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Abstract

A key variable for the conduct of monetary policy is the natural rate of interest

– the real interest rate consistent with output equaling potential and stable inflation.

Economic theory implies that the natural rate of interest varies over time and depends

on the trend growth rate of output. In this paper we apply the Kalman filter to jointly

estimate the natural rate of interest, potential output, and its trend growth rate, and

examine the empirical relationship between these estimated unobserved series. We find

substantial variation in the natural rate of interest over the past four decades in the

United States. Our natural rate estimates vary about one-for-one with changes in the

trend growth rate. We show that policymakers’ mismeasurement of the natural rate of

interest can cause a significant deterioration in macroeconomic stabilization.
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1 Introduction

A key input into the conduct of monetary policy is a measure of the “neutral” stance of

policy, against which one can gauge policy’s stimulative or contractionary impetus. One

such measure, especially prominent in regimes in which the central bank explicitly targets

a monetary aggregate, is the growth rate of a monetary aggregate relative to some trend

or target rate of growth. In the United States and many other countries, however, the

short-term interest rate has become the primary policy instrument. In such regimes, the

“equilibrium” or “natural” interest rate provides a metric for the stance of policy. For this

purpose, it is useful to define the natural rate of interest to be the real short-term interest

rate consistent with output converging to potential, where potential is the level of output

consistent with stable inflation (Cf. Bomfim (1997)). In this formulation, the natural

rate of interest, hereafter referred to as r∗, represents a medium-run real rate “anchor” for

monetary policy and corresponds to the intercept term in feedback rules such as Taylor’s

(1993) Rule.

Economic theory implies that the natural rate of interest varies over time in response

to shifts in preferences and technology.1 The relationship between r∗ and fundamentals is

most clearly illustrated in the context of the standard optimal growth model. The optimality

condition for saving yields a balanced growth condition relating the real interest rate, r, to

preference and technology parameters:

r =
1
σ

q + n + θ, (1)

where σ denotes the intertemporal elasticity of substitution in consumption, n is the rate

of population growth, q is the rate of labor-augmenting technological change, and θ is the

rate of time preference.2 This finding that the real interest rate is positively related to

the rates of trend growth and time preference, holding other factors fixed, holds in a wide
1If not for its time variation, estimation of the natural rate would be relatively straightforward. One

simple approach is to take the sample mean over a relatively long period when inflation shows no upward

or downward trend (Cf. Reifschneider and Williams (2000)). This method yields an estimate of r∗ of

about 3 percent. Alternatively, one can derive an estimate of r∗ using an estimated macro model with fixed

parameters (Cf. Taylor and Williams (1993), Orphanides and Wieland (1998), and Rudebusch (2001)).
2For this example, we assume CRRA preferences and that the utility of each future generation is weighted

equally irrespective of size; if, instead, the utility of each generation is weighted according to its size, we

have r = 1
σ
q + θ.
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variety of models.3 In light of the evidence of substantial shifts in the trend growth rate in

the United States and other countries over the past several decades (Cf. Maddison (1995),

Oliner and Sichel (2000), Roberts (2001)), the assumption of a constant natural rate of

interest appears untenable. Moreover, changes in other factors such as fiscal policy factors

may induce persistent changes in the natural rate of interest over time.

Our definition of the natural rate is closely related to Wicksell’s verbal description:

There is a certain rate of interest on loans which is neutral in respect to com-

modity prices, and tends neither to raise nor to lower them.

Wicksell (1936, p. 102)

In characterizing the natural rate of interest, we focus on a medium-run concept of price

stability that abstracts from the effects of short-run price and output fluctuations. In this

respect, our definition differs from that advanced recently by Woodford (2000), who defines

the Wicksellian natural rate of interest to be the real rate that yields period-by-period

price stability. Woodford’s characterization of the natural rate does not correspond to the

intercept term in a monetary policy rule that contains independent responses to output and

inflation, but instead fully describes the optimal setting of policy for a particular objective

function (Cf. Woodford (2001)). In fact, existing estimates based on this definition abstract

entirely from lower frequency components of r∗ and potential output by using detrended

data (Cf. Rotemberg and Woodford (1997), Neiss and Nelson (2001)). Importantly, these

estimates are very sensitive to the structural assumptions of the particular model, and, as

a result, yield policy prescriptions that are unlikely to be robust to model uncertainty (Cf.

Levin, Wieland and Williams (1999)). In contrast, our goal is to provide a robust method

of identifying lower-frequency movements in r∗ that can be included in the kind of “simple”

policy rules that have been shown to perform well in a wide variety of models (Cf. Levin,

Wieland and Williams (2001)).

Because we define the natural rate of interest in relation to the deviation of output from

potential, estimation of r∗ also entails estimation of potential output.4 Moreover, owing to

the theoretical linkage between r∗ and the trend growth rate, we are interested in estimating
3For example, if we follow Solow (1956) and assume that the saving rate is constant, then the real

interest rate will also be positively related to the rate of growth and negatively to the saving rate (the latter

presumably negatively related to the rate of time preference). Specifically, r = α δ+n+q
s

− δ, where s is the

saving rate out of output and δ is the rate of depreciation.
4An alternative would be to specify a reduced-form relationship between the change in the rate of inflation
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both the level of potential output and its trend growth rate. We apply the Kalman filter

to these unobserved low frequency variables, modeling the cyclical dynamics of output and

inflation using a restricted VAR model that imposes relatively little structure on short-run

dynamics. Because the innovation variances to r∗ and the trend growth rate are small, we

use Stock and Watson’s (1998) median-unbiased estimates of these coefficients and apply

maximum likelihood to estimate the remaining model parameters.

Time variation in r∗ and in particular its real-time mismeasurement is potentially im-

portant for the conduct and performance of monetary policy. In a recent paper, however,

Rudebusch (2001) finds that transitory shocks to r∗ have only modest implications for the

conduct of monetary policy. In this paper, we reexamine this issue in the context of the

estimated highly persistent movements in r∗ over history and come to the conclusion that

there are relatively large stabilization losses associated with r∗ mismeasurement, and that

these losses can be mitigated by timely updating of r∗ estimates.

The remainder of the paper is organized as follows. The next section describes the empir-

ical framework used for estimating the natural rate of interest, potential output, and trend

growth. Section three describes the estimation methodology and reports estimation results.

Section four examines the robustness of these results to changes in the estimates of potential

output and trend growth. Section five investigates the effects of r∗ mismeasurement on the

performance of monetary policy. Section six concludes.

2 An Empirical Framework for Measuring the Natural Rate

As noted, we apply the Kalman filter to estimate the natural rate of interest, the level of

potential output, and its trend growth rate. One alternative would be to use a univariate

time-series method to estimate r∗. However, such an approach is problematic because it

does not control for the sustained periods of rising and declining inflation in the United

States during the past several decades. In particular, given that the natural rate of interest

and the deviation of the real interest rate from r∗; however, this approach is likely to yield very weak

identification of r∗. An altogether different approach is to use forward rates implied by the term structure

and a measure of inflation expectations to estimate low frequency movements in the natural rate of interest

(Cf. Brayton, Mauskopf, Reifschneider, Tinsley and Williams (1997), Kozicki and Tinsley (2001)). In recent

work, Bomfim (2001) uses forward rates from Treasury inflation-indexed bonds to estimate r∗ over the three

years that they have been issued. One difficulty with this general approach is that one must account for

time-variation in the term premium evident in the data.
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is related to medium-run inflation stability, such univariate methods are likely to underes-

timate r∗ during the 1960s and 1970s when inflation was rising, and overestimate it during

the disinflationary episodes of the early 1980s and the 1990s.5 For this reason, we estimate

the natural rate within a model consisting of inflation, output, and real interest rates.

Econometric identification of r∗ is achieved by specifying a simple reduced-form equation

relating the output gap (the percent deviation of real GDP from potential output) to its

own lags and a moving average of the lagged real funds rate gap (the difference between

the real funds rate and r∗), and a serially uncorrelated error.6 Specifically, we assume that

ỹt = Ay(L)ỹt−1 + Ar(L)(rt−1 − r∗t−1) + ε1t, (2)

where ỹt = 100 ∗ (yt − y∗t ) denotes the output gap, yt is the logarithm of real GDP, y∗t
is the logarithm of unobserved potential GDP, rt is the ex ante real federal funds rate,

and r∗t is the unobserved natural rate of interest. (See the Appendix for details on data

construction.) The serially uncorrelated error and the lags of the output gap control for

transitory shocks and short-run dynamics, while highly persistent shifts in this relationship

between the output gap and the real funds rate are ascribed to changes in r∗. Hence, we

require
∑

ay to be less than unity in order to identify changes in r∗ with low frequency

shifts in the output gap–real rate relationship

Inflation, πt, is measured by the annualized growth rate of the price index for personal

consumption expenditures excluding food and energy – referred to hereafter as core PCE

inflation – and is assumed to be determined by its own lags, the output gap, relative prices,

xt, and a serially uncorrelated error,

πt = Bπ(L)πt−1 + By(L)ỹt−1 + Bx(L)xt + ε2t. (3)
5For example, the trend component of the real funds rate based on the Hodrick-Prescott filter rises

sharply during the period of the Volcker disinflation. This estimate of the natural rate of interest would

inappropriately ascribe a large portion of the disinflationary policy action to a shift in the natural rate.
6The basic specification of output gap dynamics is very similar to that in Rudebusch and Svensson (1999),

except that they assume a constant value of r∗. An alternative specification is to include the real bond rate as

in Fuhrer (1997), instead of the real fed funds rate. This approach introduces two additional complications.

First, in order to compute the ex ante real long rate, one needs to measure multi-year inflation expectations,

which are arguably more prone to measurement error than near-term inflation expectations associated with

the short-term interest rate. Second, in so far as we are seeking to estimate a natural rate useful for a

monetary policy rule, the term premium, itself a potentially time-varying process, would also need to be

estimated. We leave this to further research.
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The relative price variables include measures of core import price and crude oil import price

inflation, both measured as deviations from core PCE inflation. Potential GDP is defined as

the level of GDP that is consistent with unchanged inflation in the absence of relative price

shocks, xt, and the serially uncorrelated disturbance, ε2t. Equations (2) and (3) constitute

the measurement equations of our state-space model.

As noted, economic theory implies that the trend growth rate is one determinant of r∗.

Hence, we specify

r∗t = c gt + zt, (4)

where gt is our estimate of trend growth and zt captures other determinants of r∗, such as

households’ rate of time preference. We assume that z follows an autoregressive process,

zt = Dz(L) zt−1 + ε3t, (5)

where ε3t is assumed to be a serially uncorrelated innovation. In principle, z may be

stationary or nonstationary; in the following we consider two specific cases: (1) z is described

by a stationary AR(2) process, and (2) z follows a random walk.

As noted, there is evidence for time variation in the trend growth rate, with a slowdown

occuring during the 1970s and a pickup during the late 1990s. We allow for shocks to both

the level of potential output – the I(1) component – and its trend growth rate – the I(2)

component. For reasons of parsimony, we specify a simple random walk model for both

components. Specifically, potential output is assumed to evolve according to

y∗t = y∗t−1 + gt−1 + ε4t, (6)

gt = gt−1 + ε5t, (7)

where ε4t and ε5t are serially uncorrelated and mutually contemporaneously uncorrelated

with the innovation to z, ε3t. Assuming the standard deviation of the disturbance to the

growth rate component of potential output is positive, potential output is a second-order

integrated process.7 If potential output is I(2) and c 6= 0, then r∗ is integrated of order one,

even if the z process is stationary. Equations (4)–(7) constitute the transition equations of

our state-space model.
7The hypothesis that log real GDP is I(2) is typically rejected by an ADF test. However, as Stock and

Watson (1998) point out, when the disturbance to the growth rate component has small variance, such a

test statistic has a high false-rejection rate.
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Several authors have used variants of the model (2)-(7) to obtain trend-cycle decomposi-

tions of GDP, but none incorporate interest rates in their models. Watson (1986) considers

a model with constant trend growth g and an AR specification for the output gap. Clark

(1987) extends Watson’s model and allows for time variation in trend growth. Kuttner

(1994) explores the relationship between the cyclical component of GDP and inflation by

including a dynamic inflation equation.8 Roberts (2001) decomposes output growth into

growth in hours and labor productivity growth, and allows for time variation in the trend

growth rates of both of these series. As noted, none of these contributions include the effect

of interest rates and, as a result, they do not address the issue of time variation in the

natural rate of interest.

3 Estimation

We estimate several variants of the model described above on quarterly U.S. data over the

period 1961:1 to 2000:4. Details on the data used are given in the Appendix. We allow the

lag lengths in the output gap and inflation equations, equations (2) and (3), respectively,

to be determined by the data. Specifically, we include two lags each of the output gap

and the real rate gap in the output gap equation. The finding that the output gap is

well characterized by an AR(2) is consistent with the studies using unobserved components

models cited above. We impose the restriction that the coefficients on the two lags of the

real rate gap are the same, which is not rejected by the data for any of our specifications.

We include eight lags of inflation in the inflation equation and impose the restriction,

not rejected by the data, that the coefficients sum to unity. For reasons of parsimony, we

restrict the coefficients on lags 2 to 4 of inflation to be equal, and the same for lags 5 to 8

(Cf. Gordon (1998), Brayton, Roberts and Williams (1999)). Including only the first lag

of the output gap in this equation proved sufficient. Finally, the relative price vector, xt,

consists of contemporaneous core import price inflation, and the first lag of oil import price

inflation, both measured relative to core PCE inflation.
8In a related paper, Laubach (2001) identifies the natural rate of unemployment using a model of inflation

dynamics.
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3.1 Estimation Methodology

In principle, the model can be estimated by maximum likelihood using the Kalman filter.

However, the contributions from variation in trend growth and the natural rate of interest

to overall variability in the data are relatively small. As a result, the maximum likelihood

estimates of the standard deviations of the innovations to these processes, σ3 and σ5, are

likely to be biased towards zero owing to the so-called “pile-up problem” discussed by Stock

(1994). Indeed, the maximum likelihood estimates of both of these parameters were zero.

We therefore use Stock and Watson’s (1998) median-unbiased estimator to obtain estimates

of the ratio λg ≡ σ5
σ4

, and, in cases where z is nonstationary, λz ≡ σ3
σ1

ar√
2
.9 We impose these

ratios when estimating the remaining model parameters (including σ1 and σ4) by maximum

likelihood. Because the pile-up problem does not arise for stationary unobserved processes,

in cases where z is stationary, we estimate the standard deviation of its innovation, σ3, by

maximum likelihood simultaneously with the other model parameters.

We proceed in three steps. In the first step, we generate a preliminary estimate of

potential output, which we use as an input in estimating λg. We follow Kuttner (1994)

and apply the Kalman filter to estimate potential output, omitting the real rate gap term

from equation (2) and assuming that the trend growth rate, g, is constant. We compute

the exponential Wald statistic of Andrews and Ploberger (1994) for a structural break

with unknown break date on this preliminary estimate of potential output. We then use

Stock and Watson’s results to convert the exponential Wald statistic into an estimate λ̂g.

Applying Stock and Watson’s method to the preliminary estimate of potential GDP, instead

of directly to the GDP data, has the advantage that it is consistent with their assumption

that all shocks have a permanent effect on the level of the series under consideration.

Correspondingly, when applying the method to our preliminary estimate of potential GDP

we do not correct the data for serial correlation in the level shocks, as Stock and Watson

suggest.

If the unobserved component of the natural rate of interest, z, is assumed to be station-
9This ratio is based on the assumption that the coefficients on the two lags of the real rate gap are the

same. Substituting (4) into (2), the latter can be written as

ỹt = Ay(L)ỹt−1 +
ar

2
(rt−1 + rt−2 − c(gt−1 + gt−2)) − ar

2
(zt−1 + zt−2) + ε1t

The ratio λz based on the test statistic for an intercept shift at unknown date in this equation is thus the

ratio of arσ3/
√

2 to σ1.
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ary, we proceed directly to the third and final step; otherwise, in the second step, we impose

the estimated value of λg from the previous step and follow a similar process to generate

an estimate of λz. We again estimate the five model equations, imposing σ5 = λ̂gσ4. We

now include the real interest rate gap in the output gap equation, but assume that z is

constant; that is, we assume r∗t = c gt + constant. Using this specification, we compute the

exponential Wald statistic for an intercept shift in the output gap equation at an unknown

break date, and use Stock and Watson’s results to obtain an estimate λ̂z.

In the third and final step, we impose the estimated values of λg from the first step

and λz from the second step (assuming z is nonstationary), and estimate the remaining

model parameters by maximum likelihood.10 As noted, if z is assumed to be stationary,

we include σ3 in the parameters to be estimated by maximum likelihood. We compute

estimated confidence intervals and corresponding standard errors for the estimates of the

states using Hamilton’s (1986) Monte Carlo procedure, which accounts for both filter and

parameter uncertainty.11

3.2 Estimation Results

The first-stage estimation of potential output indicates that the trend growth rate exhibits

only a relatively modest amount of variation over time. The first line in Table 1 reports the

value of the exponential Wald statistic testing for an intercept shift in the first difference

of potential GDP. This value of 1.51 is just below the 10 percent critical value of 1.55

given in Andrews and Ploberger (1994, Table 1, page 1399). Using Stock and Watson’s

median-unbiased estimator, this relatively weak evidence of a change in the growth rate

of potential GDP translates into an estimate of λg of about 0.04, shown in the second

column of the table. When multiplied by our third-stage estimate of σ4 reported below, the

implied standard deviation of trend growth changes is estimated to be about 0.1 percentage
10Estimates of the conditional expectation and covariance matrix of the initial state are computed using

the GLS method discussed in Harvey (1989, p. 122). Because these estimates are functions of the model

parameters, for certain parameter values the covariance matrix may be ill conditioned. The conditional

expectation of the initial values of y∗ and g is then computed by fitting a segmented trend through log real

GDP, with z initialized at zero, and the covariance matrix is set to 0.2 times the identity matrix. During

the Monte Carlo simulations for computing the standard errors, this procedure is modified as discussed in

Laubach (2001, p. 222).
11Note that these estimated confidence intervals hold the imposed values of λg and λz fixed but take into

account the uncertainty regarding σ1, σ2, σ4, and, thus, implicitly σ3 and σ5.
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Table 1: First- and Second-stage Estimation Results

Exponential Median-unbiased Estimate of λ

Variable Wald Point 90 % Confidence Interval

Statistic Estimate Low High

Trend growth (g) 1.51 .039 .000 .103

Natural rate (z) 4.28 .071 .015 .117

point (expressed at an annual rate), a figure almost identical to Stock and Watson’s (1998)

comparable estimate. The 90 percent confidence intervals for the estimate of λg, computed

by Monte Carlo simulations, are given in the final two columns of the table.12 Note that

the lower end of the 90 percent confidence interval for the estimate of λg includes zero, the

case in which the trend growth rate is constant and potential output is integrated of order

one.

The results from the second-stage estimation indicate the presence of persistent time

variation in z, the component of r∗ not related to the trend growth rate. As seen in the

second line of Table 1, the value of the exponential Wald statistic testing for an intercept

shift in the output gap equation is 4.28, which is significant at the 1 percent level. The

implied median-unbiased estimate of λz is 0.07. In cases where we assume that the process z

is nonstationary – and in particular, described by a random walk – we impose this estimated

value of λz in the third and final estimation stage.

Turning to the final-stage estimation, we begin by assuming that z follows a stationary

AR(2) process. The results from maximum likelihood estimation of this model are reported

in the first column of Table 2. The estimated coefficients dz are consistent with z being

stationary. The estimated sum of coefficients on the lagged output gap in the output gap

equation is below unity (and the unit sum hypothesis is rejected at conventional levels),

consistent with the identification assumptions described in Section 2. Finally, the real rate

gap enters the output gap equation with the correct sign and is significant at the one percent

level.

The natural rate of interest is estimated to vary one-for-one with changes in the trend
12To compute this confidence interval, we use parameter estimates based on the second-stage model with

a time-varying trend growth and a constant natural rate of interest to construct 10,000 simulated series of

{y∗
t , gt}. For each pair of simulated series we compute the exponential Wald statistic for an intercept shift

in the first difference of y∗
t .
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Table 2: Parameter Estimates

Stationary Random Walk Model for z

Parameter z ∼ AR(2) Baseline Low λz High λz

λz .045 .071 .015 .117

(.24)
∑

ay .924 .943 .942 .944

ar -.117 -.104 -.091 -.114

(3.20) (3.67) (3.66) (3.63)

by .060 .040 .059 .030

(1.95) (1.57) (1.84) (1.37)

c .970 1.062 1.001 1.008

(3.89)
∑

dz .965 1 1 1

σ1 (ỹ) .263 .364 .406 .327

σ2 (π) .719 .725 .721 .728

σ3 (z) .142 .352 .095 .475

σ4 (y∗) .655 .627 .610 .639

σ5 (g) .102 .098 .095 .100

σr∗ =
√

c2σ2
5 + σ2

3 .173 .367 .134 .485

Log Likelihood -360.5 -362.9 -362.2 -363.0

Standard Error (ave.)

r∗ 2.58 1.98 1.09 2.38

g .42 .48 .42 .53

y∗ 2.33 3.25 1.97 4.32

Notes: t statistics in parentheses. σ5 is expressed at annual rate.

Standard errors are sample averages for smoothed estimates of states.
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growth rate of output, and this result is robust to changes in the process for z. For the case

of stationary z, c is estimated to be .97, with a standard error of .25. The second column

of Table 2 reports the estimation results for the case where z is modeled as a random walk

and λz is estimated using the median-unbiased estimator. The results are very similar to

those where z is assumed to follow an AR(2). In particular, the estimate of c is also near

unity. However, owing to the existence of two nonstationary processes determining r∗ –

g and z – this latter estimate must be treated with caution owing to the potential for

spurious correlation (Cf. Granger and Newbold (1974)). For this reason, in cases where z

is nonstationary, inference based on the standard errors is invalid and we therefore do not

report t-statistics for the estimates of the coefficient c.

The final two columns of Table 2 indicate the estimation results when we impose values

for λz corresponding to the lower and upper limits of the 90 percent confidence intervals,

instead of the median-unbiased point estimate. Again, the coefficient c relating r∗ to the

trend growth rate is near unity, consistent with the previous results. Except for the standard

deviations of the innovations, the parameter estimates are little affected by the choice of

λz. The more variable the z process and therefore r∗, the lower the variance of the serially

uncorrelated innovations to the output gap equation. Note that, based on the log likelihood

values, the data are not able to discern between the alternative specifications shown in the

table.

The smoothed (two-sided) estimates of the unobserved processes implied by our model

estimates are shown in Figure 1. The r∗ estimates in the model in which z follows a

stationary AR(2) (indicated by the dashed line) exhibit far larger short-duration swings

than those where z is assumed to follow a random walk (the solid line). For this reason, for

the remainder of the paper, we focus on the random walk specification, which appears to

correspond more closely to our middle- and low-frequency characterization of the natural

rate of interest. We refer to the specification given in the second column as the “baseline

model;” the restriction to the random walk specification for z is not rejected by the data

at the 5 percent level. This estimate of r∗ peaks at about 4-1/2 percent in the mid-1960s,

reaches a minimum of 1-1/4 percent in the early 1990s, and ends the sample period at just

above its sample average of 3 percent.

The estimates of the trend growth rate and the output gap are very similar across the

four estimates. As shown in the middle panel of the figure, the estimated trend growth
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Figure 1: Smoothed Estimates of Unobserved States
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rate peaks in the mid-1960s at about 3-3/4 percent, and then declines through the 1970s

and 1980s. From its low of about 3 percent in the early 1990s, the trend growth rate

increases by about one-half percentage point by the end of the sample. The broad outline

of the output gap estimate, shown in the lower panel, corresponds closely to the estimates

of Clark (1987) and Kuttner (1994) over the parts of the sample that are covered by their

estimates, although Kuttner’s estimate is more volatile than either ours or Clark’s.

The standard errors of the estimates of the unobserved states, shown at the bottom of

Table 2, are relatively large, as is typical for Kalman filter estimates. As a result, changes

in the natural rate of interest and the trend growth rate of output are not measured with
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much precision. Across the specifications reported in the table, the average standard error

of r∗ ranges from 1 to 2-1/2 percentage points, that for the trend growth rate is about

1/2 percentage point, and that for the level of potential output from 2 to 4-1/2 percentage

points.

4 Robustness Analysis

We now extend the preceding robustness analysis to include changes in estimates of potential

output and the trend growth rate. Our definition of the natural rate as the real interest rate

at which real GDP equals potential, once the effects of transitory shocks have dissipated,

implies that our natural rate estimates are sensitive to our estimate of potential GDP. We

first consider alternative estimates based on the uncertainty surrounding our estimate of

λg; we then examine the effects of augmenting the model with a labor market indicator to

assist in the decomposition of GDP into trend and cyclical components.

If the trend growth rate is assumed to be constant, then the estimate of the natural rate

of interest is significantly less variable than in the baseline estimates. The second column

of Table 3, labeled “Low λg”, reports results from estimating the baseline model under the

assumption that λg = 0, the lower end of its 90 percent confidence interval. For comparison,

the first column of the table repeats the baseline results from Table 2. With a constant

trend growth rate, c is not identified. The resulting estimate of λz is 0.026, well below that

in the baseline specification. Evidently, when modeled as a pure random walk, r∗ is poorly

identified. As a result, a significantly greater portion of output gap variability is ascribed

to serially uncorrelated shocks and less to permanent shocks. This is illustrated graphically

in the upper panel of Figure 2. Interestingly, the output gap estimates, shown in the lower

panel of the figure, differ relatively little between the constant growth rate and the baseline

estimates.

Increasing the variability of the trend growth rate, however, has relatively modest effects

on the estimated parameters and the estimates of r∗. The third column of the table reports

the results when λg takes the value 0.103, corresponding to the upper end of the 90 percent

confidence interval. In this case, the estimate of λz is .060, slightly lower than the baseline

estimate. Except for the greater variability of the trend growth rate itself, the parameter

estimates do not differ substantially from the baseline estimates. In particular, the estimate

13



Table 3: Parameter Estimates under Different Potential Output Assumptions

Parameter Baseline Low λg High λg Hours

λg .039 .000 .103 .046

λz .071 .026 .060 .039
∑

ay .943 .944 .946 .927

ar -.104 -.087 -.124 -.076

(3.67) (3.66) (3.60) (3.09)

by .040 .055 .031 .096

(1.57) (1.88) (1.28) (3.02)

c 1.062 – .995 .886

σ1 .364 .397 .257 .497

σ2 .725 .722 .729 .714

σ3 .352 .168 .175 .359

σ4 .627 .622 .662 .547

σ5 .098 .000 .273 .101

σ6 – – – .245

σr∗ =
√

c2σ2
5 + σ2

3 .367 .168 .323 .370

Log Likelihood -362.9 -362.3 -363.5 -466.51

Standard Error (ave.)

r∗ 1.98 1.28 1.63 2.65

g .48 .24 .74 .46

y∗ 3.25 2.18 3.48 .59

Notes: t statistics in parentheses. σ4 is expressed at annual rate.

Standard errors are sample averages for smoothed estimates of states.

1. Log likelihhod for model augmented with equation for employee hours

is not comparable to others.
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Figure 2: Sensitivity of Estimates to Assumptions Regarding Potential Output
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of c is again nearly unity. As seen in the figure, although the estimated trend growth rate is

much more variable (shown by the dotted line in the middle panel), the resulting estimates

of r∗ differ relatively little from the baseline estimates.

4.1 Incorporating Information on Employment Hours

Our second alternative specification for potential GDP is based on the notion that employ-

ment hours, as well as inflation, contain information about the cyclical state of the economy.

Specifically, we follow Roberts (2001) and introduce the equation

h̃t = f1ỹt + f2ỹt−1 + f3h̃t−1 + ε6t (8)
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into the model, where h̃t denotes percent deviations of private nonfarm employee hours ht

from a trend h∗
t . We compute h̃t as the deviation of hours from a simple log-linear time

trend (Cf. Rotemberg and Woodford (1996)).13

Estimation results for this specification are shown in the final column of Table 3, labeled

“Hours.” The resulting estimate of λg is a little larger than the baseline value, but the

estimate of λz is considerably lower than the baseline value. However, because the variance

of the serially uncorrelated innovation to the output gap equation rises while that of the

level shock to potential GDP falls, the variability of both the trend growth rate and the

natural rate of interest are nearly the same as in the baseline specification. The estimate

of c is about 0.9, just a bit below the other estimates.

The uncertainty around the output gap estimate shown at the bottom of Table 3 is less

than one fifth of that in the baseline specification. The high degree of precision regarding the

estimate of the level of potential output results from the close fit of equation (8), combined

with the absence of any unobserved states in the estimation of trend hours. A problematic

aspect of the estimation results for the model augmented with hours is that it appears to

be in conflict with evidence of low frequency changes in the growth rate of labor supply (Cf.

Roberts (2001)). For this reason, the precision of the estimates may be spurious.

The close identification of the output gap with deviations of hours from a time trend

implies a different view of history compared to the baseline model where the output gap is

identified by the inflation equation alone. As shown in Figure 2, in the model augmented

with the hours equation (the dashed line), both the output gap and r∗ are estimated to

have been below their baseline counterparts in the first half of the sample, and above

them in the second half. In particular, during the late 1990s, a period when core PCE

inflation was declining, the baseline estimate indicates that output was below potential

and therefore exerting downward pressure on inflation, while the model augmented with

the hours equation indicates output was above potential and therefore boosting inflation.

Evidently, the estimates of potential output in the baseline specification include the effects

of omitted variables that influence inflation but are not captured by movements in hours.
13In principle, h∗

t could be specified as an I(2) process analogous to y∗
t . However, tests for an intercept

shift in the raw hours data over our sample show no evidence for such a shift. Moreover, when attempting

to construct a preliminary estimate of trend hours by estimating a trend-cycle decomposition based on a

constant drift in trend hours, trend hours are estimated to be a simple time trend. These results differ from

those of Roberts (2001) who normalizes hours by population and finds this series to be I(2).
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4.2 Overall Robustness of Estimates

Table 4: Properties of Unobserved Variables

z ∼ AR(2) Baseline Low λz High λz Low λg High λg Hours

Natural Rate of Interest

Minimum .10 1.28 2.62 .42 2.55 1.38 1.91

(92:4) (92:4) (92:1) (92:4) (93:1) (92:3) (74:3)

Maximum 5.70 4.52 3.75 4.90 3.93 4.34 4.31

(65:4) (65:2) (65:2) (65:2) (65:2) (65:2) (83:4)

Ending Value 3.40 3.10 3.16 3.16 2.84 3.39 4.04

Trend Growth Rate

Minimum 2.91 2.96 2.91 2.99 3.32 1.99 2.98

(90:4) (91:3) (91:2) (91:3) – (92:2) (80:1)

Maximum 3.73 3.70 3.73 3.68 3.32 4.32 3.86

(65:1) (65:2) (65:2) (65:2) – (65:2) (65:2)

Ending Value 3.31 3.39 3.38 3.36 3.32 3.79 3.46

Output Gap

Minimum -8.04 -8.14 -7.82 -8.36 -7.48 -8.80 -5.77

(82:3) (82:3) (82:3) (82:3) (82:3) (82:3) (75:1)

Maximum 4.11 4.45 3.99 4.61 4.30 4.60 3.03

(66:2) (66:1) (65:4) (66:1) (73:1) (78:3) (66:1)

Ending Value .27 -1.03 -.30 -1.42 -1.69 -.92 .61

Despite the sizeable uncertainty around most of our estimates of the natural rate of

interest, the trend growth rate, and potential output, our point estimates of these processes

are qualitatively similar across the seven model variants described above. This is illustrated

in Table 4, which shows the minimum, maximum, and ending values of the smoothed

estimates of the natural rate of interest, the trend growth rate, and the output gap. In

the six cases that exclude the hours equation, r∗ peaked in 1965 and hit its sample low in

1992 or 1993. In the model augmented with the hours equation, r∗ hits its low in 1973 and

peaks in 1983. All estimates show the trend growth rate peaking in 1965 and the low point

occurring in the early 1990s (the augmented model has two nearly identical minima, in 1980

and in the early 1990s). The estimates of the output gap are generally similar, with the

peaks occurring in the late 1960s and the mid- and late-1970s; the minimum occurs in the
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Figure 3: Estimates of the Stance of Monetary Policy
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early 1980s (with the augmented model showing an equally large negative gap in 1975).

5 Monetary Policy and a Time-varying Natural Interest Rate

Allowing for time variation in the natural rate of interest can significantly change one’s

view of the stance of monetary policy during historical episodes in which r∗ strayed from its

historical average. Figure 3 shows the baseline r∗ estimates (the solid lines), along with the

corresponding actual values of the real fed funds rate (the dashed lines). The shaded region

in the figure shows the 70 percent confidence intervals for the r∗ estimates. The estimated

decline in the natural rate during the early 1990s suggests that the stance of policy during

the early 1990s may not have been as expansionary as one would believe based on a constant

value of r∗. Similarly, monetary policy appears much easier in the late 1960s, relative to

the assumption of a constant natural rate of interest, when one accounts for the boost to

r∗ resulting from relatively strong trend growth during that period.

R∗ mismeasurement interferes with the achievement of both inflation and output stabi-

lization goals. The achievement of a long-run inflation rate goal requires that estimates of

r∗ converge to the true value in expectation. Let policy be described by the interest rate

feedback rule,

it = πe
t + r̂∗t + απ(πt − π∗) + αy ỹt, (9)

where r̂∗t is the policymaker’s estimate of the natural rate of interest, πe is expected inflation,
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Figure 4: Real-time Estimates of the Natural Rate of Interest
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and π∗ is the (fixed) long-run inflation target. Absent shocks, if the policymaker’s estimate

converges to r̂∗, then the inflation rate converges to π∗ + 1
απ

(r∗ − r̂∗). Hence, if r∗ is

subject to permanent shifts, then for the inflation rate to stabilize at the target level, the

policymaker’s estimate must converge in expectation to the true value.

Mismeasurement of r∗ also implies a deterioration in short-run macroeconomic stabi-

lization. In the absence of mismeasurement, a time-varying natural rate of interest has no

implications for the performance resulting from a policy rule of the form of equation (9)

beyond greater variability of real interest rates. But, r∗ mismeasurement introduces an

additional disturbance to the system, the magnitude of which depends on the variance of

the r∗ innovations and the persistence of which depends on the Kalman filter gain used in

updating estimates of r∗.

Comparing one-sided and two-sided estimates of r∗ provides a measure of the likely

magnitude and persistence of r∗ mismeasurement. Figure 4 shows the baseline one-sided

filter estimates (the dashed line) and the two-sided smoothed estimates (the solid line) of the

natural rate of interest. For comparison, the sample mean of the smoothed estimate – about

3 percent – is shown by the horizontal dashed line. The one-sided filter estimates correspond

to a “real-time” estimate of r∗ in that past data are used in estimating the state.14 Taking

the smoothed estimate as truth, the standard deviation of the measurement error using

the one-sided filter is about 0.9 percentage point over the sample; nearly 10 percent of

14The full sample is used to estimate the model parameters, however, so the analogy is not exact.
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Table 5: Effects of r∗ Mismeasurement under the Taylor Rule

Standard Deviation Loss % Increase

Policymaker’s Estimate of r∗ ỹ π ∆i L in Loss

True value (r̂∗t = r∗t ) 1.1 1.4 .7 3.5 –

One-sided KF estimate 1.5 1.4 1.0 4.7 34

Constant (r̂∗ = 3.0) 1.6 1.6 .7 5.4 53

the existing measurement error is eliminated each quarter. For comparison, the sample

standard deviation of the smoothed r∗ estimate is 0.8 percentage point, and the first-order

autocorrelation is 1.00.

We use simulations of the estimated baseline model to assess the effects of r∗ mismea-

surement owing to time variation in the natural rate of interest. For these simulations, we

assume the true values of potential output and r∗ are given by the respective two-sided

Kalman filter estimates of our baseline model. We assume that policy is set according to

the Taylor Rule (that is, απ = αy = .5), and that the true value for potential output is

observed. We conduct three simulations. In one, the policymaker knows the true value of

r∗ each period. In the second, the policymaker uses the one-sided Kalman filter estimate,

which corresponds to a “real-time” estimate of r∗. In the third, the policymaker assumes

r∗ is a constant 3 percent, equal to the mean value of the two-sided estimate. Note that

we are restricting the scope of mismeasurement to that resulting from the time variation

in the natural rate; we assume that the policymaker correctly knows the sample mean of

r∗. Each simulation extends over 1961–2000; to mitigate the effects of initial and terminal

conditions, the results are computed for 1964–1997 only.

We assume the policymaker’s objective is to minimize the weighted sum of the variances

of the output gap, the inflation rate, and the change in the nominal federal funds rate.

Specifically, we follow Rudebusch and Svensson (1999) and Rudebusch (2001) and specify

the loss function:

L = V ar(π) + V ar(ỹ) +
1
2
V ar(∆i), (10)

where V ar(x) signifies the unconditional variance of variable x.

Model simulations indicate that mismeasurement of the natural rate of interest leads

to a significant deterioration in output stabilization, but has relatively modest effects on

inflation stabilization. The first three columns of Table 5 report the simulated standard de-
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viations of the output gap, the inflation rate, and the change in the nominal funds rate. The

fourth column reports the value of the loss given by equation (10); the final column shows

the percent increase in the loss relative to the case of no r∗ mismeasurement. Assuming

r∗ is constant increases the loss by over 50 percent relative to the case of no mismea-

surement. Using the one-sided Kalman filter estimate significantly improves stabilization

performance.15

6 Conclusion

In this paper, we have jointly estimated the natural rate of interest, potential output, and

the trend growth rate using the Kalman filter. We find that the natural rate of interest

shows significant variation over the past forty years in the United States. These results

are robust to changes in specification. Variation in the trend growth rate is an important

determinant of changes in the natural rate, as predicted by theory. We show that time

variation of the natural rate has important implications for the design and implementation

of monetary policy. Adjustment to changes in the natural rate is crucial for the achievement

of long-run inflation and short-run stabilization goals. The periods of the late 1960s and

the early 1990s provide particularly acute examples where recognition of the time-varying

nature of the natural rate has a profound influence on the ability to stabilize inflation and

output.

This paper has focused on the postwar U.S. economy. The analytical apparatus can

easily be adapted to other countries and an interesting issue is whether factors can be

identified that affect the long-run natural rate across countries. In addition, this approach

can be extended to estimate the underlying natural rates of other financial variables, such

as the equity premium or the real exchange rate.

15Rudebusch (2001) claims relatively modest effects of r∗ mismeasurement based on model simulations

of transitory shocks to r∗ around a known mean. That study implicitly assumes policymakers update

their r∗ estimates, reducing the magnitude and persistence of mismeasurement relative to a constant r∗

assumption. In addition, the coefficients of the policy feedback rule are reoptimized when r∗ mismeasurement

is introduced, reducing the implied effects on macroeconomic stabilization.
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Appendix

This appendix describes the data used in this study. The variable y refers to the log of

real chain-weighted GDP in billions of chained 1996 dollars. The federal funds rate is the

annualized nominal funds rate, with the quarterly figure computed as the average of the

monthly values. Because the federal funds rate frequently fell below the discount rate prior

to 1965, we use the Federal Reserve Bank of New York’s discount rate prior to 1965.

Our measure of inflation is the annualized quarterly growth rate of the price index for

personal consumption expenditures excluding food and energy, referred to as core PCE

inflation. To construct a series for the ex ante real federal funds rate, we compute the

expectation of average inflation over the four quarters ahead from a univariate AR(3) of

inflation estimated over the 40 quarters prior to the date at which expectations are being

formed. To compute these expectations for the early part of our sample, we need to use

inflation data prior to 1959:2, the start of the core PCE inflation series. For these dates we

splice overall PCE inflation to core PCE inflation. Our results do not change perceptibly if

inflation expectations are proxied by a four-quarter moving average of inflation instead of

the forecast from the univariate AR.

The relative price variables included in the inflation equation are core import price

and crude oil import price inflation. The core import price series is the implicit deflator

for imports of nonpetroleum goods. From 1968 on, this series also excludes the prices of

computers and semiconductors. Finally, the hours data are total hours of employees and

self-employed persons in the private nonfarm business sector.
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