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Incorporating Event Risk into Value-at-Risk

Abstract: Event risk is the risk that a portfolio’s value can be affected by large jumps in
market prices. Event risk is synonymous with “fat tails” or “jump risk”. Event risk is one
component of “specific risk,” defined by bank supervisors as the component of market risk
not driven by market-wide shocks. Standard Value-at-Risk (VaR) models used by banks to
measure market risk do not do a good job of capturing event risk. In this paper, I discuss
the issues involved in incorporating event risk into VaR.

To illustrate these issues, I develop a VaR model that incorporates event risk, which I
call the Jump–VaR model. The Jump–VaR model uses any standard VaR model to handle
“ordinary” price fluctuations and grafts on a simple model of price jumps. The effect is
to “fatten” the tails of the distribution of portfolio returns that is used to estimate VaR,
thus increasing VaR. I note that regulatory capital could rise or fall when jumps are added,
since the increase in VaR would be offset by a decline in the regulatory capital multiplier on
specific risk from 4 to 3.

In an empirical application, I use the Jump–VaR model to compute VaR for two equity
portfolios. I note that, in practice, special attention must be paid to the issues of correlated
jumps and double-counting of jumps. As expected, the estimates of VaR increase when
jumps are added. In some cases, the increases are substantial. As expected, VaR increases
by more for the portfolio with more specific risk.

Keywords: specific risk, market risk, jump risk, jump diffusion, default risk



1 Introduction

Value-at-Risk (VaR) is a popular technique used to measure a portfolio’s market risk. It
identifies the loss that could occur due to fluctuations in market prices. For example, a
one-day 99 percent VaR is the loss that would be expected to be equalled or exceeded on
one out of one hundred days. VaR has been widely adopted by financial firms and bank
supervisors as an important tool for risk measurement.1

“Event risk” is defined here as the risk that a market price can jump, for example due
to news of a default or earnings surprise. Put simply, “event risk” and “jump risk” are the
same thing. When calculating a statistical measure of market risk like VaR, there is no need
to understand why a jump in the market price occurs. Only the statistical properties of
the price jumps themselves are relevant. For this reason it is unnecessary to separate out
subcomponents of event risk, such as the risk of an unexpected credit rating downgrade, for
special treatment in a VaR model.

Few VaR models do a good job of capturing event risk. This failing is a consequence of
simplifying assumptions that make it easier to compute VaR.

When bank supervisors chose to allow banks to use their internal VaR models as the basis
for a capital charge for market risk, they recognized that few VaR models accurately capture
event risk. They required special treatment for the component of VaR that is not driven by
market-wide shocks, which they called “specific risk.” “Specific risk” includes idiosyncratic
risk (price fluctuations that are not correlated with market-wide shocks) and event risk. The
regulatory capital charge for market risk equals

3 × VaR from market-wide shocks + 4 × specific risk VaR.

The higher multiplier on specific risk VaR recognizes that VaR models typically underesti-
mate specific risk because they do not incorporate event risk. If a bank’s VaR model does
capture event risk, the specific risk multiplier can be reduced to 3× at the discretion of the
bank’s supervisor.

In this paper, I develop a methodology to incorporate event risk into VaR. My goal is to
illustrate the issues involved in adding event risk into a VaR model. Of course, the model I
present is only one example of how this can be done. Still, the issues I discuss are the same
ones that any model of event risk must address.

2 VaR models

The quality of a VaR model depends on its distributional assumption and its valuation
model. By “distributional assumption,” I mean what the VaR model assumes about the
distribution of the underlying market risk factors upon which the portfolio’s value depends.
By “valuation model,” I mean how the VaR model computes the portfolio’s value for different
shocks to market risk factors.

1Jorion (2000) provides an introduction to VaR.
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A good distributional assumption is one that captures the characteristics of the actual
distribution of market risk factors. Table 1 lists four common distributional assumptions in
VaR models.2 One important characteristic of actual data is time-varying volatility. The
distributions listed in Table 1 can accommodate time-varying volatility by over-weighting
data from recent history.

A second characteristic of actual market data is “fat tails.” A probability distribution
with “fat tails” has a greater probability mass out in the tails of the distribution, where large
price moves occur, compared with the normal distribution. Some of the fat tails in actual
data comes from time-varying volatility itself. However, actual market data are typically
found to have fatter tails than would come from time-varying volatility alone.3 To match
actual market data, an additional source of fat tails is needed, such as price jumps. In other
words, price jumps, event risk and fat tails are different names for the same phenomenon.4

Note that, because large price jumps are rare events, event risk/fat tails must be estimated
from a long data history.

Simultaneously capturing time-varying volatility and fat tails is a challenge. Most VaR
models choose to do a good job capturing the former at the expense of the latter. Typically,
VaR models over-weight recent data to capture time-varying volatility. This has the un-
wanted side effect of shortening the sample size, making it impossible to accurately capture
the fat tails in the data.5

What is needed is a model that can combine time-varying volatility with event risk. The
two components would necessarily be estimated with different data, with the time-varying
volatility component using recent data and the event risk component using a long time series
to accurately capture the risk of a rare event. In the next section, I present such a model,
which I call the Jump–VaR model. The Jump–VaR model is probably the simplest model
that fits the requirements to incorporate time-varying volatility with fat tails and event risk.

The Jump–VaR model focuses on the distribution the market risk factors are assumed
to follow. I will not address the choice of “valuation model.” I assume that an accurate
approximation of each instrument’s value as a function of market risk factor shocks is avail-
able.6

2Pritsker (1997) and Linsmeier and Pearson (2000) describe and compare various VaR models.
3See Bollerslev (1987) for some evidence.
4As a consequence, methods that explicitly account for fat tails, such as extreme value theory, are in

principle capable of capturing event risk. However, it is unclear whether these methods can be successfully
applied to multivariate VaR modelling.

5Filtered historical simulation is an exception. Although it uses recent data to capture time-varying
volatility, it can simulate from a long time series of historical shocks, thus allowing it to do a better job of
capturing event risk than the other methods listed in Table 1.

6If the portfolio in question consists of linear instruments, valuation is trivial. In general, portfolios
contain non-linear instruments. One way to handle revaluation in this case is to produce a grid for each
instrument, showing the change in its value as a function of the change in market risk factors. Many “front
office” systems routinely produce such a grid for the value of options positions as a function of the underlying
and its implied volatility. When grids are used, an accurate VaR can be computed via a grid Monte Carlo
method. Pritsker (1997) demonstrates the use of a grid Monte Carlo method.
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3 The Jump –VaR model

The Jump–VaR model is based on the assumption that shocks to market risk factors follow
some probability distribution in “ordinary” times (when there are no jumps). This distribu-
tion can have time-varying volatility. Any of the distributions that are commonly assumed
in a VaR model (such as those listed in Table 1) would be a good candidate.

The Jump–VaR model combines a shock drawn from the “ordinary” distribution with a
“jump” shock. Each day, the jump shock can produce a jump up, a jump down, or no jump.
The possibility of a jump will enable the model to capture event risk. The “ordinary” and
“jump” shocks are assumed to be independent of each other.

Section 3.1 gives a simple illustration of how the Jump–VaR model incorporates price
jumps to produce “fatter” tails. Sections 3.2 and 3.3 give a rigorous and complete description
of the Jump–VaR model.

3.1 A simple illustration

In this section of the paper, I show how the Jump–VaR model would represent the distri-
bution of the return on a single large-cap stock on January 4, 1999.7 The model assumes

stock return = “ordinary” shock + jump shock

where for this illustration the probability distribution of the jump shock is as follows:

jump shock =



−7.5 percent with probability .01

+7.5 percent with probability .01

0 with probability .98

I will model the distribution of the “ordinary” shock first with the HS distribution from
Table 1. Then I will repeat the illustration using the VCV distribution.8

Figure 1 shows the probability density of the stock returns for the HS model. Comparing
Panel A of the Figure, with no jumps, and Panel B, with jumps, it is clear that adding
jumps puts more of the weight of the distribution into the tails, where the jumps occur.
For the VCV model, the probability density with and without jumps is shown in Figure 2.
Comparing them, the “jump” distribution clearly has fatter tails. In both cases (HS and
VCV), adding event risk to the model puts more weight out in the tails of the distribution
where jumps occur. As discussed above, a lack of “fat tails” is the reason why many VaR
models do not accurately capture event risk.

Another way to illustrate the effect of adding event risk to the model is to look at the
VaR estimates produced by the model, with and without jumps. Table 2 shows the one-day
VaR estimates for a long position in the stock. VaR is computed for four different models

7The stock is General Electric.
8In these illustrations, HS uses 250 days of historical returns. VCV uses a multivariate normal distri-

bution with decay factor 0.94.
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(HS and VCV, with and without jumps), at both the 95 and 99 percent confidence levels.
In all cases, adding jumps increases the VaR estimate. Adding jumps has only a small effect
on the 95 percent VaR. For the 99 percent VaR, adding jumps increases the VaR estimates
by a great deal.9 It is not surprising that “fattening” the tails of the distribution by adding
jumps has more impact on the estimated VaR farther out in the tails of the distribution.

The next two subsections present a detailed development of the model. A reader whose
main interest is in seeing an empirical implementation of the model can skip to section 4 on
page 7.

3.2 Univariate model

Suppose that the market risk factor X can be written as the sum of a “ordinary” component
X0 and a “jump” component XJ :

X = X0 +XJ (1)

where X0 has some distribution FX0(x) (to be specified later), the jump component XJ has
a trinomial distribution

XJ =




0 with probability 1 − p− q,

−D with probability p,

U with probability q,

and X0 and XJ are independent.10 Given these assumptions, X is equivalent to a mixture
of three distributions:

X = (1 − p− q)X0 + pXD + qXU (2)

where XD has the same distribution as X0 with the mean shifted by −D, XU has the same
distribution as X0 with the mean shifted by U , and X0, XD, and XU are all independent of
each other.

This distribution can obviously capture jumps, with the jump component XJ . It can
capture time-varying volatility by choosing the “ordinary” distribution X0 appropriately.
Note that, even if the volatility of X0 is allowed to change over time, the jump parameters (p,
q, D, U) will be held constant. The infrequency of jumps makes it difficult enough to estimate
an unconditional jump model; a conditional jump model would be even more difficult. The
model can also capture skewness if D 6= U or p 6= q. This model is similar to models in the
finance literature, such as jump diffusion models, that describe the statistical distribution of
stock returns as the sum of an “ordinary” component and a “jump” component.11

9Of course, in a simple illustration like this one, there is no way to tell which of the VaR estimates in
Table 2 is the most accurate.

10XJ can also be interpreted as arising from the conditional distribution of three independent Poisson
random variables (for no jump, jump down, and jump up) with expected values 1−p−q, p, and q, conditional
on the sum of the three equalling one. See Johnson, Kotz and Balakrishnan (1997, p. 32).

11For example, see Press (1967) and Ball and Torous (1983).

4



To use this distribution in a VaR model, we either need to be able to draw random
numbers from the distribution FX to be used in a Monte Carlo method or to evaluate the
distribution function FX analytically. The distribution function of X0 has already been spec-
ified as FX0(x). Write this distribution function as FX0(x;µ, ψ) where µ is the distribution’s
mean and the distribution’s remaining parameters are stacked in the vector ψ. From (2), we
know the distribution function of X, FX(x), can be written as

FX(x) = (1 − p− q)FX0(x;µ, ψ) + pFX0(x;µ−D,ψ) + qFX0(x;µ+ U, ψ). (3)

As long as there is an analytic formula for FX0 , there will be an analytic formula for FX ,
which would make it easy to compute and invert FX as needed to compute an analytic VaR.
It would be easy to draw random numbers from the distribution FX to compute Monte Carlo
VaR using (1) directly.

3.3 Multivariate model

In practice, VaR is nearly always measured in a multivariate context. In this subsection, I
present the multivariate generalization of the model given above. I will now use X to refer
to an n× 1 vector of market risk factors:

X = (X1 X2 . . . Xn−1 Xn)′

The issue of correlation is crucial to multivariate modelling of market risk factors. In a
multivariate context, we care about the risk of correlated jumps. For measuring market risk,
we care about correlated jumps over a short time horizon (e.g., one day or ten days). The
characteristics of the portfolio will dictate the correlation assumption that is appropriate
for that portfolio. Because correlation is crucial, it will be important to validate whatever
correlation assumption is made.

One reasonable way of modelling the correlation of event risk is to assume that, for market
risk factors related to the same event, the jumps are correlated. Otherwise, jumps in market
risk factors are assumed to be independent. For example, in a convertible bond portfolio,
the credit spread, equity price, and implied volatility for a single firm could be assumed to
have correlated jumps. Risk arbitrage would be another portfolio where correlated jumps
would be an issue.12

In the example I present in section 4 below, I measure the risk of a diversified portfolio
of equities. For equities, it appears reasonable as a first approximation to model events
as independent across market risk factors.13 With this “zero correlation” assumption, the
fundamental model for X becomes

X = X0 +

n∑
i=1

XJi
(4)

12For one treatment of correlated jumps, see Duffie and Singleton (1999).
13Keep in mind that market-wide “events” should be captured in X0. In section 4.4 I present evidence

on the assumption of independent jumps.
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where X0 has a distribution function FX0 , there is a jump component associated with each
risk factor

XJi
=




0 with probability 1 − pi − qi,

−Di with probability pi,

Ui with probability qi,

and the XJi
are independent of X0 and XJk

for i 6= k.
As in the univariate case, X can be viewed as a mixture. However, in the multivariate

case, there are 3n components (3 possible outcomes for each of n independent trinomial ran-
dom variables). This makes the mixture version of the multivariate model less appealing.14

Because of this, it will almost always be easier to work directly with (4), rather than a
mixture version.

However, there could be some circumstances where a mixture version of (4) is useful. If
a parametric model is being used for X0, it could be desirable to estimate the parameters of
that model in a mixture model framework. (I do this in section 4 for a VCV model.) Some
simplification is needed to reduce the number of components to a tractable number. I suggest
dropping the mixture components that correspond to two or more simultaneous jumps, which
according to the model are quite unlikely to occur, and reassigning their probability mass to
the 2n mixture components corresponding to a single jump. This will create a mixture with
2n+ 1 components (2n single-jump components and one no-jump component).

This model can be written as

X = (1 −
n∑

i=1

p̂i −
n∑

i=1

q̂i)X0 +

n∑
i=1

p̂iXDi
+

n∑
i=1

q̂iXUi
(5)

where the modified probabilities of the single jump states, p̂i and q̂i, are defined as

p̂i = pi

(∏
j 6=i

(1 − pj − qj)

)(
1 −∏n

j=1(1 − pj − qj)∑n
j=1(pj + qj)

∏
k 6=j(1 − pk − qk)

)
(6)

and

q̂i = p̂i

(
qi
pi

)
(7)

Each modified probability is set by taking the unmodified probability (in (6), this probability
is pi(

∏
j 6=i(1− pj − qj)) ) and inflating it by a factor (the third term in (6)) that ensures the

2n modified single-jump probabilities and the no-jump probability sum to one.
As in the univariate case, XDi

has the same distribution as X0 with the mean of Xi shifted
by −Di, XUi

has the same distribution as X0 with the mean of Xi shifted by Ui, and X0,
XDi

, and XUi
are independent of each other, for all i. The magnitude of the misspecification

14For example, if n = 30, 3n ≈ 306 trillion.
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error introduced by ignoring the 3n − (2n + 1) outcomes with two or more jumps will be
larger, the greater are n, pi and qi.

Again, as in the univariate case, the distribution function of X will be a function of
the distribution function of X0. In the special case of linear exposures and X0 distributed
multivariate normal, VaR can be computed analytically from (5). For other, more realistic
cases, analytic methods are unlikely to be feasible; Monte Carlo is the best choice of method
in these cases. Random draws from the distribution of X can be made easily using (4) as
long as it is possible to make random draws from the distribution of X0. The portfolio’s
value for each draw of X can be computed directly, for linear instruments, or using grids for
nonlinear instruments. Note that a large number of draws will be needed to ensure that the
jumps are adequately captured.

3.4 Choosing a model for “ordinary” times

What distribution should be chosen to capture “ordinary” fluctuations? One strength of
the Jump–VaR model is that it can incorporate any model for ordinary times. The models
listed in Table 1 are common in the market and can capture time-varying volatility. The
methodology I present would work with any of them.

4 Estimating Jump –VaR for a portfolio of equities

In this section, I use the Jump–VaR methodology to measure VaR of a portfolio of equities.
The purpose of this empirical example is twofold: to help the reader understand how the
Jump–VaR methodology works by walking through a detailed example, and to see whether
including event risk affects the VaR estimates a lot, a little, or not at all.

The first step in using the Jump–VaR model is to estimate the model’s parameters.
The parameters include both the jump parameters (p, q, D, U) and any parameters of the
model assumed for “ordinary” times. I will estimate the parameters using data on a large
number of equities. By using a large number of equities, rather than a specific portfolio,
the estimated parameters should be able to be used on any portfolio of equities. In a real-
world risk management environment, the estimation step would be done infrequently. The
second step is to choose a specific portfolio of equities and estimate its VaR. In a real-world
situation, this step would be done frequently (daily in most banks).

To show how the Jump–VaR model can be used with any model for “ordinary” times, I
will run the empirical example twice, once using historical simulation (HS) and once using
a variance-covariance model (VCV) as the distribution in “ordinary” times.

4.1 Estimating parameters

There are 4 jump parameters for each equity in the portfolio, or 4n jump parameters in
all (p1, q1, D1, U1, . . . , pn, qn, Dn, Un). Rather than try to estimate different jump parameters
for each equity, I choose to group equities into “buckets” with similar jump characteristics.
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Each equity’s jump parameters will be those estimated for a “bucket” of equities with similar
characteristics. This provides a much larger data sample for estimating the jump parameters
and should result in more accurate estimated jump parameters, as long as the “buckets” are
chosen appropriately.

Firm size is known to be strongly correlated with a stock’s volatility. Therefore, I will
use market capitalization as the characteristic determining an equity’s jump parameters.
I will sort firms into three size buckets—large-cap, mid-cap, and small-cap—and estimate
a different set of jump parameters (p, q, D, U) for each group. I also investigated using
industry as a jump characteristic, but I did not find much evidence that jumps varied by
industry.

What data should be used to estimate jumps? Obviously, a lot of data is needed to esti-
mate the probability and magnitude of jumps, because jumps are infrequent.15 Fortunately,
data on historical equity returns is easy to obtain.16 I used daily returns from the CRSP
database over 1980–99. To begin, I divided the firms in each year into three groups based
on their market capitalization.17 To keep the dataset size manageable, I randomly chose
approximately 4,000 firm-years (approximately 1 million daily returns) from each size group
to work with.

How the estimation step is done will depend on which model is being assumed for “ordi-
nary” times. There is an important reason why: the jump parameters (p, q, D, U) cannot
be estimated in isolation from the model for “ordinary” times, or double-counting will re-
sult. Double-counting, in this context, means allowing the same large price jumps to affect
both the jump parameters and the distribution in “ordinary” times. Double-counting would
inflate the tails of the modelled distribution and result in an over-estimate of VaR.

4.1.1 Estimating parameters for historical simulation

When HS is the model assumed for “ordinary” times, the only parameters to be estimated
are the jump parameters. HS is a “nonparametric” technique; it has no parameters to
estimate. The only decision is how many days of historical data to use. In my example, I
use 250 days (1 year).

It is worth noting at this point that a distribution modelled by HS will not necessarily
under-estimate the probability of large price jumps. If large price jumps are present in the
data used for HS, they will be present in the modelled distribution as well. The problem in
practice is that HS is typically done with too short a sample of historical data to accurately
estimate the probability of jumps. For example, if the jump probability were 0.004, an HS
VaR model that uses 250 days would only be expected to record one jump in its data sample.
It would be difficult to accurately estimate the contribution of event risk to VaR using HS

15Because I assume uncorrelated jumps for the equities in my sample portfolio, I do not have to worry
about estimating correlated jumps, which could require even more data.

16For other portfolios, such as high-yield debt, there may not be enough historical data available to
accurately estimate a jump model.

17In 1999, the lower cutoffs of the three groups were set at $50 million, $1 billion, and $12 billion. Cutoffs
for earlier years were set by deflating the 1999 cutoffs by changes in the S&P 500 index.
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alone when the expected number of jumps in the data sample is only one. The Jump–VaR
model combines HS with a model of event risk, which should make it easier to accurately
measure VaR. If HS VaR were computed using a large enough set of historical data, there
would be no need to separately account for event risk.

I will estimate the jump probabilities in each market capitalization bucket as follows.
First, divide all equity returns into three groups: down jumps, up jumps, and no jumps. I
arbitrarily set the cutoff between the groups at ±4σ, where σ refers to the sample standard
deviation of returns in this particular bucket of equities. In effect, I assume that returns
in excess of ±4σ cannot come from “ordinary” times and must have a jump component.
Second, estimate the jump probabilities for this bucket as the percentage of returns falling
in the “down jump” and “up jump” groups. Third, estimate the jump sizes for this bucket
as the mean return in the “down jump” and “up jump” groups.

The estimated jump parameters for large-cap, mid-cap,and small-cap equities are shown
in Table 3. The model picks up two well-known features of the distribution of returns on
individual equities: positive skewness and an inverse relationship between firm size and the
magnitude of jumps (larger firms have smaller jumps). Interestingly, the model suggests
that the magnitude of a jump varies more strongly than the probability of a jump as firm
size changes. The table also shows the average waiting time until the next jump. Based on
these waiting times, I conclude that the average stock experiences a down jump every 1.5 to
2 years, and an up jump every 0.8 to 1.5 years.

The jump parameters are estimated from data pooled over 1980–99 under the assumption
that the parameters are stable over time. This assumption should be verified. To do this, I
dropped all observations from 1980–89 and re-estimated the model on data from the 1990s
only. The jump parameters did not change appreciably.18

Simply plugging these jump parameters into the Jump–VaR methodology under HS
would result in double-counting. I adopt the following ad hoc approach, which will reduce the
extent of double-counting. For each equity in the portfolio, calculate the jump probabilities,
both up and down, in the one year of historical data used for estimating VaR in “ordinary”
times (the HS data sample).19 If the equity’s “one-year jump probability” is less than the
twenty-year jump probability for the appropriate bucket of equities, the HS data sample will
not produce a “thick” enough tail for the probability distribution of the equity’s returns.
For these equities, “thicken” the tail by setting the equity’s jump probability equal to the
jump probability for the appropriate bucket in Table 3 and zero out this equity’s jumps in
the HS data sample used for “ordinary” times to avoid double-counting.

On the other hand, if the equity’s one-year jump probability is greater than the twenty-
year jump probability, the tail of the distribution is already “thick.” In this case, set the
equity’s jump probability to zero and allow the jumps in the HS data sample to remain.
By not adding jumps for such equities, double-counting can be avoided. The resulting VaR
estimate will be conservative since equities with a low incidence of jumps within the HS data

18The jump probabilities fell slightly and the jump sizes rose. The expected jump (probability times size)
rose by about 10 percent.

19Use the same cutoffs as described above to calculate jump probabilities.
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sample have their tails “thickened,” while equities with a high incidence of jumps within the
HS data sample do not have their tails “thinned.”

4.1.2 Estimating parameters for a VCV model

The leading statistical technique for estimating a time-varying variance-covariance matrix
is multivariate GARCH modelling. There are many different multivariate GARCH models,
ranging from simple models like RiskMetrics

TM
to very complex models.20 For estimating

VaR, one will typically need to work with a large number of market risk factors. This
suggests a need to stick with the simplest possible GARCH models. In order to allow
volatility to be mean reverting, I prefer to use the scalar GARCH model.

In a scalar GARCH model, each variance and covariance is modelled as following a
GARCH(1,1) process depending on its own past squared returns and cross-products of re-
turns, respectively. The parameters of the GARCH process are restricted to be the same for
each variance and covariance.21 The variance-covariance matrix, Ht, evolves according to

Ht = S(1 − α− β) + αεt−1ε
′
t−1 + βHt−1 (8)

where S is the long-run variance-covariance matrix, assumed to equal the sample average
variance-covariance matrix. There are two parameters to be estimated, α and β. α cap-
tures the sensitivity of each variance and covariance to yesterday’s return, while β captures
persistence.

I choose to estimate a scalar GARCH model with normally-distributed errors, rather than
errors drawn from a fat-tailed distribution. I do this for two reasons. First, I am already
“fattening” the tails of the distribution by adding jumps. The most common multivariate
Student t distribution imposes the same degree of “fat tails” on each series. The Jump–VaR
model allows each series’ “fat tails” to vary according to the probability of a jump in that
series. So the Jump–VaR model is more flexible at capturing jumps when the frequency of
jumps varies across equities. Second, it is still common for banks to use VaR models that
assume a normal distribution, so this model is a useful benchmark.

The scalar GARCH model to be estimated is

Xt = H
1/2
t νt +XJ,t

Ht = S(1 − α− β) + αXt−1X
′
t−1 + βHt−1

where Xt is a 30 × 1 vector of daily equity returns, Ht is the variance-covariance matrix,
νt is a multivariate standard normal random vector, and the jump term XJ,t is the second
term in (4). There are two parameters to be estimated, α and β, in addition to the jump
parameters p, q, D, and U .

I estimate this model eight times, using daily returns on eight different sets of thirty
equities each over 1994–98. Because I want to identify the GARCH parameters that are

20Engle and Mezrich (1996) survey multivariate GARCH models.
21I adopt the suggestion of Engle and Mezrich (1996) to constrain the long-run variances and covariances

to be equal to their sample analogues.
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applicable across the entire asset class of equities, not those that apply to a particular equity
portfolio, I choose to estimate the model on eight different sets of thirty equities and take
the average values of the parameters as “the” parameters to be used when estimating Value-
at-Risk.22

The GARCH estimation must be done at the same time the jump parameters are esti-
mated, to avoid double-counting. However, standard numerical optimization algorithms have
a hard time estimating the jump parameters. I proceed to estimate the scalar GARCH model
with jumps as follows. I begin by setting the jump parameters equal to those estimated for
the HS model (shown in Table 3). The jump parameters vary with market capitalization as
in Table 3. Next, I allow the jump probabilities to differ from those in Table 3 by a scaling
parameter λ. That is, for each equity i,

pi = λp̂i qi = λq̂i

where p̂i and q̂i are the p and q from Table 3 appropriate for the firm’s market capitalization.
The scaling parameter λ is constrained to be the same for all equities. The jump sizes D
and U are not changed from those in Table 3. This technique allows the jump probabilities
to be estimated at the same time as the GARCH parameters to avoid double-counting. The
estimation is done via maximum likelihood, and the likelihood is computed using the mixture
model (5).23

I estimated the scalar GARCH model with and without jumps. Results are given in
Table 4. I focus on the mean parameter estimates across the eight estimations, since these
are the parameters that I will use in the VCV VaR estimation to follow. Looking at the
GARCH parameters α and β, they indicate that shocks to volatility are persistent (β is close
to one), but volatility is not too sensitive to shocks to equity returns (α is close to zero). The
α and β estimated with and without jumps are not that different. The mean estimate of λ is
0.67, implying that jump probabilities are two-thirds as large as those estimated in Table 3
for the HS model. The mean log-likelihood increases moving from the no-jump model to
the jump model, indicating that the jump model fits the data better (as we would expect).

4.2 Estimating VaR

All the work has been done to conduct a VaR estimation for a portfolio of equities. I will
estimate VaR using both the HS and VCV models, with and without jumps, using 5,000
Monte Carlo draws. I will work with two different portfolios. The “long-short portfolio” has
equally-sized positions in 30 equities: 15 long positions and 15 short positions. This portfolio
is hedged against general market moves, so all its market risk is specific risk. (Recall that
specific risk includes both idiosyncratic risk and jump risk.) The “long portfolio” has a long

22Each set of 30 equities has 10 each of large-cap, mid-cap, and small-cap stocks, as do the sample
portfolios used in section 4.2 below.

23The estimation was done in Gauss using the Constrained Maximum Likelihood module. The constraints
on the model are α > 0, β > 0, α + β ≤ 1. In the estimation, H0 (the initial estimate of the variance-
covariance matrix) was set equal to the sample variance-covariance matrix. The source code for the estimation
is available on request.
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position of equal value in all 30 equities; specific risk is 56 percent of total market risk for
this portfolio.24 Both portfolios have 10 large-cap, 10 mid-cap, and 10 small-cap equities.
Since the jump and GARCH parameters were estimated over 1994–98, I will estimate VaR
for the 252 trading days in 1999 to test the models’ out-of-sample performance.

4.2.1 VaR of the long-short portfolio

The 99 percent one-day VaR estimates from the Jump–VaR model and the standard (no-
jump) VaR model estimated on the long-short portfolio are shown in Figure 3, along with the
actual profit or loss (P/L) on the portfolio for each day. Panel A and Panel B of the figure
show the VaR estimates using the HS and VCV models, respectively. It can be clearly seen
how the Jump–VaR model results in an increase in VaR, relative to the no-jump model.

The estimated VaR results are summarized in Table 5. The first two columns of the
table show the mean VaR over the 252 trading days in 1999, for both the left and right tails.
The last two columns show the number of violations (days that P/L exceeded VaR). For a
99 percent VaR over 252 days, the expected number of violations in each tail is 2.52. VaR
estimates are shown for both the HS and VCV models.

For each model, the first of the three rows in the table reflects the VaR estimates when no
jumps are added. This is what a standard VaR model would produce. The second row adds
jumps but does not correct for double-counting. The second row must be greater (in absolute
value) than the first by construction, since jumps are being added to fatten the tails. The
third row is the Jump–VaR model, which both adds jumps and corrects for double-counting.
The third row must be less (in absolute value) than the second row by construction, since the
double-counting adjustment thins the tails to avoid double-counting. The difference between
the standard VaR model in the first row and the Jump–VaR model in the third row shows
the full effect of incorporating jumps and correcting for double-counting.

Table 5 shows that incorporating event risk has a large effect on VaR for the long-short
portfolio. The mean Jump–VaR is as much as 12 percent higher than the mean no-jump
VaR. The number of violations is quite high for the no-jump VaR and much lower (and close
to the expected number) for Jump–VaR. Still, neither the no-jump model or the Jump–VaR
model would be rejected in a formal, statistical sense.25

4.2.2 VaR of the long portfolio

The VaR estimates and P/L for the long portfolio are shown in Figure 4, which follows the
same format as Figure 3. Comparing the two figures, it is clear that the differences between
the no-jump VaR and the Jump–VaR are much smaller for the long portfolio than for the
long-short portfolio.

24The fraction of total market risk that is specific risk is estimated as (1 − R2) from a regression of the
long portfolio’s one-day P&L on the one-day return of the S&P 500 index. The regression is run over the
252 trading days in 1999.

25For a sample of 252 days, the simple statistical test of a VaR model based on the number of violations
(a binomial test) will reject the model when the number of violations is seven or greater. See Kupiec (1996,
Table 5).
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The 99 percent one-day VaR estimates on the long portfolio are summarized in Table 6,
which follows the same format as Table 5. As was clear from the figures, for this portfolio,
incorporating event risk makes only a small difference to the estimate of VaR. This illustrates
the point that the importance of event risk to VaR can vary greatly according to the nature
of the portfolio whose risk is being measured.

4.2.3 Comparing no-jump VaR and Jump –VaR

Tables 5 and 6 allow one to compare the mean VaR estimates for the 252 trading days in
1999. However, as is clear from Figures 3 and 4, on some of the days in 1999 the difference
between the no-jump and Jump–VaR models was much larger than the average difference
shown in the tables. If we are interested in the answer to the question “How bad can a
no-jump VaR estimate be?”, we should look at the maximum difference between the two
models, not the average difference.

Table 7 shows both the mean and maximum difference in VaR between the no-jump
model and the Jump–VaR model. Three points are obvious from the table. First, the
maximum differences between the two models are much larger than the average differences.
For the long-short portfolio, on at least one day in 1999, the Jump–VaR model produced
a 44 percent larger right-tail VaR estimate than the no-jump model. Second, although the
mean differences in VaR are similar for the HS and VCV models, the same cannot be said
of the maximum differences in VaR. The HS model appears to be more erratic than the
VCV model when looking at the maximum difference in VaR.26 Third, contrary to what
Table 6 suggested, incorporating jumps does make a difference for the long portfolio, at least
for the HS model. On one day in 1999, the Jump–VaR estimate for the long portfolio was
24–26 percent larger than the no-jump VaR estimate.

Another way to compare no-jump VaR and Jump–VaR is to determine what the cov-
erage level of the no-jump VaR model would be, if the Jump–VaR model were true. The
coverage level is defined as the probability of a day’s P/L exceeding VaR, assuming a par-
ticular probability distribution for P/L. For an P percent VaR estimate based on the true
distribution of P/L, the coverage level would be 1 − P percent. I note that the coverage
level and the rate of VaR violations, discussed above, both measure how much probability
mass is present in the tail of the P/L distribution in excess of VaR. The coverage level uses
a model-based probability distribution while the rate of VaR violations uses an empirical
probability distribution based on actual P/L data.

Table 8 presents the coverage level of the no-jump VaR model, under the assumption
that the Jump–VaR model is true. While the Jump–VaR model is not literally true, it is
likely to be closer to the truth than the no-jump model. In the case of the VCV model, the
Jump–VaR model is closer to the truth than the no-jump model in the sense of having a
higher log-likelihood (see Table 4). In the case of the HS model, the difference between the
no-jump model and the Jump–VaR model will depend on whether the particular HS data
sample is one where the rate of price jumps is close to its long-run value or not.

26The volatile nature of the HS VaR estimates is also evident in Figure 3. Pritsker (2001) discusses some
of the drawbacks of the HS method.
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The results in Table 8 suggest that, for the long-short portfolio, when the no-jump VCV
model aims at producing a 99 percent VaR, it actually produces a 98.4 percent VaR on
average. On its worst day (in terms of coverage level), it produces a 97.8 percent VaR. For
the HS model, the left-tail no-jump VaR appears to be too low, producing 98.6 percent
coverage, while the right-tail no-jump VaR appears to produce accurate coverage. For the
long portfolio, as noted above, there are only small differences on average between the no-
jump VaR and Jump–VaR.

4.3 Estimating ten-day VaR

The VaR estimates presented above were all for a one-day horizon. A ten-day horizon may
also be of interest, since a ten-day horizon is the basis for the regulatory capital requirement
for market risk. To estimate ten-day VaR, I again use 5,000 Monte Carlo draws. For each
Monte Carlo draw, ten one-day returns are drawn and are then compounded to produce a
single ten-day return. For the VCV model, the variance-covariance matrix used to draw the
second (and subsequent) one-day returns for each Monte Carlo draw is updated in the usual
way (following equation (8)) using the preceding one-day return(s) for that Monte Carlo
draw.

The ten-day VaR estimates are shown for the long-short portfolio in Table 9 and for the
long portfolio in Table 10. Since the importance of correcting for double-counting has already
been demonstrated for the one-day VaR estimates, the Jump–VaR estimates in Table 9 and
Table 10 are all corrected for double counting.27

Overall, the ten-day VaR estimates tell the same story as the one-day VaR estimates.
Just as for the one-day VaR estimates, the mean ten-day VaR estimates for the long-short
portfolio increase by up to 14 percent when event risk is taken into account. For the long
portfolio, estimated VaR changes little when jumps are added. In two of the four cases
dealing with the long portfolio in Table 10, VaR actually declines slightly when jumps are
added. For the long portfolio, jumps appear to affect the right-tail VaR more than the left-
tail VaR. This reflects the well-known positive skewness of returns on individual stocks.28

Tables 9 and 10 also show the number of VaR violations. The number of violations is
computed for the 25 non-overlapping ten-day intervals during 1999. Since there are only 25
observations, the expected number of violations for a 99 percent VaR is 0.25. Thus it is not
surprising that there were, in fact, no violations during these 25 ten-day intervals.

4.4 Robustness of the VaR estimates

I have implemented the Jump–VaR model for equities assuming that jumps are independent
across firms. If this assumption does not hold in actual data, the tails of the distribution of

27Under a normal distribution, the ratio of ten-day VaR to one-day VaR would equal
√

10, or 3.16.
Comparing Tables 5 and 6 to Tables 9 and 10, these ratios range from just below 3 for the left-tail VaRs to
around 3.25 for the right-tail VaRs.

28See Duffee (1995) for evidence.
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portfolio value will not be “thick” enough, because the likelihood of simultaneous jumps is
underestimated. As a result, VaR could be underestimated.

I take the following approach to check this assumption. For a randomly chosen group of
stocks, I count the number of jumps per day for each day in 1998 and 1999. I compare this
distribution with the distribution implied under the independent jump hypothesis. If these
two distributions are different, the hypothesis of independent jumps can be rejected.

I create a sample of 90 stocks by choosing 30 stocks with complete daily return histories
over 1998–99 at random from each size group (large cap, mid cap, small cap). For each
stock, each day’s return is coded as either a jump or no jump for each of the 504 days in
1998-99. The jump thresholds for each size group are set as in section 4.1.1 above. On each
day, I count the number of stocks that jumped (either up or down). The columns of Table 11
under the “Actual” heading show the tabulation of these counts.

Let the random variable J denote the number of jumps among N stocks, and let Ji be a
Bernoulli random variable that takes the value one if there is a jump (up or down) in stock
i, and zero if there is no jump. By definition,

J =
N∑

i=1

Ji.

Under the Jump–VaR model, the probability of a jump (up or down) is

Pr{Ji = 1} = pi + qi.

J follows a multinomial distribution with possible outcomes 0, 1, 2, . . . , N . Because the prob-
abilities of individual stock jumps are different (they depend on market capitalization) and
N is large, the probabilities of each outcome for J (under the null hypothesis of independent
jumps) are non-trivial to compute. I use the formulae from Percus and Percus (1985, p. 624)
for Pr{J = j} for j = 0, 1, 2, 3, 4.29 These theoretical probabilities are shown in Table 11 in
the columns headed “Theoretical”.

It is clear from Table 11 that the actual and theoretical distributions are different. The
two distributions have roughly the same number of 1-jump days, but the actual data has
many more days with more than 1 jump. This pattern is what one would expect if indi-
vidual firms’ jumps were modelled correctly, but correlated jumps were underestimated in
the theoretical distribution. Some of the disparity between the two distributions may be
due to market-wide jumps that the Jump–VaR model is not designed to capture. However,
market-wide jumps cannot be the only reason for the disparity, since they would mostly
affect the “5 or more jumps” category, while the disparity is evident in the 2, 3, and 4 jump
categories also. The usual statistical tests of goodness-of-fit easily reject the hypothesis that
the actual data follow the theoretical distribution assuming independent jumps.30

As a consequence, the VaR estimates for the Jump–VaR model presented above, which
were in some cases quite a bit larger than the no-jump VaR estimates, could still be too

29An approximation to the distribution of J could be computed using the Poisson approximation to the
binomial distribution. This approximation would be very close as the jump probabilities are close to zero.

30Both Pearson’s χ2 test and a Kolmogorov-Smirnov test easily reject at the 1 percent level.
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small. In order to understand how important correlated jumps in equities are for capturing
event risk in VaR, additional research into modelling correlated jumps is needed.

5 Jump –VaR and market risk capital

Since bank supervisors use VaR as the basis for the regulatory capital charge for market risk,
moving from a standard (no-jump) VaR model to a Jump–VaR model would affect a bank’s
regulatory capital.31 The market risk capital charge is equal to

3 × VaR from market-wide shocks + m× specific risk VaR

where m is the specific risk multiplier, equal to 4 if the VaR model does not capture event
risk and 3 if it does. When moving from a standard (no-jump) VaR model to a Jump–VaR
model, regulatory capital could rise or fall, since specific risk VaR would increase and the
specific risk multiplier m would decline from 4 to 3.

Whether regulatory capital would rise or fall in any particular case would depend on the
magnitude of the increase in VaR and the fraction of total VaR attributed to specific risk.
Let regulatory capital be denoted by K, total VaR by V , and the fraction of VaR stemming
from specific risk as f . Let subscripts “NJ” and “J” denote the no-jump VaR and Jump–
VaR, respectively. Using this notation and the formula for the market risk capital charge
given in the previous paragraph, the capital charge using the no-jump VaR model is

KNJ = 3(1 − f)VNJ + 4fVNJ (9)

and the capital charge using the Jump–VaR model is

KJ = 3VJ (10)

Combining (9) and (10), it can be shown that regulatory capital will fall (KJ < KNJ) if and
only if the percentage increase in VaR (VJ−VNJ

VNJ
) is less than f/3.32

For both of the example portfolios considered in this paper, regulatory capital for market
risk would fall when moving from a standard (no-jump) VaR model to the Jump–VaR model.
For the long-short portfolio, the percentage increase in VaR is never greater than 12 percent,
while f/3 is 33 percent (since f = 1). For the long portfolio, the percentage increase in VaR
is never greater than 4 percent, while f/3 is 19 percent (since f = 0.56). The conclusion
that regulatory capital falls is, of course, specific to these two portfolios.

31Regulatory capital is based on the ten-day VaR.
32Using (9) and (10),

KJ < KNJ

3VJ < 3(1 − f)VNJ + 4fVNJ

3(VJ − VNJ) < fVNJ

VJ − VNJ

VNJ
<

f

3
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6 Conclusions

The goal of this paper is to illustrate the issues involved in adding event risk to VaR. In
considering the nature of event risk and how to incorporate it into a VaR model, I have made
several observations:

• event risk, jump risk, and fat tails are different names for the same phenomenon;

• to accurately measure event risk, a model must accurately measure the fat tails that
are present in real financial data;

• a long data sample is needed to accurately capture the fat tails in financial data;

• a model’s distributional assumption must be able to accommodate fat tails.

I presented the Jump–VaR model as a demonstration of one way to deal with these issues.
It combines a standard VaR model for “ordinary” times with a simple model of price jumps.
The effect is to fatten the tails of the distribution of returns and thereby capture event risk.
The jump component can be estimated on a long data sample, even if the standard VaR
model is not.

Some issues arose in the implementation of the Jump–VaR model that would have to be
addressed in any model of event risk:

• correlation of jumps is a crucial issue that will have to be addressed on a portfolio-by-
portfolio basis;

• jumps can be estimated for a “basket” of similar securities, rather than for an individual
security, to increase the effective size of the data sample;

• double-counting of jumps (i.e., including jumps in the standard VaR model as well as
in the jump component) should be avoided;

I ran the Jump–VaR model on two equity portfolios, using both a historical simulation
model and a variance-coavriance model as the standard VaR model for “ordinary” times.
The results illustrated that the Jump–VaR model does thicken the tails of the distribution
to account for event risk, thereby increasing VaR. In some cases, the increase in VaR was
substantial. As expected, the increase in VaR was greater when the portfolio’s exposure
to specific risk was greater. For regulatory capital purposes, the increase in VaR would
have been outweighed by the decline in the specific risk multiplier from 4 to 3, reducing the
regulatory capital charge for market risk. It should be stressed that this final conclusion is
specific to these two portfolios and would not necessarily carry over to other portfolios.
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Figure 1. Probability density of the return on a single large-cap stock on

January 4, 1999: Estimated by Historical Simulation

A. No jumps
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Figure 2. Probability density of the return on a single large-cap stock on

January 4, 1999: Estimated with a VCV model
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Figure 3. One-day 99 percent VaR estimates and realized P/L on the long-

short portfolio

A. VaR estimated with the HS model
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B. VaR estimated with the VCV model
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Figure 4. One-day 99 percent VaR estimates and realized P/L on the long

portfolio

A. VaR estimated with the HS model
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B. VaR estimated with the VCV model
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Table 1. Common distributional assumptions in Value-at-Risk models

Distributional assumption Abbreviation

Historical simulation HS

Exponentially-weighted historical simulationa BRW

Filtered historical simulationb FHS

Multivariate normal distribution with time-varying variance-covariance
matrix (one example is the RiskMetrics

TM
model)c

VCV

a Boudoukh, Richardson, and Whitelaw (1998)
b Barone-Adesi, Giannopoulos, and Vosper (1999)
c J.P. Morgan/Reuters (1996)
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Table 2. Value-at-Risk estimates for an investment of $100 in a single large-

cap stock on January 4, 1999.

VaR at indicated
Model percentile ($)

95 percent 99 percent

HS
No jumps 2.68 4.58
With jumps 2.80 6.84

VCV
No jumps 3.31 4.68
With jumps 3.49 5.78
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Table 3. Estimated jump parameters for historical simulation

The jump parameters are estimated as follows for each market capitalization group. Classify
each daily return r as follows:

r < −4σ down jump
−4σ < r < 4σ no jump

r > 4σ up jump

where σ is the sample standard deviation of daily returns in this market cap group. The
values of σ are 1.88 percent for large-cap stocks, 2.40 percent for mid-cap stocks, and 4.05 per-
cent for small-cap stocks. The jump probabilities p and q are estimated as the fraction of
returns falling in the “down jump” and “up jump” groups, respectively. The jump sizes D
and U are estimated as the mean of all returns in the “down jump” and “up jump” groups,
respectively. In each market cap group, the jump parameters are estimated using approx-
imately 4,000 firm-years of data (approximately 1 million daily returns) chosen at random
from all firm-years present on the CRSP tape over 1980–99.

Large cap Mid cap Small cap

Parameter estimates
p .0020 .0024 .0027
q .0026 .0037 .0047
D .10 .14 .23
U .10 .14 .25

Expected number of days until next jump
Down jump 500 417 370
Up jump 385 270 213
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Table 4. Scalar GARCH estimates on eight sets of thirty equities

The scalar GARCH model with jumps is

Xt = H
1/2
t νt +

30∑
i=1

XJi,t

Ht = S(1 − α− β) + αXt−1X
′
t−1 + βHt−1

νt ∼ N(0, I30)

XJi,t =




0 with probability 1 − pi − qi,

−Di with probability pi,

Ui with probability qi,

pi = λp̂i

qi = λq̂i

with p̂i, q̂i, Di and Ui as defined in Table 3. The scalar GARCH model without jumps sets
the XJi,t terms equal to zero. Both models were estimated via maximum likelihood using
the mixture model (5) on 8 different datasets. Each dataset consisted of 30 equities (10
large-cap, 10 mid-cap, and 10 small-cap).

Without jumps With jumps

Mean Min Max Mean Min Max

α 0.0093 0.0055 0.0126 0.0127 0.0070 0.0209
β 0.95 0.90 0.99 0.94 0.91 0.99
λ na na na 0.67 0.42 0.88

Log-likelihood 70.3 67.5 75.5 71.8 68.3 76.4
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Table 5. One-day 99 percent VaR for the long-short portfolio, estimated

for the 252 trading days in 1999

Mean VaR ($) Number of violations

Left tail Right tail Left tail Right tail

HS (Historical simulation)
No-jump model −19.5 26.8 6 2
Jump model not corrected −22.2 29.8 3 2

for double counting
Jump–VaR model −21.7 27.8 3 2

VCV (Scalar GARCH)
No-jump model −19.0 20.2 5 4
Jump model not corrected −21.6 22.9 2 4

for double counting
Jump–VaR model −20.8 22.0 3 4
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Table 6. One-day 99 percent VaR for the long portfolio, estimated for the

252 trading days in 1999

Mean VaR ($) Number of violations

Left tail Right tail Left tail Right tail

HS (Historical simulation)
No-jump model −41.6 49.5 0 1
Jump model not corrected −42.2 50.9 0 1

for double counting
Jump–VaR model −42.0 50.9 0 1

VCV (Scalar GARCH)
No-jump model −40.9 43.3 0 0
Jump model not corrected −41.4 45.4 0 0

for double counting
Jump–VaR model −40.7 44.3 0 0
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Table 7. Difference in one-day 99 percent VaR between the no-jump and

Jump –VaR models

Left tail Right tail

Dollar As a percent Dollar As a percent
amount of no-jump VaR amount of no-jump VaR

Long-short portfolio

HS
Mean 2.2 12 1.0 5
Maximum 7.0 42 10.0 44

VCV
Mean 1.8 10 1.8 10
Maximum 3.3 20 3.9 16

Long portfolio

HS
Mean 0.4 1 1.3 3
Maximum 9.5 24 10.8 26

VCV
Mean −0.2 −0.4 1.0 2
Maximum 1.3 3 3.4 8
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Table 8. Coverage level of the no-jump VaR model, assuming the Jump –VaR

model is true

Percent

Left tail Right tail

Long-short portfolio

HS
Mean 1.4 1.0
Maximum 2.2 1.6

VCV
Mean 1.6 1.6
Maximum 2.1 2.2

Long portfolio

HS
Mean 0.9 1.0
Maximum 1.2 1.9

VCV
Mean 1.0 1.2
Maximum 1.2 1.4
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Table 9. Ten-day 99 percent VaR for the long-short portfolio, estimated

for the 252 trading days in 1999

Mean VaR ($) Number of violations

Left tail Right tail Left tail Right tail

HS (Historical simulation)
No-jump model −54.0 85.8 0 0
Jump–VaR model −59.8 87.1 0 0

VCV (Scalar GARCH)
No-jump model −56.7 70.7 0 0
Jump–VaR model −64.4 79.2 0 0
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Table 10. Ten-day 99 percent VaR for the long portfolio, estimated for the

252 trading days in 1999

Mean VaR ($) Number of violations

Left tail Right tail Left tail Right tail

HS (Historical simulation)
No-jump model −114 158 0 0
Jump–VaR model −112 166 0 0

VCV (Scalar GARCH)
No-jump model −123 149 0 0
Jump–VaR model −120 158 0 0
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Table 11. Comparison between actual and theoretical distribution of the

number of jumps per day among 90 randomly chosen stocks over

the 504 trading days in 1998–99

Actual Theoretical

Number of Number Percent Number Percent
jumps per day of days of days of days of days

0 206 40.9 292 58.0
1 165 32.7 160 31.7
2 67 13.3 43 8.6
3 27 5.4 8 1.5
4 16 3.2 1 0.2
5 or more 23 4.6 0 < 0.1

Total 504 100.0 504 100.0
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