and is less at others; put another way, the filter function of the
transformed series increases the spectral values of the underlying series at some frequencies
and lowers them at others.  On balance, the increases dominate, and variance is increased, if
AvgF exceeds one (over the entire range of frequencies); similarly, the decreases dominate
if AvgF is less than one.     

VI.  Growth Rate Filters

Consider a typical data transformation of the level of a quarterly series, like GDP, into

growth rates.  Let yt denote the logarithm of the variable; thus xt = yt - yt-1 is approximately

the non-annualized growth rate of the variable.  Here we have used a first-difference filter,
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4.  Strictly speaking, contributions from the zero frequency are completely eliminated only if the

original series is stationary.  For example, if the original series is I(2), then first differencing produces

a non-stationary I(1) series w hose spectru m is infinite at the zero freq uency. Also a s a practical matter,

standard methods of estimating the spectrum do not produce a zero spectral value at the zero frequency

even for a stationary series because the estimate at the zero frequency is a weighted average of

estimated spec tral values near an d includin g zero. 

which is linear.  There are two points to emphasize.

First, the annualized growth rate is given by (1 + xt)
4 - 1 = 4xt + 6xt

2 + 4xt
3 + xt

4 and

thus is not a linear filter; strictly speaking, the theory of linear filters does not apply to the

annualized growth rate, but we will consider the linear part—namely, 4xt, below.  Second, at

each frequency, T, the spectrum of the original level series is multiplied by the factor, 

2 - 2 cosT, for the non-annualized growth rate and by the factor, 16 (2 - 2cosT), for the

linear part of the annualized growth rate (as proven below).  These are called “filter

functions,” and several are shown in the accompanying charts.    

By plugging in values for T in the case of the nonannualized growth rate, it is seen

that the spectrum of xt (the growth rate) is derived by multiplying the spectrum of yt (the log

level) by factors that grow monotonically from 0 to 4 as frequency rises from 0 to B; for the

linear part of the annualized growth rate, the multiplicative factors grow from 0 to 64 (see

the dotted line in the top left panel of chart 2).  The contribution to overall variance from the

zero frequency is completely “killed” or eliminated by the data transformation; this is

desirable because transforming levels data into growth rates is typically done to eliminate

long-term stochastic trends or unit roots.4  

The cost of this data transformation is that contributions from certain business-cycle

frequencies also are attenuated, while contributions from other business-cycle frequencies

and high frequency variation are greatly magnified.  Indeed, with quarterly data the

multiplicative factors for the linear part of the annualized growth rate are less than the

“ideal” value of one for periods longer than about 25 quarters (or frequencies less than .25)

and greater than one for periods shorter than 25 quarters.  The dividing line between

attenuation and magnification arising from this simple growth-rate transformation appears

quite arbitrary.    
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5.  The average value of the former is:  (1/B) 0I
B (2 - 2coskT)dT = 2 for k = 1,2,3,.... The average

value of the latter is:  [(B/3 - B/16)] -1 B/16I
B/3 (2 - 2cos 4T)dT = 2.9. 

6.  For k = 10, the average value of the filter function is about 1 over the low  frequencies.

These results readily generalize, as summarized in the following proposition.  In the

subsequent discussion, the operator, L, is defined by Lk zt = zt-k for both positive and

negative integer values of k.

Proposition 2:  The spectrum of the k-period nonannualized growth rate, 
xt = yt - yt-k = (1 - Lk)yt = c(L)yt, is the spectrum of yt multiplied by the factor 2 - 2coskT. 

Proof:  If sz(T) denotes the spectrum of z, then, as established in several textbooks,
such as Hamilton (1994, chapter 6), sx(T) = c(eiT)c(e-iT) sy(T), where c(eiT)c(e-iT) is the filter
function or the squared gain.  In our case,  c(eiT) = 1 - eikT = 1 - cos(kT) - isin(kT), from
which it follows that c(eiT) c(e-iT) = 2 - 2coskT.

This sort of filter is often employed in data presentations.  For example, with quarterly data

and k = 4, yt - yt-k is approximately the 4-quarter percent change; with monthly data and 

k = 12, yt - yt-k is approximately the twelve-month percent change.

Proposition 2 allows us to compute the average value of the filter function of the 

k-period nonannualized growth rate.  For all k, the average value is 2 over the entire

frequency range, and the average value of the 4-quarter growth rate over the quarterly

business-cycle frequency range of B/16 to B/3 radians per quarter is 2.9.5  Moreover, the

average value also exceeds the “ideal” value of 1 for all values of k over the quarterly

business-cycle frequencies.  However, over the low-frequency range of 0 to B/16 radians

per quarter, the average value is 0.2 for k = 4.6  Because the average values generally differ

from the “ideal” value of 1, the growth-rate filters over the frequency ranges commonly of

interest are biased:  the magnification of the spectrum of the underlying series at some

frequencies is not offset on average by the attenuation at others.  We summarize this

discussion in propositions 3 and 4:

Proposition 3:  Over the frequency ranges commonly of interest, the filter function of the 
k-period nonannualized growth rate is biased.  Over the business-cycle frequencies, the
average value of the filter function exceeds 1 for all values of k.
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7.  For example, if the underlying series is white noise with variance F2 (and constant spectral value of

F2/2B), then the variance of the transformed series is (F2 /2B)  
-BI

B (2 - 2coskT)dT = 2F2.  

8. The seas onal frequen cies, Ts, are defined as 2Bk/p where k = 1,2,3, ... and p is the period of the

seasona l, taking th e value o f 4 for qu arterly data an d 12 fo r month ly data.  For  examp le, with q uarterly

data the seasonal frequencies are B/2 and B radians per q uarter, correspon ding to period s (2B/Ts) of 4

quarters and 2 quarters, respectively.  With monthly data, there are 6 seasonal frequencies, starting

with B/6 (or equivalen tly, a period of 12 m onths).

Proposition 4:  Because the average value of the filter function of the k-period
nonannualized growth rate is 2 over the entire frequency range, the variance of the series
generated by a k-period nonannualized growth rate filter always exceeds the variance of the
underlying series (assuming stationarity).7    

Further, as shown in the top two panels of chart 2, the filter functions for the cases 

k = 4 (used with quarterly data) and k = 12 (used with monthly data) have multiple peaks (at

a value of 4) and “kill” the contribution to overall variance at the zero and seasonal

frequencies; because of the latter, they sometimes are called seasonal difference filters.8  As

noted in Granger and Newbold (1986), it is sometimes argued that all this killing (i.e.,

giving a zero weight to contributions from the seasonal frequencies) is not necessarily a

good thing, because even a white noise series has some of its variance explained by

variation at the seasonal frequencies.  

Also, as seen by careful inspection of the top left panel of chart 2, the 4-quarter

percent change yields a smoother transformed series relative to the annualized 1-quarter

percent change series, because the value of the 4-quarter percent change filter function (read

off the left axis) is less than the value of the annualized 1-quarter growth filter function

(read off the right axis) at every frequency except zero.  Similarly, the 12-month percent

change smooths relative to the annualized 3-month percent changes, as seen from the top

right panel of chart 2.

The 4-quarter percent change not only smooths relative to that of the linear part of

the annualized 1-quarter percent change, but it also produces a series more in time

synchronization (that is, more in phase) with the underlying series.  In general, growth-rate

filters generate a time series that leads the underlying series (i.e., both the peaks and troughs

come earlier), albeit by a lesser amount as the value of k increases; these ideas are
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9.  The so-called phase spectrum captures the degree of time asynchronization between a series and the

filtered valu e of it.  In gen eral the ph ase varies w ith frequ ency, ma king it a trick y concep t; for exam ple

the business cycle frequency components of a filtered series may lead the underlying series but higher

frequency com ponents m ay lag it.  To comp ute the phas e, 2(T), for the linear system xt = G h jyt-j (with

summation over j running from -4 to 4), start by taking the Fourier transform of the impulse response

function {hj}.  This is known as the frequency response function, H(T), and is generally a complex

variable, R(T) + iI(T).  The pha se, 2(T), is defined as tan-1 [I(T)/R(T)]. 

implications of the next proposition (where variables are again expressed in logs).9  

Proposition 5:  Let 2k(T) be the phase spectrum of 8(yt - yt-k), where 8 is a constant; then 
2k(T) = tan-1[sin (Tk)/(1-cos(Tk))] > 0 for 0 < T < B/k.   Also, d2k(T)/dk < 0 for T > 0.

Proof:   Let xt = 8yt - 8yt-k = h0yt + h1yt-k , where h0 = 8 and h1 = -8 and hj = 0,
otherwise.  The frequency response function is:  H(T) = 8e-iT(0) - 8e-iT(k) = 
8(1 - cosTk + isinTk).  By definition, the phase is thus 2k(T) =  tan-1[sin (Tk)/(1-cos(Tk))]. 
Since 1-cos(Tk) > 0 (except for T = 0) and sin (Tk) > 0 for 0 < T < B/k, it follows that 2k(T)
is positive (over the interval defining the principal branch of the inverse tangent function),
implying that the filtered data lead the underlying data for 0 < T < B/k.

Let u(k) = sin(Tk)/(1-cos(Tk)).  Thus, 2k(T) = tan-1 u(k).  From the calculus of
trigonometric functions, we know that d2k(T)/dk = (1/(1+u2))du/dk.  Carrying out the
differentiation, we get that d2k(T)/dk = - T/2 < 0 (for T > 0).

Intuitively, the reason that growth rates typically lead is that, as the underlying series

approaches a peak, the positive increments to the series diminish in value (the second

derivative is negative in the neighborhood of a maximum); hence, the increments drop off

before the actual series. 

In summary, these growth rate filters have the desirable property of removing very

long run stochastic trends (or attenuating them if the underlying series is nonstationary). 

Further, the smoothing and better time synchronization achieved by the 4-quarter growth

rate filter relative to the annualized 1-quarter growth rate filter (or the 12-month growth rate

filter relative to the annualized 3-month growth rate filter) often is desirable.  However, the

costs of all growth-rate filters are the introduction of bias (in the sense that the magnification

of the spectrum of the underlying series at some frequencies is not offset on average by the

attenuation at others) and timing shifts (that is, the transformed series leads the underlying

series). 
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10.   If the underlying series is white noise with variance F2, then the variance of the n-term moving

average is determ ined as the pro duct of F2/2B and the integral from -B to B of the above filter

function; the resulting product is F2/n.  Thus, even a 2-term moving average cuts the variance of an

underlying white noise series in half.  If the underlying series is a stationary first-order autoregressive

process with p arameter D (and *D* <1), then the variance of the 2-term moving average is (1 + D)/2

times the variance of the underlying series.

VI.  Moving Averages

Intuitively, arithmetic moving averages are used to highlight underlying trend and smooth

out local fluctuations; indeed in some textbooks, the moving average is called a smoothing

filter.  The following three propositions and corollary summarize important points about

moving averages.  Both trailing and centered moving averages with uniform (constant)

weights are evaluated.

Proposition 6:  The spectrum of an n-term moving average [xt = (yt + yt-1 + ... + yt-(n-1))/n] is
derived by multiplying the spectrum of the original series (yt) by the factor:
[n + 2cos(n-1)T + 4cos(n-2)T + 6cos(n-3)T + 8cos(n-4)T + ... + 2(n-1)cosT]/n2.

Proof: Consider xt = (yt + yt-1 + ... + yt-(n-1))/n =(1/n)(1 + L + L2 + ... + Ln-1)yt = m(L)yt. 
Thus the spectrum of the n-term moving average, sx(T) is given by m(eiT) m(e-iT) sy(T),
where m(eiT) m(e-iT) is the filter function of the moving average.  We start with the case of 
n = 2.  In this case, m(eiT) m(e-iT) = (1/4)[1 + eiT][1 + e-iT] = (1/4)(2 + eiT + e-iT) = 
(1/4)(2 + 2cosT).  Subsequent steps, not shown, are a straightforward application of proof
by induction.

Proposition 6 implies that the variance of a time series is reduced by applying a

trailing moving average to it (that is, the resulting transformed series looks smoother than

the original series).  This occurs because the moving-average filter downweights the

contribution to overall variance from high frequencies relative to those from low

frequencies; and, in addition to generally declining with frequency, the moving-average

filter function starts with a value of unity at the zero frequency, implying that the average

value of this filter function is always less than one.10  Generally, the more terms present in

the moving average, the more rapidly the filter function declines with frequency and, hence,

the smoother the resulting time series.  These claims are proved in the following corollary.

Corollary:  The value of the filter function of the n-period trailing moving average is less
than 1 at all frequencies, except 0, and the average value is 1/n.  As n rises, the filter
function declines more rapidly with frequency, when evaluated at low frequencies.
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Proof:  By direct substitution, we see that the value of the filter function of the n-
period moving average (as specified in proposition 6) at T = 0 is unity.  This is the max-
imum value of the filter function over all frequencies from 0 to B, because the maximum
value of cos(x) is 1 (at x = 0) and in general the cosine terms in the filter function are thus
less than 1.  Hence, the average value of the filter function is less than 1.  The average value
is 1/n, derived by integration of the filter function from 0 to B (and division by B).  

Finally, differentiate the filter function with respect to T.  Evaluated at T = 0, the
first derivative is zero and the second derivative is negative, implying that the filter function
attains a maximum at T = 0.  Further, differentiation of the second derivative (evaluated at
T = 0) with respect to n yields a negative number, implying that the filter function falls off
more rapidly as n rises.    

    Examples of 3-, 4-, and 6-period trailing moving average filter functions are

presented in the lower left panel of chart 2.  These examples suggest that for quarterly data,

a 4-quarter moving average is sufficient to bring out the underlying trend and minimize the

contribution from higher frequencies, because this filter generally gives very little weight to

contributions from frequencies above the business-cycle cutoff value of B/3 and completely

eliminates contributions from the quarterly seasonal frequencies; for monthly data, at least a

6-month moving average of the levels data is appropriate.  

The second key property of moving averages, summarized in proposition 7, is that

the spectrum of a trailing moving average of a stationary series is the same as the spectrum

of a centered or two-sided moving average with equal (symmetric) weights, ignoring

important issues that arise at the end points of a time series; thus both moving averages

produce the same amount of smoothing. 

Proposition 7: The filter functions of an n-period trailing moving average and an n-period
centered moving average with equal weights are identical (ignoring end-point issues).

Proof:  Assume that n is an odd integer.  We know the filter function of the trailing
moving average from proposition 6; the filter function of the centered moving average also
is established by induction.  We will show the equivalence for the n = 3 case.  In this case,
the centered moving average is given by:   (yt+1 + yt + yt-1)/3 = (1/3)(1 + L + L-1)yt = m(L)yt. 
Thus, m(eiT) = (1/3)(1 + eiT + e-iT), and the filter function becomes 
m(eiT)m(e-iT) = (1/9)(1 + 4cosT + 4cos2T).  However, using the identity cos2x = 2cos2x - 1,
this can be re-written as (1/9)(3 + 4cosT + 2cos2T), completing the proof.

The final key property of moving averages, summarized in proposition 8, is that
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11.   Examples of atypical cases are shown in the appendix chart.  Both panels plot an underlying and a

filtered series against time on the horizontal axis.  The top panel illustrates that a 3-term centered

moving average of a choppy time series (specified as 10cos[(3/4)Bt]) can lead the underlying series

rather than be in perfect synchronization; Chatfield (1996, chapter 9) derives the properties of the

phase of a 3-term centered moving average.  The bottom panel illustrates that a 4-term trailing moving

average can be in perfect synchronization.

centered moving averages (with symmetric, but not necessarily uniform, weights) generally

are in perfect time synchronization with the underlying economic time series, and trailing

moving averages generally lag it.11  Moreover, the lag increases with the number of terms in

the trailing moving average.    

Proposition 8:   Centered moving averages with symmetric weights cannot lag, and
generally are in perfect time synchronization with, the underlying series, but trailing moving
averages with uniform weights generally lag it.

Proof:   As shown in Granger and Newbold (1986, chapter 2), the tangent of the phase
of an n-term trailing moving average with uniform weights is [-GsinjT/GcosjT], where the
summation over j is from 0 to n-1; the phase is typically, but not always, negative, implying
that the filtered series generally lags the underlying series.  

We now establish that the tangent of the phase of an n-term centered moving average
is 0, implying that the phase itself is either zero (implying perfect time synchronization) or B
(implying that the filtered series leads the underlying series), depending on the frequency. 
We assume that the moving average has uniform weights, but it will become clear that the
results hold for symmetric (but not necessarily uniform) weights as well.  (Recall that
Baxter and King (1999) develop a centered moving-average filter with symmetric weights.)  

Let xt = 'hj yt- j where the summation is over j from -n to n (a total of 2n + 1 terms)
and where hj = 1/(2n+1) for all j.  The frequency response function is:  H(T) = 'hje

-iTj = 
(2n+1)-1[eiTn +eiT(n-1) +...+ e-iT0+ e-iT +...+e-iTn]=(2n+1)-1[1+2cos Tn +2cosT(n-1)+..+2cosT]. 
The final equality follows from the property that >(eiz + e-iz) = 2>cosz, where > is a constant;
the complex components cancel provided that eiz and e-iz are each multiplied by the same
factor.  This is why the results carry over to the case of symmetric weights.  We thus have
established that the frequency response function is real and therefore the tangent of the
phase spectrum is zero, implying that the phase itself is 0 or B. 

VII.  Combining Differences and Moving Averages

Combining differences and moving averages to transform the data generates filter functions

that rapidly become very complicated as the order of differencing increases, although the

combined filter function is always the product of the two separate ones.  The following

proposition presents the combined filter.
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Proposition 9: The spectrum of the n-term trailing moving average of the k-period
nonannualized growth rate is the spectrum of the original series (yt) multiplied by the factor:
(2 - 2coskT)[n + 2cos(n-1)T + 4cos(n-2)T + 6cos(n-3)T + ... + 2(n-1)cosT]/n2.  

Proof:   Let xt =  [(yt  - yt-k) + (yt-1  - yt-k-1) + ... + (yt-(n-1)  - yt-k-(n-1))]/n 
 
                                   =  [1 - Lk  + L - Lk+1 + .... + Ln-1 - Lk+(n-1)] (1/n) yt

                                   =  [1 - Lk] [1 + L + ... + Ln-1] (1/n) yt,  

which implies, using propositions 2 and 6, that the filter function of xt (the n-term trailing
moving average of the k-period growth rate) factors into the product of the separate filter
functions of the n-term trailing moving average and the k-period nonannualized growth rate.

Note that the combined filter is zero at the zero frequency (owing to the differencing

component of the filter), implying that it renders stationary an I(1) stochastic process.  Baxter

and King (1999) consider the ability of a filter to result in a stationary series an important

property.  In addition, the combined filter simplifies greatly in the case of first differences:

Corollary:   The filter function of the n-period moving average of the nonannualized first-
difference is given by (1/n2)(2 - 2cos nT).  The average value of this filter over all frequencies
(from 0 to B) is 2/n2 .  

Proof: Because of the fact that (1/n)(1+L+L2+...+Ln-1)(1 - L) = (1/n)(1 - Ln), the filter
function of the n-period moving average of the first difference is proportional to the filter
function of the n-period difference, whose form we know from proposition 2.  Integration of
the filter function over all frequencies establishes that the average value is 2/n2.   

Examples of combined filters relevant to monthly data are shown in the bottom right

panel of chart 2, and examples relevant to quarterly data are shown at the top panel of 

chart 3.  The solid line in the bottom right panel of chart 2 is the filter function for a 3-

month moving average of the 12-month percent change, a measure often emphasized by

price analysts on Wall Street.  This combined filter places much less weight on high-

frequency variations than does the 12-month percent change but retains much of the same

distortion over the business cycle and lower frequency range; as discussed below, other

combined filters have more desirable properties.

As noted above, the average value of the filter function of the k-period growth rate
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12.  Using the above corollary for the k = 1 case, the combined filter has an average value of
2/n2 over the entire range of frequencies, a number less than one.

exceeds one over the entire range of frequencies as well as over the frequencies normally of

most interest (i.e., business-cycle and lower frequencies), while the average value of the

filter function of moving averages is less than one.  Thus, combined filters involving 

k-period growth rates with k > 1 offer the possibility of having mean values near one,

thereby not badly distorting the spectral information of the underlying series on average.12 

This is one of our key insights and is summarized in proposition 10; the proposition will be

proved assuming quarterly time series data but also holds for monthly data as well (with

examples given below).

Proposition 10:  For k > 1 and over the business-cycle and lower frequency range, there
exists integer values for k and n such that the average value of the filter function of the
combined n-term moving average of the k-period nonannualized growth rate is near one.  

Proof:  As noted above, we will assume quarterly data, in which case the frequency
range of interest runs from 0 to B/3 (with a corresponding period of at least 6 quarters).  We
will show that the average value of the filter function is exactly unity in the n = k = 2 case,
and that the average value is approximately unity for other (n,k) pairs as well. 

For the n = k = 2 case, the average value of the filter function in proposition 9 is:

(3/4B) 0I
B/3 (2 - 2cos2T)(2 + 2cosT) dT = 1,  using cosx cosy = [cos(x+y) + cos(x-y)]/2.

By integrating the combined filter function and using the same trigonometric identity, we
can find other (n,k) pairs that yield an average value near 1 for 0 # T # B/3.  Because 4-
quarter percent changes are often used in applied work, it is interesting to consider the case
of k = 4.  For n = 4, the average value of the filter function is:

(3/16B) 0I
B/3 (2 - 2cos4T)(4 + 2cos3T + 4cos2T + 6cosT) dT = 1.27, 

and the average value for n = 5 is:

(3/25B) 0I
B/3 (2 - 2cos4T)(5 + 2cos4T + 4cos3T + 6cos2T + 8cosT) dT = 0.87.

Thus, for k = 4, either a 4-term or 5-term moving average yields an average value of the
filter function that is near unity.
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    13.  For purposes of computation in figures 2 and 3, the horizontal axis—measured from 0 to B
radians per unit time—in each case is divided into intervals of size B/100. 

  
The numerical examples presented in chart 2 suggest that to minimize the average

distortion over the frequencies normally of most interest with monthly data–i.e., frequencies

less than B/6 or equivalently periods greater than 12 months–one should use at least a 6-

month moving average of the 12-month growth rate, but no more than a 12-month moving

average.  The average value of the filter function using the 6-month moving average over

this frequency range is about 1.5, whereas the average value using the 12-month moving

average is 0.8; and over higher, less interesting frequencies, the average values are near

zero.13  And with quarterly data, the examples in the top panel of chart 3 suggest that

average distortion is minimized using a 5-quarter moving average of the 4-quarter growth

rate; this is because the average value of the filter function for frequencies less than B/3 is 

1.25 using a 4-quarter moving average and is 0.6 using a 6-quarter moving average.  These

computations are consistent with the analytic solution values in the proof to proposition 10,

where it is shown that the average value for a 5-quarter moving average is 0.87.  

We now turn our attention to the timing properties of combined filters.  As noted

above, trailing moving averages tend to lag the underlying data (proposition 8), and growth

rates tend to lead the underlying data (proposition 5).  This implies that at least some of the

lagging introduced by a moving average to an underlying series will be undone by a growth

rate filter, and vice versa.  Indeed, the leads and lags can largely cancel when combining the

separate filters; as a result, the combined filter can produce a time series that is in close

synchronization with the underlying data and, in so doing, help preserve the underlying

timing relationship between completely different time series (for example, capital goods

orders and shipments) that separately have been transformed by the same combined filter. 

The combined filter does not have to produce close synchronization between a series and its

filtered value, but quite often does in practice.  The phase of the combined filter function is

presented in the following proposition.
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14.  The t-statistic for the coefficient of the lagged level of real GDP in the augmented
Dickey-Fuller regression is 1.4, with critical value of about 2.9 at the 5 percent level.

Proposition 11:   The phase of the n-term trailing moving average (with uniform weights) of
the k-period growth rate is given by (with summations over j from 0 to n-1 and T � 0):

tan-1{[-'jsinTj + 'j sinT(k+j)]/['jcosTj - 'jcosT(k+j)]}.  

Proof:   Let xt = (1/n)[(yt - yt-k) + (yt-1 - yt-k-1) + ... + (yt-n+1 - yt-k-n+1)]

                                   = (1/n) {'yt-j - 'yt-k-j} 

where the summations are over j from 0 to n-1.  The frequency response function is:

H(T) =  (1/n)[e-iT0+ e-iT +...+e-iT(n-1) - e-iTk - e-iT(k+1) - ... - e-iT(k+n-1)]   

          =  (1/n){[1 + cosT + ... + cos(n-1)T - cosTk - cosT(k+1) - ... - cosT(k+n-1)]
                         
                    -i[sinT + ... + sinT(n-1) - sinTk - ... - sinT(k+n-1)]}.

Denote the real part of H(T) by R(T) and the imaginary part by iI(T); then, by definition,
the phase is tan-1[I(T)/R(T)], and the proof is completed by substitution.    

As a practical example, the bottom panel of chart 3 compares various filtered values

of real GDP in the United States, using quarterly National Income and Product Account

(NIPA) data for the period from the first quarter of 1968 to the third quarter of 2001.  The

shaded areas in the chart denote business cycle peak-to-trough periods as officially

designated by the NBER (the cyclical peak in the first quarter of 2001 is not designated on

the chart); the NBER peak and trough quarters are quite similar to the corresponding peak

and trough quarters of real GDP, differing at most by a quarter.  The level of real GDP is a

typical macroeconomic time series that is not stationary, based on the augmented Dickey-

Fuller test;14 however, the various filtered series shown are stationary.  Although the prior

theoretical results are based on an underlying stationary time series process, the results will

be seen to hold for real GDP, raising the possibility that they will also hold for other typical

macroeconomic time series. 

The bottom panel illustrates that the 4-quarter growth rate is a smoother series than
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15.  Although not shown, and consistent with proposition 8, the 4-quarter moving average of
real GDP lags GDP at both peaks and troughs generally by 1 to 2 quarters. 

the annualized 1-quarter growth rate, as suggested by proposition 2 (indeed, the sample

variance is reduced from 17.8 to 7.5).  Moreover, consistent with proposition 5, the 4-

quarter growth rate either moves in synch with the annualized 1-quarter growth rate or lags

it; the latter is illustrated during the recession of 1990 when the steep plunge and subsequent

bounceback in the 1-quarter growth rate precede that of the 4-quarter growth rate.  Over the

sample period shown, the annualized 1-quarter growth rate leads the 4-quarter growth rate

by about 1 quarter on average prior to cyclical turning points.15 

The bottom panel also illustrates that the 4-quarter moving average of the 4-quarter

growth rate (with a sample variance of 5.5) is a smoother series than the 4-quarter growth

rate (proposition 6) and also tends to lag it (proposition 8), the latter being most evident

around business-cycle turning points.  Further, as suggested by proposition 11, the 4-quarter

moving average of the 4-quarter growth rate should be in better synchronization with

movement in the underlying series than the 4-quarter growth rate.  Indeed, this better

synchronization is evident around turning points.  For example, the 4-quarter moving

average of the 4-quarter growth rate turns down closer in time to the business cycle peaks in

1969, 1973, 1980, 1990, and 2001 than the 4-quarter growth rate but a bit further away in

time to the peak in 1981.  Interestingly, though, the 4-quarter moving average of the 

4-quarter growth rate turns up a bit further away in time to troughs in GDP than the 4-

quarter growth rate.  However, on average around all business-cycle turning points, the 4-

quarter moving average of the 4-quarter growth rate is in better time synchronization with 

real GDP than is the 4-quarter growth rate.  Finally, as established by proposition 10, the

combined 4-quarter moving average of the 4-quarter growth rate is better than either of its

components at bringing out features of the data associated with business-cycle and lower

frequencies, because the average value of the associated filter function is closer to one.

Additional examples of these points are contained in chart 4, which compares

various filtered values of the core personal consumption expenditures (PCE) price index

using monthly NIPA data for the period from January, 1968 to September, 2001.  In
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particular, it is seen that the 12-month percent change (with variance of 5.0) is a much

smoother series than the annualized 3-month percent change (with variance of 5.6), while

the 6-month moving average of the 12-month change is smoother still (with variance of

4.9); moreover, the lead introduced by the 12-month growth rate (not shown) is offset by the

lag associated with the moving average.  

VIII.  Conclusion

  This paper has examined properties of standard data transformations—in particular, 

growth rates and moving averages—commonly used in applied economics work.  In

contrast to recently-developed approximate ideal filters that drop the most recent few years

worth of observations from the sample, the filters analyzed here do not drop observations,

reflecting common practice among government and financial-market economists.  Although

these filters are not “ideal,” our analysis suggests that the biases and timing shifts introduced

by standard data transformations can be substantially neutralized by relying on moving

averages of multi-period growth rates. 
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Chart 2

Filter Functions of Data Transformations
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Chart 3
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