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Abstract

In this paper, we focus on investments by existing homeowners

to improve their homes. In our model, the value of a house is equal

to the expected net present value of a perpetual stream of service


ows emanating from the attributes of the house. An important in-

novation in our model is that the set of house attributes evolves over

time according to the investment decisions of the homeowner. The

homeowner's decisions to invest in house attributes are modeled as

real options. The homeowner compares the value of an additional at-

tribute, net of the value of the opportunity to invest in the future,

to the cost of the investment when deciding whether or not to invest.

Our model of investment embeds a multi{factor term structure model

and a general model of the evolution of service 
ows. We employ nu-

meric simulations to explore the properties of the investment model,

and to motivate our empirical test of the model.

The main contribution of this paper is an empirical test of whether

or not observed homeowner investment behavior is consistent with the

real option theory of investment. Using a nationally representative

panel from the American Housing Survey, we test two implications

of the real option theory. First, we test whether investment is more

likely when the spread between the return to housing and the cost

of capital is wide. Second, we test whether greater spread volatility

depresses investment. Our empirical results indicate that observed

homeowner investment behavior is consistent with these implications

of the theory, even after controlling for business cycle, aging, tenure

and for{sale in
uences.
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1 Introduction

Homeowner remodeling decisions are an important factor in the evolution of
housing supply in the United States. The Home Improvements Research Cen-
ter, of Tampa, Florida, estimates that expenditures for home improvement
products in 1999 were about $163 billion.1 Despite the signi�cance of these
expenditures, there is a lack of either empirical or theoretical research that
focuses on homeowner investment decisions. The usual approach to model-
ing these decisions has been to focus on the importance of life-cycle e�ects
(Ortalo{Magne and Rady (1999)), or on the possible relationship between
housing tenure decisions and housing investment (Goetzmann and Spiegel
(1995)). Outside of these papers, most housing investment research has fo-
cused on the production of new housing by professional developers (Capozza
and Sick (1991), Williams (1993), and Capozza and Li (1994)).

In this paper, we focus on investments by existing homeowners to improve
their homes. In our model, the value of a house is equal to the expected net
present value of a perpetual stream of service 
ows. The service 
ow from
a house in a given period is modeled hedonically, as a function of a set of
attributes describing the structure. An important innovation in our model is
that the set of house attributes evolves over time according to the investment
decisions of the homeowner.

The pricing model is a dynamic, continuous{time extension of the static
house price model appearing in Poterba (1984) and Rosen and Topel (1988),
and nests standard hedonic regression models, such as those found in Case
and Quigley (1991) and Mills and Simenauer (1996). The model developed
here di�ers in at least three important respects from the previous models.
First, the earlier models are static, in the sense that the state variables do
not evolve stochastically over time; we explicitly allow for stochastic state
variables. Second, in the earlier models, service 
ows are not explicitly mod-
eled; we model service 
ows hedonically. Finally, the evolution through time
of house attributes is a stochastic process controlled by the homeowner, in
contrast to the previous models, where changes in house attributes are ex-
ogenously determined.

The homeowner's decisions to invest in house attributes (for example, to
add square footage) are modeled as real options. In keeping with the overall

1The Joint Center for Real Estate at Harvard University estimates that, in 1995, ex-
penditures for home improvements totaled just under $150 billion dollars, or about two
percent of total GDP (Joint Center for Housing Studies, Harvard University (1999)).
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model of house value, each attribute of a house is assumed to generate a 
ow
of services over time, so that the value of an additional unit of an attribute is
the expected net present value of the stream of services that it provides. The
homeowner compares the value of an additional unit of an attribute, net of the
value of the opportunity to invest in the future, to the cost of the investment
when deciding whether or not to invest. We consider a generalization of the
basic real option model discussed in Dixit and Pindyck (1994).

The main contribution of this paper is an empirical test of whether or not
observed homeowner investment behavior is consistent with the real option
theory of investment. Using panel data from the American Housing Survey,
we test two implications of the real option theory. First, we test whether the
decision to invest is sensitive to the spread between the return on housing and
the user cost of capital. Consistent with the real option theory, we �nd that
homeowners are more likely to invest when the spread between the return to
housing and the cost of capital is wide. Second, we test whether the decision
to invest is sensitive to the volatility of the spread. An implication of our
model is that the value of waiting to invest increases when the net return on
the investment is more volatile. Thus, ceteris paribus, we should observe less
investment during periods of high return volatility. Our empirical results are
consistent with this prediction, as well.

The paper is organized as follows. In the next section, we present the
house pricing model, we review the real option theory of investment, and
we discuss the results of some pricing experiments calibrated to real data.
Section three presents our main econometric results, and the �nal section
concludes.

2 House Prices and Investment

A general, continuous{time model of house prices serves as the framework for
our model of housing investment. The pricing model is an extension of the
models appearing in Poterba (1984) and Rosen and Topel (1988). Following
these papers, houses are priced in equilibrium as the expected present value of
future service 
ows, where the 
ows are discounted at the user cost of capital.
Service 
ows are modeled hedonically, as a function of the attributes of the
house. The attributes of the house evolve endogenously according to the
investment decisions of the homeowner. For simplicity, we consider the case
of a homeowner's decision to make a single addition to his or her home; we
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focus on the testable implications of this model that are common to all real
option models.

In our model, a house is described by a set of K attributes, with ak;t
denoting the units of attribute k at time t. Each attribute generates a 
ow of
services accruing to the homeowner, de�ned as the rental rate of the attribute.
We assume that rental rates are set in a perfectly competitive market, subject
to random demand shocks:

�t = x0tD(qt): (1)

Here �t is a K � 1 vector of rental rates, xt is a vector of exogenous demand
shocks, qt is total supply, and D(qt) is the inverse demand function, with
D0 < 0. The demand shocks are assumed to evolve stochastically through
time as geometric Brownian motions:

dxt = �xxtdt+ �xxtdWx;t; (2)

where the Wx are independent standard Wiener processes. 2 The demand
shocks can be interpreted as re
ecting changes in tastes for house attributes,
shocks to income, changes in migration patterns, or any of a host of other
possibilities.

The dynamics of rents are determined by the demand shocks, as well as
by changes in total supply, as can be seen by applying Itô's Lemma to (1):

d�t = �x�tdt+ �x�tdWx;t +
D0(qt)

D(qt)
�tdqt: (3)

In what follows, we assume that rental dynamics due to changes in total
supply, given by the term D0(qt)

D(qt)
�tdqt, are such that they are absorbed into

the terms �x and �x. In other words, we assume that the growth rate in
rents, and the volatility in rents, impound all of the e�ects of changes in the
total supply of attributes. As a result, rents evolve according to a geometric
process.

The user cost of capital is de�ned as the after{tax risk{free spot rate of
interest, adjusted to re
ect depreciation and costs of repair. We assume that
the instantaneous risk{free rate evolves as follows:

drt = �r(rt; �t)dt+ �r(rt; �t)dWr;t; (4)

d�t = ��(rt; �t)dt+ ��(rt; �t)dW�;t (5)
2Correlated demand shocks are a natural extension of the model. For our purposes

here, correlated shocks introduce an additional degree of complexity that is unnecessary.
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where Wr;t and W�;t are standard Wiener processes, independent of one an-
other, as well as of the Wx;t. The system of equations (4) and (5) forms a
stochastic volatility model of the spot rate. 3 The user cost of capital is given
by:

�t = Æ + �+ (1� �)(� + rt) (6)

where

Æ � Rate of depreciation,

� � Expenditures for maintenance and repairs

as a fraction of house value,

� � Marginal income tax rate,

� � Property tax rate.

In general, it is not possible to instantaneously trade attributes, and it is
also not possible to short sell attributes, so valuation approaches based on
arbitrage arguments are highly unrealistic. Instead, we use the equilibrium
approach, which is now more or less standard in the literature on real options.
For simplicity, both in the development of the model and in the interpretation
of the comparative statics experiments to follow, we assume risk{neutrality
when pricing attributes and options on attributes. This assumption can be
relaxed by making the appropriate risk{adjustments to the drift rates of the
underlying stochastic processes when pricing the assets.

Let Vt(�t; �t; �t) denote the value of an attribute. The instantaneous total
return on the attribute is given by: 4

dVt + �tdt; (7)

where dVt is the capital gain and �tdt is the instantaneous rental 
ow.
Applying Itô's Lemma, and taking the appropriate expectation, the ex-

pected total return is given by:

�DVt + �t

Vt

�
dt; (8)

3The functions �� and �� in the system (2)-(5) are assumed to satisfy the technical
conditions suÆcient for the system to have a unique solution (see Karatzas and Shreve
(1991)).

4In what follows, the arguments to functions will often be omitted, in the interest of
notational simplicity.
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where the operator D is de�ned as:
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In equilibrium, the expected total return to the attribute must equal the
instantaneous user cost of capital, producing:

DVt � �tVt + �t = 0: (10)

Two more conditions render a well{posed partial di�erential equation (pde)
that characterizes the value of the attribute:

lim
�t!1

Vt(�t; �t; �t) = 0; (11)

Vt(0; �t; �t) = 0 (12)

Condition (11) says that, as the user cost of capital approaches in�nity, all
future values become worthless. Because zero is an absorbing barrier for
the rental 
ow process, the attribute becomes worthless if rents hit zero, as
stated in condition (12).

Alternatively, we can write the value of an attribute as the expected
discounted present value of future rental 
ows:

Vt = Et

Z 1

t
�se

�
sR
t

��d�

ds: (13)

DuÆe (1996) has a sketch of the proof that (13) solves (10)-(12); Karatzas
and Shreve (1991), and Chung and Williams (1990) contain more detail.

The price of a house is a function of the attributes and their associated
rental streams:

Ht(at; �t; �t; �t) = Et

1Z
t

h(as; �s)e
�

sR
t

��d�

ds; (14)

where h(�) is a smooth function. 5 The evolution of house prices thus depends

5Note that the expectation is taken under the assumption of risk{neutrality. If this
assumption were relaxed, it would be necessary to compute the expectation after �rst
risk{adjusting the drifts of the underlying stochastic processes.
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on the dynamics of rents, as well as the evolution of the attribute vector over
time.6

A homeowner is free to invest in his or her home at any time. Thus, one
way the house attribute vector evolves over time is according to the invest-
ment decisions of the homeowner. 7 Let Fk;t(�t; �t; �t) denote the value of
the homeowner's option to invest in one unit of attribute k, where the cost
of the investment is a constant dollar amount I. More complicated problems
might be constructed, such as options to add multiple attributes, uncertain
investment costs, and the like. However, we focus on the testable implica-
tions of our model that hold true under all of these extensions. Dropping
the subscript k for notational simplicity, we arrive at the pde that charac-
terizes Ft(�) by following the same steps that we used to �nd the pde that
characterizes the attribute pricing function.

The total return to holding the option is equal to the capital gain less
the value of forgone service 
ows. By Itô's Lemma, and after taking the
appropriate expectation, the expected total return is given by:

�DFt � �t

Ft

�
dt; (16)

where D is de�ned in (9) above. Setting the expected total return equal to
the user cost of capital, we have:

DFt � �tFt � �t = 0; (17)

subject to the in�nite user cost boundary condition:

lim
�t!1

Ft(�t; �t; �t) = 0; (18)

6If we assume that the attributes are �xed exogenously, and we use, as a �rst approxi-
mation to the true value, a linear speci�cation for h(�), we can write:

H =

KX
k=1

akVk;t; (15)

using (13). By projecting a cross{section of house prices H observed at time t onto the
space of attributes ak, one can estimate the attribute values Vk;t. This is the hedonic re-
gression approach for constructing house price indices. Case and Quigley (1991) construct
a hedonic model that allows attributes to change over time. However, in their model,
attributes change according to an unspeci�ed exogenous process.

7We ignore catastrophic events such as �re and 
ood.
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and the zero rental 
ow condition:

Ft(0; �t; �t) = 0: (19)

The continuation region C is de�ned as the set of �, � and � values for
which immediate exercise of the investment option is not optimal:

C =
n
(�t; �t; �t) 2 <3

+ : DFt � �tFt � �t = 0; and Ft > Vt � I
o

The exercise region E is de�ned as the set of values for which it is optimal
to invest immediately:

E =
n
(�t; �t; �t) 2 <3

+ : DFt � �tFt � �t � 0; and Ft = Vt � I:
o
:

The location of the exercise region E is endogenous, and is recovered as part
of the problem of solving the pde, an issue we return to below.

The time at which the system �rst passes into the region E is de�ned as
the \optimal exercise policy." The distribution of �rst passage times induces
a distribution on the time of a unit increase in a, and thus provides, at least
conceptually, a technology by which to evaluate the expectation in (14). We'll
brie
y revisit this problem below, but the full solution is left for future work.
Here we focus on establishing some results for the pricing problems de�ned
by (10)-(12) and (17)-(19).

In order to solve the pricing problems, we make the following additional
specializations. Suppose that the system of equations de�ning the instanta-
neous user cost process is given by: 8

d�t = 
�(�� � �t)dt+ �t
p
�tdW�;t (20)

d�t = 
�(�� � �t)dt+ �
p
�tdW�;t: (21)

The system (20)-(21) can be justi�ed on empirical grounds. It is similar
to the system shown by Andersen and Lund (1997) to closely describe US
Treasury bill dynamics. More generally, the system is consistent with the
growing empirical support for the view that a multi{factor model is required
in order to capture all of the dynamics of the short rate.

According to the Bureau of Economic Analysis, housing rents in the
United States as a whole grew on average by about 3.5 percent each year

8For simplicity, in the numerical calculations in this section, we assume that the con-
stants Æ,�,� ,� are equal to zero. In our numerical experiments, we use r and �, and the
terms \interest rate" and \user cost," interchangeably.

9



between 1988 and 1999, with a standard deviation of about 2.0 percent.
Thus, a realistic calibration of the rental process is given by:

d�t = 0:035�tdt + 0:02�tdW�;t: (22)

Our parameterization of the interest rate system is taken from Andersen and
Lund (1997).9 We compute prices under the following speci�cation of the
term structure processes:

d�t = 0:16(0:0595� �t)dt+ �t
p
�tdW�;t (23)

d�t = 1:04(0:04� �t)dt+ 1:89
p
�tdW�;t (24)

The long{term mean in the interest rate is roughly six percent, with a stan-
dard deviation of about thirty percent of the long{term mean when volatility
equals its long{term mean of four percent. The volatility process exhibits
substantial deviation about the mean, but its rate of mean reversion is such
that volatility shocks are relatively short{lived.

Even with these specializations, the partial di�erential equations that
characterize asset values do not admit closed{form solutions. Using a �nite{
di�erence algorithm, we numerically solve for attribute values and option
prices.10 Figure 1 displays attribute values under the rent and interest rate
system speci�ed by (22)-(24). The �gure displays the values on a grid of
rental and user cost values, for a \slice" of the state{space along the volatility
axis at � = 0:04. For a dollar of rental 
ow (� = 1), the attribute is worth
approximately $95 when the user cost is at its long-run mean (� = 0:0595).
The attribute value rises as the interest rate falls or the rent 
ow increases,
and vice{versa.

Using the attribute values displayed in �gure 1, we next solve for the
value of the option to invest. We compute the values of an option that is at{
the{money when the rental 
ow is one dollar (� = 1), and the user cost and
volatility variables are at their long{run means (� = 0:0595 and � = 0:04).

9The system estimated by Andersen and Lund (1997) is slightly di�erent from the
system that we use here. Our volatility process is a square{root process, while the origi-
nal paper used a constant{di�usion process. Nevertheless, the parameterization remains
realistic.

10See Ames (1977), Press, Teukolsky, Vetterling and Flannery (1994) and Smith (1996)
for information on the �nite di�erence approach to solving partial di�erential equations.
Hull and White (1990) discuss some of the nuances of valuing derivative securities using
the �nite di�erence approach.
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Figure 2 overlays the option values and the attribute prices of �gure 1. In
regions of the state space near the exercise region (high value of �, low values
of �), the option value as a proportion of the attribute value approaches the
value V�95

V
, because the option is worth its payo�, V � 95, at exercise. The

option value is large relative to the attribute value even in regions well away
from the exercise region. For example, near the point � = 0:5, � = 0:12, the
option is worth roughly seventy percent of the attribute (F

V
� 0:7).

It is interesting to explore the e�ects of stochastic volatility on option
values. Figure 3 overlays two surfaces: the surface de�ned by taking a slice
of the state space at � = 0:04, and a relatively high{volatility surface de�ned
at � = 0:085. In general, higher volatility increases the value of the option
to invest, because the option is a convex function of interest rates. The
e�ect of higher volatility is greatest when the spot rate is low and the rental
rate is high. This is because points in this region are closest to the exercise
boundary. When the rental rate is very low (the option is way out of the
money), increased volatility has less e�ect on the value of the option to invest.

The �rst passage times from points in the continuation region to points
in the exercise region are directly related to the probability of a change in
the attribute (investment). Figure 4 shows the approximate locations of the
exercise and continuation regions for the portion of the state space de�ned by
1:5 < � < 5, � < 0:1, and 0 < � < 0:06. From any point in the continuation
region (points unenclosed by the curves), for a �xed level of volatility, a
reduction in the spot rate, and/or a high return on the attribute, increases the
probability of observing an investment over a given time horizon, and vice{
versa. In fact, it is clear from the �gure that, given a level of volatility, the
spread between the rental rate and the spot rate is suÆcient to characterize
the probability of observing an investment. If the spread widens, then either
the rental rate rose (and attribute values rose), or the spot rate fell, or both {
in any case, the probability of observing an investment over some future time
interval increases because the system has moved closer to the exercise region.
When the spread narrows or turns negative, then either the rental rate fell,
or the spot rate rose, or both { in any case, the probability of observing an
investment is relatively lower. In the following section, we test whether, after
controlling for volatility, the probability of observing investment is positively
related to the spread between housing returns and the user cost.

When � takes on a high value, the volatility of the spread of the rental
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rate to the user cost is higher than when � takes on a low value.11 From
�gure 4, we see that the e�ect of greater volatility in the spread is to reduce
the probability of observing investment over any time horizon, holding the
spread constant. This is because, as � increases, the exercise region contracts
inward. Thus, the distance to the exercise region increases as � increases,
holding � and � �xed. In the next section, we test whether, after controlling
for the spread, the probability of observing an investment is inversely related
to the level of volatility.

11In this case, the higher volatility in the spread is due to higher interest rate volatility;
the qualitative results do not change if the volatility is due to higher volatility in rental
rates, or higher volatility in both variables.
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Figure 1: Attribute Values
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Figure 3: Stochastic Volatility and Option Values
� = 0. 085
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3 Empirical Tests and Results

We test the predictions of the real option model using panel data from the
American Housing Survey (AHS). The AHS is an ongoing, biennial survey of
randomly selected homes in the United States. The survey is sponsored by
the U.S. Department of Housing and Urban Development and conducted by
the Census Bureau. Approximately 53,000 interviews are conducted in each
biennial survey from 1985 through 1997. In order to maintain the anonymity
of respondents, geographic information is suppressed in the public{use data
for many of the interviews. We are able to determine the SMSA for 14,477
houses in large metropolitan areas, for a total of 64,398 observations. In
appendix A, we discuss the dataset at more length. 12

Our test strategy is as follows. First, we construct a binary dependent
variable that indicates if investment occurs during a two{year survey period.
Using repeat sales house price indices and computations of the user cost
of capital using data from the surveys, we compute spreads between the
annualized return to housing and the user cost of capital. Finally, modeling
the probability of investment with a logistic distribution, we test whether
the spread and the volatility of the spread predict investment.

In our application, it is important that we maintain as long a time series
as possible, in order to reveal how investment behavior responds as spreads
and spread volatilities change over time. For this reason, we focus on a
generic measure of investment. The 1995 and 1997 surveys collected detailed
information on the types, timing, and costs of house additions. Unfortu-
nately, the degree of detail declines as one moves back through the earlier
surveys, forcing a tradeo� between the length of the time series and the detail
of information on investments. All of the survey waves collected information
on whether or not, over the previous two years, the homeowner built any
new additions. Using this information, we code our dependent variable as
follows:13

Y =

(
0 No additions in previous 2 years
1 One or more additions in previous 2 years.

(25)

12The American Housing Survey is complex in scale and scope. Interested readers are
referred to the AHS web site (http://www.huduser.org/datasets/ahs.html) for full
details.

13See appendix A for detail on the construction of all of the variables that we use in
this section.
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The types of additions that might be included are new bedrooms, new bath-
rooms, kitchens, and other \big{ticket" items that are at least partially irre-
versible, and which have a major impact on the value of the home.

We don't observe the exact time at which an investment occurs. Thus,
for each property, we compute a measure of the average spread between the
annualized return on housing less the user cost of capital, where the average
is taken over the year of the survey and the previous year. To be precise,
if we let hn;t be the house return in year t for houses in the same SMSA
as house n, and �n;t be the user cost of capital for homeowner n in year t,
then we measure the spread as sn;t = hn;t � �n;t. The variable SPREAD is
measured for house n in survey year t as:

SPREADn;t =
sn;t + sn;t�1

2
: (26)

We also construct a measure of the volatility of the spread over the period.
First, we compute a longer{run average spread measure, given as:

�sn =
1

Tn

1997X
t=1985

I(st)st; (27)

where I(st) is an indicator that is one if the spread measure is non{missing,
and zero otherwise, and Tn is the number of non-missing spread observations
for house n. The volatility of the spread for house n in survey year t is
measured as follows:

V OLATILITYn;t =
jsn;t � �snj+ jsn;t�1 � �snj

2
: (28)

The variable V OLATILITY thus measures the average absolute deviation
of the spread from the long{run average spread for the property.

The annualized returns on housing, hn;t, are computed as the percent
changes in house prices, where the levels of house prices are measured using
repeat sales house price indices obtained from Fannie Mae and Freddie Mac.
Separate indices for each of nearly 150 di�erent SMSAs are used, in order to
introduce a high degree of cross{sectional variation in house returns.

The user cost of capital, �n;t, is based on the annualized 30{day Treasury
bill return. We use the 30{day Treasury bill so as to maintain consistency
with our continuous{time model. For house n at time t, we form the user
cost of capital as follows:

�n;t = UPKEEPn;t +(1� (FMARn;t +SMARn;t)) � (PTAXn;t+ rt): (29)
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The variable UPKEEP measures annual expenditures, as a percentage of
total house value, for maintenance and upkeep. The variable FMAR is the
federal marginal tax rate, computed using household income and federal tax
schedules, and SMAR is the state marginal tax rate, computed similarly.
The variable PTAX is the amount of property tax paid by the individual, as
a percent of total house value. The user cost variable thus varies in the cross{
section at the level of the house, and varies over time at annual frequency.

The investment indicator, house returns, and user cost variables form
the core of our empirical model. However, we also control for other factors
that might, as alternatives to our real option model, explain the incidence
of housing investment. We introduce controls for business{cycle, tenure and
on{market e�ects, de�ned below. Table 1 shows the labels, de�nitions, and
univariate statistics for all of the independent variables.

In order to control for possible business{cycle e�ects, we include a mea-
sure of per capita income, labeled INCOME, which is measured at the
SMSA level. Blanchard and Katz (1992) argue that if states grow at di�er-
ent rates because they are di�erentially attractive to �rms, then high growth
will be associated with low unemployment and higher wages. Their empirical
results indicate that there is a strong co{movement of per capita income and
employment in the United States. House prices are shown to have short-run
sensitivity to shocks to employment levels, however, in the long-run house
prices increase as employment levels increase. These results suggest that
house prices and housing investment would be positively correlated with per
capita income. We use INCOME to proxy for this pro-cyclical e�ect.

Goetzmann and Spiegel (1995) propose that housing investment tends to
cluster either at the time a family moves into a home (what we call the e�ects
of tenure), or just before a home is put up for sale (the e�ects of being on{
market). The AHS data allow us to test both of these alternative explanations
against our real option model. To control for the e�ects of tenure, we include
the variable RECMOV ER, which is a dummy variable that takes the value
one when the respondent indicates that the family moved in at some time
during the previous year. In our sample, we identify 3,771 observations as
recent movers, or approximately six percent of the observations. To control
for the e�ects of time{on{market, we include the variable FORSALE. The
variable FORSALE is a dummy variable that takes the value one when the
respondent indicates that the house is up for sale or rent. In our sample, we
only observe 16 properties that are up for sale at the time of the survey.

It is possible that older buildings require more renovation and updating
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than newer buildings. In order to control for possible age e�ects on the
probabilities, we include the AGE variable. The AGE variable measures the
age of the structure in years. From table 1, we see that the \average" house
is 38 years old, but that there is substantial deviation in ages in the sample.
In fact, the structures range in age from newly built all the way up to 80+
years old.

The probability of observing a sequence of investment decisions by an
individual is modeled with the mixed{logistic distribution (McFadden and
Train (1998), Revelt and Train (1999)). We assume that the probability of
observing the sequence of investment decisions y by individual n is given by:

Pn(yj�;�) =
Z
Pn(yj�)g(�j�;�)d�; (30)

where Pn(yj�;�) is the mixed{logistic investment probability, Pn(yj�) is
the probability of observing y conditional on the coeÆcient vector �, and
g(�j�;�) is the distribution of coeÆcient vectors in the population. We as-
sume that g(�j�;�) is a multivariate normal distribution with mean vector
� and covariance matrix �. Furthermore, we assume that the investment
decisions are independent, so that:

Pn(yj�) =
TY
i=1

Ln(yi; ij�); (31)

where:

Ln(yi = 1; tj�) = e�Xn;t

1 + e�Xn;t
; (32)

is the probability of observing an investment at time t by homeowner n. In
equation (30), we integrate over the population density g(�j�;�) because we
do not observe �. Our aim is to estimate the coeÆcients � and �.

The mixed logit model has the advantage over standard logit that it
does not exhibit the independence from irrelevant alternatives. Moreover,
McFadden and Train (1998) show that any choice model can be approximated
by a mixed{logit model with an appropriate choice of the density for �.14

The real power of the mixed{logit model, however, lies in the ability to
compute the expected value of �, for each individual, conditional on the

14Here we have chosen the normal density on an ad{hoc basis. We leave for future
research the determination of the best density choice for modeling the probability of in-
vestment under the continuous{time model of the previous section.
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individual's observed investments and characteristics. We exploit this feature
of the model below.

An economic motivation for using the mixed{logit speci�cation is the
possibility that the e�ects of the explanatory variables are heterogeneous in
the sample, due to unobserved (and perhaps diÆcult{to{measure forms of)
heterogeneity among homeowners. In particular, homeowners might be dif-
ferentiated by their degree of �nancial sophistication. We might expect that
individuals with a high level of �nancial sophistication would tend to make
investment decisions that align closely with the predictions of the real option
model. On the other hand, individuals who are prone to leaving unexploited
their �nancial opportunities would exhibit a pattern of investment decisions
that are inconsistent with the predictions of the model. To the extent that
the parameters of the logit speci�cation re
ect the degree to which individu-
als behave as the real option model predicts, we should then expect them to
be distributed in the population in a way that re
ects the level of �nancial
sophistication of homeowners.

The integral in equation (30) does not have a closed form, and so it is
approximated through simulation. To simulate the investment probability,
we make R draws from the multivariate normal density with mean � and
covariance matrix �. For each draw �r, we compute:

~Pn(yj�r) =
TY
i=1

Ln(yi; ij�r) (33)

and the results are averaged over the R draws. The simulated probability is
therefore given by:

~Pn(yj�;�) =
RX
r=1

~Pn(yj�r): (34)

The simulated log{likelihood function is:

SLL =
NX
n=1

log( ~Pn(yj�;�)): (35)

The values �̂ and �̂ that maximize (35) are maximum{likelihood estimates of
� and �. Any of a variety of methods for maximizing non{linear multivariate
functions can be used to calculate �̂ and �̂; we make use of the panel mixed{
logit estimator using Halton sequences developed in Train (1999).15

15Employing Halton sequences in the numerical integrations substantially reduces the
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As a familiar point of comparison for our main results, we �rst estimate
a standard logit model, which nests within the mixed{logit speci�cation un-
der the restriction that � = 0. Table 2 displays the results. In general,
the parameters are estimated with a good deal of precision, which is not
surprising given the large sample size.16 The results suggest that neither
RECMOV ER nor FORSALE are important for explaining the investment
probabilities, given that the coeÆcient estimates are insigni�cantly di�erent
from zero. The rest of the variables are highly signi�cant.

The marginal e�ects of the regressors, computed at the sample means for
SPREAD, V OLATILITY , INCOME and AGE, and RECMOV ER = 0
and FORSALE = 0, are shown in table 3.17 As can be seen from the table,
a wider spread between housing returns and the user cost of capital increases
the probability of observing investments. A one percentage point increase in
the spread (one sixth of one standard deviation) results in approximately a
one third percentage point increase in the probability of investment. More-
over, greater spread volatility tends to depress investment. A one percentage
point increase in volatility (one fourth of one standard deviation) reduces
the probability of investment by two thirds of a percentage point. As we
would expect, higher per capita income tends to spur investment. In sum,
the results support the real option theory of investment.

The estimated coeÆcients for the mixed{logit speci�cation are displayed
in table 4. For each variable, the estimated standard deviation is labeled
with the pre�x STDEV . For example, the estimated standard deviation
of SPREAD is labeled STDEV SPREAD. The second column of data
displays the t{statistic, corrected for simulation variance using the method
discussed in McFadden and Train (1998). The substantial increase in the
value of the log{likelihood suggests that the mixed{logit speci�cation pro-
duces a much better �t of the observed investment patterns than does the
standard logit model.18

time required to compute (34). For more details, the reader is referred to the source noted
in the text.

16In order to check the robustness of the results, we re{estimated the model with all
of the coeÆcient except the intercept restricted to zero. The restriction was rejected in a
likelihood ratio test at better than the 99.5 percent signi�cance level. The log{likelihood
under the restriction is �22; 728.

17The e�ect on � of a change in xi is given by xi�(1� �).
18A formal likelihood ratio test of the null hypothesis that all of the standard deviations

of the coeÆcients (the STDEV coeÆcients) are zero is rejected at better than the 99.5
percent signi�cance level.
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The patterns of signi�cance and the magnitudes of the estimated standard
deviations are interesting, because the STDEV coeÆcients tell us some-
thing about how the coeÆcients are distributed in the population. The
estimated standard deviation of the SPREAD coeÆcient is 0:65 and in-
signi�cant, which, when compared with the mean 3:28, suggests that the
e�ects of a wider spread are homogeneous throughout the population. On
the other hand, STDEV V OLATILITY is large relative to the coeÆcient
on V OLATILITY , and both are highly signi�cant. This suggests substan-
tial heterogeneity in the population. In fact, we see that for a small portion
of the population, the V OLATILITY coeÆcient may well be positive, sug-
gesting that these homeowners invest in ways that are inconsistent with the
real option model. The e�ects of INCOME are constant in the population,
as are the e�ects of AGE.

The calculation of the marginal e�ects for the mixed{logit model is com-
plicated by the distributions of the random coeÆcients. Now, not only do
we have to pick the values of the independent variables at which to compute
the marginal e�ects, but we must also pick the values of the coeÆcients. A
natural choice is the mean of the continuous independent variables, and the
estimated means of the coeÆcients. As before, we set the RECMOV ER and
FORSALE dummy variables to zero. Table 5 displays the marginal e�ects.
The results are similar to the standard logit case. The most important dif-
ference is the change in the marginal e�ect of V OLATILITY . The increase
in the marginal e�ect stems from the higher value of the estimated mean of
the coeÆcient compared to the estimate under the standard logit model.

It is interesting to consider the implications of the estimated standard
deviations of the coeÆcients in terms of the marginal e�ects. In table 6, we
display the results of computations of the marginal e�ects at two di�erent
values for V OLATILITY . In the second column (+�), we show the marginal
e�ects computed for a one standard deviation increase in the V OLATILITY
coeÆcient, where we have used the estimated standard deviation of the co-
eÆcient to arrive at the new value. The third column (��) shows the same
computation using a one standard deviation decrease. The marginal e�ect
for a one standard deviation increase in the coeÆcient on V OLATILITY

remains slightly negative (�0:0571). For a one standard deviation decrease,
the marginal e�ect is of course highly negative. The marginal e�ects are not
normally distributed, despite the fact that we have assumed that the coeÆ-
cients are normally distributed in the population. Nevertheless, the results
show that for all but a small portion of the population, the real option model
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appears to do a good job of explaining the observed investment.
As noted earlier, the mixed{logit speci�cation allows one to compute the

expected value of the coeÆcients for each individual, given the individual's
sequence of observed investments. In other words, having estimated the
population values for � and �, we can estimate where in the coeÆcient
distribution each individual falls. Placing each individual in the coeÆcient
distribution allows us to look for clusters of individuals in di�erent regions
of the coeÆcient space. In particular, we would like to try and identify the
common characteristics, if any, of the individuals in the upper tail of the
distribution of the V OLATILITY coeÆcient.

The density g(�j�;�) gives the distribution of the coeÆcients in the popu-
lation. We would like to identify where each individual's � lies in the distribu-
tion g. Let h(�jy; �;�) denote the density of � conditional on the individual's
sequence of investments y, � and �. If follows by Bayes' rule that:

h(�jy; �;�) = P (yj�)g(�j�;�)
P (yj�;�) : (36)

Thus, the expectation of �, given y, � and �, is:

E[�jy; �;�] =
Z
�h(�jy; �;�)d�: (37)

We simulate the value of E[�jy; �;�] as follows:

Ê[�jy; �;�] =
RP
i=1

�rP (yj�r)
RP
i=1

P (yj�r)
: (38)

The key thing to realize is that, once we have estimates of � and �, we have
all of the information we need to compute equation (38). We can think of
this as an importance{sampling algorithm, where the importance sampling
weights are given by P (yj�r)

RP
i=1

P (yj�r)

. A draw of �r that is relatively close to the

true � for the individual (and thus is relatively likely to generate his or her
sequence of observed investments), will produce a high value for P (yj�r), and
thus receive a relatively heavy weight.

Figure 5 displays a plot of each individual's expected V OLATILITY co-
eÆcient against average INCOME. The averages of INCOME are taken
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over the non{missing observations for each individual. It is clear that low in-
come individuals tend to have expected V OLATILITY coeÆcients that are
more positive than high income individuals. As indicated by the estimated
value for STDEV V OLATILITY , there is a lot of dispersion in the expected
values, especially for low income individuals. In fact, a small proportion of
low income individuals have expected values that are positive. We take this
to be a clear indication of di�erences in �nancial sophistication among indi-
viduals. The key point, however, is that for the vast majority of the sample,
the expected value of the coeÆcient on V OLATILITY is highly negative,
indicating that the real option model is useful for thinking about the timing
of housing investment by existing homeowners.
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Standard
Label De�nition Units Mean Deviation
SPREAD House return less user cost % -0.010 0.058
VOLATILITY Volatility of SPREAD % 0.044 0.036
INCOME Per capita income (SMSA level) $K 21.547 5.118
RECMOVER Indicator of recent move{in 0/1 0.059 0.235
FORSALE Indicator of house on market 0/1 0.002 0.016
AGE Age of house years 38.103 20.793

Table 1: Independent Variables

CoeÆcient
Variable Estimate t{statistic
Constant -5.4361 -70.4512
SPREAD 3.6602 11.9720
VOLATILITY -8.3329 -16.8516
INCOME 0.1590 55.9483
RECMOVER 0.0641 1.1560
FORSALE 0.7937 1.4497
AGE 0.0017 2.4174
Log{Likelihood -20,233
N 64,398

Table 2: Standard Logit Estimation Results

CoeÆcient
Variable Estimate
Constant -0.4307
SPREAD 0.2900
VOLATILITY -0.6603
INCOME 0.0126
RECMOVER 0.0051
FORSALE 0.0629
AGE 0.0001

Table 3: Standard Logit Marginal E�ects
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CoeÆcient
Variable Estimate t{statistic
Constant -5.67893 -65.86519
SPREAD 3.28327 10.41481
STDEV SPREAD 0.64901 0.88876
VOLATILITY -13.28119 -20.50591
STDEV VOLATILITY 12.75752 18.03191
INCOME 0.17284 52.37571
STDEV INCOME 0.00010 0.59464
RECMOVER 0.03155 0.42796
STDEV RECMOVER 0.26704 1.02602
FORSALE 1.11035 2.08858
STDEV FORSALE 0.11589 0.72360
AGE 0.00163 2.26201
STDEV AGE 0.00010 0.19437
Log{likelihood 20,151
N 64,398

Table 4: Mixed{Logit Estimation Results

CoeÆcient
Variable Estimate
Constant -0.3927
SPREAD 0.2270
VOLATILITY -0.9184
INCOME 0.0120
RECMOVER 0.0022
FORSALE 0.0768
AGE 0.0001

Table 5: Mixed Logit Marginal E�ects
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Variable +� ��
Constant -0.6195 -0.2380
SPREAD 0.3581 0.1376
VOLATILITY -0.0571 -1.0911
INCOME 0.0189 0.0072
RECMOVER 0.0034 0.0013
FORSALE 0.1211 0.0465
AGE 0.0002 0.0001

Table 6: V OLATILITY and Marginal E�ects
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Figure 5: Expected V OLATILITY CoeÆcients and Average INCOME
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4 Conclusion

In this paper, we constructed a continuous{time hedonic house price model.
The main innovation of the model was to allow the set of house attributes,
from which service 
ows emanate to the homeowner, to evolve over time as a
result of investment decisions by the homeowner. We modeled the investment
decision using real option theory, under which the homeowner compared the
present discounted value of an additional house attribute, net of the value of
the option to invest in the future, to the cost of the attribute when deciding
when to add features to the house.

The real option theory was tested against data on observed homeowner
investment behavior. Using a panel dataset from the American Housing
Survey, we found that observed investment behavior is consistent with the
real option theory, even after controlling for business-cycle, tenure, time{
on{market, and aging e�ects. Homeowners tend to delay investment when
the spread between the return on investment and the user cost of capital is
narrow. Similarly, homeowners tend to delay investment when the spread
is volatile, in which case the value of the option to invest in the future
rises. Using a mixed{logit model, we are able to assess the degree to which
unobserved heterogeneity in the population of homeowners might a�ect the
results. What we found is that our conclusions are robust and that, for all
but a small segment of the population, the real option model appears to
predict observed investment behavior.
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A Data

The American Housing Survey, conducted by the Census Bureau, is a panel
of approximately 53,000 randomly selected houses in the United States. The
sample is a clustered, strati�ed random sample. The United States was
divided into areas made up of counties or groups of counties and independent
cities, which the Census Bureau calls primary sampling units (PSUs). The
Census Bureau randomly selects a sample of PSUs, and then a sample of
housing units within each selected PSU. The survey has been conducted
every other year since 1985. Each biennial sample is made publicly available,
subject to certain restrictions on the data that are designed to maintain the
con�dentiality of the sources.

Each observation in each biennial data �le contains a unique \control
number" that allows one to link up the observations on a particular house
over time. For a variety of reasons, the panel is unbalanced. Table 7 shows
the frequency distribution of the number of time{series observations on the
houses in the overall sample (before removing observations due to missing
values). As can be seen, nearly a third of the sample has been included in
each of the seven surveys. For approximately twenty percent of the sample,
we have only one observation, with the rest falling somewhere in between
these two extremes.

T Frequency Percent
1 8983 19.5
2 7143 15.5
3 5258 11.4
4 2840 6.2
5 3573 7.8
6 5195 11.3
7 13073 28.4

Table 7: Number of Time{Series Observations

In order to maintain the con�dentiality of the sources, not all of the
observations contain complete geographic information. Nevertheless, the ob-
servations that we are able to use are nationally representative, with obser-
vations in nearly all of the SMSAs. Our data cover almost all of the major
metropolitan regions in the continental United States.
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Starting from the raw data, we lose observations as we attempt construc-
tions using variables with missing data. The bulk of our lost observations are
due to missing geographic information. However, we also lose a few observa-
tions due to missing income, property tax, and other information. Table 8
summarizes the number of observations lost due to missing values for each
variable we use in our logistic regressions. The �rst row of the table, labeled
\TOTAL," gives the total number of stacked observations, after selecting
owner{occupied, single{family detached houses (see below), but before dis-
carding any due to missing values. Each subsequent row shows a variable
that we use in our study, and the number of observations that remain after
discarding observations for which the variable is missing. As can be seen,
we lose most of our observations due to missing SMSA information. We lose
some more observations constructing our spread measures.

We treat all missing information as the \ignorable case" (Griliches (1986))
of missing data, in which the variables are unavailable for reasons unrelated to
the fact that our other observations are complete. Recall from the main text
that, when we used the T-bill as a proxy for the user cost of capital, our results
were virtually unchanged. This suggests that the loss of observations due to
the construction of the spread variables indeed does constitute an \ignorable
case" of missing data. Finally, it is diÆcult to make a convincing case that
the process by which observations fall into sparsely populated regions, and
thus have suppressed geographic information, is somehow related to housing
investment in a systematic fashion.

Observations
Variable Remaining
TOTAL 137,662
SMSA 79,126
AGE 79,126
RECMOVER 79,126
FORSALE 79,126
SPREAD 64,398
Y 64,398

Table 8: Missing Data and Sample Size

Table 9 shows the variables that we drew from the AHS microdata �les
in order to construct the variables used in our econometric model. The �rst
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column gives the variable names as they appear on the AHS microdata �les.
Some of the variable names change over the years. In the second column, we
note the survey years for which the name applies. The third column gives the
label, if any, from the microdata �les. Some of the variables from the 1997
survey have not yet been labeled, because the Census Bureau has not yet
completed processing the data. Below, we discuss in detail how the variables
in our econometric model were constructed from those shown in table 9.

Variable
Name Survey Label
NUNITS 85-97 No. Of Living Qrtrs In Structure Including Vacant Qtrs
ISTATUS 85-97 Type of Interview
TENURE 87-97 Tenure Status
SMSA 87-97 Metropolitan Areas
NEWADD 85-95 New Additions Built in Last 2 Years
RAN 97 Number of replacements and additions
CSTMNT 85-97 Amt Spent in Last Year On Routine Maintenance
AMTX 85-97 Yearly Real Estate Taxes
VALUE 85-97 Property Value (Sample Unit Only)
ZINC 85-97 Inc Of Ref Person And Hshld Members Related To Ref Pers
MAR 85-95 Marital Status of Head/Reference Person
MAR1 97
RMR 85-95 Respondent Moved Here In Last 12 Months
MOVYR1 97
MOVM1 97
MARKET 85-97 Occupied: Listed for Sale or Told Landlord Will Vacate within Month
BUILT 85-97 Year Structure Was Built (Or Model Yr Of Mobile Home)

Table 9: Variables Drawn from AHS

The variables NUNITS, ISTATUS and TENURE are used to select
owner{occupied, single{family detached homes for which a so{called \occu-
pied, regular interview," was completed. In terms of the variables in the
survey, this is accomplished by imposing the following requirements:

NUNITS = 1

ISTATUS = 1

TENURE = 1
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This produces the sub{sample of structures that we study.
For 1985-1995, our dependent variable is constructed as follows:

Y =

(
0 NEWADD = 0
1 NEWADD > 0

: (39)

For 1997, our dependent variable is:

Y =

(
0 RAN = 0
1 RAN > 0

: (40)

The variable UPKEEP is computed as:

UPKEEP =
CSTMNT

V ALUE
: (41)

The variables FMAR and SMAR use the measure of household income,
ZINC, and the marital status MAR, to assign the correct federal and state
marginal tax rates, respectively. In the construction of the federal marginal
tax rate, FMAR, if the head of household is married, we use the joint{�lers
tax rate schedule, and we use the unmarried �ler schedule for all others. The
federal tax rate schedules are collected from the instruction booklets for the
federal income tax forms over 1985{1997. The state marginal tax rates are
close approximations collected from the U.S. Master Tax Guides (Commerce
Clearing House (1999)).

Property taxes as a fraction of house value, PTAX, are calculated as:

PTAX =
AMTX

V ALUE
: (42)

The variables UPKEEP , FMAR, SMAR, and PTAX are based on
data that are measured biennially in the AHS surveys. We interpolated
the o�{year values from the survey values, where necessary. We have done
additional robustness checks using just the survey{year data, and the results
reported in the text were qualitatively unchanged.

The variable RECMOV ER is computed in 1985-95 as:

RECMOV ER =

(
1 RMR = 1
0 RMR 6= 1

: (43)

For the year 1997, we use the variablesMOV Y R1 andMOVM1 to construct
a variable just like RMR, and then code RECMOV ER as above.
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The variable FORSALE is computed as:

FORSALE =

(
1 MARKET = 1
0 MARKET 6= 1

: (44)

The variable AGE is computed as the di�erence between the survey year
and the value of BUILT .
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B Numerical Solution Algorithm

In general, it is computationally infeasible to produce high{resolution pic-
tures of the attribute and option price functions under the model developed
in section 2. However, because the attribute and option price functions are
smooth, low-resolution pictures suÆce to reveal most of the important fea-
tures of the functions. 19 Even so, it remains a non{trivial computational
challenge to solve the partial di�erential equations that describe the asset
prices at a level of resolution that is useful. In this section, we brie
y out-
line the software tool that we designed for solving the partial di�erential
equations.

The partial di�erential equations (PDEs) that describe attribute and as-
set prices are elliptical, meaning that the partial derivative with respect to
time does not appear. This is in contrast to the parabolic PDEs that describe
the prices of assets with �xed maturities. There are two approaches that one
can take to the problem of solving for an asset price function when the PDE
that describes the function is elliptical. One is to solve the PDE by exploiting
the \steady{state" nature of the function. This approach typically leads to
large, sparse{matrix algebra based algorithms. The second approach is to
treat the asset as if it has a very long �xed maturity, and to solve the result-
ing parabolic PDE. In essence, one trades o� computer memory against the
number of computations when deciding which approach to adopt. Solving
the elliptical problem requires large amounts of memory (as well as a good
deal of computation), while solving the parabolic problem requires much less
memory, at the cost of more computation. A key advantage of the parabolic
approach is that it is straightforward to parallelize the solution algorithm,
and so we adopted this approach.

To keep this discussion as brief as possible, we assume that the reader is
familiar with the explicit �nite di�erence method for solving parabolic partial
di�erential equations, and is also familiar with a multi{threading subroutine
library (e.g., pthreads). Our algorithm is essentially a divide{and{conquer
algorithm, in which the state space is broken up into cubes, and a processor
(thread) is assigned to make a single step of the explicit �nite di�erence
algorithm on a given cube. The following bit of C{code lays out the main
portion of the algorithm for calculating attribute prices:

19A signi�cant exception is the case where one is concerned with the precise location of
the boundary between the continuation and exercise regions.
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1 for (i = 0; i < M3; i++)

2 for (j = 0; j < M2; j++)

3 for (k = 0; k < M1; k++)

4 X[0][i][j][k] = rent_flow[j];

5 for (n = 0; n < NUMPROC; n++)

6 pthread_create (&thread[n],

7 &thread_data[n],

8 finite_difference,

9 (void *) &thread_id[n]);

10 for (t = 0; t < S*T; t++)

11 {

12 while (count < NUMPROC)

13 pthread_cond_wait (&thread_cond,

14 &thread_mutex);

15 count = 0;

16 for (i = 0; i < M3; i++)

17 for (j = 0; j < M2; j++)

18 for (k = 0; k < M1; k++)

19 X[0][i][j][k] = X[1][i][j][k] +

20 rent_flow[j];

21 pthread_cond_broadcast (&sync_cond);

22 }

We have divided the solution space into M1 �M2 �M3 equally-spaced
points on the unit cube, after transforming the support of each state variable
to the unit interval by means of the transform:

f(x) =
x

�+ x
: (45)

The parameter � is a \packing factor" that is used to increase the number of
solution points in a particular region of the state space. Another way to think
of � is that it increases the resolution of the solution by \focusing" on certain
regions of the state space. For � and �, we set � equal to the long{run means
of the processes. For �, we set � equal to one. Let �i, for i = 1; 2; : : : ;M3
denote the discrete values of � after applying the transform (45). The other
variables are similarly transformed, producing �j for j = 1; 2; : : : ;M2, and
�k for k = 1; 2; : : : ;M3.

With lines 1{4, we initialize value of the attribute at (�i; �j; �k) to the
rental 
ow �j:

P (�i; �j; �k) = �j:
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Lines 5-9 start the threads. The thread data structure contains the data
that each thread needs to determine the part of the solution space to which
it is assigned. The function finite difference contains code that makes a
single step of the �nite di�erence algorithm on the piece of the solution space
de�ned in thread data.

The outer{enclosing loop that begins at line 10 steps backward through
time (here t= 0 is the last time period). The parameter T is the number
of years over which we run the solution, and S is the number of increments
per year (each time step is a length of time equal to 1

S
). A value of T large

enough to produce solution values that di�er by less than some value � from
the solution values at T �1 can be found by trial{and-error. We used a value
of T = 200 (200 years); this value produced prices that di�ered by less than
a cent from T = 201. We used S = 365, or time steps of one day in length.
20

Lines 12-14 operate in tandem with line 21 to synchronize the threads.
The main thread of control waits at line 13 until the mutex{protected variable
count reaches the value NUMPROC (when a thread �nishes a step, it locks
the mutex, increments count, releases the mutex, and waits on the mutex{
protected variable synch cond.).

When count = NUMPROC, the main thread continues execution, re{setting
count to zero at line 15. At lines 16-20 the solution is copied from X[1] back
to X[0], and an additional 
ow of rents is added to the attribute value. Line
21 signals the threads to perform another �nite di�erence step. The loops
exits when the current time t = S � T is reached.

The data in the global storage array X are organized so as to minimize
cache{misses. The data are organized such that an entire block of memory
locations along the � axis will be copied in succession; the calculations in
finite difference are similarly arranged so as to run along this block of
memory locations, thereby minimizing cache{misses.

For our pricing experiments, we set M1 = M2 = M3 = 50. The algo-
rithm executed in approximately one hour using 50 threads on a dedicated
4-CPU Sun UltraSparc 2000.

20The length of the time step suÆcient to guarantee that the solution is both stable
and consistent can be found by trial and error or by analytic means. See Hull and White
(1990) for a discussion of analytic methods.
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