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Investigating the Sources of Default Risk:

Lessons from Empirically Evaluating Credit Risk Models

Abstract

From a credit risk perspective, little is known about the distress factors { economy-wide or

�rm-speci�c - that are important in explaining variations in defaultable coupon yields. This

paper proposes and empirically tests a family of credit risk models. Empirically, we �nd that

�rm-speci�c distress factors play a role (beyond treasuries) in explaining defaultable coupon

bond yields. Credit risk models that take into consideration leverage and book-to-market are

found to reduce out-of-sample yield �tting errors (for the majority of �rms). Moreover, the

empirical evidence suggests that interest rate risk may be of �rst-order prominence for pricing

and hedging. Measured by both out-of-sample pricing and hedging errors, the credit risk

models perform relatively better for high grade bonds. Controlling for credit rating, the model

performance is generally superior for longer maturity bonds compared to its shorter maturity

counterparts. Using equity as an instrument reduces hedging errors. This paper provides an

empirical investigation of credit risk models using observable economic factors.
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Building credit risk models as the basis for evaluating default exposures is of fundamental im-

portance to �nancial economists. Consistent with this objective, theoretical research continues to

shed light on the qualitative nature of credit spreads and their dependencies on essential features of

the defaultable contract (i.e., credit rating of the participating parties and �rm-speci�c/systematic

default characteristics). For instance, Jarrow and Turnbull (1995) propose a valuation framework

where the underlying asset or the derivative counterparty may default. Du�e and Singleton (1997,

1999) treat default as an unpredictable event governed by the instantaneous probability of default.

On the other hand, Madan and Unal (1998) analytically decompose the risk of default into com-

ponents related to timing and recovery risks. Each of the aforementioned approaches view default

as occurring at a surprise stopping time. In a related work, Jarrow, Lando, and Turnbull (1997)

develop a theoretical model where the bankruptcy process obeys a discrete state space Markov

chain in credit rating (see also the generalization in Lando (1998)). Finally, in Merton (1974),

Longsta� and Schwartz (1995) and Collin-Dufresne and Goldstein (1999), default is modeled using

a predictable stopping time; namely, default occurs when a continuous process like the �rm value

reaches a default boundary. Each contribution provides a rich parameterization of the price of

credit sensitive securities.

While signi�cant advances have been made in interpreting credit risks, there is a relative

paucity of empirical studies that investigate the sources of credit risks using observable economic

factors (the exceptions will be noted shortly): Which fundamental economic factors - economy-

wide or �rm-speci�c - capture variations in default risk? Which credit risk model is suitable

for pricing and marking-to-market default contingent securities? Which model performs the best

in hedging credit exposures (in all relevant dimensions)? Empirical investigations of credit risk

models attempting to analytically capture patterns of structural dependencies on theoretically

interpretable grounds are clearly desirable from several perspectives (for example in implementing

the Basle committee recommendations on managing default risk).

Even when a particular set of models is theoretically appealing and reasonable on normative

grounds, the selection of the preferred credit risk model has been hampered by a few considerations.

First, there is often a mismatch between theoretical constructs and traded securities: the majority

of the traded debt instruments are coupon paying, while extant models focus attention on valuing

defaultable zeros. When default is a factor, the coupon bonds are not a portfolio of zeros (all

remaining coupons share the same default time). Second, although conceptually elegant, the

models in the predictable stopping time class are di�cult to implement. As argued elsewhere, the

capital structure of the �rm is generally far too complex to specify recovery (to all claimants) in

the event of default. Moreover, at the empirical level, these models generate a counterfactually

low short-term yield spread for high quality borrowers (see the relevant discussion in Briys and
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de Verenne (1997), Collins-Dufresne and Goldstein (1999), Du�ee (1999), Du�e and Singleton

(1999), and Shumway (2001)).

The class of models we test empirically share a number of features in common. One, our

characterization of credit risk relies on the surprise stopping time approach. In particular, we

develop a class of credit risk models that incorporate the Du�e-Singleton (1999) assumption that

recovery (in default) is proportional to the pre-defaultable market value of debt. Two, it is shown

that the price of the defaultable coupon bond can be interpreted as the martingale expectation of

the promised face value and coupons, when each payo� is discounted by the relevant defaultable

discount rate; this rate embodies time value, loss arrival rates and recovery. Three, we develop in

analytical closed-form, a set of three-factor credit risk models that depend on systematic as well as

�rm-speci�c distress variables. To be consistent with the existing literature, we posit two factors

{ the risk-free interest rate and its stochastic long-run mean { to capture macroeconomic e�ects

on the instantaneous likelihood of default (Du�ee (1998) and Litterman and Scheinkman (1991)).

The �rm-speci�c distress factors we consider include leverage, book-to-market, pro�tability, lagged

credit spread, and scaled equity price. The sources of default risk are apparent in our empirical

framework.

Our empirical study that examines the pricing and hedging accuracy of credit risk models

with observable economic factors (six distinct models) is based on a panel of 93 corporations

and treasury STRIPS. This data set is merged from Lehman Brothers Fixed Income Database,

COMPUSTAT and CRSP. From the original data, we omitted bonds that are putable, callable,

convertible, or have a sinking fund provision. Overall, the �ltered database consists of more than

46,000 corporate coupon bond prices and 20,000 treasury STRIPS.

A two-step procedure is followed to implement every credit risk model, and to infer the struc-

tural parameters. In the �rst step, we estimate the risk-neutralized parameters of the term struc-

ture using only treasury STRIPS. Keeping the treasury parameters constant across all �rms, we

estimate the risk-neutralized parameters of the �rm-speci�c distress factor. We employed a two-

step procedure because the joint estimation is computationally infeasible. Our empirical exercises

support the following general �ndings:

� Firm speci�c distress factors such as leverage and book-to-market are positively related to

yields in the �rm cross-section. The relationship remains signi�cant, even after controlling

for credit rating;

� Incorporating a stochastic mean interest rate factor to the credit risk model enhances its

performance. Our analysis indicates that the sensitivity of the defaultable discount rate

to the interest rate is positive but less than unity. Consistent with our predictions, the
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estimated unconditional credit yield is higher for less credit worthy �rms;

� Measured by both the absolute percentage pricing errors and the absolute yield basis point

errors, the leverage ratio model and the book-to-market ratio model consistently outperform

the interest rate only model (the credit risk model with no �rm-speci�c distress). Leverage

and book-to-market considerations are relevant for about 70% of the �rms. The model

improvement is most pronounced among long-term bonds;

� For our bond sample, interest rate risk captures the �rst-order e�ect of default. Once interest

rate considerations are taken into account, the pricing improvement is marginal. This result

is robust across subsamples restricted by credit rating, maturity and industries;

� The credit risk models exhibit distinct average mispricing patterns: the leverage and book-

to-market ratio models overprice, while the interest rate model underprice, long-term bonds.

The econometric analysis of valuation errors shows that if one were to consider expanding

on the systematic default factors, the default premium would be a good candidate;

� Our pricing error metrics establish that credit risk models perform better for high grade

bonds than for low grade ones; likewise, the empirical performance is superior for longer

maturity bonds. Overall, our investigation supports the view that the credit risk models

have pricing performance adequate for marking risk exposures.

We also evaluate the errors from delta-hedging a short position in the defaultable coupon

bond. In this hedging strategy, we construct a replicating portfolio that consists of a positioning

in two zero-coupon bonds and the underlying �rm's equity. This research establishes several key

insights. First, using equity as a hedging instrument reduces dynamic hedging errors. Second, the

hedging e�ectiveness of the stock price model is superior relative to alternative credit risk models

(based on absolute and mean percentage hedging errors). Third, the analysis reveals that interest

rate risk is crucial to the pro�t/loss accounts of the hedger. All credit risk models over-hedge the

target.

This paper is organized as follows. In Section 1, we present a generic framework to price

defaultable coupon bonds. Section 2 proposes a class of three-factor credit risk models. The de-

faultable coupon bond data is described in Section 3. In Section 4, we examine the cross-sectional

relationship between market yields and �rm-speci�c distress factors. Section 5 describes the esti-

mation procedure and the in-sample results. The out-of-sample pricing exercises are conducted in

Section 6. Section 7 outlines the hedging strategy and examines the hedging performance of credit

risk models. Conclusions are provided in Section 8. All technical details are in the Appendix.
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1 Pricing Defaultable Coupon Bonds

Defaultable coupon bonds, like other debt contracts, are de�ned by their promised stream of cash

ows through time. Typically these consist of a promised face value, F, to be paid at maturity

T, and a stream of coupon payments to be paid in the interim. To accommodate both discrete

and continuous coupon payments, we denote by C(t) the non-decreasing function of cumulated

coupon payments until time t. In all generality, the function C(t) need not be deterministic and

could depend on economic information as it becomes available.

In addition to specifying the promised payments, defaultable debt recognizes that there is a

random time T at which default occurs. At this time, a payment y(T ) is made in ful�llment of

the debt obligation. The recovery, y(T ), if any, is generally far below the value of the remaining

promised payments. We associate with the random time T , the unit step function �(t), as made

exact below:

�(t) =

8<
:

1 t � T

0 Otherwise.
(1)

The defaultable debt contract can now be de�ned by the entities: (F,T,C(t),�(t),y(t)) that are

presumed adapted to the information �ltration =t; 0 � t � T of a probability space (
;=; P ),

satisfying the usual technical conditions.

We suppose that the spot interest rate is given by r(t) and b(t) � exp
�R t

0 r(s) ds
�
is the

associated accumulation of the money market account. According to Du�e (1996), the absence

of arbitrage opportunities is ensured by the existence of a probability measure Q equivalent to P

under which the money market discounted gains processes for all assets are martingales. It follows

that the time t price of the defaultable coupon bond with maturity � periods from time t, denoted

P (t; �), is given by:

P (t; �) = E
Q
t

�Z t+�

t

b(t)

b(u)
(1� �(u)) dC(u) +

b(t)

b(t+ �)
(1� �(t+ �))F

+

Z t+�

t

b(t)

b(u)
(1� �(u)) y(u) d�(u) j=t

�
; (2)

where E
Q
t is the expectation operator under the probability measure Q.

The �rst integral in equation (2) accounts for the stream of coupon payments received as long

as there is no default and stopped at the default time. The second term accounts for the receipt of

the promised face value given no default. Finally, the last integral accounts for the single recovery

at the default time (on noting that d�(u) equals the Kronecker delta function at u = � , and is
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zero at times other than the default time when it is one). As articulated in Du�e and Singleton

(1997, 1999) and Madan and Unal (1998), the di�culty in evaluating equation (2) comes from

having to address the discontinuous random step process �(t).

Most default models employ a stopping time to characterize default time. Speci�cally in the

class of models that use predictable stopping time, default occurs when a continuous process like

the �rm value reaches a default boundary (i.e., Merton (1974), Longsta� and Schwartz (1995)

and Collin-Dufresne and Goldstein (1999)). The second class of models view default as occurring

at a surprise stopping time (Du�e and Singleton (1997, 1999), Jarrow and Turnbull (1995), and

Madan and Unal (1998)). These models, though silent on the de�nition of the default event, focus

their attention on the instantaneous likelihood of default. Our formulation of default in (2) is

consistent with the surprise stopping time approach.

For a surprise default time that is a stopping time, there exists a positive process h(t), called

the hazard rate process, such that

�(t)�

Z t

0
(1� �(u)) h(u) du (3)

is a martingale. When we have a martingale under the probability Q, then we refer to h(t) as the

risk-neutral hazard rate process. Heuristically speaking, h(t) dt models the probability of default

in the interval (t,t+dt), the instantaneous likelihood of default. The process h(t) is adapted to

a sub�ltration of continuous evolving information Gt. In this case, Madan and Unal (1998) show

that:

E
Q
t [(1� �(u)) jGu ] = exp

�
�

Z u

t
h(s) ds

�
: (4)

Using (4) and iterated expectations, it immediately follows that

P (t; �) = E
Q
t

�Z t+�

t

b(t)

b(u)
exp

�
�

Z u

t
h(s) ds

�
dC(u) +

b(t)

b(t+ �)
exp

�
�

Z t+�

t
h(s) ds

�
F

+

Z t+�

t

b(t)

b(u)
exp

�
�

Z u

t
h(s) ds

�
y(u) h(u) du jGt

�
: (5)

Unlike equation (2), the pricing equation (5) eliminates all reference to the discontinuous process

�(t). Equation (5) reduces the problem of pricing defaultable coupon debt to that of pricing

non-defaultable debt with an altered discount rate and cash ow claim.

If we now follow Du�e and Singleton (1999) and de�ne recovery as a proportion, �(t), of the

pre-default value of the defaultable debt so that

y(t) = �(t)P (t ; �) ; (6)
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then an application of Ito's lemma shows that the price of the defaultable debt may be written as

(see the Appendix for intermediate steps):

P (t; �) = E
Q
t

�Z t+�

t
exp

�
�

Z t+u

t
[r(s) + h(s) (1� �(s))] ds

�
dC(u) +

F exp

�
�

Z t+�

t
[r(s) + h(s) (1� �(s))] ds

�
j Gt

�
: (7)

Because it is not generally possible (in the Du�e-Singleton approach) to separate the e�ects of

hazard rate process h(t) from that of the loss process (1� �(t)), de�ne the aggregate defaultable

discount rate as:

R(t) � r(t) + h(t) [1� �(t)]: (8)

This discount rate consolidates time value, loss arrival rates and recovery considerations. Then,

in the case of deterministic and continuous coupon rate c(t), the defaultable debt equation can be

simpli�ed as:

P (t; �) =

Z �

0
c(t+ u)P �(t; u) du+ F P �(t; �); (9)

where

P �(t; u) = E
Q
t

�
exp

�
�

Z t+u

t
R(s) ds

�
j Gt

�
; (10)

is the price of the unit face defaultable zero-coupon bond with maturity t+ u.

In the next section, we derive models for R(t) that lead to empirically testable closed-form

models for the price of defaultable coupon debt. In each credit risk model, the price of defaultable

discount bonds is exponential a�ne in the state of the economy.

2 A Class of Credit Risk Models

Consider the family of aggregate defaultable discount rate models shown below (each �rm is

indexed by n):

Rn(t) = �0;n + �r;n r(t) + �x;nXn(t); n = 1; � � � ; N; (11)

where r(t) is the spot interest rate and Xn(t) surrogates �rm-speci�c distress. This speci�cation

is theoretically reasonable, as it incorporates both an economy-wide variable and a �rm-speci�c

variable. To keep a parsimonious factor structure, we have assumed that distress is driven by

a single-factor Xn(t) and a single systematic risk factor r(t). Our characterization of Rn(t) is

su�ciently versatile to accommodate a K-factor model of Xn(t), however. Like its default-free
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predecessor, the linearity of R(t) in r(t) and X(t) is employed for analytical tractability. Equation

(11) forms a convenient basis for the empirical analysis of credit risk models.

Although not yet derived in closed-form, the coe�cients �0, �r and �x are key to understanding

variations in defaultable yields. �0 measures the level of the unconditional instantaneous credit

yield. If �r is positive, defaultable bond yields are positively related to interest rates. Given the

existing evidence on co-movements between treasury and corporate yield curves (Du�ee (1998)), it

is expected that �r is positive. Similarly, �x assesses the signi�cance of the particular �rm-speci�c

distress variable. Assuming that X(t) is positively associated with �rm-speci�c distress, the credit

quality of the �rm deteriorates when distress rises (provided �x;n > 0).

Three special cases of (11) are of relevance to the literature. CASE 1: Setting �0 = �x = 0 and

�r = 1 gives the term structure of default-free bonds. CASE 2: Under the parametric restriction

�x;n = 0, one obtains the class of credit risk models considered by Du�e and Singleton (1997).

When X(t) is a hidden Markov variable, our framework admits the speci�cation adopted in Du�ee

(1999). CASE 3: The restriction �r = �x = 0 reduces to the model of Jarrow and Turnbull

(1995). Equation (11) indicates that cross-sectional variations in credit risk are primarily due to

cross-sectional variations in �0;n, �r;n, �x;n, and Xn (the interest rate is common to all �rms).

A later analysis shows that the parameters of the defaultable discount rate vary systematically

with credit rating, as modeled also by Jarrow, Lando, and Turnbull (1997). To be speci�c, the

magnitude of the unconditional instantaneous credit yield, �0;n, is lower for higher quality �rms

relative to its more distressed counterparts.

To obtain a class of tractable credit risk models, two modeling decisions are made for the

remainder of the paper. We �rst specify the dynamics of the nominal interest rate and the

�rm-speci�c distress factor. Next, we justify our choice for the distress factors. At the outset,

assume that the interest rate, r(t), evolves according to a two-factor model (under the equivalent

martingale measure):

dr(t) = �r [ z(t)� r(t) ] dt+ �r d!r(t); (12)

dz(t) = �z [�z � z(t) ] dt+ �z d!z(t); (13)

where the long-run mean of the short rate is represented by z(t). !r(t) and !z(t) are standard

Brownian motions, with correlation �r;z. As is conventionally interpreted, �r (�z) are the rates

of mean-reversion for r(t) (z(t)). The di�usion coe�cients �r and �z are constants. z(t) is

unobservable and will be inferred from the treasury yield curve.

Under the stated assumptions (12)-(13), the price of default-free discount bond maturing in �
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periods from time t, B(t; �), is:

B(t; �) � E
Q
t

�
exp

�
�

Z t+�

t
r(s) ds

��
= exp

h
��(�)� �(�) r(t)� (�) z(t)

i
; (14)

where �(�) �
1�exp(�kr �)

kr
, (�) �

1�exp(��z�)
�z

+
exp(��z �)�exp(��r �)

�z��r
and �(�) � �

1
2
�2r
R �
0 �

2
(s) ds�

1
2 �

2
z

R �
0 

2(s) ds+ �z �z
R �
0 (s) ds� �r;z �r �z

R �
0 �(s) (s) ds. The two-factor model is adopted for

several reasons. First, when �tted to the treasury yield curve, it is found to reduce the empirical

�tting errors relative to the one-factor counterpart (see also, among others, Buhler, Uhrig, Walter,

and Webber (1999) and Dai and Singleton (2000)). Statistically, the one-factor model is rejected

in favor of a two-factor model of interest rates. Second, Litterman and Scheinkman (1991), Chen

and Scott (1993) and Du�ee (1998) have shown that movements in the level and slope of the yield

curve capture a large fraction of treasury term structure variations. These considerations suggest

that a two-factor model is desirable on empirical and theoretical grounds. Finally, though more

complex interest rate models could be employed, this comes at the cost of a loss of parsimony and

implementability.

Next, for its analytical tractability, we assume that the underlying distress factor obeys a

process of the type:

dXn(t) = �x;n [�x;n �Xn(t) ] dt+ �x;n d!x;n(t); (15)

where !x is a standard Brownian motion. Let �r;x � Covt (!r; !x). For each Xn(t) proxy, assump-

tions (12)-(13) and (15) lead to a distinct model of credit risk. Since the structural parameters

have a standard interpretation, unnecessary repetition is avoided. Notice that the form of (15) is

a robust three parameter speci�cation for the process of the �rm-speci�c distress factor.

Consider now the price of a unit face defaultable discount bond with � periods left to maturity.

Using the dynamics of r and X and solving (10), we have (the subscript n is suppressed):

P �(t; �) = exp [��(�) � �(�) r(t)� (�) z(t)� �(�)X(t)] ; (16)

where:

�(�) �
�r [1� exp (�kr �)]

kr
; (17)

(�) �
�r [1� exp (��z�)]

�z
+
�r [exp (��z �)� exp (��r �)]

(�z � �r)
; (18)

�(�) �
�x [1� exp (��x �)]

�x
; (19)
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and

�(�) � �0 � �
1

2
�2r

Z �

0
�2(s) ds+ �x �x

Z �

0
�(s) ds�

1

2
�2z

Z �

0
2(s) ds�

1

2
�2x

Z �

0
�2(s) ds

+�z �z

Z �

0
(s) ds� �r;x �r �x

Z �

0
�(s) �(s) ds� �r;z �r �z

Z �

0
�(s) (s) ds: (20)

We �rst observe that the price of the defaultable zero is exponential a�ne in three state

variables: the interest rate, the stochastic long-run mean interest rate and the �rm-speci�c distress

factor. The model has 13 structural parameters. Speci�cally, there are 3 parameters in the

defaultable discount rate speci�cation, 6 in the interest rate process and 4 associated with the

dynamics of the �rm-speci�c distress factor.

Second, under positivity of �r and the speed of adjustments in the interest rate process, the

defaultable discount bond price is negatively related to r(t) and z(t). More precisely, we have

��

r(t; �) �
@ P �(t; �)

@r
= ��(�)P �(t; �) < 0; (21)

��

z(t; �) �
@ P �(t; �)

@z
= �(�)P �(t; �) < 0: (22)

Furthermore, the bond price is also negatively associated with the distress factor, as seen by

��

x(t; �) �
@ P �(t; �)

@X
= ��(�)P �(t; �) < 0; (23)

provided �x > 0. These expressions for the local risk exposures are later employed to develop

delta-neutral hedges for marked-to-market risks.

Third, the yield to maturity of the defaultable discount bond, for maturity � , is

Y �(t; �) � �
log[P �(t; �)]

�
=
�(�) + �(�) r(t) + (�) z(t) + �(�)X(t)

�
: (24)

From expressions (17)-(19), we can see that the sensitivity of yield to maturity with respect to

each of the three state variables is decreasing in maturity. Based on this feature of the model, the

risk exposures of long-term defaultable discount bonds are lower and it may be possible to ignore

these risks in developing hedges. Albeit with di�erent risk exposures, equation (24) decomposes

the credit yield into a systematic risk component and a �rm-speci�c risk component.

When lim�!0 Y
�(t; �) = �0;n + �r;n r(t) + �x;nXn(t). Letting � !1, we obtain the asymp-

totic defaultable yield as: Y �(t;1) = �0 �
�2r�

2

r

2�2r
+ �z�r �

�r;z�r�z�2

r

�r�z
�

�2z�
2
r

2�2z
+ �x�x �

�2x�
2

x

2�2x
�

�r;x�r�x�x�r

�r�x
. Our three-factor model of defaultable bonds o�ers the exibility to produce various

defaultable yield curve shapes including double humped yield curve.
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The price of the defaultable coupon bond can now be computed by inserting (16) into (9).

In particular, the yield to maturity on a defaultable coupon bond, Y (t; �), can be recovered by

solving the following non-linear equation:

0 = P (t; �)�

Z �

0
c(t+ u) exp [�Y (t; �) u] du� F exp [�Y (t; �) � ] ; (25)

which is, in principle, solvable given coupon bond price and the promised cash ow stream (one

for each �). The yield curve of the defaultable coupon bond inherits the same structure as that

displayed by the zeros.

Before closing this section, we discuss proxies for the �rm-speci�c distress factor used in the

study. Five candidates for Xn(t) are selected for their empirical plausibility. Each choice is a

dimensionless quantity and leads to a distinct testable model of credit risk. We later summarize

how well these variables explain the cross-section of corporate yields. This analysis shows that the

proposed variables have incremental information on corporate yields. Each �rm-speci�c distress

factor is discussed in turn:

1. Assume that Xn is �rm leverage. Standard corporate �nance theory suggests that leverage

captures �rm-level distress. Leverage is also a key ingredient in the structural models of

Merton (1974), Longsta� and Schwartz (1995) and Collin-Dufresne and Goldstein (1999).

We will refer to this model as the Leverage Ratio Model.

2. Let Xn be the ratio of a �rm's book value of equity to its market value (i.e., Book-to-

Market). According to Fama and French (1992), �rms with high book-to-market are rela-

tively more distressed. In contrast, �rms with low book-to-market are stronger �rms with

good cash ow prospects. This model will be referred to as the B/M Ratio Model.

3. The next candidate for Xn is the Pro�tability of a �rm. This variable reects the ability

of a �rm to honor debt obligations out of its operating income (Titman and Wessels (1988)).

In this model, default probability is inversely related to pro�tability. Credit risk models that

incorporate pro�tability concerns will referred to as the Pro�tability Model.

4. For the fourth model, we assume that Xn is driven by the lagged credit spread (in the spirit

of Du�e and Singleton (1997)). We will refer to this model as the Lagged Spread Model.

5. Finally, Xn is the scaled stock price s(t), i.e., s(t) � log(S(t)=b(t)). In this case, we posit

ds(t) = �
1
2�

2
x dt+ �x d!x(t), which is a parametric special case of (15). The resulting credit

risk model has 11 parameters. The use of equity prices is especially attractive from the

10



hedging perspective (Madan and Unal (1998)). We will refer to this credit risk model as the

Stock Price Model.

As already mentioned, when �x is set equal to zero, the credit risk model reduces to a two-

factor model where movements in the treasury curve are the sole source of credit risk. Because

of this property, the model with �x = 0 will be used to benchmark the performance of the above

alternative credit risk models. The general model (11) is comparable to Du�ee (1999). But in the

interest of evaluating the out-of-sample pricing and hedging performance of credit risk models, we

replace hidden factors by identi�able factors.

To limit the scope of our investigation, we restrict our attention to the class of reduced-form

defaultable discount rate models. First, as default is triggered only at maturity, the Merton

(1974) model cannot be easily adapted to price defaultable coupon bonds. Second, unless jumps

are added, these models imply a counterfactually low credit spreads for short-maturity defaultable

bonds. On the other hand, Collins-Dufresne and Goldstein (1999) have shown that the structural

models in the one-factor class have undesirable long-run yield properties. Furthermore, Jones,

Mason, and Rosenfeld (1984), Wei and Guo (1997) and Eom, Helwege, and Huang (2000) present

evidence rejecting such models. In summary, our focus is on reduced-form default risk models

with identi�able economic factors that may or may not be tradable.

3 The Data on Defaultable Coupon Bonds

The data for the study is merged from several sources. First, corporate coupon bond prices, yields

and treasury security prices are extracted from the Lehman Brothers Fixed Income Database.

This database has over 28,000 instruments and contains information on publicly traded non-

convertible debt, with principal in excess of one million dollars. For each �xed income security,

the database has entries on, among others, (i) the month-end at price, (ii) the accrued interest,

(iii) the maturity date, (iv) the amount of coupon and principal, and (v) the yield to maturity.

Debt issues are classi�ed as callable, putable, or subordinated (or having a sinking fund provision).

Each debt contract is assigned an industry classi�cation and a credit rating (Fitch, Moody's and

Standard and Poor's). In this study, we employ the Standard and Poor's credit rating. The

database covers the period from January 1973 to March 1998.

Several exclusionary �lters are imposed to construct the sample of defaultable coupon bonds.

First, trader bid quotes are used in our analysis (ask quotes are not recorded). Because the

secondary market for corporate bonds is relatively illiquid, traders are often unwilling to supply

quotes in the presence of insu�cient trading. For these illiquid bonds, matrix quotes are generated
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(according to some internal model by Lehman Brothers) and recorded in the database. Since our

primary goal is to test the performance of credit risk models against market prices, matrix quotes

are avoided.

Second, bonds with embedded options are discarded. We also eliminated such bonds as pass-

through and asset-backed securities. For consistency, only regular bonds are considered. To

mitigate market microstructure biases, debts with time-to-maturity less than 1 year are excluded.

Next, we only include bonds that pay semi-annual coupons. In fact, only a few defaultable discount

bonds and quarterly/annual coupon paying bonds exist in the database. Finally, to facilitate model

implementation, we retained �rms with at least four bond issues outstanding each month and data

availability of over two years. 183 �rms satisfy all the above requirements.

The resulting �rm universe is matched with equity price and accounting data from CRSP and

COMPUSTAT, respectively. Due to the unavailability of equity price, 80 �rms were dropped.

Of the remaining 103 �rms, 10 �rms have data missing on leverage and book-to-market. We are

therefore left with a �nal sample of 93 �rms. This sample is broadly diversi�ed with 24 �nancials,

48 industrials and 21 utility �rms. Prior to March 1989, as few non-callable bonds were issued, the

data is sparse with only 20 �rms per month. In the interest of a wider cross-section, we decided

to limit attention to the sample between March 1989 and March 1998. Our sample includes such

well-known companies as Bank of America, Ford, IBM, Philip Morris, and Wal-Mart. This sample

has 46,262 coupon bond observations.

The three-month treasury bill rate is the proxy for the short interest rate throughout (source:

Federal Reserve Board). We employ trader quotes on treasury STRIPS to build the term structure

of default-free bonds. There are 20,173 treasury STRIPS quotes over our sample period (about

135 treasury prices per month). We use treasury STRIPS to estimate the two-factor model of

interest rates.

To empirically test credit risk models, we constructed several proxies for the distress factor,

Xn(t). These variables are constructed as described below:

Leverage, Levn(t), is de�ned as long-term book value of debt (COMPUSTAT quarterly item

51) divided by the �rm value. The �rm value is the sum of long-term debt and the market

capitalization of common equity, M;

Book-to-Market, Bn(t)/Mn(t), is computed as the book value of equity (COMPUSTAT quar-

terly item 59) divided by the market value of equity;

Pro�tability, Pro�tn(t), is calculated as operating income (COMPUSTAT quarterly item 21)

divided by net sales (COMPUSTAT quarterly item 2);
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Spreadn(t� 1), is the average yield on the �rm's debt minus the three-month treasury bill rate,

as of month t-1;

Scaled Stock Price, sn(t), is the log of the current stock price normalized by the money market

account. That is, s(t) � log
�

S(t)
[1+r(0)]�[1+r(1)]���[1+r(t)]

�
.

Even though long-term debt and book values are recorded at the quarterly frequency, the series

for leverage and book-to-market ratio are monthly. For each �rm, the debt value and the book

value are updated on a quarterly basis (while the market value of equity is updated monthly).

To circumvent any look-ahead biases, we use debt and book values from the previous quarter to

compute leverage and book-to-market factors for the next three months. A cubic spline is used to

convert the quarterly pro�tability measure into a monthly pro�tability measure.

Corporate bonds are classi�ed into three credit rating categories. Speci�cally, bonds with

(numerical) credit rating up to 5 are designated as AA-rated; between 6 and 8 are designated as

A-rated; and credit rating 9 and higher are designated as BBB-rated (or below). Moreover, bonds

with maturity less than 5 years are called short-term bonds; between 5 and 10 years are classi�ed

as medium-term bonds; and maturity longer than 10 years form the long-term bond category.

Table 1 shows that 15% (53%) of the bond issues have a credit rating of AA (A), while 32% have a

credit rating of BBB or below (see Du�ee (1999) and Elton, Gruber, Agrawal, and Mann (20001)).

Table 1 displays summary statistics on bond attributes and �rm-speci�c distress factors (i.e.,

leverage, B/M and pro�tability) for 25 �rms. We report the (average) number of bonds outstand-

ing, the yield, the credit rating, and the maturity. The maturity structure of bonds is mixed

with some �rms preferring short-term debt to its long-term counterpart. According to Table 1,

�rms in the �nancial industry tend to have the lowest maturity, while industrials tend to �nance

long-term. Likewise, more credit-worthy �rms issue longer-term debt. The average credit spread

between AA and BBB-rated bonds is 58 basis points.

Turning to �rm-speci�c distress factors, notice that leverage, B/M and pro�tability vary sub-

stantially in the �rm cross-section. On average, less credit worthy �rms are associated with higher

leverage and a more pronounced book-to-market ratio (and vice-versa). However, the yield pat-

tern is less than clear across industries: industrials have the highest average yield but relatively

lower leverage and B/M. The relationship between average pro�tability and average yield appears

ambiguous. That is, a higher pro�tability need not translate into lower credit yields.

Four empirical yardsticks are adopted to evaluate credit risk models. At the outset, we deter-

mine whether �rm-speci�c distress factors have explanatory ability in the cross-section of yields.

In a second exercise, we analyze whether the estimated structural parameters are reasonable and

investigate the in-sample �tting errors of credit risk models. Next, we contrast their out-of-sample
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pricing accuracy. Finally, we take risk management perspectives and examine the hedging e�ec-

tiveness of credit risk models. Each yardstick captures distinct aspects of model performance.

4 Firm-Speci�c Distress Factors and the Cross-section of Yields

Although the choice of �rm-speci�c distress factors appears reasonable on economic grounds, we

examine whether cross-sectional variations in these variables explain di�erences in the corporate

yields. The basic testing equation is:

Y`(t) = �0(t) + �1(t) �`(t) + �2X`(t) + �`(t); ` = 1; � � � ; L; (26)

where ` ranges over all bond issues of all the names and t=1,� � �,T. In the regression speci�cation

(26), �` denotes term-to-maturity of bond `, Y` is the corresponding yield and X` is the distress

factor (leverage, book-to-market or pro�tability). The OLS regression is performed each month, t,

and the resulting coe�cients are pooled in the time-series (i.e., the reported �2 �
1
T

PT
t=1�2(t)).

The testable hypothesis is that higher levels of leverage and book-to-market (and lower levels of

pro�tability) lead to higher corporate yields. That is, more distressed �rms have higher credit

spreads. Shown in square brackets, the reported t-statistic is the mean coe�cient divided by the

standard error of the mean estimate.

The �2 estimate, reported in Table 2, is at the core of the defaultable discount rate speci�cation

(11). Panel A of Table 2 demonstrates that the impact of leverage on yields is consistently positive

and strongly signi�cant. The coe�cient �2 varies between 0.23 and 1.98 when bonds are grouped

by credit rating; and between 0.72 and 1.38 when bonds are grouped by maturity. For the set

of regressions, the minimum t-statistic is 5.4. Consistent with intuition, the e�ect of leverage on

yields is most pronounced among lower grade bonds and among long-term bonds. For instance, a

1% change in the leverage ratio increases the yield of BBB-rated bonds by 19.8 basis points. The

impact of leverage on yields is time-stable, as reected in the proportion of t-statistics above 2

(i.e., as seen by 1t>2). Moreover, the goodness-of-�t of the model is reasonable: for BBB-rated

bonds, the maximum (adjusted) R2 is 87% in the bivariate regression with �` and Lev` as the

explanatory variables (and 10.2% in the univariate regression with Lev`).

Turning to the yield behavior with respect to book-to-market, we observe a similar �nding:

the B/M attribute is positively correlated with average yields (see Panel B). Consider BBB-rated

bonds. The coe�cient �2 is 0.24 with a t-statistic of 5.5. Now consider long-term bonds, where

the estimated �2 is 0.55 (t-statistic of 7.7). Like leverage, the coe�cient �2 is monotonically

increasing with bond maturity. The magnitude of 1t>2 suggests that the e�ect of book-to-market
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remains robust over time. However, comparing Panels A and B, one di�erence is apparent. Once

the maturity of the bond is controlled, the book-to-market factor displays smaller slope coe�cients.

Economically, a 1% change in the book-to-market factor implies a 5.5 basis points change in the

yield of long-term bonds (the leverage counterpart is 13.8 basis points). Overall, the book-to-

market factor is an important variable in the cross-section of corporate yields.

As expected, Panel C indicates that the average �2 is negative. The coe�cient �2 ranges

between -1.70 and -0.16. As in the case of leverage, the pro�tability measure has a bigger e�ect on

long-term bonds and low-rated bonds. Based on the 1t<�2 statistic, the evidence is less than strong

for pro�tability. This is also con�rmed by the relatively low magnitudes of the t-statistic and the

goodness-of-�t R2 measures. Our evidence indicates that pro�tability may be of second-order

importance relative to leverage and B/M ratio.

The coe�cient �1 can be interpreted as the slope of the corporate yield curve. Irrespective

of the distress factor, the yield curve is steeper for lower-rated bonds and for short-term bonds.

�0, the unconditional instantaneous yield, is positive and statistically signi�cant. Our empirical

�ndings on the relevance of distress factors are robust across sub-periods (not reported). This is

true even when Y`(t)� r(t) is employed as the dependent variable in (26).

In sum, the regression results are broadly consistent with our modeling approach that the

defaultable discount rate is a function of �rm-speci�c distress factors. Even after accounting for

credit rating, the marginal impact of �rm-speci�c distress factors on yields is generally signi�-

cant. Overall, �rm-speci�c variables are informative about cross-sectional variations in the credit

spreads. Having justi�ed our choice empirically, we now proceed to a more formal analysis of

credit risk models and to investigating the determinants of default risk.

5 Estimation of Credit Risk Models

Guided by theoretical and practical considerations, six credit risk models are estimated. The

speci�cation of the defaultable discount rate is as outlined below (n = 1; � � � ; N):

1. Leverage Ratio Model Rn(t) = �0;n + �r;n r(t) + �x;n Levn(t)

2. B/M Ratio Model Rn(t) = �0;n + �r;n r(t) + �x;n
Bn(t)
Mn(t)

3. Pro�tability Model Rn(t) = �0;n + �r;n r(t) + �x;nPro�tn(t)

4. Lagged Yield Spread Model Rn(t) = �0;n + �r;n r(t) + �x;n Spreadn(t� 1)

5. Stock Price Model Rn(t) = �0;n + �r;n r(t) + �x;n sn(t)

6. Interest Rate Model Rn(t) = �0;n + �r;n r(t)
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where, recall, Levn(t) is the leverage ratio;
Bn(t)
Mn(t)

is the book-to-market ratio; Pro�tn(t) represents

the �rm pro�tability; Spreadn(t�1) is the lagged credit spread; and sn(t) is the scaled stock price.

In each case, the defaultable discount (coupon) bond price can be determined from equation (16)

((9)). Our discussion is divided into three parts: (i) estimating the interest rate parameters, (ii)

estimating the �rm-speci�c default parameters, and (iii) contrasting the in-sample valuation errors

across models.

5.1 Interest Rate Parameters

The parameters of the interest rate process are common to all �rms. For this reason, we only

employ treasury securities to estimate the interest rate parameters (see also Du�ee (1999)). In

particular, we exploit a panel of treasury STRIPS prices. The resulting interest rate parameters

are �xed in the cross-section of �rms. The exact implementation procedure is as follows.

Step A. Collect L treasury STRIPS prices each month. Let �` (` = 1; 2; � � � ; L) index the term-

to-maturity of the treasury STRIPS. Denote the market price by B(t; �`) and the model price

by B(t; �`). Let the complete vector of structural parameter (under the equivalent martingale

measure) be de�ned as �r � fz; �r; �r; �z; �z ; �z; �r;zg. For each STRIPS `, de�ne the valuation

error:

�`[�r] �
B(t; �`)�B(t; �`)

B(t; �`)
; (27)

which is the percentage deviation of the model determined price from the observed market price.

Step B. Solve for the parameter vector �r that minimizes the root mean-squared percentage

pricing error (one for each month t):

RMSEr(t) � min
�r

vuut 1

L

LX
`=1

j �` j
2; t = 1; � � � ; T: (28)

This minimization procedure will result in an estimate of the risk-neutralized parameters for the

two-factor interest rate model. The implied parameter approach is now standard in the literature

(see Brown and Dybvig (1986) and Dai and Singleton (2000) and references therein). The variation

across time in the risk-neutral parameters is consistent with the traditional asset pricing results

on the time-variation of the risk premia in the �nancial markets.

Note that the one-factor model of interest rates is nested within the two-factor model of

interest rate outlined in (12)-(13). Setting �z = �z = 0 and �xing z to be a constant, we obtain

the one-factor (Vasicek (1977)) model of interest rates: dr(t) = �r [z�r(t)] dt+�r d!r(t). Imposing

appropriate restrictions on the parameter vector in (27)-(28), we can similarly infer the parameters

16



of the one-factor model. In Panel A and Panel B of Table 3, we present the parameter estimates

and compare the in-sample and out-of-sample valuation errors of the one-factor and the two-factor

model of interest rates, respectively.

The empirical estimations are enlightening from several perspectives. Because the estimation

results are similar across subsamples, concentrate on the full sample �ndings. First, adding a

stochastic mean factor to the one-factor model of interest rates improves its performance con-

siderably. This point can be demonstrated in several ways. Inspection of the table shows that

the in-sample RMSE of the one-factor model is 1.64%, while the corresponding RMSE for the

two-factor model is 0.51%. The reduction in the in-sample absolute yield errors, denoted BYE,

is also substantial: the two-factor model provides an average absolute yield error of 6.75 basis

points versus 14.91 basis points (hereby bp) for the one-factor model. Viewed from a valuation

perspective, the 8.16 bp improvement is economically important (Table IV in Dai and Singleton

(2000) provides a comparison).

Not surprisingly, the superiority of the two-factor model of interest rates is also evident on the

basis of out-of-sample goodness-of-�t measures. To compute the out-of-sample valuation errors,

we initially estimate �r from treasury STRIPS observed as of month t � 1. We then use these

structural parameters (and r) to calculate the theoretical price of STRIPS in the subsequent month

t. Comparing the model price to the market price and consolidating the valuation errors across

all STRIPS, we report the average out-of-sample RMSE and BYE (in their respective columns)

in curly brackets. We can observe that a two-factor (one-factor) model of interest rate has an

out-of-sample RMSE of 2.82% (3.35%) and an out-of-sample BYE of 20.82 (24.70) basis points.

In a nutshell, based on the in-sample and out-of-sample valuation yardsticks, the two-factor model

of interest rates is less mis-speci�ed. Therefore, the two-factor interest rate model will be adopted

to estimate the credit risk models throughout.

As seen, the structural parameters of the two-factor (and one-factor) model of interest rates are

reasonable. Over the full sample, the average long-run mean, z, is 8.5% with a drift coe�cient of

15.8% and a di�usion coe�cient of 0.019. The speed of adjustment of r and z to their means is 0.301

and 0.032, respectively. We estimate a negative correlation between interest rate movements and

changes in the long-run mean. Albeit estimated under the physical probability measure, Collin-

Dufresne and Solnik (1999, Table 1) report similar estimates for the two-factor model (see also,

among others, Chen and Scott (1993) and Dai and Singleton (2000)).

The estimated parameters seem time-stable. This can be seen by both the small standard

errors of the parameter estimate (shown in parenthesis) and the relatively small variation in the

parameter estimates from the 89:03-93:12 subsample to the 94:01-98:03 subsample. Moreover,

the coe�cient of variation, computed as the standard deviation of the estimate divided by mean
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estimate, are all less than 0.5. Other parameters of the credit risk models, as we describe next,

are conditional on the estimated interest rate parameters.

5.2 Firm-Speci�c Default Parameters

The remaining task is to estimate the parameters of the defaultable discount rate and the param-

eters of the distress process. Take the leverage ratio model as an example and de�ne the �rm-

speci�c parameters by the vector: �x;n � f�0;n;�r;n;�x;n; �x;n; �x;n; �x;n; �r;x;n : n = 1; � � � ; Ng.

As before, we minimize the root mean-squared percentage pricing error:

RMSEx;n(t) � min
�x;n

vuut 1

K

KX
k=1

j �x;k;n j2; t = 1; � � � ; T and k = 1; � � � ; K; (29)

where letting �x;k [�x;n] �
P (t;�k)�P (t;�k)

P (t;�k)
. Here, P (t; �) is the market price of the defaultable coupon

bond while P (t; �) is the theoretical price implicit in the leverage ratio model.

While there is an abundance of treasury STRIPS, the number of defaultable coupon bonds

is often insu�cient to estimate the 7 structural parameters contained in �x;n. To achieve a

compromise, we modify our approach in an elementary way. We pool corporate bonds each

quarter and then minimize (29), which has the implication of asserting the constancy of risk

premia for a quarter. Lengthening the period of estimation is subject to greater mis-speci�cation.

This estimation procedure is repeated for each �rm and for each of the six credit risk models.

In summary, the estimation of each credit risk model is carried in two phases: (1) The param-

eters of the two-factor interest rate model are estimated from treasury STRIPS. (2) Conditional

on the estimated treasury parameters, the parameters of the defaultable discount rate and the

distress factor are estimated from individual corporate bonds. In other words, the parameters

of the defaultable discount rate are updated only once every three months, while the structural

parameters driving treasury are updated each month.

In reporting the parameter estimates of credit risk models, two decisions are made to conserve

on space. First, we only present the parameter estimates for the leverage ratio model and the

B/M ratio model. Second, rather than report parameter estimates for each �rm, we aggregate

parameter estimates by their credit rating, maturity and industrial classi�cation, respectively. In

doing the aforementioned, the parameters are �rst averaged in the time-series for each �rm and

then across �rms. Naturally, the large number of �rms in our sample makes it impractical to

display parameter estimates at the individual �rm level.

Table 4 presents the average value and the coe�cient of variation for each parameter in �x.

Start with the leverage ratio model in Panel A. Strengthening our priors from the cross-sectional
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regressions, the coe�cient �x is positive. The average �x across all the �rms and time periods

is 0.0051 (although not reported, it is statistically signi�cant for most individual �rms). Con-

sequently, in the presence of interest rate risk, the marginal e�ect of leverage is to enhance the

defaultable discount rate. Corporate yields and credit spreads accordingly rise when �rm lever-

age increases dynamically over time. Of particular interest is the fact that �x is highest among

AA-rated bonds and the lowest among utility �rms. Along the maturity spectrum, the magnitude

of the estimate indicates that leverage related distress is more relevant for long-dated corporate

bonds than for short-dated corporate bonds.

With regard to the role of interest rate risk in the defaultable discount rate, the sign of �r

is positive and less than unity. Speci�cally, the lower the credit rating of the bond, the more

positive is the parameter estimate: �r equals 0.767 for AA-rated bonds, 0.823 for A-rated bonds

and 0.874 for BBB-rated bonds. As in Du�ee (1999), the parameter estimates substantiate the

common intuition that an upward shift in the short rate raises the defaultable discount rate. Our

evidence reveals that the e�ect of interest rate is generally the strongest among short-term bonds.

Comparing the coe�cient of variation for �r versus �x, we note that the CV for interest rate

(distress) sensitivity is mostly less (more) than 0.5. The response of defaultable discount rate to a

changing interest rate environment is more uniform relative to changing �rm-speci�c distress risk.

During our sample period, the average estimate of the instantaneous credit yield, �0, ranges

between 1.8% for AA-rated bonds and 2.3% for BBB-rated bonds. Consequently, as previously

asserted, �0 is monotonically increasing when the credit rating worsens. Consistent with the

observed yield structure of corporate bonds, the instantaneous credit yield is higher for long-term

bonds relative to short-term counterparts. On balance, the estimated parameters �0, �r and �x

are each plausible. As theory requires, the defaultable discount rate is positive in general (given

the positivity of r(t) and Lev(t)).

Now shift focus to the forcing process for a �rm's leverage. The data supports the idea that

leverage is a mean-reverting stochastic process: the average �x is 46.4% for AA-rated bonds and

47.9% for BBB-rated bonds (and statistically signi�cant with CV far below 0.5). Regardless of

the credit rating and bond maturity, the speed of adjustment is remarkably stable. The average

�x is in the neighborhood of 0.26 and implies a half-life of 2.65 years. The volatility parameter,

�x, is about 12% and �r;x is in the range of -0.115 to -0.10. The small RMSE and APE (less

than 2%) suggests that the adopted one-factor speci�cation may be a reasonable candidate for

characterizing the risk-neutral dynamics of the leverage ratio.

When distress is proxied by book-to-market, the structural parameters are similar (and re-

ported in Panel B of Table 4). We again reach the conclusion that the magnitude of �x is small

relative to the magnitude of �r. Allowing for possible scaling di�erences in the nominal interest
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rate and the �rm-speci�c distress factors, one interpretation of this �nding is that the interest

rate risk component may be of higher-order relevance. We also divided the full sample into two

subsamples and found average parameters close to those presented in Table 4. The subsample

results and parameter estimates from other credit risk models are available upon request.

5.3 Comparison of In-Sample Valuation Errors

Because credit risk models are often employed in marking-to-market other illiquid securities, the

in-sample performance is of interest. Does a three-factor credit risk model with identi�able �rm-

speci�c distress factors improve upon a two-factor counterpart with �rm-speci�c distress con-

siderations absent? Table 5 provides a snap-shot of in-sample valuation errors across the two

dimensions of credit rating and maturity. For each credit risk model, we provide the average

(minimized) RMSE and the corresponding average BYE valuation errors. The results from this

line of investigation are summarized below:

1. Overall, the inclusion of �rm-speci�c distress factors provide only a marginal improvement

over the interest rate credit risk model. Contrary to our expectations, based on the minimized

RMSE, the maximum improvement is of the order of 0.17% (in the intersection of AA-rated

and long-term bonds). The maximum di�erence in absolute yield errors, BYE, amounts to

2.31 basis points (across all models). The systematic distress factor is an important source

of credit risk.

2. Among the set of credit risk models with a �rm-speci�c distress factor, the stock price model

is the least mis-speci�ed in-sample. When averaged over the entire bond sample, the RMSE

and BYE of this model is 1.26% and 20.52 basis points (compared the maximum errors of

1.35% and 21.62), respectively.

3. Controlling for maturity, the average BYE worsens with the credit rating of the bond (es-

pecially among medium-term bonds that are BBB-rated). The yield basis point errors are

declining with maturity: all models face a particular hurdle �tting short-term bonds.

4. Even though leverage and B/M factors are often identi�ed with distress, the performance

of the models do not depart substantively. In several credit rating-maturity groupings, the

8 parameter interest rate model has lower valuation errors relative to the more elaborately

speci�ed 13 parameter models. More complex models need not necessarily perform better

in-sample.

There may be several reasons for the documented phenomenon that the discrepancy between

the valuation errors from various credit risk models is small in magnitude. For one, the prevailing
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�xed-income databases are tilted towards investment grade bonds. For this class of bonds, it is

entirely possible that systematic distress factors capture the �rst-order e�ect of default. Firm-

speci�c default component may be more relevant for pricing speculative (high yield) bonds.

Second, the adopted practice of updating the parameter set potentially interacts with the

illiquidity of the corporate �xed income market. At an abstract level, the frequent updating of

the parameters can have the e�ect of reducing the valuation errors of all pricing models. Some

of these concerns will be addressed in the empirical exercises to follow. It su�ces to say that

the nature of the in-sample �ndings have pushed us to understand the out-of-sample pricing and

dynamic hedging performance of credit risk models in even greater detail.

6 Pricing Accuracy of Credit Risk Models

Out-of-sample pricing performance need not improve when additional parameters are added to a

valuation model. This is because extra parameters have identi�cation problems and may penalize

out-of-sample accuracy. In the empirical analysis to follow, we �rst present an integrated picture

of model performance when defaultable bonds are classi�ed according to credit rating, maturity,

industry a�liation, and individual �rms. Second, a set of robustness checks are performed. Lastly,

we present a speci�cation analysis of model mispricing. Our fundamental emphasis continues to

be on explaining variations in defaultable bond yields using �rm-speci�c and systematic default

factors.

6.1 Consolidated Picture of Model Errors

The implementation of the out-of-sample test is straightforward. To compute the time t valuation

errors, we �rst estimate the parameter vectors, �r and �x;n, using the cross-section of STRIPS

(previous month) and defaultable corporate bonds (in the previous quarter). Using parameters

so estimated, we calculate the model determined bond price with contemporaneous interest rate

and �rm-speci�c distress factor as inputs. The long-run interest rate is set at its lagged value,

as it is estimated within the parameter vector �r. Next we compute the absolute percentage

pricing error, APE, as the absolute valuation error divided by the market bond price. A similar

calculation is made for the absolute yield basis point error, BYE, de�ned as the absolute deviation

of the model yield from the market observed yield. This procedure is repeated for every bond and

for each �rm. Allowing for possible departures in the number of structural parameters, a similar

procedure is followed for other credit risk models.

Table 6 puts the out-of-sample pricing results into perspective. First, most three-factor credit

risk models do better than the two-factor interest rate only model. For instance, measured by
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both the APE and BYE, the leverage ratio model and book-to-market ratio model consistently

perform better than the interest rate model. Based on the entire bond sample, the improvement

is not large in magnitude, however. More precisely, the di�erence between the B/M ratio model

and interest rate model is 0.03% based on the APE, and 0.67 basis points based on the BYE.

Though, on the surface, the pricing improvement appears to be observationally small, given the

large notional principal, it may still be economically relevant. In spirit of our �ndings, Gupta and

Subrahmanyam (2000) also �nd low magnitudes of out-of-sample pricing errors in the cap and

oor markets. The low pricing errors may be a feature common to most �xed income markets

(also see Dai and Singleton (2000) and Du�ee (1999)). In our case, the maximum APE and BYE

in the \All-All" category is 1.88% and 33.41 bp, respectively.

Second, comparing the entries in Table 5 and Table 6, it is not surprising that the out-of-

sample valuation errors are strictly higher than the corresponding in-sample valuation errors. The

deterioration in model valuations amount to about 6 basis points when averaged over all bonds,

and about 9 basis points among BBB-rated bonds. Because the ask price is not reported in the

Lehman database, we are unable to compare the valuation errors relative to the bid-ask spreads.

In a later exercise, we provide a speci�cation analysis of pricing errors (especially after controlling

for credit rating and maturity e�ects).

Unlike our �ndings from in-sample pricing errors, third, the stock price model has the worst

performance out-of-sample (in all credit rating and maturity groupings). The BYE (APE) of this

model ranges between 26.36 bp to 38.69 bp (0.91% to 3.34%) compared to 24.21 bp to 42.62

bp (0.62% to 2.64%) for the interest rate model. This potential inconsistency may be related

to the substantial volatility of equities relative to corporate yields. Therefore, the use of scaled

stock price produces unwanted volatility in the defaultable discount rate. However, in the hedging

section, we show that the stock price is e�ective in explaining price changes. Finally, even though

the out-of-sample performance of the leverage, B/M, pro�tability, and the lagged spread, models

is close, the relative ranking between credit risk models is altered in-sample versus out-of-sample.

Fourth, the model mispricing displays systematic biases across credit rating and maturity. The

principal evidence is outlined below:

� The absolute yield basis point errors are generally higher for lower rated bonds. In the case

of the leverage ratio model, the di�erence between the pricing errors for AA-rated versus

BBB-rated bonds is about 8 bp. They are also higher for shorter maturity bonds, with a

di�erence of about 7 bp;

� Consider model performance across the maturity dimension. Based on the APE yardstick,

the B/M ratio model has the best performance. When the BYE valuation errors are the
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basis, the B/M is also the best model for short-term and medium-term bonds. In contrast,

the pro�tability model produces the lowest BYE �tting errors among long-term bonds;

� Now consider the rating dimension. Both the B/M ratio model and the leverage ratio model

are superior models compared to the interest rate model for AA-rated and A-rated bonds.

The reverse conclusion holds true for BBB-rate bonds;

� Returning to long-term bonds, the di�erence in BYE between the leverage ratio model (and

also B/M, lagged spread and pro�tability models) and the interest rate only model is more

than 2 bp. In particular, the small overall di�erence between the credit models with and

without �rm-speci�c variables is mainly due to their close performance in the short and

medium term category;

� Rarely is the lagged spread model superior to the leverage ratio model and the B/M ratio

model. Overall, leverage and book-to-market factors enhance the working of the credit risk

model.

The average mispricing patterns for each credit risk model warrant a few comments. Figure 1

and Figure 2 displays the mean yield basis point error by credit rating and maturity. From Figure

1 and \All Bonds," we can make the observation that (with the exception of the stock price model)

all credit risk models over-price the market observed yield. Moreover, the interest rate model has

the worst average over-pricing of 6.93 bp. On the other hand, A-rated and BBB-rated bonds

are underpriced by the stock price model. The mispricing worsens as the rating decreases. A

di�erent mispricing pattern emerge across maturity: all models over-price short-term bonds and

under-price medium-term bonds. The credit risk models behave di�erently in the long-term bond

category with leverage and B/M models over-pricing, while the interest rate model under-prices.

Moving on to Panel A of Table 7, we �rst report the out-of-sample pricing and yield perfor-

mance, by industry. While the conclusions regarding the relative ranking of alternative credit

risk models essentially hold, one additional insight emerges. That is, most models �t the utility

bonds the best, followed by industrial and then �nancial �rms. However, this conclusion must be

interpreted with caution, as considerations of bond maturity and cash ow stability vary across

industries. For example, stable operating cash ows may translate into a lower default probability

for utilities.

Panel B of Table 7 demonstrates that the di�erences between credit risk models surface more

clearly when the pricing error is considered at the individual �rm level. Speci�cally, we show that

�rm-speci�c distress factors have explanatory ability beyond systematic distress factors. Among

our sample of 93 �rms, we observe that the leverage ratio model outperforms the interest rate
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model for 71% of the �rms; the corresponding �gures for book-to-market ratio model and the

lagged spread model is 66% and 69%, respectively. Pair wise comparison of the leverage ratio

model and the book-to-market ratio models shows that the former outperforms the latter for 51%

of the �rms. Hence, the two models have a comparable relative performance.

By far, one surprising result is the small improvement made by the lagged spread model over the

interest rate model. This model uses the lagged average spread in explaining the current spread.

The empirical outcome is therefore puzzling from an autoregressive viewpoint. In summary, �rm-

speci�c characteristics, especially leverage ratio and book-to-market equity ratio help lower the

out-of-sample pricing errors. Contrary to what one might expect, even the worst performing

models (the stock price and pro�tability models) have a relative small out-of-sample pricing error.

The class of credit risk models considered have performance adequate for marking risk exposures.

6.2 Robustness

How robust are our empirical �ndings to perturbations in test design? To address this question,

several empirical exercises are conducted. In the �rst experiment, we divided the full sample

period into two subsamples. The yield basis point errors for the 1994-1998 subsample (shown

in Table 8) con�rms that modeling interest rate risk is of fundamental importance. Albeit the

BYE are lower over this subsample, the maximum improvement by any credit risk model over

the interest rate model in the \All" category is about 0.5 basis points. It is reassuring that BYE

again displays a U-shaped maturity pattern, with BYE of the short-term bonds typically more

pronounced than the long-term bonds.

Because the median can be a more robust statistic, we compute the median BYE across �rms

each month; the reported median BYE is the average median in the time-series. Comparing the

corresponding entries in Table 8 and Table 6, the medium BYE is generally smaller than the

mean. For instance, the median BYE for the interest rate (leverage ratio) model is 23.98 bp

(23.42 bp) versus 28.07 bp (27.60 bp) for the mean. Our discussions about credit risk models are

not dependent on the choice of the measure of central tendency. In particular, the documented

results are not overly inuenced by either aggregation or the existence of outliers.

One remaining concern is the consequence of frequently updating structural parameters on

model performance. To investigate this question, we took a rather extreme approach. In this

empirical exercise, we time-averaged the structural parameter values and kept them constant over

the entire sample of 89:03 through 98:03. Recall that the constancy of the risk-neutral parameters

is tantamount to the constancy of the risk premia, which is counterfactual. Then, updating values

for the nominal interest rate, the �rm-speci�c distress factor and the stochastic long-run mean
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interest rate, we recomputed the pricing errors for all the bonds. In the last panel of Table 8, we

report the resulting yield basis point errors. We can again make the point that the yield basis point

errors are monotonically increasing when credit-worthiness of the bonds worsens. It is evident that

�rm-speci�c variables have incremental power in explaining the yield structure of corporate bonds:

the leverage ratio model and the B/M ratio model now out-performs the interest rate model by a

wider margin. In large part, our central �ndings are una�ected by how the structural parameters

are updated. The empirical results are mostly robust.

6.3 Speci�cation Analysis of Pricing Errors

Two key issues are addressed in this subsection. First, are model biases - pooled by credit rating

or maturity - linked to dynamic variations in certain systematic distress factors? Second, are

cross-sectional variations in model errors related to excluded �rm-speci�c factors? Each issue is

elaborated in turn.

To investigate whether the unexplained portion of the pricing error is due to systematic distress

factors other than the short interest rate, the following OLS regression is estimated:

APE(t) = �0 + �gGIP(t) + �pTERM(t) + �dDEF(t) + �(t); (30)

for each credit risk model. In equation (30), GIP(t) is the growth rate of industrial production

(during month t); TERM(t), the term premium, is the yield di�erential between the 30-year

treasury bond and the three-month treasury bill rate; and DEF(t), the default premium, is the

yield di�erential between BBB-rated bonds and AAA-rated bonds. Table 9 reports the results of

the time-series regression, where the dependent variable, APE, is the equally-weighted absolute

percentage pricing error over all bonds. The t-statistics are computed using robust standard errors.

Several points can be made based on this table. Consider the combined explanatory ability of

the systematic factors. We can �rst make the observation that the goodness-of-�t R2-statistics are

higher for AA-rated bonds and medium-term bonds. Second, among credit risk models, the stock

price model and the pro�tability model appear most mis-speci�ed when ranked by their average

R2, across all categories. Therefore, if one were to consider expanding on the systematic factors,

then the stock price model and the pro�tability model would bene�t the most, especially in the

medium-term category.

Regardless of the credit risk and the maturity of the bond, most of the credit risk models

experience a deterioration in the pricing quality in periods of high industrial growth. This is

inferred from noting that the coe�cient �g is generally positive. It is also apparent that GIP

impacts the pricing quality of AA-rated and short-term bonds the most. Continuing, periods of
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high term premium signi�cantly impacts the pricing of short-term bonds. One possible explanation

is that the adopted two-factor interest rate model performs adequately for medium and long-term

bonds.

Our results broadly suggest that if the number of systematic factors was to be increased, then

the default premium would be a good choice. As seen, the default premium is perhaps the most

signi�cant systematic distress factor. A rise in the default premium lowers the absolute pricing

errors of AA-rated bonds. Among AA-rated bonds, we see that with the exception of leverage

and B/M ratio models, most model errors are signi�cantly related to default premium. Among

BBB-rated bonds, each credit risk modeling error is signi�cantly related to DEF(t). So, including

default premium in the defaultable discount rate speci�cation can help mitigate the pricing errors

of a credit risk model. If the default premium were to be introduced as a systematic distress

factor, one would need to construct a zero-coupon credit spread curve that is rich enough to

permit estimation of the risk-neutral default premium process. Currently, the data for such an

exercise is not readily available. For these reasons, we have maintained focus on the interest rate

factor throughout.

Let us now reconcile the second issue in some detail. Notice that, unlike with additional

systematic factors, two �rm-speci�c factors can be accommodated within our empirical framework

(provided there are su�cient number of bonds). How can a credit risk model with two �rm-

speci�c factors be expected to fare relative to the set of one-factor models already estimated?

In this regard, we explore two cross-sectional regression speci�cations. First, we regressed the

absolute percentage pricing errors of the leverage ratio model on the B/M ratio (all t-statistics

are signi�cant, and ` = 1; � � � ; L), and obtained:

All-Bonds APE` jLev= 0:255+ 0:021 B`

M`

+ �`, R2=5.6%

BBB-Rated APE` jLev= 0:283+ 0:019 B`

M`

+ �` R2=9.9%,

where it is understood that the reported coe�cients are averages across all the monthly regressions.

Second, we regressed the pricing errors of the B/M ratio model on the leverage ratio, and obtained:

All-Bonds APE` jB/M= 0:190 + 0:163 Lev` + �`, R2=4.8%,

BBB-Rated APE` jB/M= 0:094 + 0:412 Lev` + �`, R2=13.0%.

In each of the regressions, we investigate whether the pricing errors are signi�cantly correlated

with an omitted �rm-speci�c variable.

The results reinforce our earlier assertion that it may be possible to lower the pricing errors of

BBB-rated bonds. For example, the leverage factor is positively and signi�cantly related to the

pricing errors of the B/M ratio model. The average goodness-of-�t statistics from this regression is
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about 13.0%. While B/M is also positively related to the pricing errors of the leverage ratio model,

the coe�cient are much smaller. Although not done here, a credit risk model with two �rm-speci�c

variables may prove bene�cial from a valuation perspective. Given data and space considerations,

we leave a formal analysis of the four-factor credit risk models to a follow-up empirical project.

7 Hedging Performance of Credit Risk Models

We now proceed to examine the dynamic hedging performance of credit risk models. In the

hedging strategy, as many instruments as sources of risks are employed to create a delta-neutral

hedge in all dimensions. Four credit risk models are considered: (i) the leverage ratio model, (ii)

the book-to-market ratio model, (iii) the stock price model, and (iv) the interest rate model. The

�rst two credit risk models perform relatively better based on out-of-sample pricing, while the

other two models rely on traded securities as factors.

To �x main ideas, suppose the target hedge is a short position in a corporate bond with �

periods to expiration and market price P (t; �). Take the stock price model for a benchmark

illustration. In this model, there are three sources of uncertainty: the short interest rate, the

long-term mean of the short interest rate and the issuing �rm's stock. Therefore, the delta-neutral

hedge employs three instruments: (i) a zero-coupon treasury with maturity �1, (ii) another zero-

coupon treasury with maturity �2, and (iii) the issuing �rm's stock. It is understood that the

positioning in bonds neutralizes interest rate risk and the positioning in equity neutralizes equity

risk. By a standard argument, the current value of the replicating portfolio is given by:

w0(t) + w1(t)B(t; �1) + w2(t)B(t; �2) + w3(t)S(t); (31)

where w1(t), w2(t) and w3(t), are the weights on the two treasury securities and the issuing �rm's

stock, respectively. Let the current stock price be denoted by S(t), and the yet undetermined

residual cash position be w0(t). Using the fact that dS(t) = r(t)S(t) dt+ �x S(t) d!x(t) and Ito's

lemma, we arrive at the positioning below (see the Appendix for details):

w1(t) =
�z

@B(t;�2)
@r ��r

@B(t;�2)
@z

@B(t;�2)
@r

@B(t;�1)
@z

�
@B(t;�2)

@z
@B(t;�1)

@r

; (32)

w2(t) =
�z

@B(t;�1)
@r

��r
@B(t;�1)

@z
@B(t;�1)

@r
@B(t;�2)

@z �
@B(t;�1)

@z
@B(t;�2)

@r

; and; (33)

w3(t) =
�x

S(t)
: (34)
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The partial derivatives,
@B(t;�)
@r

and
@B(t;�)
@z

, are in analytical closed-form using the bond valuation

formula (14). To make the position self-�nancing at each date t, we impose the restriction that:

w0(t) = P (t; �) � w1(t)B(t; �1) � w2(t)B(t; �2) � w3(t)S(t). The local risk exposures for the

defaultable coupon bond are the aggregated face and coupon exposures as made exact below:

�r(t; �) � F ��

r(t; �) +

Z �

0
c(t+ u)��

r(t; u) du; (35)

�z(t; �) � F ��

z(t; �) +

Z �

0
c(t+ u)��

z(t; u) du; (36)

and �nally,

�x(t; �) � F ��

x(t; �) +

Z �

0
c(t+ u)��

x(t; u) du; (37)

where ��

r(t; �), �
�

z(t; �) and ��

x(t; �) are as displayed in (21)-(23). In sum, invoking the Markov

property of the model, the positioning in the replicating portfolio (31) is a function of current

market prices.

To study the hedging e�ectiveness of this model, we maintain a short position in the defaultable

bond and construct the aforementioned hedge portfolio. We liquidate the combined position at

time t+ �t and compute the percentage hedging error as:

H(t+�t) =
1

P (t; �)
fw0(t) exp[r(t)�t] + w1(t)B(t +�t; �1 ��t) + w2B(t + �t; �2 ��t)

+w3(t)S(t+ �t)� P (t+�t; � ��t)
o
; (38)

where the term in the curly brackets represents the discrepancy between the replicating portfolio

value and the value of the shorted target hedge. Therefore, under the stated convention, the cash

position appreciates at the risk-free interest rate.

Rebalancing the replicating portfolio, we implement this hedging strategy each period and

for each of the 93 individual �rms. As a consequence, we have a cross-section of percentage

hedging errors { one for each period t. The reported absolute percentage hedging error is given

by: AHE(t + �t) � 1
K

PK
k=1 j H(t + �t) j, and the mean percentage hedging error is given by:

MHE(t+�t) � 1
K

PK
k=1H(t+�t). Because the parameters of the credit risk models are updated

once each quarter, the rebalancing frequency is set to three months and the hedging errors are

calculated over the following one month (i.e., �t = 1=12).

Implementing a dynamic hedging strategy with the leverage ratio model (and the book-to-

market ratio model) poses a dilemma, as leverage (and book value) is non-traded. However, we

use as instruments in constructing the hedge treasuries and individual equity price that hedges the
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market component of leverage and book-to-market. In particular, the long-term debt component

of leverage is left unhedged over the next one-month period. That is, write leverage as Lev(t) =
D(t)=q

S(t)+D(t)=q
, where q is the number of shares outstanding and D(t) is the debt value from the

previous period (to avoid look-ahead biases). Proceeding in the same fashion as before, we can

derive w1(t) and w2(t) as shown in (32)-(33) and w3(t) = ��x�
D(t)=q

(S(t)+D(t)=q)2
. Replace D(t) with

B(t) to get the respective positioning for the book-to-market ratio model. The percentage hedging

errors for the respective credit risk model can now be computed by appealing to equation (38).

Panel A of Table 10 presents the hedging error results. A number of points are worth high-

lighting. First, using equity of a �rm as a hedging instrument reduces the model hedging errors.

Speci�cally, measured by both the absolute (percentage) hedging errors and the mean hedging

errors, the performance of the stock price model is relatively better than its competitors. To be

concrete, the average absolute (mean) hedging error for the stock price model is 1.43% (0.57%).

The corresponding hedging errors for the interest rate model is 1.54% (0.65%). That the use

of equity positioning improves hedging e�ectiveness is also observed in subsamples. The same

conclusion holds when we replace average hedging error with median errors (not reported). The

�nding that stock price model provides superior hedging performance is in contrast to the result

that stock price model has the worst out-of-sample pricing performance. Therefore, we are po-

tentially confronted with a situation where a credit risk model with the best dynamic hedging

performance may in fact provide the worst out-of-sample performance. Simulations con�rm that

this is possible when the introduction of the non-traded explanatory variable hinders the working

of the traded variables.

Second, leaving the debt component and the book component of leverage and book-to-market

unaccounted in the delta-neutral strategy can impair the hedging ability of the credit risk models.

Despite the use of equity as an instrument in these models, the absolute hedging errors from

the leverage ratio model are sometimes even higher than that of the interest rate model (in 8

out 16 categories with AHE and 4 out of 16 with MHE). When averaged over all bonds, the

absolute hedging error of the leverage ratio (book-to-market) model is 1.53% (1.61%) compared

to 1.54% for the interest rate model. One lesson inherent in this hedging exercise is that credit risk

models relying on purely traded factor tend to produce better hedging e�ectiveness. Moreover,

information about dynamic changes in the debt/book value of the �rm is economically relevant

for the pro�t/loss accounts of the hedger.

Third, for all credit risk models, the delta-neutral absolute hedging errors are consistently

lower for short-term bonds. That is, higher the maturity of the bond, the more variable is the

hedge, even after controlling for credit rating. The hedging errors are found to rise with maturity,

but not as fast as maturity. The latter result is consistent with the out-of-sample pricing exercises
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where the absolute yield errors were relatively higher for short-term bonds. Shifting focus to the

mean hedging errors, all the credit risk models over-hedge the target short position, regardless

of the bond maturity. We can also make the observation that the MHE are hump-shaped, with

medium-term bonds over-shooting its target position the most.

Fourth, the hedging performance is generally better for high quality borrowers than for less

credit worthy borrowers. In this case, the relative ranking from the absolute hedging errors and

mean hedging errors are in agreement. Each for short-term and medium-term bonds, the hedging

errors are U-shaped in credit rating for each model: going down �rst from AA-rated to A-rated,

and then rising to BBB-rated bonds. As stressed earlier, the average maturity of the AA bonds

in our sample is much longer than that of the A bonds. This aspect of the bond data may explain

the better hedging performance for the A-rated bonds relative to the AA-rated bonds.

Although not shown in a table, for all models, the hedging performance is the best for utility

�rms, while there is no clear pattern in the hedging performance between �nancial and industrial

�rms. This result also mirrors the out-of-sample pricing performance in the previous section.

When we split the sample period into two parts, the hedging errors are virtually similar. Our

conclusions about hedging e�ectiveness are not a factor of the sample.

Finally, delta-neutral hedging errors for 25 individual �rms are presented in Panel B of Table

10. One noteworthy aspect of this table is that all four models perform consistently across �rms.

All the four models generate relatively low hedging errors for the same group of �rms, while

producing high hedging errors for other groups of �rms. Overall, the instruments do a fairly good

job neutralizing �rm level default risk.

8 Concluding Remarks and Future Work

Inspired by the strand of research in Du�ee (1999), Du�e and Singleton (1997), Jarrow and

Turnbull (1995), Longsta� and Schwartz (1995), and Madan and Unal (1998), this paper has

developed a theoretical and empirical framework for analyzing variations in defaultable bond

yields. The valuation methodology relies on a surprise stopping time approach and imposes the

assumption that recovery is a fraction of the pre-default value of the defaultable debt (Du�e and

Singleton (1999)). Speci�cally, the theoretical approach o�ers the versatility that the defaultable

discount rate can be formulated as a function of �rm-speci�c distress factors as well as systematic

distress factors. Our empirical investigation posed two questions of broad economic interest:

1. When �tted to defaultable coupon bonds, which credit risk model provides superior out-of-

sample pricing and hedging performance?
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2. What type of factors are important for explaining credit risk? Do systematic (or �rm-

speci�c) distress factors drive the price of default?

Our analysis of credit risk models is based on measurable yardsticks. First, the econometric

framework veri�es that such �rm-speci�c factors as leverage and book-to-market account for cross-

sectional variations in corporate yields. Second, based on the in-sample and out-of-sample pricing

error metrics, it is shown that interest rate considerations are of �rst-order prominence in explain-

ing the pricing and hedging of corporate bonds. At the same time, the empirical examination

leads to the conclusion that �rm-speci�c distress factors are not redundant. Particularly parame-

terized credit risk models that incorporate leverage and book-to-market reduce yield errors for the

majority of the �rms. This portion of the inquiry suggest that model performance is better for (i)

high grade bonds than for low grade bonds (of comparable maturity), and for (ii) long-maturity

bonds than for short-maturity bonds (of comparable credit rating). Valuation errors are correlated

with default premium; if one were to consider broadening the set of systematic default factors,

the default premium would be a good modeling choice. Finally, the use of individual equity as an

instrument is desirable from dynamic hedging standpoints. Credit risk models neutralizing equity

risk mitigate delta-neutral hedging errors.

Since callability, putability and convertibility are commonly associated features of corporate

coupon bonds, more modeling e�ort is needed to characterize optionality. The class of credit risk

models proposed here can be used to understand why �rms employ certain type of derivatives.

Moreover, closed-form modeling and empirical testing of credit derivatives continues to be an issue

relevant to practitioners. Using our assumptions about the defaultable discount rate, the existing

set-up can be adapted to price option contracts that are default contingent.

Whether it is an embedded option or a complex credit derivative, its intrinsic value can be made

to depend on both systematic distress factors and issuer-speci�c distress factors. In principle, the

empirical work can be extended to the class of non-a�ne default risk models. The availability of

speculative grade bonds can further enhance our comprehension of default. Even though intuitively

appealing, one could relax the prevailing assumption about recovery in default. Much remains to

be reconciled about default risk.
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Appendix: Proof of Results

Proof of the Defaultable Coupon Bond Price in Equation (7)

In Du�e and Singleton (1999), the recovery in default is: y(t) = �(t)P (t ; �), which is an

adapted proportion of the pre-default bond value. In this case,

P (t; �) = E
Q
t

�Z t+�

t
exp

�
�

Z u

t
[r(s) + h(s)] ds

�
dC(u) + +F exp

�
�

Z t+�

t
[r(s) + h(s)] ds

�

+

Z t+�

t
h(u)�(u)P (u ; �) exp

�
�

Z u

t
[r(s) + h(s)] ds

�
du

�
: (39)

Now de�ne the discounted gains process:

G(t) �

Z t

0
exp

�
�

Z u

0
(r(s) + h(s))ds

�
dC(u) +

Z t

0
h(u)�(u)P (u ; �) exp

�
�

Z u

0
(r(s) + h(s)) ds

�
du

+exp

�
�

Z t

0
(r(s) + h(s)) ds

�
P (t; �);

which is a martingale (because it is the conditional expectation of a terminal random variable).

It follows by an application of Ito's lemma that:

0 = E
Q
t [dP (t; �)] + fc(t) + h(t)�(t)P (t; �)� [r(t) + h(t)]P (t; �)g dt; (40)

or that

0 = E
Q
t [dP (t; �)] + fc(t) + [r(t) + (1� �(t)) h(t)]P (t; �)g dt: (41)

This implies by Ito's Lemma once again that

L(t) �

Z t

0
c(u) exp

�
�

Z u

0
[r(s) + h(s)(1� �(s)] ds

�
du+

exp

�
�

Z t

0
[r(s) + h(s) (1� �(s)] ds

�
P (t; �)

is a Q martingale. Equating L(t) to the conditional expectation of L(T ) and using the terminal

condition P (0; t+ �) = F , we obtain the desired result. 2
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Proof of Delta-Neutral Hedges in Equations (32)-(34)

Suppose we use a combination of two default-free discount bonds and the equity of the �rm

to hedge the defaultable coupon bond. Consider a replicating portfolio of the type:

V (t) = w0(t) + w1(t)B(t; �1) + w2(t)B(t; �2) + w3(t)S(t); (42)

where B(t; �`) is the default-free discount bond price with maturity �` and S(t) represents the

equity price. Then,

dV (t)�E
Q
t [dV (t)] = w3(t) (dS � E[dS])

+ (dr� E[dr])

�
w1(t)

@B(t; �1)

@r
+ w2(t)

@B(t; �2)

@r

�

+ (dz � E[dz])

�
w1(t)

@B(t; �1)

@z
+ w2(t)

@B(t; �2)

@z

�
: (43)

It is also true that:

dP (t)�E[dP (t)] =
@P (t; �)

@S

1

S
(dS �E[dS])+(dr� E[dr])

@P (t; �)

@r
+(dz �E[dz])

@P (t; �)

@z
: (44)

Comparing (43) and (44) and solving a set of simultaneous equations prove the positioning (32)-

(34) displayed in the text. 2
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Table 1: Yield, Credit Rating and Firm-Speci�c Distress Factors

In this table, we report the following bond attributes: (i) the average number of bonds outstanding per month, (ii) the
average yield (in %), (iii) the average numerical credit rating (assigned by S&P), and (iv) the average maturity. The
source is Lehman Brothers Fixed Income Database. Leverage is long-term debt divided by �rm value (sum of long-
term debt and market value of equity); B/M is book value of equity divided by the market value of equity; Pro�t
is operating income divided by net sales. All accounting (equity price) information is taken from COMPUSTAT
(CRSP). Bonds with credit rating between 1 and 5 are designated as AA-rated; between 6 to 8 as A-rated; and
higher than 9 as BBB-rated (or below). Each of the 93 �rms in our sample are coupon-paying, non-callable and
non-putable. We classify �rm-speci�c data by their industry a�liation, i.e., �nancial, industrial and utility. For
brevity, only the information on 25 �rms is shown. The number of observations is 46,262. The sample period is
March 1989 through March 1998.

Bond Attributes Distress Factors

Name No. of Yield Credit Maturity Leverage B/M Pro�t

Bonds Rating

Amr Corp 11.1 8.24 11.1 15.4 0.530 0.739 0.132

Boeing Company 7.8 7.39 3.9 29.7 0.119 0.504 0.090
Bank of America 17.7 7.18 7.4 6.9 0.337 0.531 0.268
Bell South Corp 7.5 6.84 2.0 22.4 0.167 0.355 0.444
Bear Stearns Co. 10.7 6.97 7.1 6.0 0.613 0.710 0.568
Bankers Trust NY 12.2 7.00 6.4 6.6 0.541 0.679 0.087
Citicorp 11.5 7.66 6.8 5.7 0.535 0.831 0.199
Coastal Corp 8.7 7.43 11.7 11.2 0.483 0.684 0.105
Chase Manhatten 9.2 8.32 8.4 6.1 0.588 1.570 0.161
Csx Corp 6.8 7.26 9.7 11.6 0.302 0.503 0.185
Delta Airlines 7.9 8.65 11.5 15.5 0.440 0.627 0.079
Consolidated Edison 8.4 6.64 5.8 5.6 0.356 0.748 0.278
Edison Internaitonal 10.1 6.59 6.1 4.3 0.448 0.742 0.352
Enron Corp 8.0 7.37 9.8 8.3 0.337 0.396 0.110
Ford Motor Company 7.5 7.29 6.5 19.9 0.771 0.737 0.192
First Chicago NBD 9.0 7.88 7.9 7.2 0.433 1.052 0.215
First Union Corp 9.9 6.91 8.1 7.1 0.309 0.639 0.230
IBM 6.2 7.04 7.0 20.1 0.182 0.388 0.157
International Paper 7.2 7.14 8.0 9.2 0.331 0.728 0.136
Merrill Lynch & Co. 17.6 6.73 5.9 5.1 0.621 0.710 0.514
Philip Morris Co. 18.4 6.91 7.0 5.4 0.190 0.206 0.228
Usx Corp 8.7 7.90 11.6 14.7 0.446 0.757 0.112
Niagara Mohawk Hld. 7.3 8.00 11.6 7.5 0.641 1.422 0.233
Time Warner, Inc 7.7 7.67 11.0 13.7 0.386 0.241 0.166
Wal-Mart Stores Inc 11.2 6.71 4.0 8.5 0.132 0.226 0.060

All 46262 7.26 7.7 9.43 0.427 0.635 0.229

Utility 10336 7.08 8.4 8.14 0.443 0.755 0.314
Financial 15452 7.22 6.9 6.80 0.546 0.738 0.264
Industrial 20474 7.39 8.2 12.12 0.341 0.496 0.163

AA 7081 7.07 4.3 11.32 0.334 0.534 0.166
A 24410 7.08 7.1 8.58 0.432 0.622 0.265
BBB and below 14771 7.65 10.6 9.89 0.477 0.710 0.209
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Table 9: Analysis of Credit Rating and Maturity Related Biases

The regression results are based on the following time-series speci�cation: APE(t) = �0+ �g GIP(t)+ �pTERM(t) +
�dDEF(t)+�(t). GIP is the growth rate of industrial production, TERM, the term premium, is the yield di�erence
between the 30 year treasury bond rate and the 3-month treasury bill rate, and DEF, the default premium, is the
yield di�erence between BBB-rated corporate bonds and AAA-rated corporate bonds. The method of estimation is
OLS. The t-statistic is computed using a heteroskedasically consistent estimator. R2 is the adjusted-R2 statistic (in
%). The regressions are done by rating and maturity. The sample period is March 1989 through March 1998. APE
is the out-of-sample absolute percentage pricing errors aggregated across the respective category.

�0 t(�0) �g t(�g) �p t(�p) �d t(�d) R2

Leverage 0.016 3.74 0.004 2.15 0.001 1.25 -0.007 -1.33 10.5
B/M 0.017 3.92 0.004 2.11 0.001 0.91 -0.007 -1.43 9.9

AA Pro�tability 0.038 5.55 0.002 0.63 0.001 1.38 -0.026 -3.34 14.5
Lagged Spread 0.021 4.95 0.004 2.24 0.000 0.56 -0.011 -2.34 15.4
Stock Price 0.024 5.36 -0.000 -0.16 0.001 1.62 -0.012 -2.27 6.1
Interest Rate 0.020 4.79 0.004 2.18 0.000 0.46 -0.010 -2.02 12.8

Leverage 0.002 0.65 0.003 1.82 0.001 1.42 0.010 2.54 6.3
B/M 0.002 1.65 0.003 1.43 0.001 2.53 0.010 2.53 6.1

A Pro�tability 0.027 5.75 0.003 1.42 0.004 5.59 -0.006 -1.12 27.6
Lagged Spread 0.003 0.82 0.003 1.69 0.001 1.35 0.010 2.47 5.7
Stock Price 0.002 0.47 -0.002 -1.02 0.001 1.41 0.019 3.64 17.5
Interest Rate 0.002 0.51 0.003 1.98 0.001 0.92 0.012 2.86 6.6

Leverage 0.004 1.06 0.002 1.50 0.001 1.28 0.015 3.45 9.9
B/M 0.006 1.80 0.002 1.21 0.001 1.48 0.012 2.89 7.4

BBB Pro�tability 0.046 7.62 0.003 1.29 0.001 1.36 -0.019 -2.71 13.6
Lagged Spread 0.004 0.99 0.003 1.64 0.001 1.23 0.015 3.43 9.7
Stock Price 0.009 2.35 0.003 1.66 0.001 1.22 0.014 3.10 7.9
Interest Rate 0.007 2.00 0.002 0.99 0.001 2.41 0.008 1.83 6.5

Leverage 0.001 0.44 0.002 2.29 0.001 3.57 0.006 3.24 19.1
B/M 0.001 0.80 0.001 2.18 0.001 3.45 0.005 2.87 17.1
Pro�tability 0.020 7.25 0.002 1.53 0.002 3.70 -0.008 -2.50 22.7

Short Lagged Spread 0.001 0.42 0.002 2.31 0.001 3.51 0.006 3.21 18.8
Stock Price 0.001 0.17 -0.002 -1.40 0.001 1.81 0.012 3.53 19.2
Interest Rate 0.001 0.51 0.002 2.47 0.001 3.21 0.006 3.17 17.5

Leverage -0.012 -2.30 0.003 1.34 -0.000 -0.07 0.035 6.01 26.1
B/M -0.010 -2.03 0.002 1.09 -0.000 -0.15 0.033 5.77 24.8

Medium Pro�tability -0.027 4.24 0.004 1.59 0.002 2.15 0.006 0.83 5.3
Lagged Spread 0.011 -2.19 0.003 1.37 -0.000 -0.18 0.034 6.06 26.3
Stock Price -0.008 -1.83 -0.001 -0.57 0.000 0.24 0.039 7.51 42.7
Interest Rate -0.009 -1.95 0.003 1.31 0.000 0.08 0.032 5.70 23.8

Leverage 0.018 2.95 0.005 1.89 0.001 1.11 0.001 0.10 3.6
B/M 0.018 2.92 0.005 1.69 0.001 1.16 0.001 0.14 2.7

Long Pro�tability 0.046 6.13 0.003 0.89 0.001 1.12 -0.005 -0.55 1.0
Lagged Spread 0.020 3.18 0.005 1.70 0.001 0.93 -0.000 -0.01 2.4
Stock Price 0.029 4.90 0.003 1.33 0.001 1.54 -0.006 -0.85 4.8
Interest Rate 0.020 3.09 0.006 1.93 -0.001 -0.59 0.006 0.80 0.8
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Figure 1: Out-of-Sample Mean Errors by Credit Rating (in Basis Points)

This graph displays the out-of-samplemean yield basis point errors for credit risk models.

Model 1 is the leverage ratio model; Model 2 is the B/M ratio model; Model 3 is the

pro�tability model; Model 4 is the lagged yield spread model; Model 5 is the stock price

model; and Model 6 is the interest only model. The mean yield basis point error is the

discrepancy between the market yield and the model determined yield. Yields are inverted

by solving the following equation: P (t; � ) =
R
t+�

t
c exp[�Y (t; � )u]du + F exp[�Y (t; � ) � ],

where Y (t; � ) is the yield-to-maturity and P (t; � ) is either the market or model-determined

coupon bond prices. The results are shown by credit rating.

Figure 2: Out-of-Sample Mean Errors by Maturity (in Basis Points)

This graph displays the out-of-samplemean yield basis point errors for credit risk models.

Model 1 is the leverage ratio model; Model 2 is the B/M ratio model; Model 3 is the

pro�tability model; Model 4 is the lagged yield spread model; Model 5 is the stock price

model; and Model 6 is the interest only model. The mean yield basis point error is the

discrepancy between the market yield and the model determined yield. Yields are inverted

by solving the following equation: P (t; � ) =
R
t+�

t
c exp[�Y (t; � )u]du + F exp[�Y (t; � ) � ],

where Y (t; � ) is the yield-to-maturity and P (t; � ) is either the market or model-determined

coupon bond prices. The results are shown by bond maturity.
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