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Abstract

This paper implements recursive techniques to estimate the equilibrium level of M2

velocity and to forecast ination using the P � model. The recursive estimates of equilibrium

velocity are obtained by applying regression trees and least squares methods to a standard

representation of M2 demand, namely a model in which the velocity of M2 depends on the

opportunity cost of holding M2 instruments. Equilibrium velocity is de�ned as the level of

velocity that would be expected to obtain if deposit rates were at their long-run average

(equilibrium) value. We simulate the alternative models to obtain real-time forecasts of

ination and evaluate the performance of the forecasts obtained from the alternative models.

We �nd that, while a P � model assuming a constant equilibrium velocity does not provide

accurate ination forecasts in the 1990s, a model based on our time-varying equilibrium

velocity estimates does quite well.
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1 Introduction

Given an estimate of real potential output, Q�, and an estimate of equilibrium velocity, V �,

P � is de�ned as the equilibrium level of prices supported by the current quantity of money

in circulation, M :

P �

�

MV �

Q�

As Hallman, Porter and Small (1991) showed, P � can potentially provide a useful anchor

for the price level and as such be utilized as a tool for predicting ination. The framework

for understanding the monetary dynamics of ination relies on the simple idea that if the

current price level, P , deviates from its equilibrium level, P �, then ination will tend to

move so as to close this gap between the actual and equilibrium price levels|the price gap.

However, implementation of the framework requires a �rm understanding of what the

level of equilibrium velocity is. Much of the original appeal of the Hallman, Porter and Small

study was based on the simplicity of their de�nition of V �. Using M2, they showed that

assuming a constant equilibrium velocity for their sample (1955 to 1988) was a su�ciently

accurate representation despite the waves of �nancial innovation which had taken place

during that time period. As monetary practitioners and theorists have always recognized,

however, the continuous innovation in �nancial markets implies that such presumed observed

constancies cannot be taken for granted.1

By now it is well known that the presumption of constancy of the equilibrium velocity of

M2 is no longer valid. As early as 1991 the stability of the historical statistical relationships

involving M2 was already being questioned at the Board of Governors. (See Feinman

and Porter (1992) for an early accounting of this breakdown.) And consequently, it was

recognized that using the P � framework to forecast ination, based on the assumption of a

constant equilibrium velocity for M2, was no longer reliable.

In this paper we investigate how the P � framework could be used in an environment in

which V � may be time varying. Speci�cally, we provide some guidance regarding how the

1Indeed, in recognition of this truism, Hallman, Porter and Small warned that \[i]f permanent shifts to
velocity are empirically signi�cant, actual prices would diverge from P � in the long run."
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equilibrium velocity of M2 could be adjusted to enable continuing use of the price gap for

forecasting ination.

An obvious ex post \correction" could been obtained directly by simply computing the

value of V � which would have eliminated the ination forecast errors resulting from the

incorrect assumption of a constant V �. But such an exercise is circular and would be use-

less for forecasting ination in real time. Rather, information from other variables observed

contemporaneously with velocity should be brought into consideration. To that end, we

examine the co-movements of velocity and the opportunity cost of money suggested from

traditional money demand formulations as our alternative source of information regarding

potential changes in equilibrium velocity and compute the change in V � implied in that

relationship.2 We examine several alternative speci�cations of V � which could have rea-

sonably been obtained in real time by recursive estimation, as soon as the breakdown in

equilibrium velocity was recognized. Eventually, each of our estimates exhibits a notice-

able upward shift in equilibrium velocity of about the same amount, although they di�er

somewhat regarding the date when the shift became evident.

Using these alternative speci�cations of V � we then show the corresponding one-year-

ahead ination forecasts for the 1990s. The results suggest that much of the deterioration

in the ination forecasts obtained from the P � framework using the incorrect assumption

of constant equilibrium velocity is reversed once we account for the apparent shift in equi-

librium velocity.

2 Equilibrium velocity

Traditional theories for the demand for money hold that velocity uctuates with the oppor-

tunity cost of money. Letting gOC denote deviations of the opportunity cost of money, OC

from its average norm, a simple way to capture this relationship is as follows:

V = V � + �1
gOC + e

2The usefulness of bringing information from such sources to bear on the P � framework has also been
recognized by Koenig (1994) who proposed simultaneous estimation of money demand and P � models.
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where �1 measures the response of velocity to movements in the opportunity cost of money

and e is a stationary zero mean error term. In this setting the stability of V � can be

examined in a straightforward manner. If V � were a constant, it could be easily estimated

from the (population) regression:

V = �0 + �1
gOC + e

where, of course, an estimate of V � could be obtained as the estimated parameter �0.

Hallman, Porter and Small implicitly relied on the stability of money demand and the

absence of any trend in the movement ofgOC over the sample period in which they developed

the P � model. Speci�cally, if in the above population regression the error term, e, averages

about zero and departures of OC from its norm, gOC, also average about zero, then it is

immediate from this regression that the sample mean of V , �V , will give a good estimate of

V �, which is the estimate that Hallman, Porter, and Small selected. However, if V � shifts

up as it apparently has in the early 1990s, the revised estimate of V � needs to embody some

of the upward drift of the velocity error e which occurred then.

De�ning the opportunity cost of M2 holdings as the rate on the three-month treasury

bill minus the average rate paid on M2 balances, the relationship between M2 velocity and

the opportunity cost is shown in �gure 1.3 As can be seen, between 1960 and until about

1990, M2 velocity and opportunity cost moved together quite closely and could likely be

described by the simple regression above. Indeed, the relationship implicit in this diagram

has formed the basis for models of M2 demand, including the models in Moore, Porter and

Small (1990) which were used at the Board of Governors for the last decade.4 Since about

1990, however, the gap between M2 velocity and opportunity costs widens in a way that

does not appear to �t the previous relationship.

Figure 2 provides a scatter plot of the same data. The solid line shows the regression

line of velocity on the opportunity cost estimated with data from 1960:1 to 1988:4. The two

dotted lines form a 95 percent con�dence band for the �tted values of velocity. As can be

3See the data appendix for details on the de�nitions.
4Figure 1 is in essence an updated and rescaled version of �gure 9 in Moore, Porter and Small (1990).
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seen, the assumption of a constant V � for this period is not incompatible with this model.

The point estimate for V � can be read as the value on the �tted line corresponding to the

historical norm of the opportunity cost. Starting in about 1991, however, the observed

velocity of M2 appears consistently outside the con�dence band obtained based on the

assumption of a constant V �. These results suggest that by 1991, the constancy of V �

ought to have been seriously questioned|as was indeed the case.

Unlike Hallman, Porter and Small who posit the V � is a constant, however, money

demand models including Moore, Porter and Small typically allow for the possibility of a

trend in V �. This can be easily captured by specifying

V = �1 + �1
gOC + �2TIME + e

where V � = �0 + �2TIME. As it turns out, a small positive trend does appear in the

data. Although statistically signi�cant, it is very small compared to the movements of

velocity after 1991. Consequently, the possible omission of a trend in computing V � cannot

by itself account for the apparent non-constancy of equilibrium velocity. Nonetheless, for

later comparisons, we will use both formulations|including and excluding a trend|as

benchmarks.

Another interesting element in �gure 2 is that in contrast to the rapidly increasing

velocity during the 1992-1994 period, which was not associated with correspondingly large

movements in opportunity costs, movements in velocity and opportunity costs since then

appear to follow a trajectory roughly parallel to the relationship depicted by the solid line

for the early part of the sample. This observation suggests that V � could now possibly

be adequately modeled as roughly constant but at a new higher level. If so, there may be

simple alternatives to the constant V � speci�cation that may well su�ce to provide useful

estimates of P �.

2.1 Allowing for a one-time shift in V
�

Perhaps the simplest alternative hypothesis to that of a constant V � is a speci�cation

allowing for a one-time shift in the intercept of the velocity regression described above. In
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real time, of course, the estimated size of the shift would need to be re-estimated with each

additional quarter of data. And since considerable uncertainty might prevail for several

quarters regarding the timing of the shift, the same regression could be used to optimally

determine this timing. To allow for such a shift in V � we simply add the variable D(�) in

the equation and estimate

V = �0 + �1
gOC + �2TIME + �3D(�) + e

where D is a dummy variable that is de�ned parametrically on an unknown quarter, � ,

such that it equals 0 before quarter � and 1 starting with that quarter. To obtain point

estimates of V � that are relevant for forecasting, starting in 1990 we estimate this regression

recursively by adding one additional quarter of data at a time. Further, in each step, we

allow the regression to select the quarter in which the shift in the intercept may have

occurred, � , which �ts the data best.

Using this simple technique we obtain recursive estimates of V � which could have been

used to construct more accurate equilibrium prices than those obtained using the constant

V � assumption. We carry out this procedure twice, once to obtain a series which allows for

a one-time break in V � from a constant to a new level, and a second time allowing also for

the presence of a time trend in the regression.

2.2 Using Regression Trees to Determine V*

Another way of endogenously generating time-varying values of V* involves regression trees

as described in Clark and Pregiborn (1991).5 Application of the technique in our setup

involves a binary recursive partitioning of the determinants of velocity, which we specify

to be opportunity cost, OC, and time, TIME. In particular, if X is the space of OC

and TIME over the sample, then the recursive algorithm partitions X into homogeneous

rectangular regions x such that the conditional distribution of velocity given x does not

depend on the speci�c values of OC and TIME, i.e., the tree is a step function that takes

5See also H�ardle (1990) for a technical description.
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on a constant value of velocity within each region. One way of representing the information

from this recursive algorithm is as a tree (see �gure 3) with various nodes or branch points

and terminal nodes, called leaves, placed at the end of the nodes.

In general, tree-based models can be interpreted as regressions on dummy variables,

where the dummy variables are endogenously, recursively determined. They have several

advantages: (a) they are invariant to monotone transformations of the independent vari-

ables; (b) they are more adapt at capturing non-additive behavior; (c) they allow more

general interactions among independent variables. In particular, trees allow us to model

relatively abrupt shifts in relationships, perhaps enabling us to track changes in equilibrium

velocity non-parametrically. In addition since the trees only depend on the ranks of the

underlying data, in constructing our tree-based estimates we do not need to take a stand on

whether the relationship between velocity and opportunity costs is linear or logarithimic.

To illustrate these concepts, �gure 3 displays two panels which represent alternatives ways

of viewing the empirical estimates of a regression tree in which the GDP velocity of M2,

V 2, is the dependent variable and OC and TIME are the independent variables, based on

data from the entire sample from 1959:2 to 1997:4. The top panel of �gure 3 shows the tree

structure of the estimates; the full tree is an 11-way partition of the data, that is, it has

11 di�erent terminal values of velocity depending on time and opportunity costs.6 The top

node, called the root, is designated by an oval; the average value of velocity for the whole

period (1.748) is listed inside the oval. As we move down the tree the values of OC and

TIME are successively split into �ner branches, as indicated on the paths between nodes

of the tree. For example, the top node splits on the left going down the tree on the basis of

TIME for two splits until it splits on the right depending on whether OC is greater or less

than 3.46. The eleven terminal nodes or leaves in this tree are represented by rectangular

6We used the S-PLUS system to implement the tree-based regression models. The default algorithm
implemented there tends to estimate an \overly large tree" with roughly N=10 terminal nodes, where N is

the sample size. In our application where N = 155, the number of nodes in the full model for the full period
is 11. Such a size is in accord with the \best current practice" according to Clark and Pregiborn (1991, p.
415). However, as we shall see below, pruning the tree back (even severely) to have a smaller number of
terminal nodes, appears to have very little e�ect on the estimates of V � relevant for our ination forecasts.
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boxes.

The lower panel in �gure 3 represents much of the same information in a way that reveals

the time series structure more readily since time is plotted along the x-axis.7 For example,

in the �rst 6 periods of the sample period, the value of the regression tree is 1.74, that is,

the value of the GDP velocity of M2, does not depend on the level of opportunity costs.

Thereafter, however, the level of the opportunity cost does matter with a three-way split

(3 values of velocity depending on the level of opportunity costs (OC) until the late 1980s,

and a two-way split thereafter). As estimated, the tree provides a time-varying relationship

between opportunity costs and velocity in which abrupt changes may occur.

The estimated regression tree does not necessarily give us a V � concept directly, except

in the �rst 6 periods, because the summary measure of velocity in most of the terminal

nodes depends on the level of opportunity costs. There are two alternative ways to proceed

to fashion an estimate of V � from such a tree. We could prune the tree back to have a

smaller number of splits or branches, and hope that the number of time periods in which

velocity does not depend on opportunity costs increases. For example, �gure 4 shows the

splits for ten di�erent possible splits from eleven (the full tree) down to two splits. As the

number of splits or partitions becomes small, the regions in which velocity at a given time

period or set of time periods does not depend on opportunity costs increase with only one

region when there are four partitions, and no regions with either two or three partitions,

7These eleven rectangles represent contours of a step function that has a constant velocity value within
each rectangular region in OC

T
TIME space and is zero elsewhere. In a regression tree with a dependent

variable that takes on numerical values as in our application using V 2, the underlying statistical model posits

that each observation, say yi, is distributed as normal with mean �i and constant variance where the step
function being determined by the regression tree can be thought of as the structural component, �i = !(xi).
The regression surface in a regression tree consists of a linear combination of such step functions, !(xi).

Speci�cally, the overall tree surface for a tree with p leaves is m(x) =
Pp

i=1
�iIfx 2 Nig =

Pp

i=1
!(xi),

where I is an indicator function and the Ni are disjoint hyper-rectangles with sides parallel to the coordinate
axes. The deviance function is de�ned to be D(�i; yi) = (yi� �i)

2. At a given node, the mean parameter �

is constant for all observations. The maximum-likelihood estimate of � is given by the average of the values
at the node, that is within the hyper-rectangle associated with the node. The deviance of a node is de�ned
as the sum of the deviances of all observations in the node and is identically equal to zero when the y's

within the hyper-rectangle are the same, and it increases otherwise. Splitting the data into �ner partitions
involves sorting the observations on a particular variable or set of variables into left (smaller observations)
and right groups (larger observations) with the tree algorithm selecting such splits to maximize the change
in the deviance.
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the top panels in the �gure. Alternatively, when the partitions depend on the opportunity

cost, in each quarter we could select the value corresponding to the historical average of the

opportunity cost as our estimate of V �.

The two-way partition gives us a representation of V � as having a constant value a

little over 1.7 until the early 1990s when it shifts up to a value between 1.9 and 2.0. The

three-way partition adds an earlier step in 1978. Since the tree regression does not have

the capability of directly representing a linear time trend, the presence of such a trend in

the velocity data would be captured by splitting velocity in the middle of the full sample

period, which is what our estimates do in the sample midpoint of 1978. Most notable, at

least given our interest in forecasting ination in the 1990s, is the fact that the right-most

part of the tree, corresponding to this more recent period, remains invariant to the number

of partitions that are used so that our V � estimates do not appear to depend on the number

of leaves in the tree, that is the results hold under both parsimonious and proigate tree

parameterizations.

2.3 Estimation

In �gure 5, we provide estimates of V � obtained from recursive estimation using the tech-

niques described above. As indicated there, we are interested in determining how the various

estimates of V � evolve in real time as they are fed more observations, so we will update the

estimates quarterly as each new observation becomes available.8 The four alternative time-

varying estimates shown with dashed and dotted lines correspond to the cases of a constant

with one intercept shift, (Estimate A); a constant, constant trend and one intercept shift

(Estimate B); the simplest regression tree speci�cation with just 2 splits (Estimate C) and

the full regression tree evaluated at the average opportunity cost, (Estimate D).

Three things are noteworthy here. First, even at the beginning of 1990, (when we �rst

consider the additional exibility in the speci�cation of V � than the constant estimate) the

point estimate of equilibrium velocity for the quarters shown appears somewhat higher than

8These calculations are only exercises in one sense: We do not deal explicitly with the fact that in real
time many of our data sources are preliminary.
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the �xed constant estimate. This result is not surprising since, as already mentioned, a slight

upward trend would appear to provide a better characterization of V � during the 1960 - 1988

period over which the constant V � is computed. Second, and most important, compared

with the �xed V � estimate all four alternative recursive estimates show a dramatic upward

shift in equilibrium velocity during the 1992-1994 period. The exact time at which this

change is most noticeable di�ers quite signi�cantly in the four estimates, with estimate B

indicating a major shift as early as 1992, D in 1993, and estimate C detecting a large change

only in late 1994. Third, despite the important timing di�erences in the four estimates

during the 1992-94 period, it appears that by the end of the sample the four alternative

estimates are in substantial agreement with one another.

Overall, while it would be di�cult to judge the relative merits of these estimates of V �

with such a short sample, the recursive estimates should be noted more for their similarity

relative to the constant V � estimates, instead of their di�erences. The next step, then, is

to use these estimates to construct the implied time series for P � and associated ination

forecasts.

3 Ination forecasts

Using the alternative concepts of V � shown in �gure 5, we next turn our attention to the

ination forecasts corresponding to the implicit alternative estimates of P �. We concentrate

on the simplest speci�cation of the ination equation in Hallman, Porter and Small which

can provide one-year-ahead forecasts of ination (their equation 14):

��t = �(pt�1 � p�
t�1

) + ut

Here �t denotes ination over the four quarters starting with quarter t and p and p� denote

the natural logarithms of P and P � respectively. Using their data covering the period from

1955 to 1988, Hallman, Porter and Small estimated � to be �0:22 with a standard error of

0.044.9 Because of changes in the de�nitions of the variables and sample coverage, however,

9The annual model in Hallman, Porter, and Small uses only non-overlapping fourth quarter observations
on ination and the price gap. Since we are interested in detecting changes in V � in real time, we adopt a
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we need to reestimate this equation. Ending the sample in 1988 for comparability, we use

overlapping quarterly data from 1960:1 to 1988:4. This yields an estimate of � of �0:16

with a standard error of 0.041 (obtained using the asymptotic correction for the moving

average error term).10

Figure 6 shows the in-sample ination forecasts obtained from this equation as well as the

out-of-sample forecasts based on the assumption of constancy for equilibrium velocity. As

can be seen, while the forecast appears to move closely with realized ination for most of the

sample, since about 1992 forecasted ination diverges from actual ination with the forecast

error becoming progressively worse until about 1995. The pattern of errors suggests that

over this period, P � was constructed using an estimate of equilibrium velocity which was

likely systematically smaller than it should have been. This assessment, is in agreement

with the estimated upward shifting V � implied by the relationship between velocity and

opportunity costs.

Staring in 1990, �gure 7 provides the alternative forecasts based on the four time-

varying concepts of V � shown in �gure 5. As can be seen, allowing for the time variation in

the estimate of V � during this period would have yielded substantially better forecasts of

ination especially after 1992. Of the four alternative estimates, it appears that Estimate B

(obtained by estimating a one-time shift in V � and allowing for a time trend) and Estimate

D (obtained from the full regression tree) would have resulted in the smallest forecast errors

during this period. As shown in table 1 for these two forecasts, the mean error was one-

quarter of a percent or less and the mean absolute error was about half a percent. Indeed,

this performance is better than the in-sample performance of the constant V � speci�cation

over the earlier period|as shown in the memo item in the table.

Finally, the simplicity of the formulation we are examining allows us to easily charac-

terize the speci�cation error arising from incorrectly assuming a constant V � speci�cation

setup that allows us to use all quarterly observations.
10That is, since we are using overlapping, year-over-year ination rates as the dependent variable in the

regression, the proper estimation of the asymptotic variance of � needs to take the error structure induced
by using overlapping observations into account.
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when the correct speci�cation should account for a one-time shift in velocity. If there were

a one-time shift in equilibrium velocity from V �

1
to V �

2
, then the associated forecast error

in forecasting ination using the original V � estimate, V �

1
, would be

��(log(V �

2 )� log(V �

1 ))

Since the estimated � = �:16 and the shift in V � appears to be from about 1.7 to 2, the

implied ination forecast error is about two and a half percent per four-quarter period.

Indeed, as shown in �gure 7, this is consistent with the magnitude of the recent forecast

errors corrresponding to the forecast obtained from the constant V � speci�cation.

3.1 Alternative Non-Structural Approaches

The P � framework depends on only two parameters, V �, the equilibrium velocity, and �,

the coe�cient indicating what fraction of the lagged gap between the log of the price level

and the log of P � is expected to close over the next four quarters. The forecasting results

suggest that of these two parameters, the behavior of only one has been problematical,

namely V �. By relaxing the assumption that this parameter is constant but leaving the

other parameter �xed we were able to restore the accuracy of the model. The speci�cation

analysis presented at the end of the previous section suggests that a trial-and-error process

could also lead to the eventual discovery that setting V � = 2:0 would have corrected the

forecasting problems of P � framework.

This result raises the question how well a simpler approach that updates V � based on

the recent ination error without using the additional information we bring to bear, namely

the opportunity cost of money, would have performed. As is evident from �gures 5 and 6

such updating would have created wildly divergent estimates of V �; estimates of V � would

have tended to fall in 1991-92 before eventually moving upward later in the period. A

less extreme non-structural approach lets us evaluate the importance of opportunity costs

to our forecasting results. Suppose as an alternative to Estimates A and B we dropped

the term in opportunity costs, OC, from the regressions but computed everything else in
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Estimates A and B as above. As would be expected, this method would also eventually pick

up the upward movement in the equilibrium velocity. However, the recognition is delayed

(by at least one year), resulting in a marked deterioration in the forecast accuracy of this

alternative.

4 Conclusions

Our paper lays out a structural strategy constructing real-time estimates of V �. The esti-

mates we obtain go quite far in restoring the forecasting accuracy of the P � model. That

the stability of the P � approach could be restored in the face of fairly massive changes in

the �nancial service industry that occured over this period, suggests to us that this simple

dynamic version of the quantity equation is still worth having in the monetary practitioners'

toolkit.
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Data Appendix

In constructing the data for this paper we follow Hallman, Porter and Small (1991) but

make allowances for three changes that need to be taken into account to update the results.

First, we use the new rede�ned version of M2. Early in 1996 the Federal Reserve made a

small change in the de�nition of M2, excluding overnight RPs and Eurodollars from this

broad measure but including them in M3. (See Whitesell and Collins, 1996.) Although this

change does not appear to have changed the statistical properties of the aggregate in major

ways it is noticeable in our analysis in two ways. First, it resulted in an overall increase in

the velocity of the aggregate. Second, as overnight RPs and Eurodollars were not nearly as

negligible late in our sample period as earlier, it makes estimates of a positive overall trend

in the equilibrium velocity of M2 more noticeable. In our estimation, we use the quarterly

seasonally adjusted data for the rede�ned M2 series which are available on a consistent

basis from 1959. We construct the opportunity cost of M2 as the di�erence between the

yield on the three-month Treasury bill and the average rate paid on M2 balances. On the

BEA side of the ledger, there were two important relevant changes regarding income and

price concepts used in basic macro discussions of policy. In 1992 the BEA switched �rst to

a GDP income concept instead of GNP, and more recently the use of a chain-type price

deator for GDP. Given the changes adopted by the BEA, we modi�ed the concepts of P

and Q commensurately. Finally, for potential output, Q�, we rely on the estimates made

by the Congressional Budget O�ce. (The Economic and Budget Outlook, United States

Government Printing O�ce, 1998.)
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Table 1: Summary Error Statistics from Ination Forecasts

Time-Varying V � Estimates Memo Item:

||||||||||||| Constant V �

Statistic Constant V � A B C D 1961:1{1989:4

Mean Error 1:65 0:44 0:22 0:54 0:03 0:15

Standard Deviation

of Error 1:14 0:61 0:47 0:84 0:59 1:05

Mean Absolute

Error 1:74 0:66 0:44 0:81 0:46 0:78

Notes: The 28 out-of-sample forecast errors (1991:1 to 1997:4) are de�ned as ination over

the four quarters ending with quarter t minus the forecast for the corresponding period,

in percent. Constant V � is estimated as the mean of V 2 over the period from 1960:1 to

1988:4; Estimate A allows for a one-time shift in the intercept; Estimate B allows for a time

trend and a one-time shift in the intercept; Estimate C allows for a two-branch regression

tree; Estimate D allows for a full regression tree evaluated at the average opportunity cost

of holding M2.
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Figure 3

Regression Tree for Full Data Sample
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Figure 4

Tree Partitions
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Note: The values inside the rectangles represent the estimated average value of V2 for the

region corresponding to the rectangle.
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