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Abstract
Trend growth in total factor productivity (TFP) is unobserved; it is frequently assumed to evolve
continuously over time.  That assumption is inherent in the use of the Hodrick-Prescott or
Bandpass filter to extract trend.  Similarly, the Kalman filter/unobserved-components approach
assumes that changes in the trend growth rate are normally distributed.  In fact, however,
innovations to the trend growth rate of total factor productivity are far from normal.  The
distribution is fat-tailed, with large outliers in 1973.  Allowing for those outliers, the estimated
trend growth rate changes only infrequently.  A nonlinear filtering approach is probably better
suited to capturing the infrequent past and possible current shifts in trend growth of TFP.  One such
approach is the Markov-switching model, which is estimated and tested in this paper.   The
Markov-switching approach appears to have several advantages over repeated Andrews tests. 
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I. Introduction and overview 
Over the past five years, rapid growth of labor productivity helped hold down unit

labor costs and thereby reduce inflationary pressures.  However, productivity weakened a bit in

the economic slowdown of early 2001, making it more difficult to estimate the trend pace of

productivity growth.  After the current downturn ends, will rapid labor productivity growth resume,

thereby restraining the future growth of unit labor costs?  The answer depends in part on the future

rate of capital accumulation, but also depends in an important way on future growth of total factor

productivity (TFP), that is, the “Solow residual” or “technical progress.”  Growth of TFP was

impressive from mid-1995 through mid-2000.  Was this just a temporary blip, or has there been

a surge in the trend growth rate of TFP?  This paper examines several methods of extracting the

trend component of total factor productivity, in an attempt to find a “real-time” method that

performs well in evaluating historical data and can be used as a guide to the current – and possibly

future – trend in the economy’s productive potential.  

Section II of the paper lays out a simple state-space model of nonfarm business

output that justifies the use of univariate filters to estimate the trend component of the Solow

residual.  Section III briefly comments on several linear univariate filters available for estimating

trend.  Section IV presents estimates using three of these linear filters. 

Of the three linear filters, the Kalman filter works best in modeling TFP trends;

however, none of the linear filters is fully adequate in modeling total factor productivity. The

problem appears to be that innovations to trend growth of TFP are not normally distributed; in

particular, significant changes in trend productivity growth appear to occur only at infrequent

intervals.  The state-space/Kalman filter approach instead assumes normally distributed

innovations to trend growth.  Similarly, the Hodrick-Prescott smoothing parameter implicitly

assumes a path for trend TFP that is differentiable at any given point and whose growth rate

evolves continuously.  

To capture the discrete nature of significant shocks to trend TFP, I turned to a

logical nonlinear alternative – a variant on the Hamilton (1989) Markov-switching model.  Section

V presents estimation results for such a model of trend TFP growth.  This model’s mean estimate

for the path of trend TFP seems to capture nicely the well-documented slowdown in productivity

growth in the early 1970s.



1The measure of nonfarm business output is an extension of the BLS published measure, as defined in the
appendix.  Labor quality is taken to be exogenous; likewise, the capital stock is assumed given.  For this exercise, I
used the BLS capital-stock series, interpolated to a quarterly frequency, as described in the appendix.  Also, I have
used an equilibrium labor share of 68 percent, similar to the long-run average of the series over history.
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II. Calculating trend productivity consistent with a Cobb-Douglas production function      

Given estimates of the capital stock, labor quality, and the equilibrium labor share,

calculating trend labor productivity amounts to calculating the trend in the Solow residual.  One

can do this filtering exercise in several ways, but all start from the same basic model:

� Nonfarm business output (Q) is the product of trend (Qtrend) and gap (Qcycle).

� Hours supplied (H) is the product of trend hours supplied (Htrend) and a stationary

cyclical term (Hcycle).

� Trend labor (Ltrend) is the product of trend hours supplied (Htrend) and the quality of

each labor hour (Lqual). 

� A two-factor Cobb-Douglas production function holds in equilibrium.1

� The Solow residual (S) includes cyclical factors as well as trend in total factor

productivity (TFPtrend).

These five definitions are expressed in equations 1 - 5:

(1)    Q       =  Qtrend    *   Qcycle

(2)    H       =  Htrend    *   Hcycle

(3)    Ltrend =  Htrend    *   Lqual

(4)    Qtrend =  TFPtrend *   Ltrend
"           * K1-"

(4a)  Q      =  S           *  (H * Lqual)
"   * K1-"

The observed Solow residual is calculated by inverting equation 4a.  Equations 1 - 4a imply the

following relationship between the observed Solow residual and the underlying trend in total factor

productivity:

(5)  S      =  [Qcycle  /  Hcycle
" ]  *  TFPtrend
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The objective is to extract TFPtrend , the unobserved trend in total factor productivity shown in

equation 5, from the Solow residual.

III. Univariate methods of extracting trend

A variety of approaches have been used over the years to estimate potential output

and trend productivity.  Laxton and Tetlow (1992) give a helpful description of the evolution of

these approaches.  Peak-to-peak interpolation was common in the 1960s (and was even used by

DeLong and Summers as late as 1988).  From the early to mid-1970s, the deterministic trend was

commonly used in describing labor productivity or trend output.  From 1977 to 1982, several

authors began to decompose the sources of trend output growth using aggregate production

functions; in essence, the problem shifted from estimating trend labor productivity to estimating

trend total factor productivity.  Over this period, polynomial or split time trends were most

commonly used.   In the 1980s and thereafter, trends in output and productivity have frequently

been estimated using a stochastic-trend model.  (Perron (1989, 1997) is a noteworthy exception;

he argued that stochastic trend had not been shown superior to the split trend model.)  All of these

methods, discussed in more detail below, assume that output or productivity can be separated into

distinct trend and cyclical components.  

Peak-to-Peak Interpolation  

This method has the advantage of simplicity.  However, it relies on the

questionable assumption that the economy operates at the same level of excess demand at all

cyclical peaks.  For long expansions, this assumption is harmless, and the procedure works

reasonably well.  For short expansions or periods shortly after recessions, it can be misleading.

A version of peak-to-peak interpolation was used by Braun (1990).

Ad hoc segmented trend

Like the Bureau of Labor Statistics, Oliner and Sichel (2000) show trends in

productivity by calculating averages over several intervals: before 1973, 1973-90, 1990-95, and

1995 onward.  The choice of intervals is a bit arbitrary, but this approach is certainly easy to

implement.  One problem for purposes of this study is that the above time periods were chosen to

match breaks in labor productivity rather than in total factor productivity.  The 1990 break in labor



2To carry out this test, I regressed BLS-based estimates of quarterly growth in total factor productivity
against a constant (no evidence of autocorrelation in the errors), over a full sample from 1959:Q2 through
1998:Q4 and over two subsamples.  Following Stock and Watson (1998), I chose the split point between the two
regressions to start 15 percent into the sample and end 15 percent from the end of the sample.  Thus, the split point
between the two subsample periods ranged from 1965:Q2 to 1993:Q2.  I used critical values for the Quandt
Likelihood Ratio from Andrews (1993).  The maximum value of the likelihood ratio was 8.5754, implying a value
for the Andrews lambda of 7.62, greater than the 90 percent critical value of 7.17.   
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productivity had little to do with total factor productivity, according to Sichel.  Thus, for total

factor productivity, the relevant break points chosen in their paper are 1973 and 1995.

Single deterministic trend  

This method also has the advantage of simplicity.  However, the evidence is strong

(even when one accounts for such factors as labor quality and capital deepening) that the trend

growth rate of TFP has not been constant over time.  There was a persistent change in average

growth of output and productivity beginning in the early 1970s.  The test suggested by Andrews

(1993) makes this fairly clear: An Andrews test for a significant shift in the growth of total factor

productivity indicates a break in average growth in the third quarter of 1973, significant at the 90

percent confidence level.2  Are there other breaks in trend TFP growth over the past 40 years?  As

a crude check, I made a level adjustment to average TFP growth post-1973, equalizing the mean

growth rates of the two subsamples.  I then performed an Andrews test on the adjusted overall

sample.  The most likely remaining break point was in 1991:Q2, but the Andrews test statistic was

less than half the 90 percent critical value of 7.17; the 1991 break also failed to pass a less stringent

(but inappropriate) t-test at the 90 percent level.  I take this result as suggestive that there are no

statistically significant breaks in the TFP sample other than the one in 1973.

Many economists (for example, Oliner and Sichel (2000) and Gordon (2000))

would nonetheless say that there have been changes in output and productivity trends more

recently than 1973.  At a minimum one needs a methodology that accounts for the possibility of

such additional changes.  Three such encompassing methodologies are the Hodrick-Prescott (H-P)

filter, Christiano’s bandpass filter, and trend-cycle decomposition with state-space modeling and

the Kalman filter. 

Hodrick-Prescott filter

The Hodrick-Prescott filter estimates trend by smoothing – in effect, by taking a
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weighted moving average of the original series, where the moving average is symmetric and

centered.  In practice, one must choose how smooth the resulting trend should be.  Hodrick and

Prescott suggest a smoothness parameter of 1600 for quarterly data, and that parameter value is

most commonly used in practical applications.  In some applications, however, researchers have

used a parameter value of 6400 or higher; as the smoothness parameter becomes very large, the

H-P filter constructs a linear trend.  

The Hodrick-Prescott filter is quite simple to implement; however, it also has

potentially large drawbacks.  One would like a filter to generate estimates of the cycle which are

close to the actual values for the cycle.  Unfortunately, the HP filter is optimal in this sense only

under two fairly restrictive assumptions.  First, the data must, a priori, be known to have an I(2)

trend.  Otherwise, the filter will generate shifts in trend growth rates when they don’t exist in the

raw data.  If instead there are only one-time permanent shocks to the level of trend, or a constant

(split) trend growth rate, or both – the H-P filter distorts the cyclical properties and the higher

moments of the data in a significant way – a point discussed by King and Rebello (1993) and

Cogley and Nason (1995).  This restriction on usage of the H-P filter (to I(2) cases only) is fairly

serious.  If one is not committed to a time-varying trend growth rate, other approaches are

preferable to H-P, because they allow for the possibility of a fixed (split) trend growth rate.

Second, the H-P filter is optimal only if the cycle consists of white noise or if the

identical dynamic mechanism propagates changes in the trend growth rate and in the innovations

to the business cycle component.  King and Rebello (1993) judge both these conditions “unlikely

to be even approximately true in practice”.  Of course, even the best of alternatives to the H-P filter

are unlikely to be optimal either, as misspecification is a virtual certainty.  In fact, Baxter and King

(1999) point out the similarity between the H-P(1600) filter and a bandpass filter with cutoff at 16

or 32 quarters.  They point out, however, that the H-P filter does a relatively poor job of picking

out the evolution of low-frequency (i.e. trend) movements, those greater than 32 quarters.

Another oft-mentioned drawback to the H-P filter is that in most published

applications, the choice of the smoothness parameter typically has been rather ad hoc.  Hodrick

and Prescott (1980) showed that under certain restrictive assumptions, the optimal smoothing

parameter equals the ratio of the variance of shocks to the cycle divided by the variance of shocks



3In their construction of the optimal smoothing parameter, they first removed a linear deterministic trend
from the data.  Then, to calculate the remaining variance of trend, they assumed that the cyclical component was
white noise and that the only shocks to trend were shocks to the growth rate of trend. 

4I began with the data for growth of the Solow residual from 1959:Q2 to 1998:Q4, and truncated the first
and last 15 percent of the sample, as Stock and Watson recommend.  I then performed a sequence of Chow tests for
a regression of TFP growth against a constant.  (The partial autocorrelograms of the regression errors suggested that
they were approximately white noise, by and large, needing no autoregressive correction.)  For this sample, the
Stock-Watson test statistic (using the Quandt Likelihood Ratio, the supremum of all the F-statistics for the Chow
tests) turned out to be 8.58.  (The supremum occurred at the break between the periods 1973:Q3 and 1973:Q4.)  This
value implied a ratio of I(2) to I(1) standard deviation of .0485.  Stock and Watson combined their ratio with a range
of estimates for the I(1) standard deviation.  I approximated the I(1) standard deviation as the standard error of the
estimate of a full-sample regression of growth of TFP against a constant, a post-1973:Q3 dummy, a recession
dummy, and a rapid recovery dummy (with ARMA(1,1) errors assumed).  (The two business cycle dummies are
defined in section V below).  The product of the resulting standard error (.715 percent) and .0485 yielded the
estimated I(2) standard deviation of .035 percentage point (quarterly rate). 
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to (growth rate of) trend.3   They held a “prior view that a five percent cyclical component is

moderately large, as is a one-eighth of one percent change in the rate of growth in a quarter.  This

led us to . . . 1600 as a value for our smoothing parameter.”  In 1990, Kydland and Prescott

suggested that with a value of 1600, “the implied trend path for the logarithm of real GNP is close

to the one that students of business cycles and growth would draw through a plot of the series.”

Calculation of the Hodrick-Prescott variance ratio over the period 1960:Q4 through

1990:Q4 suggests that a choice of smoothing parameter of 1600 is too low for total factor

productivity.  First, I did a rough estimate of the denominator – the variance of shocks to the

growth rate of trend TFP – following Stock and Watson (1998).  For total factor productivity from

1959 through 1999, the Stock-Watson method yielded a standard deviation of shocks to trend

growth of 0.035 percentage point (quarterly rate).4  Next I calculated the numerator of the Hodrick-

Prescott ratio – the square of the standard deviation of TFP around trend.  The standard deviation

of TFP around stochastic trend is likely to be somewhat less than the standard deviation around

a linear deterministic trend (3.64 percentage points) and is probably closer to the standard

deviation around a trend split in 1973 (2.21 percentage points).  Thus, as a very rough cut, the

optimal smoothing parameter for TFP is probably less than (3.64/.035)2 – that is, 10816 – and is

probably close to (2.21/.035)2, or 3987.

Uncertainty about an appropriate full-sample smoothing parameter is not the only

problem in using the H-P filter.  The filter has no good method for determining the appropriate

gain on new datapoints at the end of the sample, when the filter is no longer two-sided – a marked

drawback relative to the state-space/Kalman filter approach, at least in theory.  As reviewed in



5Christiano and Fitzgerald (1999, p. 11) note that the Bandpass filter typically estimates I(2) trends better
than I(1) trends (conversely for the cycle).
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Hamilton (1994, p. 385), the Kalman filter is the optimal one-sided filter, with optimal estimate

of gain, for any process that linearly links the observed variables with state variables and

exogenous and/or lagged dependent variables (i.e. a linear state-space process, with any order of

integration).  It is optimal among all filters, linear or nonlinear, if in addition the state-space

model’s errors are Gaussian.

One can hope that the distortions created by the H-P filter are small: if they are, its

simplicity is a major recommendation.  Furthermore, even if the H-P filter is suboptimal, it is not

clear that the alternatives are better – provided one assumes an I(2) trend a priori.  Misspecification

problems can make any approach to estimating trend suboptimal – even the two purportedly

superior filters discussed next, the Bandpass and Kalman filters.

Bandpass filter

In a recent paper, Christiano and Fitzgerald (1999) discussed a bandpass filter that

they claim performs inherently better than the H-P filter, especially when the filters become nearly

one-sided near the end of the sample period.  I used Fitzgerald’s Matlab software to filter the log

of TFP.  I set the parameters of the bandpass filter so as to make all cycles eight years and longer

part of trend TFP, to come close to the shape of H-P (1600) trend.  In effect, the Bandpass filter’s

assignment of all low-frequency cycling to the trend ensures that the Bandpass trend will be I(2),

like the H-P filter.5  Thus we get the same caveat as with the H-P filter: if the underlying trend

might not be I(2), other filtering methods may be preferable.  As discussed in section IV, results

using the Bandpass filter were similar to those using the H-P (1600) filter.

Kalman filter / state-space model

This approach uses historical data to estimate the share of the variance (of the

Solow residual) to assign to trend rather than cycle.  In principle, the approach can also determine

whether or not the I(2) component of trend is significantly different from zero – a major advantage

over the H-P and Bandpass filters.  In practice, the state-space/Kalman filter approach has an

important drawback: its variance estimates are biased toward zero when the true variance is small

but nonzero, as demonstrated by Stock and Watson (1998).  More concretely, they found that this



6With break points starting 15 percent into the sample, and ending 85 percent into the sample.

7The estimate of the I(1) standard deviation was .90 percent (quarterly rate) and that of the I(2) standard
deviation was .0485*.90, or .044 percent (quarterly rate).  

8Of course recessions can permanently reduce labor productivity by temporarily reducing the growth of the
capital stock.  Likewise, prolonged unemployment during recessions can erode workers’ skills, thus reducing
workers’ productivity when they finally find new jobs.  In principle, however, both these factors should be captured
in estimates of labor quality and capital stock without affecting the estimate of trend TFP.  
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approach is biased against identifying shifts in the growth rate of trend productivity or output.

However, they offer an easy solution to this problem.  They carried out sequential Chow tests on

the intercept of an ARMA(4,0) model of GDP growth.6  They compared the  maximum of the F-

statistics from these Chow tests (that is, an Andrews test statistic) against a table of critical values,

and used the result to calculate the ratio of the standard deviation of the I(2) shocks relative to the

 standard deviation of the I(1) shocks.  

I used the above Stock-Watson procedure, and imposed this ratio on the relative

variances directly in state-space estimation.7  One can instead follow the procedure described in

footnote 4 to obtain nonzero estimates of the separate standard deviations of the I(1) and I(2)

shocks to trend.  That procedure yielded smaller estimates of the two standard deviations, as noted

in footnote 4.

IV. Filtering results: A comparison of estimated trends in TFP

In this section I compare trends in total factor productivity estimated using three

different filters – against each other and against the observed Solow residual.

Hodrick-Prescott estimates

Figures 1a shows an estimate of trend TFP derived using the optimal smoothing

parameter for the H-P filter generated earlier by the Stock-Watson (1998) procedure: 3987.  Figure

1b shows an estimate derived using the traditional H-P smoothing parameter, 1600.  The trend line

shown in figure 1b seems less likely to be accurate, because it puts a fair amount of the 1980-82

recession into estimated TFP trend. This result is problematic.8  Figure 1c shows, for comparison,

the estimate of trend TFP derived using a smoothing parameter of 6400.  This value is above the

Stock-Watson optimum, but the estimate does have the advantage of putting even less of the

recession of the early 1980s into trend.  However, with this smoothing parameter the slowdown



9A similar rolling test of the Kalman filter is just a matter of rolling estimation of a straight-line trend.  As
such, the Kalman filter would almost surely emerge a winner over the other two filters by this criterion of minimal
endpoint revision, as a straight-line trend with no splits typically changes very little with the addition of new
datapoints. 
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of trend TFP growth in the 1970s is estimated to be four or five years later than the split point

having the highest Andrews test statistic. 

Bandpass estimate           

For the Bandpass estimate of trend shown in figure 2,  I chose the parameters of the

filter so as to put into trend only those cycles greater than or equal to eight years in length.  As can

be seen in figure 3, the H-P trend (smoothing parameter = 1600) and the Bandpass trend look very

similar.

H-P versus Bandpass estimates

The key comparison for real-time analysis is how well each filter estimates trend

toward the end of the sample period, relative to an “ex post” estimate calculated with full

knowledge of actual outcomes at least three years in the future.  Such an assessment requires

calculating the two filters over historical subsamples that are truncated at various points before the

final three years of history, and then comparing the difference between trend calculated over the

subsample versus trend calculated over the subsample plus three succeeding years.  The filter that,

on average, has the smaller revision in the final period of the original subsample, given three

further years of data, is preferable.  Such  historical simulations using the H-P and Bandpass filters

revealed no obvious superiority of one filter or the other:  The two filters had about equal numbers

of  “wins” in the various subsamples  selected.  One could carry out a full rolling test of this

proposition over all truncation points, but the lack of a clear winner seemed evident enough

without consuming the extra time to cover all endpoints.9  In any case, neither filter did particularly

well in generating end-of-sample estimates of trend.  For both filters, the final trend point was

typically revised sharply, given three more years of data.

Kalman estimate

For the univariate Kalman procedure, I first imposed a prior restriction on the ratio

of the variances of I(1) shocks and the variance of I(2) shocks, as suggested by Stock-Watson.  The



10The infrequent occurrence of significant innovations in trend growth creates a similar problem for the
other two linear filters used here.

11Bai (1997) carried out a similar sequential Andrews test procedure.
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estimated model is shown in the following table:

UNOBSERVED COMPONENTS (Stochastic Trend) MODEL OF TFP

(All state variables are in logs.  Sample period 1960:Q4 to 1999:Q4)

(t-statistics in parentheses)

TFP Cycle = .94 TFP Cycle [t-1]   + I(0) ShockTFP

                    (2.4)

Standdev(I(0) ShockTFP) = .92/100

                                          (1.0)

Level of TFP Trend = Level of TFP Trend [t-1] +

Trend growth rate of TFP  +  I(1) ShockTFP

Standdev(I(1) ShockTFP) = .9204/100

                                            (1.0)

Trend Growth Rate of TFP = Trend Growth Rate

of TFP [t-1] + I(2) ShockTFP

Standdev(I(2) ShockTFP) =

.9204*.0485/100

Given this model, the Kalman filter and smoother generated the estimate of trend shown in 

figure 4.  The estimated trend line has two problems, one fairly obvious and the other subtle but

much more important.  The first problem is that the estimate of trend appears to be biased

downward in the period 1963 to 1979.  The more important problem is discussed in the next

subsection.

Failure of the stochastic trend model of TFP

A fundamental problem exists with the univariate stochastic trend/Kalman model

of TFP: underlying innovations in the trend growth rate are not normally distributed.10  Evidence

of this problem appears in at least three ways:

1.  Andrews tests.  The Andrews tests discussed in section III (on which the Stock-

Watson test relies) indicated a significant break in trend TFP growth at the third

quarter of 1973 but showed no compelling evidence of breaks in any other quarters.

Furthermore, once a dummy was included in the Andrews test11 (to allow for the



12To demonstrate excess kurtosis, higher values of the excess kurtosis measure are needed than in the
standard test, due to the autocorrelation in residuals created by the smoothing procedure (Harvey and Koopman,
1992).  Notwithstanding, the evidence for kurtosis was very strong.
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1973 split in growth rates), the Stock-Watson estimate of the ratio of remaining I(2)

to I(1) variance was microscopic.  

2.  Outliers and Kurtosis.  Given the results of the two Andrews tests, one might

expect the significant 1973 break found by the Andrews test to be matched by an

outlier in the distribution of estimated shocks to the Kalman trend growth rate –

and indeed there were standardized shocks of 2.7 and 2.6 standard deviations in the

first and second quarters of 1973.  In an iid normal distribution, such large

successive shocks would be extremely unusual in a sample of only 157

observations.  The 1973 outliers suggest that the unobserved component/Kalman

model is  misspecified in its treatment of trend growth rates.  Indeed, the excess

kurtosis of the standardized shocks to the trend growth rate was 1.78; the adjusted

kurtosis test statistic of Harvey and Koopman (1992) indicates more than 99

percent probability of the presence of non-normality (that is, a fat-tailed

distribution).12

3.  With the addition of a single dummy variable, the I(2) state-space model

reduces to the special case of a split trend.  A further test of the stochastic trend

issue is equally suggestive.  As a first step, use the Kalman filter to estimate the

TFP model –  imposing only the relative restriction on the two standard deviations,

not separate restrictions on each.  This procedure yields fairly large estimates of the

two standard deviations relative to the doubly restricted example above; the I(1)

standard deviation is now estimated at .90 percent and the I(2) at .044 percent.

Now add to the trend growth equation a dummy variable equal to 1 for 1974

onward.  Within six iterations of the likelihood maximization procedure, the

estimate for the I(1) standard deviation drops from .72 to .04; over many

interations, it gradually approaches 0.  

The conclusion from these alternative Kalman estimates: If the 1973 shock to TFP

growth is omitted from the set of trend growth rate innovations, there is no statistically significant

evidence for stochastic shifts in trend TFP during the sample period.  If  that shock is not omitted,
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the distribution of innovations to trend growth is not normal.  If the distribution is not normal, there

is no assurance that the TFP model’s parameter estimates or the estimates of the state are optimal.

Quite the opposite – the stochastic trend model tends to assign innovations continuously to trend

TFP growth, even though there is no evidence that such innovations to trend TFP growth are

anything but rare.

A deterministic split trend model of TFP may be superior to the unobserved

components model, for the reasons discussed above.  It has one major drawback, however, as

mentioned earlier: It cannot help determine whether a new trend shift may be occurring near the

end of the sample.  An extension of the split trend model can make such a determination: the

Markov switching model presented in section V. 

Discussion

None of the three linear filters was completely satisfactory.  The bandpass and H-P

filters produced similar results.  Given the “optimal” H-P smoothing parameter of 3987, both

filters imposed I(2) swings on the TFP trend.  Neither did particularly well in generating end-of-

sample estimates of trend: in both cases, given three more years of data, the final trend point was

typically revised sharply.  The eight-year bandpass filter picked up a lot of the 1980-82 downturn

and put it into trend – as did the H-P (3987) filter, albeit to a lesser extent.  An argument could be

made that the 1980-82 recession was long enough to destroy the human capital of laid-off workers

– but if and when those laborers later returned to work at a lower real wage, the loss in human

capital should, in principle, have been picked up by a deceleration of or decline in the “quality of

labor” term, rather than in TFP.  In any case, I would not have expected the destruction of human

capital to have created such a large downturn in measured TFP trend (nearly 3 percent) as seen

with the Bandpass filter.  More plausible, perhaps, is the notion that the 1979-81 surge in U.S.

energy prices made a substantial portion of the measured capital stock obsolete – with the

obsolescence showing up as a decline in TFP.

After the tests discussed in the preceding subsection, I added a 1973 dummy

variable to the Kalman trend for TFP, and the stochastic trend collapsed to a deterministic trend

line split in the third quarter of 1973.  Next I followed Oliner & Sichel (2000) and added a further

dummy variable to allow for an additional break in trend from 1995 onward.  The resulting point

estimate of the 1995 rise in TFP trend is economically significant, though not statistically



13However, other supply-side trends fit better into the Kalman filter framework.  Both the labor force
participation rate and the workweek have an I(2) component, according to the Stock-Watson (1998) test.  Thus the
Stock-Watson restriction on relative variances was imposed in the joint state-space estimation and Kalman filtering
process.  The resulting estimated innovations to trend growth appeared normally distributed for both these variables. 

14My thanks here to Norm Morin, a colleague at the Board who showed by example how to implement such
an approach. 
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significant.  Of course, the problem remains that the Kalman filter, even with the splits added, will

assume that no variance in trend growth exists beyond the exogenous historical splits; thus, the

Kalman filter will tend to put end-of-sample shocks into cycle rather than trend – the opposite of

the H-P filter (1600), which tends to put too much of any new shock into trend.  

I conclude that none of the filtering methods does a particularly good job of

estimating any shifts in TFP trend near the end of the sample period – Another approach is needed.

I tried incorporating extra information, by joint Kalman filtering of all the elements of the

production side (TFP, hours, employment, labor force, and so forth).  The results are not included

here due to space constraints, but are available from the author on request.  In any case, the

multivariate Kalman filter with a dummy for a 1973:Q3 break in TFP still yields a split

deterministic trend for TFP, just as the univariate version does.13  This leaves us still unable to

catch an end-of-sample shift in trend TFP growth.   

The biggest remaining problem is to find a structure for modeling trend in total

factor productivity that will capture the infrequent historical shift(s) – and will also eventually

detect any recent shift in trend TFP growth.  The Hamilton (1986) state-space framework is

fundamentally inappropriate for the problem, as it is clear that TFP does not follow the standard

stochastic trend/unobserved components model.  Given that TFP does not follow the standard

stochastic trend, the Hamilton (1986) model cannot efficiently detect late-sample shifts in trend

growth of TFP.  In fact, a stochastic trend model will probably detect too many such breaks.

Although the linear filters failed to successfully model shifts in trend TFP growth,

it  may be possible to model such shifts with greater success using an alternative to linear filtering.

 One approach was suggested by Filardo and Cooper (1996).  They checked for a recent break in

trend growth rate (given an early-sample break as well) using sequential Andrews tests, with

critical values generated by the bootstrap.14  

Hamilton’s Markov-switching model (1994, pp. 685-702) is another alternative.

The Markov-switching estimates provide more information than the estimates based on Andrews
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tests.  The Markov approach provides a time series of estimates of the conditional probability of

being in each trend-growth-rate regime, and the conditional mean of the estimated trend growth

rate at each point in time.  A key question is whether the Markov-switching approach is less slow

than the Andrews-test approach in recognizing a given break in trend.  This Markov approach is

reviewed in the next section.

V. Modeling discrete innovations to TFP Growth: Markov switching 

Results described earlier suggest that there was a slowdown in the trend growth of

TFP sometime in the early 1970s.  My state-space/Kalman model found no evidence of other

significant shifts in trend TFP growth through the early 1990s.  That is, when a dummy was

included in the state-space model to reflect a trend split in 1973:Q3, the estimated variance of

innovations to TFP growth dropped to zero.  The resulting estimate of trend for TFP was simply

a split deterministic trend line.  

However, few economists would claim that 1973 was the last time trend TFP

growth will ever change.  More explicitly, many economists believe a pickup in TFP growth has

occurred over the past four or five years.  Thus, we need a model that allows for the possibility of

further (albeit infrequent) changes in trend growth since the early 1970s.  Such a model should

evaluate the likelihood that any further trend change has occurred in recent quarters.  A

deterministic split trend model of TFP is unsatisfying because it will not search for further changes

in trend growth.  In contrast, the Markov-switching model of Hamilton (1989) fits the bill quite

well.  It can encompass split trend models while providing estimates of the probability of having

arrived in a new growth regime.  In this paper, I use a generalized version of the switching model

in Hamilton (1994, chapt. 22), modifying slightly Hamilton’s 1989 Gauss program to allow for

dummy variables in the observation equation. 

Hamilton’s switching model as applied to trend TFP growth assumes that the

observed growth rate of TFP will depend on the state of the economy (fast trend growth or slow

trend growth) and on the deviation of observed growth from trend last quarter plus an error term.

In the version used here, the conditional mean of TFP growth also depends on the stage of the

business cycle.  Evidence has accumulated steadily over the past decade that the stages of the cycle

include not just recession and expansion, but a rapid recovery phase after recessions.  For TFP, a

rapid recovery phase seems quite clear after all six recessions in the sample period except the most



15I modified the NBER definition slightly.  If TFP growth was also negative in the quarter or quarters
immediately preceding the recession, those quarters were included as part of the exogenous “TFP recession”.  Using
similar logic, if TFP growth was faster than 3 percent (annual rate) in the last quarter of the NBER recession, I did
not include it as part of the exogenous TFP recession.  These adjustments added eight additional recession quarters
and subtracted one (q1 1961).
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recent in 1990-91.  In the following subsections, I present the estimation results, first using a

simpler two-stage model and then using a “plucking” model (that is, a model with the three-stage

business cycle that is more in line with current thinking).  The latter gives results about the timing

of switches in trend growth rates that are more in line with the standard view that trend growth

slowed somewhere around the early 1970s.

With a two-stage model of the business cycle

This model assumes that there are two states of TFP growth: fast trend growth and

slow trend growth.  Furthermore, it assumes that trend growth is slowed by recessions.  I define

notation as follows:

yt is observed TFP growth at time t;

st is the state of the economy:

                st = 1 when trend TFP growth is rapid

                st = 0 when trend TFP growth is slow

dt is an exogenous dummy variable    

                dt = 1 during NBER recession quarters, and 0 otherwise15

u1 is the mean growth of TFP in State 1

u2 is the mean growth of TFP in State 2

u3 is the mean reduction in TFP growth during recession quarters

p11 is the probability of remaining in State 1 (rapid trend growth) for another quarter

p22 is the probability of remaining in State 2 (slow trend growth) for another quarter

p12 is the probability of moving to fast trend growth from slow trend growth the  

                previous quarter

p21 is the probability of moving to slow trend growth from fast trend growth the  

                previous quarter

Then the model can be summarized as follows:



16Of course, this equation can’t be estimated directly, because we cannot observe the state of the
economy s and thus we do not know the true value of the trend growth rate u at any given point in time. 
However, given initial estimates of parameter values we can calculate the error term e for each of the four
compound states (that is, combinations of current and lag-one states).  Next, using the filtering procedure
described in Hamilton (1994, pp. 690-696), we can estimate quarter after quarter the probability of being
in either of the two regimes at successive times t and t-1.  Conditional on these four estimated
probabilities, we can construct the likelihood of observing the actual vector of output growth rates y.  The
standard optimizing routine BFGS is then used to choose parameter values that maximize that likelihood. 
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(yt  -  us,t - u3 * dt) = f(yt-1 - us,t-1 - u3 * dt-1) + et

That is, this quarter’s deviation from trend growth will depend on last quarter’s deviation from

trend growth, after adjusting each trend growth rate downward if a recession is present.16 

Finally, the state st is assumed to follow a Markov chain with transition probabilities

given by the following matrix:

p p

p p
11 12

21 22











Hamilton (1989) and Hamilton (1994, chapt. 22) show how to use maximum likelihood techniques

to estimate the parameters of the system, and also show the filter equations that generate the

conditional mean estimate of the state at each point in time.  In this example, TFP growth is

defined as earlier in this paper and the sample period is 1959:Q2 through 1999:Q4.  Estimated

parameter values are as follows (t-statistics in parentheses):

(yt  -  us,t + 1.4 * dt) = -.147 (yt-1 - us,t-1 + 1.4 * dt-1) + et   ,  where vare = .59
                 (9.3)            (1.8)                                                                    (8.9)

Trend TFP growth is:

2.8 percent per annum during the fast-growth period (outside of recession)

0.9 percent per annum during the slow-growth period (outside of recession)

5.4 percentage points (annual rate) less than the above figures during recessions

The estimated matrix of transition probabilities is

 
. .

. .

992 010

008 990











Notice that the coefficient of the autoregressive term in the observation equation is very small;
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deviations from trend (allowing for recessions) are almost white noise.  Also, the transition

probabilities imply that, given exogenous recessions, a switch from slow to fast trend growth (or

vice versa) occurs about every twenty-five years, on average.  (Of course if one allowed more

states for TFP growth, this figure might well drop.) 

Running the data through a Markov filter and smoother gives the probability of

being in the fast trend state or the slow trend state in any given quarter.  Figure 7 shows the

conditional mean estimate of trend growth after downward adjustments for recession periods.  The

mean estimate equals the probability of being in a fast expansion multiplied by the unconditional

mean growth rate for the fast growth state, plus the probability of being in a slow expansion

multiplied by the unconditional mean growth rate for the slow state, after downward adjustments

for recession periods.  The smoothed probabilities suggest that TFP was in the fast trend growth

regime with at least 90 percent probability from the beginning of the sample in 1959 until just

beyond the end of the recession in late 1982.   The two-stage model of the cycle leads to the

interpretation that the slow average TFP growth from late 1973 through 1983 was a result

of the three deep recessions during that period, not a slowdown of trend TFP growth.  This

implausible result occurs because the two-stage model assumes that rapid TFP growth immediately

following recessions is just part of the overall rapid trend growth during expansions that had been

seen before the early 1970s.  The conditional mean of the smoothed Markov trend declines steadily

from the time of the 1973-75 recession, but it is not until 1984:Q1 that the model estimates that

the economy was in a slow trend-TFP-growth regime.  

Even the simple model with a two-stage business cycle does have one important

positive property.  The smoothed probability of a new slow-growth regime exceeds 50 percent in

1984:Q1.  In contrast, the unsmoothed “real-time” probability of a new slower-growth regime did

not exceed 50 percent until 1986:Q3.  That is, ex post it appears that the switch to a slower

growth regime occurred two and one-half years before it would have been discovered in real

time by the switching model cum filter.  This might seem to be a fairly long lag, but it is

actually a good deal better than the results of sequential Andrews tests for the trend break.

With a three-stage model of the business cycle

Like the two-stage model, this model assumes that there are two states of TFP

growth – fast trend growth and slow trend growth – and that trend growth is slowed by recessions.



17 The recession ending in the third quarter of 1980 was followed by only two quarters of rapid recovery
before a new recession.  In those two quarters, activity did not return to its previous peak.  Thus, following the end
of the next recession in Q4 of 1982, recovery continued rapidly well after activity had recovered to the peak of mid-
1981 – since activity was still well below the peak leading into the 1980 recession.  Thus, I set the rapid recovery
dummy to one for three additional quarters (1983:Q4 through 1984:Q2) where growth remained well above trend,
yet activity remained below the peak which preceded the 1980 recession.  

Following the 1990/91 recession, growth was not especially fast in the unusually long period before activity returned
to its pre-recession peak.  Thus the rapid recovery dummy was not set to 1 for this period. 
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But this three-stage “plucking” model further assumes that growth is typically more rapid than

trend expansion growth during periods immediately following recessions.  More precisely, a new

dummy variable, d2t, is added to the model.  The new “rapid recovery” dummy takes a value of

1 in the period following the trough quarter through the quarter in which TFP exceeds its pre-

recession peak.17  With t-statistics in parentheses, the observation equation becomes:

(yt  -  us,t + 1.1 * dt  - 0.9 * d2t)  =  -.19 (yt-1  -  us,t-1 + 1.1 * dt-1  - 0.9 * d2t-1 ) + et , where vare = .54
                (6.9)         (4.1)               (2.4)                                                                                    (8.8)

Figure 8 shows the conditional mean estimate of trend growth, after adjusting for recessions and

rapid recovery periods.

Estimation results for the plucking model can be summarized as follows.  Trend TFP growth is:

2.3 percent per annum during the fast-growth period (outside of recessions or     

         recoveries);

1.0 percent per annum during the slow-growth period (outside of recessions or   

           recoveries);

4.4 percentage points (annual rate) less than the above figures during recession; and

3.4 percentage points (annual rate) more than the above figures during recoveries.

The estimated matrix of transition probabilities is

 
. .

. .

987 008

013 992










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Figure 9 shows the smoothed conditional probabilities of being in a given state in

a given quarter.  The curve suggests that TFP was in the fast trend growth regime with at least 90

percent probability from mid-1961 (two years after the beginning of the sample) until the first

quarter of 1973.  By the second quarter of 1974, the model estimates that we were (more likely

than not) in a slow trend-TFP-growth regime.  The latter regime persists, with minor shifting in

estimated conditional mean, through the end of the sample period in 1999.  

Figure 8b compares estimates of trend by the Markov “plucking” model and the

deterministic split trend model.  Although trend growth during expansions is noticeably different

for the two models, the mean trend growth rate (including trend downturns in the Markov

model) is virtually identical.  The deterministic split trend model gives trend growth rates of 1.7

percent through 1973:Q3 and 0.4 percent thereafter.  The Markov model’s average trend growth

rates over the same periods are 1.7 percent and 0.5 percent. 

The plucking model, like the two-stage model, catches regime switches slowly but

nonetheless faster than alternative methods.  With the plucking model, the smoothed probability

of a new slow-growth regime exceeds 50 percent in 1974:Q2.  In contrast, the unsmoothed “real-

time” probability of a new slower-growth regime did not exceed 50 percent until 1977.  That is,

ex post it appears that the switch to a slower growth regime occurred 3 ½ years before it would

have been discovered in real time by the switching model cum filter.    This is a year or two better

than the unpublished results that Norman Morin (of the Federal Reserve Board) found in 1999 for

his Andrews tests, following a slightly larger shock to trend productivity growth in 1973. 

Was there an increase in trend TFP growth in mid-1995, as some have asserted?

The Markov “plucking” model suggests at best a small rise.  From the beginning of 1995 through

the end of 1999, the model’s conditional mean estimate rises only 0.1 percentage point (from 1.01

percent to 1.11 percent) The reason for so little change is that the Markov model has a much

smaller slowdown in trend TFP expansion in the decade or two before 1995 than many analysts

have.  A large portion of the weakness in TFP growth from 1979 through 1995 is attributed by the

model to cyclical considerations.  In a sense, other estimates of trend TFP growth have risen since

1995 to match the Markov model’s estimate.

VI.  Pagan’s moment tests of the Markov switching model

Adrian Pagan (2001) points out that the Markov switching model has been misused
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in many published studies.  In particular, model-generated estimates of the observed variable often

had grossly different population mean and variance than the mean and variance of the data actually

observed – suggesting that the observed data were most unlikely to be consistent with the Markov

model.  Fortunately, in the case of trend TFP growth the Markov model cannot be rejected based

on these moment tests, as discussed in Appendix 1.

VII.  Conclusion

Although trend TFP growth slowed in 1973-74, there is no clear evidence of

continuously evolving trend growth in total factor productivity – a fact that calls into question the

usual stochastic trend models or the use of Hodrick-Prescott filtering.  Of all the methods tried, the

“plucking” version of the Markov switching model seems most promising for both modeling the

historical path of TFP growth and checking for more recent shifts in trend.  That model

comfortably captures the split in trend in 1973-74 and indicates a possible slight upward shift in

trend growth for more recent years to about 1.1 percent.  

Is it possible to detect shifts in trend growth of TFP more quickly?  Perhaps by

bringing additional information to bear from other supply-side variables, such as workweek and

participation rates.  But these other supply-side variables have normal innovations to trend growth

whereas TFP has non-normal innovations.  It turns out, however,  that one can still jointly model

the components of aggregate supply.  Lam (1990) has presented a procedure for estimating a

switching model for one variable jointly with more traditional unobserved components models for

other variables in a nonlinear multivariate state-space framework.  It would be interesting to see

what such a joint model of the supply side would say about the possibility of an uptick in trend

TFP growth around 1995.         
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Appendix 1: Pagan’s moment test for assessing Markov switching models

Pagan’s test is as follows.  Start by conducting monte carlo simulations drawing

from the random distributions in the model, taking all the estimated parameters as given.  For the

model in this paper, there are two such distributions.  First, the error term in the observation

equation at the top of page 16 is normally distributed.  The second distribution is associated with

the four transition probabilities pij described on page 16.  Let gt be drawn from a uniform

distribution between 0 and 1.  If TFP growth was in state j at time t-1, the state at time t is

1   if   gt      <      p1j   , or

2   if   gt      $      p1j 

For each time t (in succession) draw once from the uniform distribution and once

from the normal distribution.  Use these two draws to generate a simulated value of the state and

of the growth rate of TFP at time t.  Repeat the process for time t+1, contingent on the simulated

state at time t and simulated growth rate of TFP at time t.  Continue until simulated values has been

generated for the growth rate of TFP for each time period in the observed sample.  Calculated the

mean and standard deviation of the simulated growth rates of TFP.  Iteration 1 is now finished.

Repeat the steps in the previous paragraph many times (10,000 in this paper).  This

generates 10,000 simulated values of the mean and standard deviation of TFP growth.  Take the

average of these 10,000 means and 10,000 standard deviations, to get the population mean and

standard deviation of TFP growth, to compare with the observed sample mean and standard

deviation of TFP growth.  Is the difference between observed mean and population mean for TFP

growth (call it Jmean) large or (hopefully) small?  Similarly, is the difference between observed

standard deviation and population standard deviation for TFP growth (call it  Jstd) large or small?

To make this judgment, Pagan suggests calculating the standard deviation of the 10,000 simulated

values of the mean TFP growth, and of the 10,000 simulated values of the standard deviation of

TFP growth.  Divide the J for each moment by the corresponding standard deviation of the 10,000

simulated moments.  The ratio is approximately t-distributed.  If the t-statistic for the mean or

variance of MFP growth is large, one can reject the Markov switching model.

For the Markov model in this paper, the t-statistic for mean growth of TFP was 0.1,

and the t-statistic for the standard deviation of tfp growth was 1.2.  The sample moments are

reasonably close to the population moments.  In neither case are there sufficient grounds to reject

the Markov-switching model.



18The BLS quality adjustment of labor hours involves Tornqvist-weighting of the hours of different classes
of workers, based on their share of total labor compensation.  Tornqvist aggregation is similar to Fisher-aggregation
in many ways: both have “ideal”, “superlative” properties.   The Tornqvist index averages a sector’s weight in
successive periods before taking a weighted geometric average of quantity growth in the various sectors, while the
Fisher index aggregates growth across sectors with one period’s weights (Laspeyres), then with the next period’s
weights (Paasche), and then geometrically averages the two aggregates.  The Fisher index is exact assuming unitary
elasticity of substitution among sectors (Cobb-Douglas), while the Tornqvist index is best for the more general
Translog setup.  In practice, this difference in methodology is probably not the most important cause of differences
between the BEA and BLS aggregates.
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Appendix 2: Data definitions

This paper uses data from the first quarter of 1959 through the fourth quarter of 1999.  Data for

almost all variables used in the above analysis were taken from quarterly and annual data published

by the Bureau of Labor Statistics (BLS).  They do not include new or revised BLS data published

from April 2001 onward.

Labor quality

Quality-adjusted hours data (hours of all private nonfarm workers excluding

government enterprises) were taken from raw data published by the BLS.18  The quality-adjusted

hours data were then divided by the unadjusted hours data, to get an index number  representing

“labor quality”.  The index number was forecasted forward based on the growth of the factor over

the last historical year where adjusted BLS data are available (that is, 1997).  In the work described

above, I have treated the historical data series for labor quality as an exogenous variable.

Capital services

Data on capital services were generated as follows.  Annual capital stock data

produced by the BLS (available through 1997) were interpolated to a quarterly frequency.  Then

the quarterly capital stock estimates were extended forward on the basis of quarterly investment

data since 1997.  

The BLS defines private nonfarm business capital stock very broadly to include

equipment, structures, inventories and land.  The (Tornqvist) aggregate of these variables differs

crucially from the BEA aggregate in that BLS uses rental rates of capital to chain-aggregate, while

BEA uses prices to chain-aggregate.  This difference matters when data on nonresidential

structures (which have relatively low depreciation rates and thus low rental rates relative to price)



19Second-revision data on nonfarm output are published in the first productivity and cost release for the
following quarter -- i.e. with a month delay.
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are combined with data on equipment (which has high depreciation rates and thus high rental rates

relative to price).  Because the stock of equipment has grown faster than the stock of nonresidential

structures, the BLS capital stock increases faster than the BEA capital stock.  Also, the BLS

assigns higher weights to computers than to other equipment compared with the BEA aggregate

equipment data.  This difference in weights also affects the estimated growth of the stock of

equipment.  The BLS approach is a theoretically preferred “service flow” approach to estimating

an aggregate capital input to the production function.  The BLS use of rental rates has a practical

advantage as well: the resulting faster growth of estimated capital stock reduces the size of the

Solow residual in the BLS estimates.

The BLS measure of aggregate capital differs from most in that it includes land. 

In this study, the real value of the stock of land for recent quarters is based on its average growth

rate over the last two or three years of available data through 1997.

Nonfarm business output

Data on output were taken from the BLS.  (The BEA measure assigns zero labor

productivity growth in government enterprises, which is not an acceptable assumption for studies

of productivity.)  In contrast to the BEA definition, the BLS output definition excludes output of

government enterprises: the resulting measure is called “private nonfarm business output”.  The

BLS releases data for this narrower measure in the productivity and cost release, twice quarterly,

one and one-half weeks after the advance and preliminary GDP release.19  
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Figure 1a

Actual vs. H-P Filtered (3987) Log of Total Factor Productivity
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Figure 1b

Actual vs. H-P Filtered (1600) Log of Total Factor Productivity
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Figure 1c

Actual vs. H-P Filtered (6400) Log of Total Factor Productivity
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Figure 2

Actual Log TFP vs. Bandpass Trend
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Figure 3

Two Measures of Log Trend TFP
Bandpass vs. H-P Filter (1600)

1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

Bandpass trend
Hodrick-Prescott trend



Figure 4

Actual Log TFP vs. Kalman Trend
(Separate restrictions imposed on I(1) and I(2) variances)
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Figure 5

Actual Log TFP vs. Estimated Trend from Kalman Filter with 1973 & 1995 Dummies
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Figure 6a

Two Measures of Log Trend TFP
Kalman with 1973 & 1995 Dummies vs. H-P Filter (1600)
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Figure 6b

Two Measures of Log Trend TFP
Kalman with 1973 & 1995 Dummies vs. H-P Filter (6400)
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Figure 7

Total Factor Productivity vs. Markov-switching trend
(with two-stage model of the business cycle, no rapid recovery)
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Figure 8

Total Factor Productivity vs. Markov-switching trend
(with ’plucking’ model of the business cycle)
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Figure 8b

Deterministic Trend (split in 1973 & 1995) vs. Markov-switching trend
(with ’plucking’ model of the business cycle)
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Figure 9

Markov Switching Model
(with ’plucking’ model of the business cycle)

Conditional probability of being in fast trend growth regime (2.3%) vs. slow trend growth regime (1.0%)
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