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Abstract

We develop a term structure model where the short interest rate and the market
price of risks are subject to discrete regime shifts. Empirical evidence from Efficient
Method of Moments estimation provides considerable support for the regime shifts
model. Standard models, which include affine specifications with up to three factors,
are sharply rejected in the data. Our diagnostics show that only the regime shifts
model can account for the well documented violations of the expectations hypothesis,
the observed conditional volatility, and the conditional correlation across yields. We
find that regimes are intimately related to business cycles.
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Many papers document that the univariate short interest rate process can be reasonably
well modeled in the time series as a regime switching process (see Hamilton (1988), Garcia
and Perron (1996)). In addition to this statistical evidence, there are economic reasons as
well to believe that regime shifts are important to understanding the behavior of the entire
yield curve. For example, business cycle expansion and contraction “regimes” potentially
have first order effects on inflationary expectations, monetary policy, and nominal interest
rates. Such shifts in regimes, on economic grounds, contain the possibility of significant
impact not only on the short interest rates but the entire term structure of interest rates.
However, standard term structure models, such as the Cox, Ingersoll, and Ross (1985) (CIR)
and affine models, do not consider the possibility of discrete changes in regimes despite the
potential for sizable effects from such regime shifts. In the context of the U.S. treasury
yields, the poor empirical performance of the various versions of the CIR model (see Brown
and Dybvig (1986), Gibbons and Ramaswamy (1993), Chen and Scott (1993), and Pearson
and Sun (1994)) may well be due to the fact that they do not consider the possibility of
discrete regime shifts."

A common approach, as in Gray (1996) and Ang and Bekaert (1998), is to model only
the short interest rate as a regime switching process. In this paper we present a model where
regime shifts affect the entire term structure of interest rates. Other papers that develop
term structure models with regime shifts include Naik and Lee (1997) and Evans (1998).
The model presented in this paper differs from that in Naik and Lee (1997)—among other
differences, we allow regime shifts to also affect the parameters that govern the market prices
of risks. This, as discussed below, is important to capture the conditional second moment
properties of the yields and the violations of the expectations hypothesis. Evidence provided
in Dai and Singleton (2000b), Ahn, Dittmar, and Gallant (2001), and Jagannathan, Kaplin,
and Sun (2000) also indicates that richer dynamics for the market prices of risks may be
required to capture the observed yield curve dynamics. In an independent study Evans
(1998) studies implications for risk premia on bonds in a model where consumption and
inflation are subject to regime shifts. In contrast, the factors and regimes in this paper are
treated as latent. Further, our focus is on simultaneously explaining the transition density
for nominal yields and the well documented violations of the expectations hypothesis.

To provide a consistent method to estimate various models under consideration we rely

In particular, evidence provided by Brown and Dybvig (1986), shows that the parameters of the model
change considerably across time; a feature which is consistent with the premise of regime shifts.



on a simulation based estimator for the model. In particular we use the Efficient Method of
Moments (EMM), developed in Bansal, Gallant, Hussey, and Tauchen (1995) and Gallant
and Tauchen (1996) to estimate all the models under consideration. Tests of over-identifying
restrictions based on the EMM method provide a way to compare different, potentially non-
nested models. This estimation technique forces the model to confront several important
aspects of the data, such as the conditional volatility and correlation across different yields.
To provide diagnostics which permit sharp discrimination across models, we rely on the
reprojection methods developed by Gallant and Tauchen (1998). The empirical exercise
relies on U.S. treasury bills and bonds data from 1964 to 1995.

Our empirical evidence suggests that the benchmark CIR and affine model specifications
with up to three factors are sharply rejected with p-values of zero. The only model specifica-
tion that finds support in the data (with p-value of 14%) is our preferred two-factor regime
switching model where the market price of risks depends on regime shifts. The two-factor
regime switching model with restrictions on the market price of risk, related to the Naik and
Lee (1997) specification, is also rejected in the data.

The key dimension of discrimination across models lies in their ability to capture the con-
ditional volatility and the conditional cross-correlation across yields. Our preferred regime
shifts specification is capable of duplicating these features of the data quite well—affine and
CIR specifications have considerable difficulty in matching these aspects of the data. In
addition, the preferred regime shifts model specification also can duplicate the violations
of the expectations hypothesis as documented in Campbell and Shiller (1991). The affine
and CIR specifications have difficulty in matching these violations as well. Exploring the
implications for the expectations hypothesis, from the perspective of affine and CIR model
specifications is also the focus of Roberds and Whiteman (1999), Backus, Foresi, Mozumdar,
and Wu (2000), and Dai and Singleton (2000a).

Our diagnostics of the various models show that the our preferred regime shifts model
specification produces the smallest cross-sectional pricing errors across all the specifications
considered in the paper. Further, the extracted regimes are intimately related to the slope of
the yield curve and business cycles—regimes with low yield spreads occur prior to or during
business contractions (see Harvey (1988), and Estrella and Hardouvelis (1991) for related
evidence).

The remainder of this paper is organized in the following manner. Section 1 presents

the regime shifts term structure model. Section 2 discusses the empirical evidence—model



estimation and specifications test, an array of diagnostics based on the conditional correlation
and volatility, cross-sectional implications on pricing errors, violations of the expectation
hypothesis, and the link between regime classification and business cycles. The technical
details on implementing the simulation-based EMM estimator is supplied in Appendix D.

The last section presents concluding comments.

1 Models for the Term Structure of Interest Rates

In this section, we present the term structure model which incorporates regime shifts. The
derivation focuses on a single factor (i.e., state variable) as the extensions to the multi-
factor case follow immediately from the single square-root factor case and are discussed in
Appendix B and C. Our discrete time analysis to characterize the term structure is related
to that in Sun (1992), Campbell, Lo, and MacKinlay (1997), and Backus and Zin (1994). It
is important to note that the solution to the yield curve in the regime shifts model relies on
a log-linear approximation.

To fix ideas it is useful to first consider the benchmark 1-Factor[CIR] model. The key
building block of this benchmark case is the state variable z; which follows the square-root

process,

Ty — @y = (0 — x4) + 0/ Ty, (1)
where w1 ~ N(0,1) is a white noise, x is the mean reversion parameter, 6 is the long-
run mean parameter, and o is the local variance parameter. Based on (1), it follows that
Eizi1] = o + k(0 — x;), and Vary(x;,) = o?z;. This is the discrete time counterpart to
the CIR model, discussed in considerable detail in Sun (1992) and Campbell et al. (1997).
We further assume that the pricing kernel (in equilibrium, the inter-temporal marginal rate
of substitution), M;,, can be written as,

A o Tt A

My = eXP{_Tf,t - (;) 5 ;\/x_tutJrl}- (2)

Note that E;[M; 1] = exp(—ry,), where 7, is the continuous one period risk-free rate—the
conditional mean of the pricing kernel must equal the price of the one period default-free
discount bond. Sun (1992) also shows that this discrete time specification converges to the
continuous-time specification when the interval across adjacent time periods shrinks. The
CIR specification, and its multi-factor extensions are special cases of the regime shifts model

which we discuss next.



We are interested in deriving the implications for the term structure when the economy is
subject to regime shifts. To keep things tractable we will model the regime shifts process as
a two state Markov process as in Hamilton (1989). Suppose that the evolution of tomorrow’s

regime s;.1 = 0,1 given today’s regime s, = 0,1 is governed by the transitional probability

Too 7ot ] , (3)
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matrix of a Markov chain
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where 37, m; = 1 and 0 < m; < 1.2 To emphasize the uncertainty of future regime in
the following structural development, we use s;y; instead of j. In addition to the discrete
regime shifts of the economy, as in the benchmark case, the economy is also affected by a

continuous state variable,

Ti41 — T = K/stJrl (98t+1 - l‘t) + O-St+1 \/Eutﬁ-l) (4)

where kg, , 0 and oy, , are the regime-dependent mean reversion, long run mean, and

St419
volatility parameters respectively. All these parameters are subject to discrete regime shifts.
Specifically, z;11 — 2y = Ko(fo — @¢) + 0o\/Trusy if the regime s, = 0, and x4 — 2, =
k1(01 — o) + o1y/Tiusyr if the regime s, = 1. Note that the innovation in the process
(4), ugy1, is conditionally normal given z; and s,,;.% It is also assumed that the agents in
the economy observe the regimes, though the econometrician may possibly not observe the
regimes.

The pricing kernel for this economy, is similar to that in the benchmark case, save for
incorporating regime shifts
My = exp{—rs; — (M)Q% - Ay

St41

\/UU_tUH-l}- (5)
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In the standard representative agent economy with log preferences, the equilibrium pricing
kernel (or IMRS) depends on the consumption and inflation process—the above specification
of the pricing kernel captures the intuition that these aggregate processes are latent and

subject to regime shifts (as in Hamilton (1989)). The details of this general equilibrium

2When the transition probability is independent of the regime, that is when myy = 70 we get a non-
persistent (iid) regime switching process. Note that this probability restriction implies that mo; = 1 — mop =
711, and moo + w11 = 1. Further mog + 711 — 1, as shown in Hamilton (1990), determines the persistence in
the regime switching process, which in the iid case is zero.

3For analytical tractability we assume that the process for regime shifts sy, is independent of x;1_y,
[ =0---00, this is similar to the assumptions made in Hamilton’s regime switching models.



argument which motivates (5) are presented in Appendix A. Note that the A parameter that
affects the risk premia on bonds is also subject to regime shifts and hence depends on s;.
With regime shifts, we conjecture that the bond price with n periods to maturity, at date

t depends on the regime s; = ¢, 7 = 0,1, and z;
P(t,n) = exp{—A;(n) — Bi(n)z;}.
The one period ahead bond price, analogously depends on s, and x4,
P, (t+1,n—1)=exp{—A,, (n—1) = B, (n — 1)z, }.

In addition we impose the boundary condition A4;(0) = B;(0) = 0 and the normalization
A;(1) =0, Bi(1) =1, for i = 0,1, that is, ry; = x;. Setting r, = x, and using a log-linear
approximation, the key asset pricing condition that follows is (see Appendix A.3 for details)

2
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st4+1=0,1

with 2 = 0, 1. The conditional mean and volatility of the bond return in regime s, is fin s, ¢
and aiysm,t respectively. With discrete regime shifts, (6) is the asset pricing restriction on
the risk premium. It is important to note that the risk premium depends only on the current
regime s; and x;. Specifically note that (6) can equivalently be stated as

2
n,S¢41,t
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Note that all risk-premiums and bond prices at date ¢ depend only on s; (the current
regime) and x;. To further get some intuition regarding the risk premium result, note that
—05,,1Bsy, (n — 1)/Z; is the exposure of the bond return to the standardized (i.e., N(0, 1))

: : A
shock w4y in regime s,1,. Further, [~
St41

/T3] is the exposure of the pricing kernel (more
precisely, — M1/ E[M;11]) to w1 in regime s;,1. The covariance between these exposures
determine the compensation for risk in regime s;,;. Hence, the risk compensation for regime

S¢y1 1s the product
)\5t+1
_08t+1B8t+1 (n - 1) VTt X [— V xt] = _B5t+1 (n - 1)>\5t+11‘t
St+1
Given information regarding s; (the current regime), x;, and the regime transition proba-

bilities; agents integrate out the future regime, s;,;, which leads to the risk premium result
stated in (7).



The market price of risk, as discussed in Cochrane (2001), can be computed as the risk
premium on an asset with a unit exposure to the source of (standardized) risk. Consequently,
using the above analysis, an asset return with an exposure of —1 to the standardized shock
ug1 would have a risk premium of —Et[i:%bt]\/x_t; this is the risk premium per unit of
standard deviation, and hence the market price of risk. Using exactly the same logic, it also
follows that the market price of risk in the 1-Factor[CIR] model is, —2/z;. *

In the regime shifts model the continuous bond returns, from the perspective of eco-
nomic agents, are distributed as a conditional mixture of normals. In the standard case,
bond returns are conditionally normal. The risk premium restriction, (6), also shows that
agents anticipate the effects of regime shifts and are compensated for it. For example, if
the probability of the high risk regime is greater when s; = 0, then agents will demand a
greater risk premium in regime s, = 0, relative to when they are in regime s; = 1. Further,
if regimes are fairly persistent, then the effects of a regime switch on the risk premium and
hence the term structure will be infrequent, but potentially large when a regime switch does
happen. This feature, in addition to the implied distribution for bond returns (and yields)
distinguishes the regime switching model from the standard 1-Factor[CIR] model discussed
above.

From (6) it is evident that the risk premium on bonds depends on the current regime
1, ; and is also governed by the regime-dependent risk parameters \g and A;. If the risk
parameters across two regimes are restricted to be the same (i.e., \g = A;), we arrive at
a specification related to that in Naik and Lee (1997). Allowing the risk parameters to
depend on the regimes opens an additional channel for regime shifts to affect bond prices.
This feature, as discussed below, is important for understanding many of the quantitative
features of term structure data.

Given (6), the solution for the bond prices can be derived, by solving for the unknown

coefficients A and B, in particular we show;

Bo(’n) _ Too 7o1 (]_ — Kgp — )\O)Bo(n — ].) — %O'(%Bg(n - ].) +1 (8)
Bi(n) T 711 (1— k1 —A)Bi(n—1) —30iBf(n—1)+1
and
Ao(n) | | oo o1 Ap(n — 1) + koboBo(n — 1) (9)
A1 (n) T10 711 Al(n - ].) + lilngl (n — ].)

“Note that the market prices of risks for additional square-root factors, z; 11, can be characterized in an
analogous manner.



with initial conditions Ay(0) = A;(0) = By(0) = B;1(0) = 0. As these coefficients depend on
the current regime—the current yield curve consequently depends only on the current regime
and x;. Note that bond price coefficients are mutually dependent on both the regimes—
current bond prices reflect agent’s expectations regarding regime shifts in the future.
Finally, the bond yield of a K factor regime-switching model can be derived in an anal-
ogous manner (see Appendix C for details),
_InP(t,n) _ As(n) K Brs(n)zp

Yolt,m) = n - "

(10)

It is worth noting that the yield curve restrictions, such as (10), can be derived from a
representative agent based general equilibrium model of the type considered in Lucas (1978)
and is briefly discussed in Appendix A. Independently, Evans (1998), also presents a related

general equilibrium model which incorporates regime shifts.

2 Estimation Results and Model Diagnostics

2.1 Methodology

In estimation our focus will be to evaluate if the different models can justify the observed
behavior of two interest rates—the six month U.S. t-bill rate , and the five year U.S. t-
bond rate. We explore the ability of benchmark CIR and affine models with up to a three
latent factors, and two factor regime switching models to justify the observed conditional
distribution of the two interest rates under consideration. To utilize a consistent approach
for evaluation and estimation across the different models we rely on simulation based EMM
(efficient method of moments) estimator, developed in Bansal et al. (1995) and Gallant and
Tauchen (1996).

The EMM estimator consists of two steps. First, the empirical conditional density of
observed interest rates is estimated by a semi-nonparametric (SNP) series expansion. This
SNP expansion has a VAR-ARCH Gaussian density as its leading term, and departures
from the Gaussian leading term are captured by a Hermite polynomial expansion. Second,
the score functions from the log-likelihood of the SNP density are used as moments to
construct a GMM type criterion function. The scores are evaluated using the simulation
output from a given term structure model and the criterion function is minimized with

respect to the parameters on the term structure model under consideration. By using the



scores from the non-parametric SNP density as the moment conditions, the model is forced
to match the conditional distribution of the observed 6-month and 5-year yields. This is a
GMM-type estimator which in addition to providing comparable (across models) measures
for specification tests, also permits a series of interesting diagnostics to understand the
advantages and shortcomings of the different models under consideration. In particular, the
normalized objective function acts as an omnibus specification test, which is distributed as
a chi-square (as in GMM) with degrees of freedom equal to the number of scores (moment
conditions) less the number of parameters in the particular term structure model.

Note that the distance matrix (the weight matrix in GMM) used in constructing the spec-
ification test is identical across different model specifications (the null hypotheses). Conse-
quently, the p-values based on this specification test can be directly compared across different
structural models to identify the best model specification.® It is well recognized in the liter-
ature, that tests for the absence of regime-shifts against a regime shifting alternative require
non-standard approaches (see Hansen (1992) and Garcia (1992)). Our approach of com-
paring all the considered models to a common non-parametric density (the SNP density),
allows us to rank order all the considered models according to the p-values implied by the
EMM criterion function. The advantage of using the non-parametric SNP, as discussed in
Gallant and Tauchen (1999), is that it can asymptotically converge to virtually any smooth
distributions, including mixture distributions (as is the case with a model of regime shifts).
Greater details regarding the non-parametric SNP and the EMM estimator are provided in
the Appendix D.

2.2 Data Description

The data set ranging from June 1964 to December 1995, is obtained from the Center for
Research in Security Prices (CRSP). There are total 379 monthly observations, with nine
maturities 1, 3, 6, 9 month and 1, 2, 3, 4, 5 year. Longstaff and Schwartz (1992), also use
this data set to estimate their term structure model. It is important to recognize that the

data period 1964-1995 contains five major recessions and six major expansions, which as

5For a discussion of the importance of having the same distance matrix, for a consistent comparison across
models, see Hansen and Jagannathan (1997).

SFurther, Gallant and Tauchen (1999) show that EMM can provide more efficient estimates relative to
alternative method of moment estimators such as simulated method of moments (see Duffie and Singleton
(1993)). As is typical with GMM-type estimators, recent Monte Carlo studies have documented the over-
rejection bias of EMM (see Andersen, Chung, and Sgrenson (1999) and Zhou (2001)), in small to moderate
sample sizes, therefore the test is more conservative and cautious in model selection.



stated earlier provides potential economic motivation for incorporating regime shifts. In the
latter part of the paper we will show an intimate link between business cycles and extracted

regimes based on the estimated term structure model.

********************Insert Table 1 Here********************

The summary statistics of these monthly yields are given in Table 1. It is clear that
on average, the yield curve is upward sloping. The standard deviation, positive skewness,
and kurtosis are systematically higher for short maturities than for long ones. Many of the
important dynamics of the two yields are recovered by the estimated SNP density.

To incorporate important time-series and cross-sectional aspects of term structure data
we focus on a short term and a long term yield—the yield on the six month bill and the five
year note. All the structural models, one, two, three factor with or without regime-switching
are forced to match the conditional bivariate joint dynamics of these two yields. We did
not use the one month or three month yield to represent the short end, because they are
more likely to be influenced by liquidity needs.” The time series plots of the basis yields are

reported in Figure 1.

********************Insert Figure 1 Here********************

The estimation results of the chosen non-parametric SNP specification are reported in
Table 2 and 3 (see Table A1 in Appendix D for technical notations of the SNP specifications).
In the first step of EMM procedure, we tried to fit a seminonparametric (SNP) density of the
bivariate joint dynamics of the two basis yields. This SNP density is a Hermite polynomial
expansion of a normal density with the leading term as VAR-in-mean and ARCH-in-standard

deviation.

********************Insert Table 2 Here********************

********************Insert Table 3 Here********************

Table 2 reports the choice of SNP density and the BIC (Bayesian information criterion)
value, based on which we choose our preferred specification. The leading term of the bi-

variate SNP density, being conditionally normal, has 1 lag in the VAR based conditional

"See Bansal and Coleman (1996) for such a macroeconomic model and Liu, Longstaff, and Mandell (2000)
for term structure evidence.



mean (notationally L, = 1) and 5 lags in ARCH specification (L, = 5). If all other terms
in the SNP density were zeroed out, then the SNP density specification would indeed be
this conditional normal density. However, the preferred specification allows for departures
from conditional normality, in particular, it chooses a polynomial of order 4 (K, = 4) in
the standardized residual z; this overall specification of the non-parametric density leads to
a “semiparametric ARCH” specification for the bivariate data. This specification is sim-
ilar to that proposed by Engle and Gonzélez-Rivera (1991). This specification allows for
skewness and kurtosis in the SNP distribution. The total number of parameters for this
semi-parametric ARCH specification is 28, that is [, = 28. Hence the total number of scores
that we have from this SNP density is also 28. Note that these scores serve the role of
moment restrictions in a method of moments type estimation. The information criterion for
choosing the preferred SNP specification is the minimum value of BIC provided in Table
2. Table 3 gives the parameter estimates of the SNP density. The preferred specification,
for future reference is, L, = 1, L, = 5, K, = 4. Figure 2 presents a plot of the bivariate

density.®

********************Insert Figure 2 Here********************

Given the estimated non-parametric SNP density it is possible to compute the conditional
moments of the observed interest rates analytically. It is fairly instructive to focus on some
specific aspects of the estimated non-parametric SNP bivariate density. The top panels in
Figure 7 and Figure 8 give the estimated conditional volatilities of the 6-month and 5-year
yields, which seem to be very persistent and fairly volatile. The short interest rate has
a wide range for the conditional volatility which peaks around 1980. The range for the
five year yield volatility is narrow, relative to that of the 6-month yield. The top panel of
Figure 9 provides information regarding the conditional covariance across the two yields—
note that this covariance varies considerably, and also peaks in the early 80’s. The top
panel in Figure 10 shows the conditional correlation between the 6-month and 5-year yields,
the range for this correlation is from about 40% to 90%—a wide range indeed. The most

volatile period for bond yields, the early 80’s sees, is associated with a considerable drop

8Note that in our preferred specification the interaction terms above degree 2 are suppressed (i.e, I, = 2),
and the coefficients of the polynomial do not depend on the lagged values of the interest rates—z, that is
K, = 0. When the K, = 0, it also follows that the z-polynomial as coefficients of z-polynomial are all
constants, hence these coefficients are not depending on lag state z, and in this case L, = 1. For greater
details see Appendix D, Gallant and Tauchen (1989), and Tauchen (1997).
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in the conditional correlation. The behavior of the conditional variance and the cross-
correlation, as documented above, poses a serious challenge to the various term structure
models under consideration. Moreover, these features of the data are critical for pricing
interest rate sensitive derivative securities. Hence, these dimensions of the data are important
for evaluating the plausibility of term structure models. Jagannathan et al. (2000) also
highlight the economic importance of matching the conditional volatility or interest rates,
and the difficulties that benchmark specifications, such as the CIR model in matching the

volatility of interest rates.

2.3 Estimation Results and Goodness-of-Fit

Table 4 gives the main EMM estimation results for different models: one-factor square-
root (1-Factor[CIR]), one-factor regime-switching (1-Factor[RS]), two-factor square-root (2-
Factor[CIR]), two-factor regime-switching (2-Factor[RS]), two-factor regime-switching model
with restrictions on the risk premium parameters (that is A\jg = A3 and Ay = Agp) re-
lated to the Naik and Lee (1997) specification (2-Factor[RSc]), three-factor square-root (3-
Factor[CIR]), and three-factor affine (3-Factor[AF]). The results reported here are for sim-
ulation size of 50,000. The square-root factors are generated monthly, and the bond price
formula given in (10) is applied with one month being the time interval-—consequently, the
five year bond is treated as a 60 month bond (similarly for the 6-month bond). The data
that was used for estimation was the monthly yield multiplied by 12, analogously the simu-
lated monthly yields are also multiplied by 12. Note that the optimized objective function
of EMM estimation serves as a specification test, which is distributed as a chi-square with
degree of freedom equals to 28 (the number of SNP scores) minus the number of structural

parameters (varying across different models).

********************Insert Table 4 Here********************

The single factor CIR model (1-Factor[CIR]) is sharply rejected with p-value less than
0.0000. The magnitudes and signs of the parameter estimates are close to those reported
in the literature for the monthly frequency. The one factor model with regime-shifts (1-
Factor[RS]) is also rejected with a p-value less than 0.0000. It is worth noting that the
regimes do not differ much in the mean reversion coefficient or the long run mean. The
key difference is in the volatility; regime 0 volatility oy, is more than twice that in the low

volatility regime, regime 1. In addition, the parameter that governs the risk premium, A,
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is larger in the low volatility regime. All the parameters are estimated with small standard
errors.

The two factor square-root model (2-Factor[CIR]) improves things but this specification
is still sharply rejected—the model specification test drops to 62.376 with p-value smaller
than 0.0000. Since the factors additively determine the short rate, the long run mean levels
are about half of the one factor model. The first factor has higher mean reversion and a larger
variance parameter, relative to the second factor. All parameter estimates are significant,
except the risk premium parameter for the first factor, which is not significantly different
from zero. The inclusion of a second factor provides a significant improvement over the
one factor benchmark model, though relative to the regime shifts one factor model, the
improvement at best is marginal.

Next consider the 2-Factor[RSc]| specification in which the risk parameters are constrained
to be the same across regimes. This specification does provide an improvement over the
standard 2-Factor[CIR] model, however the test statistic has a value of 45.067 and the
specification is still rejected with a p-value of 0.0000. The regime probabilities are very
persistent (0.95 and 0.92). Some parameters are estimated with relatively large standard
errors (Ajg, K11, Ba1, and kop). The long run mean, mean reversion and local variance
parameters are not significantly different across regimes for the first factor, but are quite
different across regimes for the second factor.

The best model amongst all specifications is the two-factor regime switching specification
which allows the risk premium parameters (i.e., the \’s) to also depend on the regimes. This
specification finds considerable support in the data, as the p-value for this specification is
about 15%, which is well above conventional levels of significance. In terms of the parameters
of interest, note that the first factor, for both regimes (i.e., 0 and 1), relative to the second
factor has far greater mean reversion. For both regimes, the first factor is also more volatile
relative to the second factor. The regime 1 volatility parameter is larger for both the factors,
and in this sense it represents the more volatile regime. Additionally, the risk premium
parameter, for both factors, is larger for regime 1, the more volatile regime. The regime
probabilities (standard error) are m; = 0.91 (0.22) and my = 0.94 (0.18). All the parameters
of the model are estimated fairly accurately. These transition probabilities reported for the
2-Factor[RS] specification, are comparable to those found in other papers (see Gray (1996),
Hamilton (1988), and Cai (1994)).
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The 2-Factor[RS] model (and the 2-Factor[RSc] model as well) can be viewed as a 3 factor
model with the regime switching factor being a multiplicative or nonlinear switching process.
For a fair comparison of this two factor regime switching model, we also estimate a three
factor CIR model. As Table 4 shows, the 3-Factor[CIR] model is also sharply rejected with
chi-square being 45.607 and p-value of 0.0001. All the parameter estimates are significant,
and all factors are associated with a positive risk premium. The first factor has a high long
run mean, relatively high mean reversion of 0.033, and a relatively smaller variance. The
other two factors have greater persistence and volatility. Our empirical evidence suggests
that the standard three factor CIR model cannot account for the observed behavior of the
short and long yields used in this empirical exercise.

Using the estimated parameter values and its estimated variance-covariance matrix in
our preferred 2-Factor[RS] model, one can perform the ¢-test for some interesting hypothe-
ses. These test statistics suggest that the regime shifts are not an iid mixture (t;p,=1_r,, =
2.1507). The first factor has significant regime switches in level, mean reversion, and volatility
= 2.7699, t = 45.9025, respec-

tively. Note that the risk parameters are significantly different across regimes, ty,,—x,, =

parameters—the t-ratios are tp,,—g,, = 7.4972, ¢

K10=K11 010=011

35.1633. This is indicative of the reasons for the rejection of the 2-Factor[RSc| specification,
which forces Ay to equal \;;. Evidence for significant differences in regimes in the second
factor is muted, with the t-ratios for the level, mean reversion, volatility, and risk parameters,
being tg,,—g,, = 1.7921, t, 0=y, = 9.6031, tyy =5, = 3.4267, t5,,=1,, = 0.3763, respectively.
A recent study by Dai and Singleton (2000b) found that a three-factor affine term struc-
ture model, similar to that proposed by Chen (1996), passes the standard statistical test
of over-identifying restrictions. The Dai and Singleton (2000b) paper uses swap yields data
after 1987 for their empirical exercise. By confining their study to the swap interest rate
data beginning in 1987, much of the information regarding the behavior of interest rates in
recessions, e.g., 1979-1982, and in 1973-76, does not bear on the estimation. The sample
period from 1964 to 1995, has economically important features that are missing from the
post 1987 period. For example, there is only one short lived recession in early 90’s in the post
1987 sample period. To exhaust alternative affine specifications, we also present empirical
results for a three factor affine (labeled here as 3-Factor[AF]). More specifically we focus
on a specification, that in Dai and Singleton (2000b) is labeled as AT'SM;(3)—they find

considerable empirical support for this specification using the post 1987 swap yield data.
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The discrete time counterpart to this affine specification is;

T — T = K1(01 — o) + 01Tl
Topr1 — Top = Ko(by — Tar) + OoUari1 + 023/T1rUsit1 (11)

Tpr1 — Tar = K3 (Tar — Tar) + /T1lsir1 + 03101/Tillirr1 + 03202Us 41

Associated with this 3-Factor[AF]| specification are three market price of risk parameters,
which as before we label as Ay, £ = 1,2,3. In all there are 13 parameters to estimate. As
reported in Table 4 the 3-Factor[AF] specification is sharply rejected with a X?(15) = 76.489
and a p-value of 0.0000. Our diagnostics, discussed in greater detail below, suggest that the
affine models can to a certain extent capture the conditional correlation of yields, however
it fall short of matching the conditional volatilities and conditional covariances. In all, our
specification tests provide considerable support for the two factor, regime switching model.
The considered CIR and affine specifications seem to have considerable empirical difficulties

in capturing the nominal yield dynamics.

2.4 Diagnostics for Different Model Specifications

In the rest of this section we will provide a range of diagnostics which allow us to understand
the strengths and weaknesses of the different model specifications. In particular, these
diagnostics reveal why the 2-Factor[RS] specification finds considerable empirical support,
while the other specifications discussed above, do not. The diagnostics include looking at the
t-ratios for the fitted scores, the re-projected density with its implications for the conditional
volatility and cross-correlation for observed yields, and a comparison of the model implied
term structure relative to that seen in the data. Here we first look at the t-ratios for the

fitted scores, which are directly linked to the EMM estimation procedure.

********************Insert Table 5 Here********************

Table 5 reports the t-tests for the 28 moment conditions for the various models. These
28 scores (moment conditions), for a reasonable model specification, should be close to zero.
The size of the t-ratios gives a sense of the scores which different model specifications have
difficulty in fitting.

For reference note that for the Hermite polynomial part, a(i, j) refers to the parameter
before the polynomial term with i-th degree of power on the first variable (6 month yield)
and j-th degree of power on the second variable (5 year yield). For the VAR mean part,
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(i, j) represents the parameter in the i’th equation (i = 1 for the short rate and i = 2
for the long rate) of the j’th variable (j = 0 for the constant, j = 1 for the lag one short
rate, and j = 2 for the lag one long rate). For the ARCH standard deviation part, R(3, j)
denotes the parameter on variable i with j lags, and the last term R(3) is simply the constant
covariance parameter. If the structural model under consideration matches the particular
moment under consideration, then at conventional 5% level of significance the t-ratio should
be smaller than 1.96.

In the context of the benchmark model, it is clear that the three factor (see column 3-
Factor[CIR]) model provides considerable improvement over the one (1-Factor[CIR]) and two
factor (2-Factor[CIR]) specifications. The t-ratios for almost all scores are relatively smaller
for the three factor specification. However, in an absolute sense the 3-Factor[CIR] and the 3-
Factor[AF] models have considerable difficulty in matching many of the Hermite polynomial
scores and the ARCH specification scores. This suggests that these benchmark three factor
models cannot capture the conditional skewness, kurtosis, and the second moment proper-
ties of the bivariate interest rate process. Further, relative to the 3-Factor[CIR] model, the
3-Factor[AF] has considerable difficulties in matching the ARCH scores—in this sense the
3-Factor[CIR] specification looks better. Incorporating regime shifts seem to help match the
scores considerably better. The regime shifts specification where the parameters that govern
the risk premia are restricted across regimes (2-Factor[RSc]) seems to miss both the non-
Gaussian (the Hermite part) and the ARCH scores. The preferred model, the 2-Factor|RS]
specification does quite well in matching all the moments save one in the Hermite polyno-
mial and four in the conditional standard deviation. The magnitude of the highest t-ratio
is 3.13 (see ARCH, R(2,5)), which relative to the size of the t-ratios for other specifications
is quite small. Overall, this preferred specification also seems to have the greatest difficulty
in matching the conditional volatility and covariance, i.e., the ARCH scores—though, it
provides considerable improvement over all other models. The 2-Factor[RS] specification
provides large gains in fitting the non-Gaussian polynomials (i.e., the Hermite polynomial
parameters), suggesting that conditional skewness and kurtosis in the standardized innova-

tions can be accounted for by the preferred 2-Factor[RS] term structure model.

2.5 Pricing Error, Implied Regime, and Business Cycle

In this section we document the cross-sectional differences across models—that is, the ability

of different specifications to reproduce the observed yield curve at each date in the data. To
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avoid clutter we focus only on the empirically plausible specifications—the 2-Factor[CIR],
the 2-Factor[RSc], 3-Factor[CIR], 3-Factor[AF], and the preferred 2-Factor[RS] specification.

To derive the model implied term-structure for each date, in the context of the two or
three factor CIR and affine models, we simply recover the latent factors, by using the bond

pricing function, and the estimated parameters,
Xt — Bil[Yt - A] (12)

The K vector of latent factors Xy, can be recovered by using K observed basis yields, the
estimated K x K matrix of bond pricing parameters B, and the vector A. Given the vector
X¢, and the estimated parameters, the entire yield curve can be computed for each date
in the data. By construction, the computed yield curve will pass through the basis yields.
This approach to extract the latent factors is similar to that used in Chen and Scott (1993),
and Duffie and Singleton (1997), amongst others. Note that in the 2-Factor[CIR] model,
the computed yield curve will pass through two basis yields and in the 3-Factor[CIR] or
3-Factor[AF] model through three basis yields.

To compare models, for each date we also compute the absolute average cross-sectional
pricing error, with Y (n), being the computed yield of maturity n at date ¢ for a given model

specification,

S [V () = Y(n),
N )

Smaller the pricing error, better is the model specification. The pricing errors will arise due

PE, = (13)

to model misspecification.’

To compute the yield curve for each date, under the null specification of 2-Factor[RSc| or
2-Factor[RS] model, one also needs to know the regime at each date. Recall, the yield curve,
in addition to the two latent factors, also depends on the latent (i.e., to the econometrician)
regime. To deal with this, we first extract the two latent factors (i.e., K = 2) using (12), the
estimated Bg, and Ag,, for s; = 0 and s; = 1. Given the latent factors and the estimated
parameters, we compute two potential yield curves for each date, one for s, = 0 and another
for s; = 1. For each regime, it is straight-forward to compute the pricing error PFE;, for
sy = 0,1. However, under the null of the 2-Factor[RSc] or 2-Factor[RS] model specification,
the pricing error (i.e., PE;) associated with the regime that truly prevails in the economy

at date t will be close to zero.!? Hence, the regime that prevails at date ¢ is simply the one

9 An additional source could be measurement errors in the data.
1ONote that this procedure under the null of the model, will detect the regime correctly. For example, in
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which has the smallest pricing error across regimes. With the knowledge of the regime at
date ¢, the model implied yield curve and the pricing error also become available. Note that
the computed yield curves and the pricing errors for 3-Factor[CIR] or 3-Factor[AF] and the
2-Factor[RSc] or 2-Factor[RS] can be fairly compared—the three factor specification uses
three basis yields, whereas the two factor regime shifts specification relies on two basis yields

and an identification procedure for the regime classification.

RO R KK T gart Table 6 Here® ok ssksskksssokkor sk

********************Insert Figure 3 Here********************

Table 6 provides information regarding the average pricing error (i.e., (X7 PFE;)/T). It is
clear from the sample statistics that the 2-Factor[RS] model has the smallest average pricing
error and also the smallest standard deviation in the pricing error. The maximal pricing
error associated with the 2-Factor[RS] classification is also the smallest. Further, on average
the pricing error is only about 23 basis points for the annualized percentage yields—a small
number indeed. The 3-Factor[CIR] and the 3-Factor[AF] specifications have average pricing
errors of 25 basis points, which in an absolute sense is also quite small. The 2-Factor[RSc]
model has a larger pricing error than the 2-Factor[CIR]| and 3-Factor[CIR]| model, possibly
due to the error of recovering regimes in a rejected model specification. Figure 3 provides the
computed yield curves for dates which are 30 months apart—these graphs re-enforce the view
that the 2-Factor[RS] specification is the preferred one. The evidence from our specification
tests and the reprojection-based diagnostics show that the 2-Factor[RS] model is by far the

preferred choice—this view is further corroborated by the cross-sectional evidence.

********************Insert Figure 4 Here********************

Figure 4 provides the results from the regime classification. Most of the time, it seems
that the economy is in regime 1. The total number of regime switches recovered from the
sample period is 44, which is larger enough for identifying the regime probabilities. The
regime classification by and large coincides with the NBER business cycles. It seems that
regime 0 obtains during or around recessions in the economy. The relatively frequent regime

shifts between 1991-1995, as shown in Figure 4, reflect the almost identical average pricing

our simulations of the 2-Factor[RSc] or 2-Factor[RS] model, this procedure would indeed identify the correct
regime—with the pricing error for the true regime being zero.
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error across regimes at those dates. Virtually identical pricing error across regimes for a given

date implies that the data is not particularly informative regarding the regime classification.

kR HR KK T gart Figure 5 Here s stskskkrosokskokokokoso ook

The estimation results discussed earlier suggested that the first factor has considerable
differences, especially in volatility, across regimes. Figure 5 shows that the recovered first
factor tracks the short yield very well, while the second tracks the long yield. The correlation
between the NBER business cycle (recession is regime 0 and boom is regime 1) indicator
and the recovered regime indicator is 0.1523 when the early 90’s, where regime identification
is poor, is excluded (the analogous correlation for the entire sample is 0.0762). Correlation
between NBER, business cycle indicator and the yield spread (5 year yield minus 6 month
yield) is 0.2342. Correlation between the model based regime indicator and the yield spread
is 0.2299-that is, regime 1 has high yield spread and regime 0 has low yield spread.

********************Insert Table 7 Here********************

Table 7 presents some statistics for the 6-month and 5-year yields across the NBER
business cycle regimes (upper panel) and the model-implied regimes (lower panel). It is
evident that an important dimension along which economic expansion and contraction pe-
riods differ is in terms of the yield spread (for related evidence see Harvey (1988), and
Estrella and Hardouvelis (1991)). During NBER expansions the yield spread is 86 basis
points while in contractions it is -8 basis points. Our model implied regimes differ across
the same dimension—model-implied regime 1 is associated with high yield spreads (83 ba-
sis points) and model-implied regime 0 with a yield spread of only -3 basis points. Further,
there are similarities between the model based regimes and the NBER business cycle regimes

! and the change in the interest rates (see

in the behavior of convexity of the yield curve,’
Table 7). This evidence, in conjunction with the correlation of the model-implied regimes
and the NBER business cycles, suggests that our model implied regimes are business cycle
regimes. It seems that the model-implied regime 1 is an economic expansion regime and
model-implied regime 0 an economic contraction regime. In general, considerable caution

should be exercised in interpreting the regime classification as there is considerable error

'The convexity is computed as [(Y;*Y" — V;?¥") — (YY" — V;'¥")], which is a discrete approximation to the
second derivative or convexity taking the time interval to be one.
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in this classification due to parameter estimation error and model misspecification.'? De-
spite these sources of error, our model-implied regimes have a recognizable association with
the business cycle, even though our estimated model is not directly exposed to the NBER

recession-expansion indicator.

2.6 The Expectation Hypothesis Puzzle

An additional diagnostic is to evaluate if the different model specifications can justify the

observed patterns of violations of the Expectations Hypothesis as documented in Campbell

and Shiller (1991). Using simulated data from different model specifications, we run the

regressions considered in Campbell and Shiller (1991). The difference between the future

yield and the current long yield, that is Y (¢ +m,n —m) — Y (t,n), is regressed on to the
n,m) m

normalized yield spread variable, 55 = -[Y(t,n) — Y(t,m)], where n is a positive

integer of m. That is,
Y(t+m,n—m)—Y(tn) = co(n,m) + cr(n,m)si™™ + u(n, m)1. (14)

In Table 8 we report the estimates for the slope coefficient, ¢;(n, m), across different n and
m in the data and its counterpart for the various models considered in the paper. The “short
horizon” results relate to , n = 6,9,12 months and m = 3,6,9 months. The “long horizon”
results relate to n = 4,5,10 years and m = 1,2,3 years. As in Roberds and Whiteman
(1999) the reported slope coefficients for the various term structure models are based on

10,000 Monte Carlo replications with a sample size of 379—the size in the actual data.

********************Insert Table 8 Here********************

A rise in the long rate maturity n makes the slope more negative in the data, similar
to the finding in Campbell and Shiller (1991) and Roberds and Whiteman (1999).'% In the
short horizon (left panel in Table 8), we find that only the preferred 2-Factor[RS] model
can duplicate the violations of the expectations hypothesis documented in the data. All
other model specifications fail to duplicate the violations of the expectations hypothesis at

the short horizon. Note that the regime shift specification with constant market price of

12The fact that there is positive pricing error for all dates in both regimes suggests that the regime
switching model is misspecified, from the cross-sectional perspective.

I3For issues regarding small sample estimation bias in the context of testing expectations hypothesis see
Bekaert, Hodrick, and Marshall (1997).
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risk across regimes (i.e., the 2-Factor[RSc] model) also cannot duplicate the violations of the
expectations hypothesis—this underscores the importance, as in the 2-Factor[RS| model, of
allowing the market price of risk to depend on regimes. In the long horizon (right panel in
Table 8), there seems to be a wedge between the single factor and the multifactor models. We
find that the 2-Factor[CIR], the 3-Factor[CIR], 3-Factor[AF], the 2-Factor[RSc], and the 2-
Factor[RS] models can mimic the violations of the expectations hypothesis to various degrees,
but the 1-Factor[CIR] and the 1-Factor[RS] can not. It seems that in the long horizon, the
expectations hypothesis regression by itself is not particularly helpful in distinguishing across
the different candidate models.

The expectations hypothesis issue is also explored in Roberds and Whiteman (1999).
Further, Dai and Singleton (2000a) show that modified affine specifications can also duplicate
the violations of the expectations hypothesis.'* In addition, Dai (2000) argues that an
equilibrium model with habit formation preferences can potentially capture the violations
of the expectations hypothesis and the counter-cyclical behavior of risk premia (as in Fama
and French (1989)).

2.7 Reprojected Density and Conditional Second Moments

The idea behind the reprojection technique (Gallant and Tauchen 1998), is to characterize
the dynamics of a given vector of observed variables (i.e., observed yields) conditional on its
lags. In models where there are latent factors or regimes, the reprojected density provides a
way to characterize the conditional density strictly in terms of observables (i.e., the observed
yields). The reprojected density can be estimated by relying on simulated data for the
yield series from a given estimated structural model (the null model). In our context, the
reprojected density is the bivariate conditional density for the two yields under consideration,
the 6-month and the 5-year yield.

Given the estimated null model and the simulated output for yields, the reprojected
conditional density is estimated by re-estimating the parameters of the SNP density, using
the same specification as was used to characterize the observed bivariate density of the
6-month and 5-year yields earlier (referred to as the unrestricted SNP density). Indeed,
any reasonably good term structure model would imply a reprojected conditional density

which is very similar to the unrestricted conditional bivariate density for the 6-month and

They document that incorporating flexibility in the market price of risks as in Duffee (2000) and Duarte
(1999), helps in justifying the violations of the expectations hypothesis.
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5-year yields. Once the reprojected density is estimated, specific moments, such as the
conditional variances and correlations implied by the model specification can be computed.
These conditional moments are simply continuous functions of the conditioning information
(i.e., lagged 6-month and 5-year yields) used to estimate the re-projected density. Given the
conditioning information, the implications of a given null model for any conditional moment
of interest can be tracked down in the data and compared to the conditional moment implied
by the unrestricted SNP density.

It is worth noting that the reprojected density is the density for observed data (i.e., 6-
month and 5-year yields) estimated from a null model. For some specifications, such as the
three factor CIR or affine model, and the two factor regime switching model, the conditional
density for yields (under the null model) cannot be characterized by using only two yields (the
6-month, and 5-year yields). Consequently, the reprojected density provides a convenient
and comparable benchmark to characterize the conditional density for the two yields under

consideration across different null models.

********************Insert Figure 6 Here********************

For illustrative purposes, Figure 6 plots the reprojected conditional density (evaluated at
the sample mean), for the different models under consideration. The unrestricted 6 month
yield SNP density has high peak and right tail relative to a normal density with same mean
and variance. The unrestricted density for the 5-year yield is skewed to the left. The
reprojected densities, evaluated at the sample mean, for the 3-Factor models and the regime
shifts model do capture the peakedness to various degrees. The 2-factor regime shift models
have greater success in capturing the left skew of the five year yield.!®

Based on the reprojected densities, Figures 7 and 8 compare the conditional volatility for
the various model specifications—this reveals some important differences across models. Note
that in the data the process for conditional variance for the 6-month yield is quite different
from that of the 5-year yield. The range for the conditional volatility for the 6-month yield
rate is much larger than for the 5-year yield—the high end being almost three times the

lowest for the 6-month, and two times for the 5-year yield. The short yield volatility is more

15The shape of the all these conditional distributions will depend on the choice of the conditioning infor-
mation. For illustrative purposes we have shown the density plot (Figure 6) evaluated at the sample mean.
The conditional variance and the conditional covariance dimensions, which are the focus of the remaining
section, provide a simple and tractable way to characterize features of this reprojected conditional density
across the entire realized sample path of observed yields.

21



persistent, while the long yield volatility seems more choppy. The 2-Factor[CIR] has difficulty
in matching the short rate volatility and does somewhat better in matching the volatility of
the 5-year yield. The 2-Factor[RS] model is capable of duplicating the projected volatility of
the short rate extremely well, and that of the long yield volatility almost completely. The 3-
Factor[CIR] and the 3-Factor[AF| model seem to capture the general shape of the volatility
much better than the 2-Factor[CIR] model, however, in an absolute sense neither model
captures the volatility dynamics as well as the 2-Factor[RS] specification. Also note that
the 3-Factor[CIR] specification relative to the affine specification seems to produce greater
variation in the volatility, as seen in the data. Finally, the 2-Factor[RSc] model misses the

short rate volatility, and its performance is comparable to that of the 3-Factor[CIR] model.

********************Insert Figure 7 Here********************

kR HR KK T cart Figure 8 Here s stskkkorosokkokokokoso ook

Figure 9 and 10 provide evidence regarding the conditional covariance and correlation be-
tween the 6-month and 5-year yield. Again, it is very clear that only the 2-Factor[RS] model
succeeds in capturing the wide range of the covariance and correlation observed across these
yields. The correlation varies from 40% to 90%. Note that while the conditional covariance
increases during the volatile period of the early 80’s, the correlation decreases—suggesting
that the volatilities of the two yields rise more rapidly relative to the conditional covariance.
The 3-Factor[CIR]| and the 3-Factor[AF]| specifications have considerable difficulty in cap-
turing the conditional covariance and correlation. However, the 3-Factor[CIR] specification
seems to a better job of capturing the conditional covariance relative to the 3-Factor[AF]
specification. The 2-Factor[RS] model comes surprisingly close to capturing virtually all the
observed dynamics of the conditional covariance and correlation between these yields. The
2-Factor[RSc| also to a large extent capture the behavior of the the conditional correlation,
however, it fails to capture the conditional covariance and short rate volatility. This again
highlights the importance of allowing the market price of risk to depend on the regime, as
in the preferred 2-Factor[RS] model.

********************Insert Figure 9 Here********************

kKRR KRR KT gart Figure 10 Herpe skt ok
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Our diagnostics and specification tests show that the model with regime shifts in conjunc-
tion with regime dependent market price of risk is important to understand the behavior of
the interest rates. In particular, this 2-Factor[RS] structure can account for the conditional
volatility and conditional; cross-correlation across yields, along with the conditional higher

moments such as skewness and kurtosis.

3 Concluding Remarks

There is considerable statistical evidence regarding the presence of regime shifts in the short
interest rate data (see Hamilton (1988)). In addition, there are economic reasons as well to
believe that interest rates are subject to regime shifts. The transitions between economic
expansion and recession have first order effects on the term structure. Despite the potential
of important effects from discrete regime shifts, received term structure models, such as the
Cox et al. (1985) and affine models, do not incorporate them. The absence of this important
component in these models may well explain their poor empirical performance.

The main contribution of this paper is to show that an internally consistent model of
the term structure, which incorporates regime shifts, provides significant improvements over
multi-factor versions of the CIR and affine models. More specifically, we develop and estimate
a model for the term structure which permits regime shifts in both the state vector and
the risk premium. We show, that a model which incorporates regime shifts is essential
to account for the conditional joint dynamics (i.e., the conditional distribution) of short
and long yields. For comparison, we also estimate benchmark multi-factor CIR and affine
models. Our empirical exercise is conducted by relying on nominal U.S. treasury bill and
bond yields from 1964-1995. For estimation and specification tests of the various models we
use the Efficient Method of Moments estimation technique developed in Bansal et al. (1995)
and Gallant and Tauchen (1996). We also provide a battery of diagnostics to evaluate the
various model specifications, in particular, we rely on the reprojection method to recover the
conditional density of yields (conditional on lagged yields) and to evaluate the merits of the
different model specifications.

Our empirical evidence shows that benchmark Cox-Ingersoll-Ross term structure models
and affine specifications (see Dai and Singleton (2000b)), with up to three factors are sharply
rejected in the data—these models cannot jointly account for the violations of the expec-

tations hypothesis, conditional volatility and the conditional cross-correlation across yields
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observed in the data. A two factor regime switching model with regime-dependent risk pre-
mium finds considerable support in the data and does surprisingly well in accounting for the
violations of the expectations hypothesis, the conditional volatility and cross-correlation of
the short and long yields. Further, the absolute pricing error in the cross-section of yields
is the smallest for the two factor regime-switching model with regime-dependent risk pre-
mium. This preferred model seems to capture the conditional distribution of yields fairly
well. Our evidence shows that there is an intimate link between business cycles and regimes
extracted from our term structure model—agents in the economy anticipate these discrete
regime-shifts and these anticipations are reflected in the time-series and cross-sectional be-
havior of the yield curves. An empirically tractable equilibrium model that provides direct
links to real GDP growth, unemployment, and monetary policy, with regime shifts would be

an interesting and valuable extension of this paper.
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Appendix A. General Equilibrium Model

In this section we provide a general equilibrium model which motivates the pricing kernel
and the regime shifts model used in the paper. Consider a standard Lucas (1978) tree
economy, with a representative agent whose period utility function is log of consumption.
This General Equilibrium economy is discussed in considerable detail in Sargent (1987). It
is well recognized that the Intertemporal Marginal Rate of Substitution (IMRS) for this

economy (with 0 < 3 < 1) is
Cl

Cim

where C; in equilibrium equals the aggregate exogenous endowment. Consider the value of a

My = (A1)

claim that delivers the consumption stream Cy,; for all s > 0—the Euler condition for this

asset is o

& = AB[ET (42)
Here V; refers to the value of the claim. The above equation implies (see Sargent (1987),
page 96, equation 3.13) that % = %, the consumption-wealth ratio is constant. The ex
post return on the asset that delivers the consumption stream R.;y; = Vt“‘ttct“ = Mtl+1 =
[BC,/Cys1]7t, which follows from exploiting the result that % = % It is important to

note that this result does not depend on specific assumptions regarding the process for the
consumption growth rates. In addition, note that all the above arguments also go through
in exactly an analogous manner in a nominal model. In this case the IMRS is defined in an
analogous manner with the variable C; = ¢, P;, where ¢; is the real consumption level and
P, the dollar price per unit of consumption good (see Sargent (1987), chapter 5). In the
discussion below we will simply refer to the growth of C} as consumption growth.

Hence it follows that

My = exp{—7cis1}s (A3)

where .11 = log(Rt+1). We will talk about the pricing kernel in terms of the process for
Tet+1, as based on the above results, this is equivalent to characterizing the consumption
growth rate process. Now assume that r.,.; = x; + %% + \/x_tgutﬂ, where z; follows the
latent square-root process for the 1-Factor[CIR| model (1) considered in the paper. Given
this process, the pricing kernel M;,; (as stated in equation (2)) for the CIR case immediately

follows.
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Now consider the regime-shifts version of the above model. Again, the above link con-

siders the following latent process as driving the r.;,; process. Let
Ao o
Terr1 = T+ ( 0)2 Lt \/_—ut+1 if 5,01 =0, (A4)
0o
) o

The agent at date ¢ only knows x; and s (Wh1ch is 0 or 1). The agent faces regime uncertainty,

Tet+1 = Tt + ( —|— \/__ut-i-l if St+1 = 1. (A5)

01

which we interpret to economically capture the idea of Hamilton (1989) that the aggregate
economy may be subject to persistent regime-shifts (such as due to business cycles) which
affects the distribution of the return 7,1, or equivalently the distribution of consumption
growth. Hence, the return r.;.; (or consumption growth) is a conditional normal with
distribution N(z,+(22)%, (22)%z,), if .41 = 1, and the distribution is N(z,+(24)* %, (34)%x;)
if s;11 = 0. The probability of the future regimes being s;,; = 0 is m;p and that of s;,; =1

is 1 — m;9, where the current regime s; = i (with ¢ = 0,1). The parameter A affects the

St+1
volatility (and drift) of the consumption growth in regime s;;.

The process for x; in the regime shifts case is governed by (4) as stated earlier. The
above assumptions regarding the regime shifts evolution of r.,.;, lead to the regime shifts

pricing kernel in equation (5) discussed in Section 1. Specifically,

PYICY A .
My = exp{—(z; + ( 2)2 2t + ,Fxta—zut+1)} if .41 = 0, (A6)
o >\1 th . o
My = exp{—(z;+ ( ) + /1y Ut+1)} if 5441 = 1. (A7)

The probability of regime s, is determlned by the current regime s; and the regime tran-
sition probability matrix I (see equation (3)). The process of x is as stated in equation
(4). The above argument gives rise to the regime shifts pricing kernel stated in equation (5).
As in the CIR case, this pricing kernel also satisfies the no-arbitrage conditions discussed
in Hansen and Jagannathan (1991). As shown below, this pricing kernel also satisfies the
condition that E}[M;;] = exp(—rs:) = exp(—), as it should.

Let P(t,n) be the price at date ¢, of a pure discount bond with n periods to maturity.
To solve for bond prices we exploit the Euler condition (pricing condition) (see Lucas (1978)
and Sargent (1987))

P(t,n) = E[My 1 P(t+ 1,n —1)| x4, s (A8)

These are standard first order conditions for valuation. The expression E[M; 1 P(t+ 1,n —

1)|x¢, s¢] refers to the conditional mean of M, P(t + 1,n — 1) given the information set x;
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and s; at date t. Bond prices are measurable with respect to the information set of the
agent. Equation (A8), also implies that risk premiums on bond returns are determined by
Covt[—%, hpt41], where hy, 44y is the bond return on a n period bond. In the particular
context of the regime switching model we will conjecture that P(t,n) = P;(t,n) for regime
s¢ =1,1=0,1, for all n and ¢ (see Appendix C below) and derive an (approximate) analytical

solution for bond prices which will solve the Euler equation stated in (A8).

Appendix B. Benchmark CIR Model

Given the conjectured bond price function P(t,n) = exp{—A(n) — B(n)x;}, no-arbitrage
conditions imply that the instantaneous value of a dollar should be one, hence for n = 0,
A(0) = B(0) = 0. In addition, we also conjecture that A(1) = 0 and B(1) = 1, that is

r¢e = Z;. Based on this conjecture, and the assumed process for x;, the continuous bond

return log[%], is conditionally normally distributed with mean
g = —A(n — 1) — B(n — 1)Ey[z411] + A(n) + B(n)z, (B9)
and variance
or = B(n —1)*Var,(z441). (B10)

Exploiting the asset pricing condition, Ey[M;i1h,41] = 1, the joint lognormality of M,

and hy, 411, and our conjectured solution, we derive

2
o
exp{—rs;+ fun + ;’t + B(n— 1)z} = 1. (B11)

2
g—n,t
2

the last term, B(n — 1)Az; is the risk-premium associated with the bond return. Using the

The third term in this expression, is the Jensen’s adjustment for continuous returns and

restriction ry, = x;, the definitions for y, ,, and ain, and taking log of (B11) it follows that

—xp— A(n — 1) — B(n — 1)Ey[x441] + A(n) + B(n)x, + % +B(n—1)A ;=0 (B12)

Equation (B12) says that expected excess returns, in equilibrium, must equal the compensa-

tion for systematic risk. Note that the exposure of the current n period bond return to w;

—Mit1
oREYA| equals

—B(n — 1)o\/Z; X \/T;2, i.e., the bond return risk premium is —B(n — 1) Az,

is —B(n — 1)o/x;, hence the covariance between the bond return and the
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As all of the above arguments are also satisfied for the multi-factor case, for brevity, we

report the solutions only for the multi-factor case. With K factors the solutions are

1
Br(n) = (1 — M\ — k3)Br(n—1) — 50,33,3(71 —1)+1, (B13)
K
k=1
with boundary conditions A(0) = B;(0) = --- = Bg(0) = 0. The solution for A(n) and

By (n), implied by (B14), satisfies the asset pricing conditions and is consistent with our
conjectured solution for bond prices. This solution is comparable to the continuous time
CIR model. Note that the yield-to-maturity of a discount bond in discrete time is defined

- InP(t,n)  Aln) K Bk(n)xkt.

Y(t,n) = = +

n n k=1

- (B15)

Of course, this can be viewed as a special case of the regime shifts model of bond yields (10).

Appendix C. Regime Switching Model

All the bond risk premia and prices derived below depend on s; and x;. To derive the
risk-premium restrictions in this section we will make repeated use of the law of iterated
expectations. In using the law of iterated expectations we will first form expectations using
the “bigger” information set Iy = {411, , 54} and then condition the expectations down
to the “smaller” and current information set which contains only z; and s;. Note that the
“bigger” information set is the “smaller” information set plus information regarding s;;1.
Using (5) it follows that E[M;.i|z, s;] = exp(—r:)—the price of a one period pure
discount bond. To see this, we exploit the law of iterated expectations given that s; = 1,

As, Ty As,
EE(Ma|Ipsr)|ze, 5] = eXP(—Tf,t)E[(eXP{—(—H)Qé—U—H\/QT_tUt+1}|It+1)|$ta si). (C16)

St+1 St+1

As the conditional mean, E[exp{—(jﬁi—ﬁ)Z% - 2:—11\/Eut+1}|ft+1] = exp(0) for s;11 = 0,1
and the probabilities sum to one—the result follows.

The asset pricing condition that pure discount bond returns, h, i1, must satisfy the
Euler equation, (A8). The pricing condition E[Myi1hy, 11|%e, s¢] = 1, using law of iterated
expectations can be re-stated as,

E[E(Mypiho |l s = Y s El(Mipihngia | L)) = 1 (C17)

5¢41=0,1
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To solve for this we need to first characterize the return h, ;. We conjecture that the bond
price with n periods to maturity, at date ¢ depends on the regime s; = 4, « = 0,1, and
x;—note that the bond prices are depend only on the current information of the agent, as
they should,

Pi(t,n) = exp{—A;(n) — B;(n)z:} (C18)

The one period ahead bond price, analogously depends on s, and x4,

P,

St41

(t+1n—1)= eXp{_Astﬂ(” —-1) - BSt+1(n — D)z} (C19)

Hence, the continuous one period ahead bond return, that is log(hy, ¢+1) with current regime
s¢ = 1 equals

! [Pstﬂ(t—l— 1I,n—1)
Fi(t, n)

| =—-A4,,.(n—1) = B, (n — 1)1 + Ai(n) + Bi(n)z,.  (C20)

Given xy, S¢11, and s, the continuous bond return is conditionally normally distributed with

mean

Hnysiprt = _A5t+1 (TL - 1) - B8t+1 (TL - l)E[xt+1|It+1]
+A;(n) + Bi(n)z, (C21)

and conditional variance
O—i,st_,_l,t = B, ,(n— 1)203t+1xt. (C22)
Note (C22) follows, as —oy,,, By, ., (n — 1)\/7; is the exposure of the bond return to the
standardized shock wu;y; in regime s;44.
For given x;, s;11, and s;, the process M 1h, 11 is conditionally log-normal, it follows

from the asset pricing condition (C17) that

1 = E[Myihoglt,sd = D Tisp B[Myg1 b i | T

5¢41=0,1
2

o
— Z 7ri8t+1 exp{_rf,t + ,U/n,st+1,t + %ﬂ’t —+ BstJrl (TL — ].))\stJrll't}. (023)

st+1=0,1
Using the log-linear approximation exp(y) — 1 ~ y, and r;; = x;, (C23) leads to the main

restriction on the risk premium,

2

a,
Z Tisei | =Tt + Hnsppr + %ﬂt + B, (n— 1A, 2] =0 (C24)

5¢41=0,1
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with ¢ = 0, 1. The last equation is the key asset pricing restriction (equation (6)) discussed
in the main body of the text. Note that the current regime i affects i, 6, O—g,sH_l,t and
the probabilities used in the last equation. Consequently, for each s, =i (with ¢ = 0,1) the
analog for the last equation must hold.

The last equation can be rewritten, exploiting the fact that =, = rs,, as

2

On,siqit
Z 7Ti5t+1[/'l/n75t+lyt + % - Tf,t] = - Z 7Ti8t+1[B8t+1 (n - 1)A8t+1xt] (025)

5¢41=0,1 5¢41=0,1

In the above expression the future regime dependence s;.; is integrated out. Hence, the risk
(n—1)A

with respect to the current information set of the agent and depends only on s; and z;. The

premium — 3. o1 s, [Boyy, (0 — 1A, 1) = —2,E[B |s¢] is measurable

St41 St4+1

risk premium is determined by the conditional covariance between the —M,;,;/E[M; 1],
and the asset return. Hence the product of the exposure of —M;,1/E[M;1] to u;q in
regime s;,1, with that of the exposure of the asset return in the regime determines the risk
compensation for that regime. In particular, this product, as discussed in Section 1 of the

paper is,
As
_Ust+1Bst+1 (TL - 1)\/:??5 X [ﬁ\/ﬁ] = _B5t+1 (TL - 1))‘St+1xt

St41
The risk premium on the bond at date ¢ is then determined by averaging over s, using the
transition probabilities for s; ;1 given that the agent knows s;. This leads to the risk premium
expression —x, E[B;,, (n—1)A,,,,|s:]. Note as in the CIR case, when an asset return has an
unit standard deviation exposure to the u;;; shock (recall u has unit volatility)—then the
above restriction also tells us about the market price of risk for this shock (see Cochrane
(2001)). An asset which has —1 exposure to the u;; shock will have an risk-premium of
—F [);f:—:ll|st]\/:v_t—this is the market price of risk for this shock in the regime shifts economy,
as discussed in Section 1 of the paper.

The above risk premium restriction is all that is needed to solve for the unknown coeffi-

cients A; and By to derive the bond prices—that is for any current regime s;, =i =0, 1, we

must have
2
On,sip1,t
Z 7TUSt+1[/1'n,St+1,t + ns2t+1 - Tf,t] = - Z 7r05t+1[B3t+1 (n - 1)A8t+1xt] (026)
5¢41=0,1 5¢41=0,1
2
On,sip1,t
Z 7Tlst+1[lu'n,5t+1,t + ns2t+1 - Tf,t] = - Z 7r15t+1[B3t+1 (n - 1)>\3t+lxt] (027)
5¢41=0,1 5¢41=0,1
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The above analysis is also satisfied for the case of multiple continuous factors z;;, and a
given regime shifts process, with regime s; = 0, 1. For brevity we report the solution for the

case of two continuous factors with regime shifts, for factor £k =1, 2, as

Bko(n) _ Too 7o1 (1 — Ko — )\ko)Bko(n - 1) - %U%OBEO(’H - 1) +1 (C28)
Bkl(n) 10 711 (1 — K1 — )\kl)Bkl(n — 1) — %O—I%IBI%I(TL — 1) +1 ’
and
[ AO(TL) ] _ [ Too 7ol -| [ Ao(’n — ].) + I€10910B10(7’L — ].) + I€20920B20(7’L — ].) -| (029)
[ Ai(n) J [ T 711 J [ Ai(n —1) + k11011 Bii(n — 1) + k1091 Bai (n — 1) J ’

with initial conditions (no arbitrage conditions) that Ag(0) = A;(0) = Byo(0) = By1(0) =
BZO (0) - B21 (O) = 0

Appendix D. SNP Density and EMM Estimation

We now provide technical details on (a) how to construct a semi-nonparametric (SNP) density
to generate the data-dependent moment conditions, and (b) how to estimate the structural
parameters of a term structure model by matching the SNP scores with long simulation data
via EMM.

Following Gallant and Tauchen (1996), any smooth conditional density function can be
approximated arbitrarily close by a Hermite polynomial expansion. Let y be the vector of
the interest rates under consideration, x be the vector of lagged y. The auxiliary f-model

has a density function defined by a modified Hermite polynomial,

f(yle,0) = C{[P(z, 2)*6(y 10, o)} (D30)

where P is a polynomial with degree K, in z, which is a standardized transformation z =
R;'(y—ps) with ¥, = R, R!.. The square of P makes the density positive and the argument of
the polynomial is z. The coefficients of the polynomial are allowed to be another polynomial
of degree K, in x. The constant in the polynomial of z is set to 1 for identification. C' is a
normalizing factor to make the density integrating to one and ¢(-) is a normal density of y
with conditional mean p, and conditional variance ¥,, where p, is estimated by using a VAR
specification, and ¥, is estimated by using an ARCH specification, which parameterizes R,.

Note that both u, and R, depend only on lags of y, that is the vector z.
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The length of the auxiliary model (i.e., the SNP density) parameter is determined by
the number of lags in the VAR mean specification L,, lags in the ARCH specification L,,
lags of = used in constructing the coefficients of the polynomial L,, the degree K, of the
polynomial in z, and the degree K, of the polynomial in x. The specific choice for these
tuning parameters, and consequently the SNP conditional density is done by relying on the
BIC information criterion. Table A1 bellow explains how the tuning parameters are linked
to the SNP specification.

KoK R R K [ sart Table A1 HerpeXkssssskksksokkorsk

Let {g:}}—, be the observed data, and %, ; be the lagged observations. The sample
mean log likelihood function is defined by L,(0,{g:}i=,) = £ X1, log[f (5¢|-1,0)], where
0 are the unknown parameters of this conditional density, which need to be estimated. A

quasi-maximume-likelihood estimator is obtained by
0, = arg max L0, {0:}11)- (D31)

The dimension of the auxiliary f-model, the length of 8, is selected by the Schwarz’s Bayesian
Information Criterion (BIC) BIC = s,(f) + Lo Jog(n), where sn(0) = —L,(0,{7,}7,) is the
negative maximized objective function and [y is the length of the auxiliary model. For greater
details regarding SNP see Gallant and Tauchen (1989).

From the first stage seminonparametric estimates one obtained the fitted scores as the

moment conditions, m, () = £ 37, & log f(5|%—1,6). In the second stage, a SMM-type

T n

estimator is implemented in the following way. Let {#;})¥, be a long simulation from a candi-
date value of p, the parameter vector of the maintained structural model. The auxiliary score
functions can be re-evaluated at the simulated data, my(p,0) = Lyr, Zlog f(G]d, 9),

and the minimum chi-square estimator is simply minimizing the quadratic objective function,
pn = arg mpin{mN(p, T in(p,0)}, (D32)

where the weighting matrix 7! is estimated by the mean-outer-product of SNP scores
7, = L [ 1og f (] E1, é)][a% log f (#¢|Z-1,0)]"- Under regularity conditions on the data
generating process, one can show that the estimator is almost surely convergent and asymp-

totically normal. The asymptotic variance can be estimated by its empirical counterpart,

VAR() = -0 (5 (0], (D33)
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where M (p, 0) = (0/0p")m(p, ) are the gradients of moment conditions. The normalized cri-
terion function value in the EMM estimation forms a specification test for the overidentifying
restrictions

niny (p, 0) L i (p,0) ~ X2(lg — 1), (D34)

with the degree of freedom equals Iy — [,,, the number of scores (i.e., moment conditions) in
the auxiliary model, ly, less the number of structural parameters, [,. It is assumed that [, is

smaller than ly.
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Table 1: Summary Statistics of Monthly Yield Data
There are 379 monthly observations of the yields with nine maturities. The data is obtained
from CRSP (Center for Research in Security Prices) bond files, ranging from June 1964 to
December 1995.

Maturity 1mn 3mn 6mn 9mn lyr 2yt 3yr dyr oyT
Mean 0.0645 0.0672 0.0694 0.0709 0.0713 0.0734 0.0750 0.0762 0.0769
Std Dev 0.0265 0.0271 0.0270 0.0269 0.0260 0.0252 0.0244 0.0240 0.0237
Skewness  1.2111 1.2118 1.1518 1.1013 1.0307 0.9778 0.9615 0.9263 0.8791
Kurtosis ~ 4.5902 4.5237 4.3147 4.1605 3.9098 3.6612 3.5897 3.5063 3.3531
Minimum 0.0265 0.0277 0.0287 0.0299 0.0311 0.0366 0.0387 0.0397 0.0398
Maximum 0.1640 0.1612 0.1655 0.1644 0.1581 0.1564 0.1556 0.1582 0.1500
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Table 2: SNP Score Generator

The SNP score generator has a leading ARCH term with L, lags in conditional mean, L, in conditional
standard deviation. The standardized innovation has a normal density stretched by a squared Hermite
polynomial with degree of K,. Since it is a bivariate SNP density, the interaction polynomial term above
the I, degree is suppressed as zero. Similarly the coefficient of the z-polynomial may depend on the lagged
history through a K, degree polynomial with the interaction term above I, degree being suppressed as
zero. The lag order L, on z-polynomial is inoperative if K, = 0 and set to L, = 1 by convention. The
total number of parameters is ly. The BIC preferred choice is s1514200. The last two columns report the
minimized objective function

n(8) =~ > loglf k1, 0)]

and BIC information criterion ;
BIC = s,(0) + ﬁ log(n).

~
3
~
S
s
&
=
8
&
S

sn(0) BIC
9 -0.79431 -0.72073
13 -0.82011 -0.71383
17 -0.82763 -0.68865
11 -0.96388 -0.87395
13 -0.98904 -0.88276
15 -1.01872 -0.89609
17 -1.07256  -0.93358
19 -1.09188 -0.93656
21 -1.09328 -0.92160
23 -1.09922 -0.91119
27 -1.14488 -0.92416
28 -1.17202 -0.94311
30 -1.17230 -0.92704
33 -1.20102 -0.93124
29 -1.15141 -0.91433
30 -1.17326 -0.92801
32 -1.18655 -0.92494
35 -1.21327 -0.92714
39 -1.21690 -0.89807
31 -1.17734 -0.92391
32 -1.18399 -0.92239
34 -1.18758 -0.90962
37 -1.19769 -0.89521
41 -1.22820 -0.89302
46 -1.23516 -0.85910
48  -1.24496 -0.85256
68 -1.28923 -0.73332
78 -1.30853 -0.67087
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Table 3: Parameter Estimates of Projected SNP Density

The SNP density is described in Section 2.1, and the specification search is reported in Table 2. The
parameter in the Hermite polynomial function a(i, j) stands for the term with ¢’th power on the short yield
and j’th power on the long yield. The parameter in the conditional mean function is respectively u(1,0)
constant in short yield, p(2, 0) constant in long yield, x(1, 1) lag one short yield in short yield equation, u(2, 1)
lag one long yield in short yield equation, u(1,2) lag one short yield in long yield equation, and u(2,2) lag
one long yield in long yield equation. The parameter in ARCH standard deviation function is R(k,l)—the
short yield (k = 1) or long yield (k = 2) with lag equals to I. R(3) is the constant off-diagonal term, a partial
contribution to the covariance. The negative sample mean log-likelihood s,, and BIC information criterion
are the same as those in Table 2.

Parameter Estimate Standard Error
Hermite a(0, 0) 1.00000 (0.00000)
a(0,1) -0.03861 (0.08103)
a(1,0) 0.49154 (0.10908)
a(0,2) -0.13739 (0.06996)
a(l,1) 0.17944 (0.07162)
a(2,0) -0.00415 (0.09781)
a(0,3) 0.01735 (0.01406)
a(3,0) -0.06015 (0.04077)
a(0,4) 0.02044 (0.00742)
a(4,0) -0.01098 (0.01556)

Mean £(2,0) -0.09681 (0.01521)
1(1,0) -0.02068 (0.01273)
1(2,2) 0.95940 (0.02201)
w(2,1) 0.02563 (0.01576)
w(1,2) -0.01187 (0.01954)
w(1,1) 0.94979 (0.01529)
ARCH R(1,0) 0.04595 (0.01034)
R(2,0) 0.08426 (0.01093)

R(3) 0.19853 (0.07145)

R(1,1) 0.10511 (0.01548)
R(2,1) 0.12883 (0.04020)
R(1,2) -0.01868 (0.05845)
R(2,2) 0.13730 (0.04346)
R(1,3) 0.02818 (0.06784)
R(2,3) 0.07998 (0.04836)
R(1,4) 0.25753 (0.07586)
R(2,4) 0.12819 (0.05029)
R(1,5) 0.03728 (0.05829)
R(2,5) 0.22468 (0.05443)

Spec = 51514200 s, = -1.17202 BIC = -0.94311
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Table 7: Characteristics across Regimes (Basis Points)
Short rate is the 6 month yield and long rate is the 5 year yield. The first difference of
interest rates measures the ex post signed volatility. The convexity is calculated using 1,
2, and 3 year adjacent yields, and the results are similar for other maturity combinations.
The economic-phase regime classification is from the NBER business cycle indicator, and the
model-implied regime classification is from minimizing the pricing error of the 2-Factor[RS]
model.

Characteristics Economic Expansion Regime Economic Recession Regime
Short Rate Level 652 936
Short Rate First Difference 5 -26
Long Rate First Difference 2 -8
Yield Spread 86 11
Convexity -6 0
Characteristics Model Implied Regime 1 Model Implied Regime 0
Short Rate Level 691 721
Short Rate First Difference 1 -6
Long Rate First Difference 2 -14
Yield Spread 83 -3
Convexity -8 16
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Table Al: Restrictions Implied by Settings of the Tuning Parameters.

Parameter setting

Characterization of {y;}

L,=0,L,=0,L,>0,K,=0 K,=0
L,>0,L,=0,L,>0,K,=0, K, =0
L,>0,L,=0,L,>0,K,>0 K, =0
w>0,L,>0,L,>0 K,=0,K,=0
w>0,L,>0,L,>0 K,>0, K, =0
w>0,L,>0,L,>0 K,>0 K, >0

SESEs

iid Gaussian

Gaussian VAR
Semiparametric VAR
Gaussian ARCH
Semiparametric ARCH

Nonlinear Nonparametric
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Figure 1: Observed Short Rate and Long Rate.
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Figure 2: SNP Joint and Marginal Densities. The top-left panel is the joint SNP density,
and the top-right is the quantile contour plot at 10% intervals. For bottom panels, the solid

lines “—" are SNP marginal densities and the dashed lines “- - -

the same mean and variance.
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Figure 3: Point in Time Yield Curve. The symbols are respectively, “o0 o 0” observed yield,
“.e” 2-Factor[CIR], “ -~ - - ” 2-Factor[RSc], “—" 2-Factor[RS], “- - -” 3-Factor[CIR], “O
0O O” 3-Factor[AF].
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Extracted Regime Indicator by Minimizing Pricing Error
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Figure 4: Regime Classifications and Economic Indicators in 2-Factor[RS] Model.
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Figure 5: Square-Root Factors and Observed Yields in 2-Factor[RS] Model.
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Figure 6: Projected and Reprojected Densities. The symbols are:
with same mean and variance, “
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Figure 7: Projected and Reprojected Conditional Standard Deviation of 6 Month Yield.
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Figure 8: Projected and Reprojected Conditional Standard Deviation of 5 Year Yield.
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Figure 9: Projected and Reprojected Conditional Covariance of 6 Month and 5 Year Yields.
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Correlation of Short and Long Rates
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Figure 10: Projected and Reprojected Conditional Correlation of 6 Month and 5 Year Yields.
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