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EDITORIAL NOTE

This working paper is a re-issue of an unpublished manuscript written eighteen years ago.1 The

reason for resurrecting it now is that it has been referenced recently in the new literature onrobust

control. In 1982, this topic had little currency in the economics literature; and even in engineer-

ing, where this field has been developed, the topic had just begun to take hold with the publication

of G. Zames’ seminal 1981 article onH1 control.2 Since I wrote “Activist vs. Non-Activist Mon-

etary Policy,” the technology of robust control has leap-frogged and so has understanding of the

subject, thanks largely to the many contributions by Lars Hansen and Thomas Sargent.3 Even so,

many basic insights and intuitions remain the same. Because this paper is framed in simple mathe-

matical terms, the reader may view it as a primer on robust control, useful even today, when much

of the literature on the subject tends to be very technical.

�Federal Reserve Board, Washington, DC 20551. The opinions expressed herein are solely those of the author and
do not necessarily represent the views of the Board of Governors or the staff of the Federal Reserve System.

1For technical reasons, the paper had to be be retyped (re-wordprocessed is the correct word now); and I thank
Karen Blackwell for doing it so well for me. I have taken the liberty to make some editorial improvements, which,
however, have not affected any of the original conclusions.

2“Feedback and optimal sensitivity: model reference transformations, multiplicative norms, and approximate in-
verses,” inIEEE Transactions on Automatic Control AC-26.

3See, for example, their most recent paper, “Robust control and filtering of forward-looking models,” unpublished
manuscript, University of Chicago and Stanford University, October 2000.



The paper was motivated by Milton Friedman’s remark that economists and policy makers

know too little about their models to make them useful for setting monetary policy. Therefore,

instead of varying money supply (the policy instrument of the day) in response to observed changes

in economic aggregates, central banks should determine a constant rate of money growth, a CMG,

and stick to it. I viewed this conclusion as too extreme, since it was well known that classical

characterizations of model uncertainty would not, except in an extreme version of policy multiplier

uncertainty analyzed by Brainard (1967), produce non-reactive policy. I considered, therefore, the

possibility that Friedman had something far more extreme than Bayesian risk in mind, a kind of

uncertainty that could not be described in terms of subjective or objective probability distributions.

This was the idea of uncertainty made famous by Frank H. Knight, which required an entirely

different approach to optimization. Since one cannot formalize Knightian uncertainty with well

defined probability distributions in a Bayesian sense, it is impossible to formulate policy based on

mathematical expectations, obliging the decision maker to resort to minimax strategies that seek to

avoid worst-case outcomes.

For pedagogical reasons, I confined the analysis to a one-equation model of nominal income

growth subject to uncertainty about its parameters as well as the underlying data. The paper shows

how, even under extreme uncertainty, a policy maker determines a money growth rule that is usu-

ally continuously responsive to observations, where particularities of the model determine whether

such a rule is more or less attenuated than one derived in a Bayesian framework. The last half of

the paper compares policies when the decision maker uses Bayesian or robust filtering techniques

or, alternatively, Bayesian or robust signal extraction methods for an imperfectly observed state

variable, such as trend output growth.

The model is written in static form and uses a simple quadratic social loss function. The results

are equivalent if one introduces dynamics and works with the implied asymptotic expected loss.

The archaic seeming terms used in the paper, such as “activist” and “non-activist” may be read as

“amplified” and “attenuated,” respectively. Also, the paper can easily be reframed to derive interest

rate rules, the focus of much modern policy analysis.

JEL classification: C6, E5

Keywords: Monetary policy, robust policy, model uncertainty, data uncertainty, Knightian uncer-
tainty, Bayesian risk, minimax policy, minimax filtering, Neyman-Pearson likelihood ratio,

signal detection.



ACTIVIST VS. NON-ACTIVIST MONETARY POLICY:

OPTIMAL RULES UNDER EXTREME UNCERTAINTY

Abstract

This paper analyzes the optimality of reactive feedback rules

advocated by neo-Keynesians, and constant money growth rules proposed by

monetarists. The basis for this controversy is not merely a disagreement

concerning sources and impacts of uncertainty in the economy, but also an

apparent fundamental difference in the attitude toward uncertainty about

models. To address these differences, this paper compares the relative

reactiveness of a monetary policy instrument to conditioning information for

two starkly differing versions of model uncertainty about the model and the

data driving it: Bayesian uncertainty that assumes known probability

distributions for a model's parameters and the data and Knightian

uncertainty that does not. In the latter case, the policy maker copes with

extreme uncertainty by playing a mental game against ``nature,'' using

minmax strategies. Contrary to common intuition, extreme uncertainty about

a model's parameters does not necessarily imply less responsiveness to

conditioning information--here represented by the lagged gap between nominal

income growth and its trend--and it certainly does not justify constancy of

money growth except in an extreme version of Brainard's (1967) result. A

partial constant money growth rule can be derived in only one special case:

if the conditioning variable in the feedback rule is also uncertain in

either Bayesian or Knightian senses and the authority uses Neyman-Pearson

likelihood ratio tests to distinguish noise from information with each new

observation.
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Federal Reserve Board

Washington, DC 20551

April 1982



I. INTRODUCTION: ON THE APPROPRIATENESS OF FEEDBACK POLICY

According to monetarist orthodoxy, the supply of money should be made

to grow at a constant rate. This constant money growth (CMG) proposition

has been defended on the grounds that policy should not be left in generally

incompetent hands, and that even if applied rationally, monetary policy has

unknown current or lagged effects that may be destabilizing. Such

uncertainty is said to result from the diffusion of information in markets

to which policy makers typically have no access, and from confusion caused

by policy concerning short-term vs.long-term monetary phenomena. Exponents

of this policy perverseness proposition include Friedman (1970, 1971),

Brunner and Meltzer (1972), and Brunner (1980).

An opposing group of economists, whom I shall label

``neo-Keynesians,'' holds to a theory of structural instability requiring

active, contingent intervention via optimal control procedures to stabilize

the course of the economy. Exponents of this policy effectiveness

proposition include Gordon (1977), Fischer (1977), Leijonhufoud (1968),

Modigliani (1977), Modigliani and Papademus (1980), and Okun (1972).

A thought provoking case against activist policies, including policies

based on optimal control procedures, has recently been made by Brunner

(1981). In essence, Brunner notes that frequently advocated control

procedures are model specific and require the possibly arrogant assumption

that the policy maker's information is sufficient and superior to the

information held by agents in the economy. However, if information sets are

identical, then the rational expectations literature [e.g.,Barro (1976),

Lucas (1976), and Sargent and Wallace (1973)] points to an

irrelevance proposition for policy.4

4Even in rational expectations models that have been the paradigm for

the ineffectiveness propositions, activist policies can be optimal if (1)

there exist contractual precommitments among agents in the economy [Fischer

(1977)], (2) private agents obtain information with lags [Taylor (1975)], or

(3) behavioral equations describing the economy contain unknown parameters,
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Neither paradigm in its extreme version seems to have much empirical

plausibility. Indeed, the strictest interpretation of the rational

expectations hypothesis, equating subjective and objective probability

distributions (and/or expectations) has been shown by Swamy, Tinsley, and

Barth (1981) to be problematical. However, one may speak of endogenous

expectations generated by the coherent behavior of all participants in an

economy where subjective opinions guide all decisions, subject to an

information state that (1) evolves over time and (2) is possibly endogenous.

In such an environment, endogenously generated expectations may have

neutralizing effects, but policy may not be altogether irrevelant.

A further, challenging criticism of optimal control techniques has

been offered in the context of non-causal or forward looking models.

Non-causal models describe economies in which current values of state

variables depend on expected future values. Generally, non-causal models

lead to situations in which the authority is engaged in dynamic games with

the private sector because participants in the economy make decisions

contingent on expectations of future policy decisions. As a result, there

arises the question of optimality vs.``time-consistency'' in macro economic

policy, an issue that is currently being debated in the literature

[vid.Buiter (1981), Calvo (1978) Kydland and Prescott (1977) and Lee

(1981)].

In forward looking models, i.e., in models in which agents in the

economy base decisions upon expected future policy decisions (and in which

as a result the current state of the economy is in part determined by the

future expected state of the economy), situations may arise in which at the

time the known policy is to be enacted, there emerges a better policy, even

though the initial policy was optimal when computed. In an environment in

which agents did not form forward expectations, the original policy would

remain optimal, and deviations from that policy would be sub-optimal.

and information costs are positive [Howitt (1981)].
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However, in economies containing forward expectations of policy, an optimal

policy may be different from the policy as originally announced and is

called time-inconsistent. The authority may well be tempted to revise its

originally announced policy, or, as suggested by Buiter (1981) and Lee

(1981), it may plan to revise policy in a manner not predicted by the

private sector but optimal from a social welfare point of view. Such

time-inconsistency may eventually give rise to credibility problems and

render policy self-defeating. Unfortunately, consistency of action implied

by adherence to announced policies (including Keynesian feedback and

monetarist CMG rules) can also lead to credibility problems, since by

construction, consistent policies are non-optimal in non-causal

environments: hence they fail to promote society's goals. Various

solutions have been offered, including proposals to construct optimal

policies under the constraint that the authority must follow through with

the plan, or to include a penalty for unanticipated policy changes in the

central bank's loss function. The imposition of constraints on the

volatility of the federal funds rate in controlling money supply aggregates

suggests the usefulness of such an approach. [vid.Tinsley and von zur

Muehlen (1981)]. An important feature of these approaches to controlling

non-causal environments is that such time-inconsistent rules are, indeed,

contingent, i.e., reactive feedback rules.

Although the above comment points to interesting and important issues

relating to the usefulness of reactive policy, this paper abstracts from

problems raised by endogenous expectations, the focus being on the nature of

optimal reactions to extreme uncertainty. Nevertheless, as indicated later,

the model, as specified, may encompass provisions for endogenous

expectations.

If it is legitimate to say that a policy maker is absolutely ignorant

about the economy's structure, i.e., faces a ``black box,'' then it is true

in a trivial sense that no decision can be made. This parallels the

statement in logic that in the absence of a set of axioms, it is impossible
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to arrive at a conclusion. Constant monetary growth rules proscribing

discretionary action are, of course, not derived from such a severely

restricting assumption concerning ignorance. Indeed, the decision not to

act in the sense suggested by a CMG rule is itself a rule to permit certain

kinds of activities and -- more importantly -- to allow the effects of

uncertainty to be allocated in a particular manner that would not be

implicit in a more reactive agenda. For example, a constant money growth

rule means that shocks to the demand for money are absorbed by movements in

interest rates, while an accommodative reaction that allows the growth of

money to vary reallocates the effect of the shock to the monetary aggregate

[vid.Tinsley and von zur Muehlen (1981)]. Indeed, for a constant money

growth policy, the volatility outcome depends on the particular operating

regime adopted. Under a reserves operating procedure, supply side shocks

not offset by accommodative changes in reserves must be reflected in

increased interest rate volatility. If, alternatively, such shocks were

accommodated by reserves changes, the interest rate volatility would be

less, even within the same framework of a constant money growth path. These

two regimes, while aiming at the same money growth target, would thus differ

in the volatility of reserves and the interest rate.

Care must be taken to distinguish reduced activism and non-activism.

To be sure, in a single-period context, increased multiplier uncertainty

reduces the size of policy responses [Brainard (1967)], but it does not

eliminate the contingent character in an optimal (linear-quadratic) feedback

rule.5 In a recent paper, Craine (1979) addressed this distinction and,

5This proposition does not necessarily extend to the multi-instrument case

and depends on whether the reaction matrices before and after the change in

covariances of the impact multipliers commute [Pohjola (1981)]. Further,

in multi-period stochastic control problems in which the distributions

of random variables are conditioned on current information, the need to

evaluate expected future information for close-loop control can lead to

probing, which adds to the activity of a control [Bar-Shalom and Tse (1973)

and Bar-Shalom (1981)].
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based on simulations of neo-Keynesian and monetarist versions of a dynamic

random coefficient model, concluded that when there is uncertainty about the

impact of policy alone, the optimal policy converges to a fixed money growth

rate as the multiplier variance becomes large. When there is uncertainty

about the transition dynamics only, the optimal policy will be reactive at

all levels of uncertainty. If both types of uncertainty co-exist, policy

may become more active even as multiplier uncertainty increases. Thus,

multiplier uncertainty may be an insufficient reason for caution. In a

historical context, Craine and Havenner (1978) found reactive policies to be

less successful in terms of welfare losses than certain fixed rules. This

conclusion was based on simulations of alternative policies using the

MIT-Penn-SSRC model over the period 1973 III- 1975 II. That period was, of

course, characterized by significant supply side shocks with regard to which

the model was possibly misspecified. One possible explanation is that

policy makers of that period felt they confronted a world more fitting the

monetarists' conception of insurmountable uncertainty.

James Tobin once characterized constant growth strategies advocated by

monetarists as essentially equivalent to minmax strategies. Minmax

approaches are typical in situations of extreme uncertainty, and judging

from the language used by advocates of CMG rules, this characterization may

not be unwarranted. Intuition suggests that policies designed to avoid

worst-case outcomes may be called for if one knows little or nothing about

the consequences of policy but fears the worst. Such intuition turns out

not to be well founded in all cases: this paper shows that even when facing

worst-case scenarios, the policy maker formulates rules that, with minor

exceptions, have all the appearance of continuous feedback rules familiar

from Bayesian control methods. Further, also contrary to conventional

wisdom, robust rules determined under Knightian uncertainty need not be less

aggressive in their reactions to observed data than certainty equivalent

rules derived under Bayesian assumptions.

Section IV derives Bayesian and robust policies under data
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uncertainty, i.e., when the conditioning information in a feedback rule is

uncertain. In my model, the conditioning variable is the lagged spread

between nominal income growth and its trend, where it is natural to assume

that one of its components, real trend output growth, is not fully revealed

for many periods. I show that when the distribution of disturbances to

nominal income growth is unknown, a minmax filtering solution leads to a

rule that is not necessarily more attenuated than one based on a Bayesian

filtering rule, which assigns a known distribution to the noisy process. If

the stochastic process is dichotomous, consisting of either pure noise or

noise with information, then policy is affected by prior signal extraction

that seeks to distinguish between these two cases. I find that both

Bayesian and minmax signal extraction procedures lead to regime switching

rules in which periods of constant money growth alternate with periods of

reactive money growth, with lagged observed income growth serving as the

conditioning variable.

To preserve simplicity, I describe only single-period, static

policies. But, as indicated in several footnotes, in the present context,

static minmax solutions are identical to dynamic minmax solutions anyway.6

More generally, results in Craine and Havenner (1978) and Kalchbrenner and

Tinsley (1976) indicate that in a control theoretic framework with Bayesian

uncertainty, offsetting effects of current and future uncertainty can lead

to increased aggressiveness. Therefore, confining the analysis to a

single-period treatment of the problem will, if anything, prejudice the

results in favor of fixed rules.

II. THE MODEL

6Although an extension of this discussion to dynamics is formally

straightforward, the issue of long-run planning may present problems. As

shown by Athans and Gershwin (1977), the existence of optimal long-range

stochastic control is subject to an ``uncertainty threshold'' principle,

which states that such control is possible only if a certain index of

dynamic uncertainty (as quantified by a ratio of means and variances of the

random parameters) is less than one.

6



A suitable framework for analysis is the following model of nominal

income growth,

yt = at yt�1 + bt mt + vt; (1)

where yt is the deviation of the rate of growth of nominal GNP from its

target rate; mt is the rate of growth of money; and at, bt, and vt are

variables that are alternately assumed to be known, or random with known

distributions, or random with unknown distributions.7 The additive

stochastic term, vt, may encompass the set of exogenous variables known to

affect yt.
8 Below, I discuss situations when yt is uncertain in either the

Bayesian or Knightian sense. Uncertainty about y highlights a typical

problem for policy makers who very often must deal with uncertainty in the

trend growth rates of output and productivity.

7The President's Council of Economic Advisors provides an annual

set of targets for income, employment, and inflation, as mandated by

Humphrey-Hawkins legislation (the ``Full Employment and Balanced Growth Act

of 1978''). Tinsley and von zur Muehlen (1981) analyzed policy rules that

seek to maximize the likelihood of achieving such a target set.
8Equation (1) encompasses a variety of substructures relating to agents'

decisions and information sets. Defining the set of random parameters

�0t = [at; bt; vt], such that yt = x0t�t, where xt = [yt�1;mt; 1]. A general

description of the �t process is �t = ��qt + et, where �� = [��1; ��2; : : : ; ��m] is

a 3xm matrix of fixed parameters, qt = [q1t; q2t; : : : ; qmt)
0 is an mx1 vector of

fixed variables (possibly including policy parameters), and fetg is a purely

indeterministic stationary process. The vector, qt, may be interpreted as

the set of conditioning information variables in the economy on which agents

and the authority base their respective decisions. Following Swamy, Barth,

and Tinsley (1981), the specification in (1) can be viewed as encompassing

various degrees of interdependence of decisions and asymmetric information

sets playing upon the model's parameters, �t. Accordingly, equation (1) is

within the framework of a fully rational, interdependent system in which the

parameters, �t, are not invariant to policy. The polar case, for which the

prerequisites for active control are supposedly violated, as suggested by

Brunner (1981), holds that certain elements of �t are unknown.
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The periodic loss is assumed to be quadratic in y and m,9

L(at; bt; mt vt; ) = y2
t
+ �mm

2

t
; (3)

and the policy maker is assumed to minimize the expectation E(L), which may

be loosely interpreted as a weighted sum of the unconditional variances of

y and m.10 Solving this problem requires knowledge of the first two

moments of all random variables. For minmax strategies, the criterion is

also (2), but selected parameters and variables are taken to be random with

unknown distributions. To assure existence of optimal minmax policies, the

random variables are assumed to have finite support, as indicated below.

Under the form of Knightian uncertainty adopted in this paper, the

9Although I will set �m = 0 in the discussion, a term for money growth

in the loss function can be motivated by the following argument: For

various reasons, central banks generally try to minimize excessive movements

in interest rates and would therefore probably include an interest rate term

in the loss function. Imagine a (background) equation describing the demand

for money, modeled as a function of income and the interest rate,

mt = ctyt + ktit + ut; (2)

where it is a market interest rate, ct and kt are known parameters, and ut

is a stochastic error, uncorrelated with vt. Given money and income growth,

the equation determines changes in the interest rate, the square of which

then depends on the squares of money and income growth (plus cross terms).
10The analysis in the text focuses on a single period. For our purposes,

this is of little consequence, since the corresponding expected discounted

multi-period loss is similar to (3),

E(L) = (1� �)
1X
1

�t fy2
t
+ �mm

2

t
g;

= (1� �)
1X
1

�t fEy2
t
+ �mEm

2

t
g;

= �2

y
+ �m�

2

m
;

where � is the social discount factor.
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authority is assumed to know very little, other than that parameter and data

uncertainty is bounded, and that the nominal model used for policy is a

reasonable approximation of the true model. While this characterization of

uncertainty may not reflect complete ignorance, it is probably no less than

even most skeptical observers could agree on.

III. POLICIES UNDER ALTERNATIVE SPECIFICATIONS OF MODEL UNCERTAINTY

III.1. Uncertain Intercept

To keep the discussion a simple as possible, I assume strict nominal

income targeting and set �m = 0 throughout. In this section, I assume that

at and bt are assumed to be known constants, while vt is the realization of

a random variable, v, with unknown distribution, where

�1 < v1 � vt � v2 <1; v1 < 0; v2 > 0. Note that since v has an unknown

distribution, it is impossible to form expectations in closed form.

Instead, I assume that vt is a deterministic sequence chosen by nature to

maximize the decision maker's loss.

By the minmax criterion, the authority wishes to protect the economy

from disaster in the current period, as represented by the maximum of the

loss function (2). Substitute (1) into (2) and note that the maximum of (2)

is given by

L� = max
vt

L = max
vt

[S(yt�1;mt) + vt]
2; (4)

where

S(yt�1; mt) = at yt�1 + bt mt:

For any chosen value of mt, a maximum of L requires

sign vt = sign S(yt�1; mt);

since v1 < 0; v2 > 0: Since nature is assumed to inflict greatest harm, it
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will choose v1 or v2 accordingly. The authority would like to immunize

social welfare losses to that choice, and I shall call minmax policies that

achieve this objective ``neutralizing.'' A neutralizing policy that makes

L the same whether v1 or v2 is chosen is the feedback rule,11

m̂t = �b�1
t
[at yt�1 +

v1 + v2

2
]: (5)

The implied yt process is found by substituting this rule into (1),

yt = vt �
v1 + v2

2
: (6)

By comparison, if the distribution of v is known (for example, assume that

v � N(�v; �2

v)), then the certainty-equivalent, linear-quadratic (LQG) rule

is

mc
t = �b�1t [at yt�1 + �v]; (7)

so that the regulated yt process becomes

yt = vt � �v: (8)

Under the minmax rule, the authority is indeed indifferent to

nature's choice, since, whether nature choses v1 or v2, the loss is the

11Observe that (v1 + v2)=2 is the expected value of a uniformly distributed

variable, v, with support v1 and v2. Thus, rule (5) could also have been

obtained via minimization of the expected loss E(L) under the uniform

distribution assumption. With that interpretation, the minimized expected

loss is given by

E(Lc) = �2

v = (
v2 � v1

2
)2;

which is also independent of the choice of v. Therefore, in the present

example, a minmax solution formally implies the same rule obtained under the

assumption that v is uniformly distributed over the range [v1; v2].
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same:

L(at; bt; mt; v1) = (
v2 � v1

2
)2 = L(at; bt; mt; v2):

In comparing rules (7) and (5), note that both react identically to

innovations in income growth, based on the feedback coefficient, �a=b.

Both rules augment money growth with a constant factor, as determined by

either the mean of the v process or by its boundary midpoint (v1 + v2)=2.

One cannot say, then, that the minmax rule is necessarily less activist than

the certainty-equivalent rule.

III.2. Uncertain System Dynamics

Assume now that bt is constant and known, that vt is either known or

random with distribution N(�v; �2

v
); and that at is a random variable with

unknown distribution and finite support, 0 < a1 � at � a2 <1. Stability

requires jatj < 1. Potentially, one of nature's tricks is to set a > 1.

The loss function, given a choice of mt, can be re-written as

L = y2
t�1

(at +
bt

yt�1
mt +

vt

yt�1
)2;

which, for any choice of mt, has a maximum at a�, such that

sign a� = sign[
bt

yt�1
mt +

vt

yt�1
];

if the term in brackets is nonzero. For any outcome, vt, the authority

wants to neutralize nature's choice which, by the maximum harm conjecture,

will be a1 or a2. Therefore, an neutralizing policy is given by the rule,

m̂t = �b�1
t
(
a1 + a2

2
)yt�1: (9)

Notice that m̂t = 0 only if a1 = a2 = 0 or a1 = �a2. Both cases are ruled

out -- the latter by assumption and the former because it contradicts the
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premise of Knightian (or any) uncertainty. A CMG rule is implied, albeit in

a formal sense, only in a situation of extreme ignorance about a, i.e.,

when a1 and a2 are also unknown, i.e., if the support of a is unknown or

unbounded. But then, since no policy exists to prevent catastrophy, all

policy would be pointless, in any case.12

Under the minmax rule, the path of the economy is

yt = (at �
a1 + a2

2
)yt�1 + vt; (12)

so that the welfare loss is independent of nature's worst possible choice of

a:

L(a1; bt;mt; vt) = (
a2 � a1

2
)2 y2

t�1
+ v2

t
= L(a2; bt;mt; vt):

When the probability distribution of a is known, the linear-quadratic

12The minmax rule can be given a Bayesian interpretation by positing at to

be uniformly distributed on [a1; a2], and to be uncorrelated with vt. The

optimal money growth rule, obtained by minimizing E(L), is

m� = �b�1
t
(
a1 + a2

2
)yt�1 � b�1

t
�v; (10)

which differs from (9) by the quantity �b�1�v. Thus, while the expected

minimized loss under (9) is

E(L̂) = (
a2 � a1

2
)2y2

t�1
+ �2

v
+ �v2;

the expected loss under (10) is

E(L�) = E(L̂)� �v2 < E(L̂): (11)

Therefore (10) dominates (9). In either case, the expected loss is

independent of the choice of a2 or a1; thus m� is also minmax.
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optimal rule is

mc
t
= �b�1

t
(E(a) yt�1 + �v); (13)

from which follows the stabilized output path,

yt = (at � Ea)yt�1 + (vt � �v):

In comparing the Bayesian rule (13) with the minmax rule (9), note

that both react to lagged income growth using some notion of an average of

the income persistence parameter, a. Whether one or the other rule is more

activist, depends entirely on assumptions made about this parameter in these

two situations. In either case, the preceding discussion demonstrates that

Knightian uncertainty about system dynamics clearly does not imply a

constant money growth rule.

III.3. Uncertain Policy Multiplier

Assume now that a and v are either known or, if random, have known

(normal) distributions, N(�a; �2

a
) and N(�v; �2

v
), respectively, where

0 < at < 1, and that b is random with bounded support 0 < b1 � bt � b2 <1.

The loss function can be written as follows:

L = m2

t
(
atyt�1 + vt

mt

+ bt)
2;

which has a maximum at b� for any chosen mt if

sign b� = sign(
at yt�1 + vt

mt

):

Given at, this implies the minmax rule,

m̂t = �
at

(b1 + b2)=2
yt�1; (14)
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and the regulated nominal income growth equation,

yt = at(1�
bt

(b1 + b2)=2
)yt�1 + vt: (15)

Notice that stable nominal income growth requires that atjb2 � b1j < b1 + b2,

a condition that is always fulfilled if a < 1, as posited.

It is easily demonstrated that the implied loss is neutral to nature's

choice of b, since

L(at; b1;mt; vt) = a2t

 
b2 � b1

b1 + b2

!
2

y2t�1 = L(at; b2;mt; vt): (16)

The minmax solution may be contrasted with the Bayesian formula under

the assumption that b is random with known distribution and at is known,

mc
t
= �

at
�b+ �2

b
=�b
yt�1 �

�v + �vb

�2

b
+ �b2

; (17)

where � is used to indicate the mean of a variable and �2

b
and �vb denote the

variance of b and the covariance between v and b, respectively. As this

rule indicates, an increase in the variance of the policy multiplier, b,

leads the policy maker to become less activist; and, as �2

b becomes very

large, the optimal policy even approaches a CMG rule of doing nothing.13

The preceding Brainard rule implies the following stabilized

transition equation for nominal income growth:

yt = (at � bt
�a

�b+ �2

b=
�b
)yt�1 + vt � bt(

�v�b+ �vb

�2

b +
�b2

): (18)

13This result was first introduced by Brainard (1967) and was further

explored by Craine(1979). In a somewhat different context, rules that

feature episodes of action and no action, subject to triggering thresholds,

were derived by von zur Muehlen (1978), who analyzed a policy model in which

monetary policy steps judged to be out of the ordinary act as signals of

changed policy intentions, causing agents to alter market behavior.
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Comparing the minmax and Bayesian rules in the case of multiplier

uncertainty, we note that these rules are actually quite similar in

conception: both are increasing functions of the persistence parameter, at,

and inverse functions of either the mean of the multiplier, bt, in the

Brainard rule, or of the midpoint of its support, (b1 + b2)=2, in the minmax

rule. The latter fraction is not a mean (which is unknown) but a measure of

the spread between the supports of b, measuring the decision maker's view of

the feasible range of alternative models. Policy, in a very real sense, is

set with an eye toward the extremes of feasible models, not some average of

them.14 In the Bayesian rule, the role of this spread is played by �2

b
=�b.

How much more or less activist the minmax rule is in comparison with the

Bayesian rule is a matter of the exact specification of the parameters. The

Bayesian rule is more attenuated, for example, if �2

b
=�b > (b1 + b2)=2, that

is, if the range of Bayesian uncertainty surrounding the mean of b is

greater than the spread of the upper and lower limits of the support of b

under Knightian uncertainty. This seems like a natural conclusion and

probably generalizes to more complex cases. There is no a priori clear

reason that policy under Knightian uncertainty is any more or less

aggressive than under Bayesian uncertainty.

III.4. Combined Uncertainty in Persistence and Policy Effectiveness

I now combine the previous two cases for the sake of completeness and

assume that both at and bt are uncertain with supports as stated in the

previous sections. It is not difficult to establish that the minmax

neutralizing criterion requires the money growth rule,

m̂t = �
a1 + a2

b1 + b2
yt�1; (19)

which is easily shown to leave welfare loss immune to nature's choice of a

14This should not be interpreted as saying that policy makers who prefer robustness

fear gloom and doom. Rather, within a possibly narrow range of feasible models, they

find themselves unable to state with any precision which one might be the most likely

model. Minmax control should be viewed as dealing with small differences in models.
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and b. That is, any of the combinations (ai; bj; i; j = 1; 2) causes the same

maximum loss. Consider now the case (a2; b1) representing a model with the

highest feasible persistence and the lowest feasible policy effectiveness.

This is clearly the worst possible model a policy maker might face.

Substituting these values and the above rule into (1) generates the

controlled transition equation for nominal income growth,

yt = (a2 � b1
a1 + a2

b1 + b2
)yt�1 + vt: (20)

Stability of nominal income growth requires that a2b1 � a1b2 < b1 + b2, or,

equivalently, that a2 < 1 + (1 + a1)b1=b2. A sufficient condition is that

a2 < 1. But, in the mind of a policy maker, the worst-case persistence

parameter, a2, could exeed 1 by some amount that is inversely related to

the worst-case policy multiplier, b1. So, for a robust rule to work at all,

the boundaries of the feasible set of models are jointly constrained: if,

at its worst, policy is very limited in its effects, the uncontrolled

worst-case persistence of output growth must then be correspondingly

smaller.

IV. DATA UNCERTAINTY

As previously defined, y is the gap between the growth rate of nominal

GNP and that of its trend or potential, where uncertainty about the latter

typically lingers for a considerable number of periods. All the feedback

rules derived above are therefore likely to be subject to additional errors.

In the following, I explore various ways of coping with uncertainty

surrounding the conditioning variable in a feedback rule. Let

zt = yt�1 + "t; (21)

where yt�1 � N(Eyt�1; �
2

y
) is the unknown true series, zt is the observed

series, " � N(0; �2

") is its noise component, and yt�1 and "t are

uncorrelated.
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I will distinguish two related cases: (1) a model in which " is

unknown but has finite support allowing the authority to formulate a minmax

strategy; and (2) a model that assumes zt contains either a combination of

signal and noise, or pure noise with a known probability distribution. Case

(2) is handled using signal detection methods which precede the choice of a

policy action.

IV.1. Bayesian vs. Minmax Filtering of Trend Growth

Let " have an unknown random distribution satisfying

�1 < "1 � "t � "2 <1;� "1 < 0; "2 > 0. To simplify, assume that at and

bt are known constants, where 0 < at < 1; and that v � N(0; �2

v
) is white

noise uncorrelated with "t and yt�1. The implied loss function is

L = (at zt + bt mt + vt � at "t)
2;

where (21) has been substituted for yt�1. The authority chooses a feedback

rule for m to minimize L under the assumption that nature selects "t to

maximize L. Accordingly, since for any realization of at, bt, and vt, and

any choice of mt, L is a maximum at "� whenever

sign "� = �sign(
at zt + bt mt + vt

at
);

the optimal, neutralizing choice of mt is

m̂t = �
at

bt
(zt �

"1 + "2

2
); (22)

since vt is unknown to the authority. This feedback rule is similar to (5),

except that the authority responds to zt rather than to yt�1. Note that

even under Knightian uncertainty about trend growth, it remains optimal to

react with a committed rule to the available information, here represented

by zt. Upon substituting this rule into (1), the implied growth rate of
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nominal income is shown to be the mixed random process,

yt = at(zt �
"1 + "2

2
) + vt: (23)

By comparison, Bayesian minimization of the conditional expected loss,

L, under the assumption that all relevant distributions are known, implies

the transition law for y,

yt = at(1�
�2

y

�2

y + �2

"

)(yt�1 � Eyt�1)� at
�2

y

�2

y + �2

"

"t + vt; (24)

which follows from the feedback rule,

mc
t

= �
at

bt

�2

y

�2

y
+ �2

"

(zt � Eyt�1)�
at

bt
Eyt�1; (25)

= �
at

bt

�2

y

�2

y + �2

"

zt �
at

bt
(1�

�2

y

�2

y + �2

"

)Eyt�1;

where the expectation of yt�1 is conditional on the observation, zt�1. In

this rule, money growth responds to observed income, zt, adjusted for a term

representing the surprise between observed and expected growth. Comparing

this rule with the minmax rule derived in (22), note that in the latter,

money growth responds to the observation, zt, with a factor, �at=bt. In

the Bayesian rule, the response parameter is attenuated by a factor which is

clearly less than 1. The degree of attenuation increases as relative

uncertainty about income growth rises, where, in the limit, money growth is

determined solely by expected income growth, unaltered by new observations.

This is clearly not what happens in the minmax rule. Under the robust rule

in (22), a widening of the range of uncertainty in nominal income growth

leads to an increase -- not a decrease -- in the desired growth of money!
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IV.2. Bayesian vs. Minmax Signal Detection of Trend Growth

Occasionally, observed changes in the conditioning variable may be no

more than noise, i.e., not a mixture of signal and noise.15 If one could be

sure of such instances, one would know not to change policy, either. In

reality, one cannot distinguish with certainty among instances when

observations provide true information and when they do not. To analyze this

situation, assume first that the distribution of "t is known. The task now

is to distinguish when an observation is noise and when it might be a

signal. To find a rule for choosing, a decision-theoretic framework [Lehman

(1959)] is used.

Let H0 be the hypothesis that an observation is pure white noise:

H0 : zt = "t;

and let H1 be the hypothesis that zt also contains the signal, yt�1:

H1 : zt = yt�1 + "t:

If "t is normally distributed with mean zero and variance �2

"
, then the two

corresponding densities are defined as

H0 : p(zjH0) = N(0; �2

"
);

H1 : p(zjH1) = N(yt�1; �
2

"
):

Although there are various criteria for establishing tests of a

signal, the Neyman-Pearson likelihood ratio test assigning observation

15I am not asserting that the case described here is typical or even

important. I discuss this example mainly because it leads to the rare

instance of policy turning constant, at least episodically.
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thresholds to a variable is selected here. Let �0 and �1 denote the

a priori frequency of noise, and of noise plus signal, respectively. A

decision adopting H0 is denoted d0 and a decision adopting H1 is denoted

d1. Either decision, di, may be correct or incorrect, where the incorrect

decision can be a false alarm (d1 selected when H0 is true) or a miss (d0

selected when H1 is true).

The decision maker is assumed to select the limits -z0 and z0, such

that H0 is accepted whenever �z0 � z � z0. The probability that z is

outside this range, even though it is merely noise is defined as

�(z0) =
Z
�z0

�1

p(zjH0)dz +
Z
1

z0

p(zjH0)dz;

and the probability that z is inside the range even though there is a

signal is defined as

�(z0) =
Z z0

�z0

p(zjH1)dz:

Therefore, the probability of a false alarm is

p(d1;H0) = �0 �;

and the probability of a miss is

p(d0; H1) = �1 �:

IV.2.a. A Bayesian Criterion for Evaluating the Likelihood Ratio

Let R denote the linear Bayes risk function

R = c0 ��0 + c1 � �1;

where c0 and c1 are positive and finite constants expressing the marginal

cost of a false alarm and a miss, respectively. The first-order condition
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with respect to z0 can be solved such that

L(z0) =
�(z0)

�(z0)
=
c0�0

c1�1

= K

defines a likelihood ratio. If L(zt) < K, the decision is that zt is

noise, and that as a consequence one does not react to it in the manner

exemplified by (25) or even (22), and vice versa, if L(zt) � K. Observe

that the likelihood of interpreting an observation as pure noise is greater

if the prior probability of noise, �0, or the subjective cost, c0, of a

false alarm is relatively large, since in both these cases K is larger.

If noisy information is treated as described above, the optimal

feedback rule for money is a CMG rule during periods when L(zt) < K,

assuming at, bt, and Eyt�1 to be fixed. That is, suppose the policy

authority follows the feedback rule (25). In periods when L(zt) < K, the

authority sets money growth as a function of the prior expected value of

yt�1 only, i.e.,

m̂t = �
at

bt
Eyt�1; (26)

which becomes a CMG when at, bt, and Eyt�1 are constant. The linear

quadratic Gaussian model with noisy information generally implies the

continuous feedback rule (25). However, policy may switch intermittently

between continuous reaction to data and no reaction at all when there is

uncertainty about whether an observed change in the data measuring nominal

income growth reflects a change in fundamental trend growth or is purely

transient.

IV.2.b. A Minmax Criterion for Evaluating the Likelihood Ratio

Alternatively, the threshold may itself be selected via the more

conservative minmax criterion by minimization of the maximum ``Bayes loss,''

R, if Knightian uncertainty attaches to the prior probability of noise,
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�0. Noting that �0 = 1 - �1, R may be rewritten as

R = [c0 �(z0) � c1 �(z0)] �0 + c1 �(z0):

Suppose nature chooses �0 maliciously. Then the decision maker

should choose z0 to make the Bayes loss, R, independent of �0, namely such

that

c0 �(z0 ) = c1 �(z0):

Given this, the ``minmax'' likelihood criterion becomes

L�(z0) =
�(z0)

�(z0)
=
c0

c1
= K�;

where, comparing with the previously computed K,

K� � K if �0 � :5;

if �0 were, in fact, known. The minmax criterion is thus equivalent to

assigning a 50 percent probability to either H1 or H0. Observe, too, that

since L�(z0) is an increasing function of z0, the minmax policy implies

wider CMG bands than the minimized Bayes risk function only if �0 < :5.

Thus, if under the minimum risk criterion, the prior probability of pure

noise is believed to be equal to or smaller than one half, the implied CMG

range of inaction [�z0; z0] is equal to or smaller than the range obtained

under a minmax criterion. Conversely, the minmax criterion leads to a

smaller range of inaction, if �0 is believed to exceed one half, given the

Bayes policy. This example is further evidence that robust policies derived

in the face of Knightian uncertainty are not necessarily more restrained

than policies derived under less intimidating circumstances.16

16When deriving dynamic policies, thresholds such as those defined above

are determined sequentially by some updating rule. Thus, in the i-th
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Finally, if the monetary rule chosen by the authority is the

linear-quadratic feedback policy (25), then, in periods when L(zt) < K, the

optimal value of mt under the minimum Bayes risk criterion is

mc
t
= �

at

bt
(1�

�2

y

�2

y
+ �2

"

)Eyt�1:

Observe, that in the limit, as �2

�
becomes very large, mc

t
is ruled in large

part by the prior expectation, Eyt�1, while under the minmax rule, (22),

mt depends on the maximum and minimum possible error. Thus, while Bayesian

policy merely reduces the influence of data when �2

"
becomes large, the

minmax rule is always keyed to the midpoint between the boundaries of the

support of the unknown process driving trend growth.

V. CONCLUDING COMMENT

It might be objected that the outcome of static mental experiments

biases the conclusion. Certainly, static solutions are not necessarily

optimal in a dynamic sense. The static approach neglects future

uncertainty. But as pointed out by Craine (1979), in dynamic situations,

future uncertainty (empheasized by Friedman) tends to raise the current

level of the average policy response, while current uncertainty (emphasized

by Brunner (1980)), lowers the response. In this sense, the static examples

in this paper are not necessarily biased in favor of the activist paradigm.

Moreover, in the examples described here, static and dynamic solutions are

identical.

A reading of the monetarist literature suggests that a principal

motivation for wanting a fixed money growth rule is a sense that

period, the prior probability, �0, of noise is updated sequentially, based

on information gained in the preceding period. Interestingly, such an

updating procedure does not exist if the thresholds are determined by a

minmax strategy, since, as just shown, signal extraction based on a minmax

strategy is independent of �0. The minmax criterion precludes learning

about probability distributions, and vice versa.
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discretionary policy causes pro-cyclical uncertainty. This paper takes up

this particular reasoning and, to load the result as much in favor of the

monetarist stance as possible, considers the case of Knightian model and

data uncertainty. Even so, and perhaps surprisingly, nonactivist behavior

as a response to extreme uncertainty seems to be the exception rather than

the norm. When comparing standard Bayesian, linear-quadratic feedback rules

with corresponding minmax rules, one finds the former tend to be neither

more nor less attenuated than the latter, and that all depends on a

comparison of the means and variances of the parameter distribtions in

Bayesian cases and the underlying limits on the supports of the parameter

space assumed in the case of Knightian uncertainty.

The value of the preceding exercises is perhaps best appreciated if

one realizes the extreme skepticism with which typical policy makers regard

almost any description of the economy, formal or not. Another way of

stating this is to assert that policy makers view almost all parameters of a

given model economy as extremely uncertain. Fixed rate monetary growth

rules may have been adopted as the most robust-seeming policy in the hope of

insulating the consequences of policy from errors arising from uncertainty.

The question that has been posed here is whether the desire for robustness,

indeed, requires the extreme of a fixed rate of growth in the instrument.

The apparent conclusion is that this monetarist prescription really applies

only in limited and possibly rare circumstances.

James Tobin (1980), expressing doubts about the value of fixing the

rate of growth of money, points out that policy makers do not need full

structural information to formulate intelligent activist macroeconomic

policies. Indeed, Kalchbrenner and Tinsley (1975, 1976, 1977), have argued

that through proper use of information, optimal stabilization strategies can

be efficiently adapted to stochastic environments confronting the authority.

Even the most extreme version of the contrary belief that government can do

little to inform itself, let alone improve social welfare, does not

necessarily imply inaction or even diminished action. The difference in
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views thus seems to depend less on philosophical or technical disagreements

than on a divergence of opinions regarding the competence of central banks.

If central bankers are generically unable to use discretion or follow

rules, a regime denying them discretion and rules would be optimal, since

potential harm is thus minimized. But a broad-brush characterization of

incompetence is clearly unproved and, indeed, unprovable as an empirical

proposition; and if it is false, an unnecessary adherence to perpetual

inaction would lead to welfare losses.
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