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1 Introduction

Recent articles have uncovered a puzzle in monetary policy: Interest-rate reaction functions

derived from solving optimization problems call for much more aggressive responsiveness of

policy instruments to output and inflation than do rules estimated with US data.1 What explains

the observed lack of aggressiveness–theattenuation–of policy?

Three distinct arguments have been advanced to explain the observed reluctance to act

aggressively. The first is that it is simply a matter of taste: Policy is slow and adjusts smoothly

in response to shocks because central bankers prefer it that way, either as an inherent taste

or as a device to avoid public scrutiny and criticism (see, e.g., Drazen (2000), Chapter 10).

The second argues that partial adjustment in interest rates aids policy by exploiting private

agents’ expectations of future short-term rates to move long-term interest rates in a way that

is conducive to monetary control (see, e.g., Goodfriend (1991), Woodford (1999), Tetlow and

vonzur Muehlen (2000)).

The third contention is that attenuated policy is the optimal response of policymakers facing

uncertainty in model parameters, in the nature of stochastic disturbances, in the data themselves

given statistical revisions, and in the measurement of latent state variables such as potential

output, the NAIRU, and the steady-state real interest rate. Blinder (1998), Estrella and Mishkin

(1998), Orphanides (1998), Rudebusch (1998), Sack (1998a), Smets (1999), Orphanides et.al.

(2000), Sack and Wieland (2000), Wieland (1998), and Tetlow (2000) all support this general

argument, following the line of research that began with Brainard (1967).2. The present paper

is concerned with this third explanation for policy attentuation. There is no unanamity on

this third line of argument, however. Chow (1975) and Craine (1979) demonstrated long ago

that uncertainty can lead to the opposite result ofmoreaggressive policy than in the certainty

equivalence case—or what we might dub asanti-attenuation. Söderström (1999a) provides an

empirical example of such a case. Moreover, possible deficiencies in the Brainard-style story

are hinted at in the range of uncertainties required in papers by Sack (1998a) and Rudebusch

(1998) to come even close to explaining observed policy behavior.3 Lastly, time-variation

in uncertainty can, in some circumstances, lead to anti-attentuation of policy as shown by

Mercado and Kendrick (1999).

The concept of model uncertainty underlying the papers cited above is Bayesian in nature:

1The list of papers includes Rudebusch (1998), Sack (1998b), S¨oderström (1999b), Tetlow, von zur Muehlen,
and Finan (1999) and Tetlow and von zur Muehlen (2000).

2Other important early references include Aoki (1967), Johansen (1973), Johansen (1978), and Craine (1979)
3Rudebusch (1998) finds that data uncertainty has only a slight attenuating effect on optimal policy. Similarly,

Onatski and Stock (2000) find that data uncertainty has a minimal effect on reactions formed when monetary
policy is robust in the sense of the term described below.
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A researcher faces a well-defined range of possibilities for the true economy over which he

or she must formulate a probability distribution function (see Easley and Kiefer (1988)). All

of the usual laws from probability theory can be brought to bear on such questions. These

are problems ofrisk, and risks can be priced. More realistically, however, central bankers

see themselves as facing far more profound uncertainties. They seem to view the world as

so complex and time varying that the assignment of probability distributions to parameters

or models is impossible. Perhaps for this reason, no central bank is currently committed to a

policy rule (other than an exchange rate peg). In acknowledgment of this view, this paper arises

from the conception ofuncertainty, in the sense of Knight, wherein probability distributions

for parameters or models cannot be articulated.

We consider two approaches to model uncertainty that differ in the nature of the specifi-

cation errors envisioned and in the robustness criterion applied to the problem. One approach

treats errors as manifested in arbitrarily serially correlated shock processes, in addition to the

model’s normal stochastic disturbances. This formulation, calledunstructured model uncer-

tainty, follows in the tradition of Caravani and Papavassilopoulos (1990) and Hansen, Sargent

and Tallarini (1999), among others. A second approach puts specific structure on misspeci-

fication errors in selected parameters in a model. It is possible, for example, to analyze the

effect on policy of the worst possible one-time shift in one or more parameter. Alternatively,

misspecification in model lag structures could be examined. Suchunmodeled dynamics, will

affect robust policy. The seminal economics paper in this area ofstructured model uncertainty

is Onatski and Stock (2000).

The inability to characterize risk in probability terms compels the monetary authority to

protect losses against worst-case outcomes, to play a mental game against nature, as it were. In

the case of unstructured uncertainty, the solution to the game is anH1 problem or, in a related

special case, a problem that minimizes absolute deviations of targets. In the case of struc-

tured uncertainty, the monetary authority ends up choosing a reaction function that minimizes

the chance of model instability. In both cases, the authority adopts a bounded “worst-case”

strategy, planning against nature’s “conspiring” to produce the most disadvantageous parame-

terization of the true model.

With the exception of Hansen and Sargent (1999b), Kasa (2000), and Giannoni (2000),

robust decision theory has been applied solely to backward looking models. Hansen and Sar-

gent (1999b) and Kasa (2000) derive policies under the assumption of unstructured uncertainty,

while Giannoni (2000) solves a problem with structured uncertainty, wherein policies are de-

rived subject to uncertainty bounds on selected parameters of the model. In this paper, we

break new ground in that we consider a number of cases of unstructured as well as structured
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uncertainty, doing so for an estimated forward-looking model, and with a particular real-world

policy issue in mind. Also, unlike Hansen and Sargent (1999b) and Kasa (2000), but like Gi-

annoni (2000) and Onatski and Stock (2000), we derive robustsimplepolicy rules, similar in

form to the well-known Taylor (1993) rule. Our analysis differs from Giannoni (2000) in that

it is less parametric, relies on numerical techniques, and is amenable to treatment of larger

models and covers unstructured as well as structured uncertainty.

The rest of this paper unfolds as follows. In section 2, we introduce structured and unstruc-

tured perturbations as a way of modeling specification errors to a reference model considered

to be the authority’s best approximation to true but unknown model. We define a number of

Stackelberg games that differ according to the central bank’s assessment of the bounds on un-

certainty and its loss function. To analyze the specific questions at hand, in the third section, we

estimate a small forward-looking macro model with Keynesian features. The model is a form

of contracting model, in the spirit of Taylor (1980) and Calvo (1983), and is broadly similar to

that of Fuhrer and Moore (1995a). Section 4 provides our results leaving Section 5 to sum up

and conclude.

To presage the results, although we are able to produce a robust rule that is nearly identical

to the estimated rule, it is not clear how much of the issue this resolves. Robustness,per se,

cannot explain attenuated policy. As others have found, when policy is robust against a combi-

nation of shock and misspecification errors, monetary policy becomes even more reactive than

the linear quadratic optimal rule. Indeed, we observe a seeming inverse relationship between

reactiveness and the degree of structure imposed on uncertainty. At one extreme, unstructured

uncertainty justifies the most reactive set of rules. At the other extreme, heavily attenuated

policies are generated in cases with a lot of structure on model uncertainty. In particular, if the

monetary authority chooses a policy that is robust only to misspecification of the lag structure

of the model, the optimal interest rate reaction rule becomes very similar to the estimated rule.

When the only criterion is robustness to misspecifications of the lagged output coefficients in

the aggregate demand equation, the robust rule and the estimated rule are practically identi-

cal. It is tempting to infer from this result that Federal Reserve policy in the last twenty years

has been influenced by a special concern about ill-understood future effects of current actions.

However, ours is not sufficient evidence to establish that the US monetary policy authority has

or has not in fact been a robust decision maker.
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2 Model Uncertainty in the Sense of Knight

Few observers of the U.S. macroeconomic scene in 1995 would have forecast the happy co-

incidence of very strong output growth coupled with low inflation that was observed over the

second half of the decade. Such forecast errors tend to bring out the humble side of model

builders and forecasters alike and reinforce the lesson that considerable uncertainty surrounds

our understanding of the real world, a fact that should be taken account of in planning. In

the presence of such pervasive ambiguity, the notion of Knightian uncertainty has an obvious

appeal. Whatever the circumstances, it is easy to imagine that the best guess of the true model

a policymaker can bring to the issue of monetary control is flawed in a serious but unspecifi-

able way. We consider an approach, founded on recent developments in robust decision theory,

in which the authority contemplates approximation errors of unspecified nature but of a size

contained within abounded neighborhoodof its reference model. As will become apparent

shortly, this approach has the advantage of fitting into a linear quadratic framework, but with-

out its usual association with certainty equivalence. The absence of a probability distribution

for possible misspecifications leads, in turn, to a desire to minimize worst-case outcomes. Pre-

vious research has shown that this can be usefully formulated as a two-person game played, in

this instance, between the monetary authority and a malevolent nature.4

It is easy to conceptualize how model misspecification can be represented as a game. Imag-

ine a monetary authority attempting to control a misspecified model. As it does, the misspeci-

fication will manifest itself, out of sample, as residuals whose time-series pattern differs from

those derived by estimating the model. The nature of theseex postresiduals will depend on

the nature of the misspecification, the bounds on its size, and the specifics of the feedback rule

employed by the authority. However, the uncertainty involved—uncertainty in the sense of

Knight—is not amenable to standard optimization techniques, reliant as they are on the means

and variances of state variables. It is reasonable for a policymaker that is unable to distinguish

the likelihood of good and bad events to seek protection from the worst outcomes. This lends

a non-cooperative gaming aspect to the problem, with the authority planning to protect itself

against the possibility that nature will throw the worst possible set ofex postshocks allowed

by the bounds of the problem.

Different assumptions about uncertainty bounds alter the nature of each game in ways that

4The policy environment used in this paper is similar to one used in von zur Muehlen (1982), which ex-
amined several two-person Stackelberg games with Knightian uncertainty modeled as uniform distributions
over the stochastic processes of the parameters. Early treatments of control as two-person games include
Sworder (1964) and Ferguson (1967). More recent papers include Glover and Doyle (1988), Caravani and Pa-
pavassilopoulos (1990), Caravani (1995), and Basar and Bernhard (1991), Hansen et al. (1999), Hansen and
Sargent(1996,1998,1999a).
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will be explored below. In addition, the precise formulation of each game will be determined

by the amount of structure placed on approximation errors assumed to arise from misspeci-

fication. In this regard, we first assume that specification errors, viewed asperturbationsto

the reference model, areunstructuredin the sense of being completely reflected in the addi-

tive stochastic error process driving the reference model. This uncertainty about the model is

parameterized by a bound on extreme rather than average values of the loss function, which

rise as unspecifiable uncertainty increases, as we will show.5 With these restrictions, the deci-

sion maker is compelled to act cautiously by assuring a minimum level of performance under

the worst possible conditions. Whether or not such caution leads to less or more intensified

feedback, is a question we will answer in the context of our empirical model.6

A second set of exercises, also within the framework of Knightian uncertainty, examines ro-

bust decisions under model uncertainty alone. There, we shall distinguish between uncertainty

in parametersand uncertainty indynamics. Parameter uncertainty is a fairly clear concept,

except that with Knightian uncertainty we make no distributional assumptions. In addition, we

shall distinguish between one-time shifts and time varying approximation errors that may be

either linear or nonlinear. Dynamic misspecification, including omitted or unmodeled dynam-

ics, is common and implies that error processes are not white noise. For such cases, we are able

to use a recently developed technique, called� analysis, to determine interest-rate rules that

are robust to worst-case misspecifications of the lag structure in a model. A drawback of the

solutions for robust control rules under structured uncertainty is that computational methods

for obtaining unique minima of risk functions are generally not available. However, it is possi-

ble to generate robust rules resulting in output with finite norms that guarantee robust stability

but not necessarily robust performance of losses.7

2.1 A generic linear rational expectations model

Let xt denote ann � 1 vector of endogenous variables in the model. A number,n1, of these

variables is assumed to be expectational (nonpredetermined, forward looking), and the remain-

der,n2 = n � n1, are predetermined (backward looking). The economy is assumed to evolve

5The literature on robust control has its genesis in the seminal paper by Zames (1981). The first systematic
treatment of robust control in terms of explicit state feedback rules, based onH1 norms on a system’s transfer
functions, is by Doyle, Glover, Khargonekar and Francis (1989).

6Another way of addressing this issue is to construct, by experimentation, rules that are robust to a variety of
models. An fine example of this is Levin, Wieland and Williams (1999) which tests interest-rate rules for their
performance in four structural models. While these results are quite instructive, they are limited in generality
by the small set of models considered. The premise of Knightian uncertainty is that such specific knowledge is
lacking.

7The relevant methodology is described in Zhou, Doyle and Glover (1996) and Dahleh and Diaz-Bobillo
(1995).
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according to the following law of motion,

xt+1 = Axt +But + vt+1; (1)

whereut is ak-dimensional vector of policy instruments, andvt+1 is a vector of random shocks,

the properties of which we detail below.8 Throughout, we assume that the authority uses only

one instrument and commits to the stationary rule,ut = Kxt, whereK is an1 � n vector

of parameters to be chosen.9 Let Tt denote a target vector, for example inflation, output, and

possibly the policy maker’s control variable.T is thus represented as the mapping,

Tt = Mxxt +Muut: (2)

Forut = Kxt, the target is,Tt = Mxt , whereM = Mx +KMu ism� n. As is usually done

in this literature, the periodic loss function is a quadratic form involving the target vector,Tt:

Lt = T 0tQTt, whereQ is anm � m (diagonal) weighting matrix of fixed scalars assigned by

the authority. Next, it is convenient to define theoutputvector,

zt = Q
1

2Tt = Hxt; (3)

whereH = Q
1

2M is anm� n matrix. With this, the periodic loss function becomes,

Lt = z0tzt = x0tH
0Hxt: (4)

The authority’s objective function is the discounted sum of periodic losses,

V0 =
1X
t=0

�tLt =
1X
t=0

�tz0tzt; (5)

where0 < � � 1 is a time discount factor.10 Note that, contrary to the usual practice, we do

not express future losses in stochastic terms, given the definition of uncertainty as Knightian.

Given a stabilizing vector,K, the unique saddlepath, with exactlyn1 roots within the unit

8The vector of residuals,vt+1 may contain zeros. Equation (1) may be thought of the solved companion form
of a structural model, in which isues, such as singularities have been resolved by appropriate solution techniques.

9The feedback rule may be a “synthesized” optimal or robust control rule or it may be a restricted (simple)
optimal or robust feedback rule, when some elements ofK are restricted to be zero.

10In the calculations, we set� = 1, which we can do without loss of generality, provided we are willing to
assume the existence of a commitment technology. Values less than one can be trivially accommodated by well
known transformations.
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circle, andn2 outside, implies therestricted reduced-form11

xt+1 = �xt + Cvt+1; (6)

where� andC depend nonlinearly on the parameters in the policy rule as well as on the struc-

tural parameters of the model.12 This non-linear dependence of the reduced-form parameters

on structural and policy parameters implies that specification errors in the structural (reference)

model are also reflected in the parameters of the reduced form. As is common practice, we ex-

press model uncertainty by augmenting the transition matrix—in our case, the reduced form of

the reference model—with a matrix of perturbations,��, representing misspecification errors,

xt+1 = (� +��)xt + Cvt+1: (7)

In the next few pages we shall tackle two cases: (1)unstructured model uncertainty, rep-

resented by combined model and shock uncertainty, in which we do not distinguish between

��xt andCvt, and (2)structured model uncertainty, in which uncertainty is solely associated

with the model’s parameters.

2.2 Unstructured uncertainty

We treat the general case of unstructured model uncertainty first, combining errors arising

from independent disturbances with those that arise from misspecification. If misspecification

errors are due to omitted variables, the implied additive shocks will be heteroskedastic, with

additional dependence on the decision rule. Further, as noted by Hansen and Sargent (1998),

by feeding back on endogenous variables, misspecified shock processes capture misspecified

endogenous dynamics. If these errors in specification manifest themselves through the same

dynamics as the model’s additive shocks—as they would in the case of omitted variables—they

may be reflected in size and autocorrelation of the residuals, possibly at frequencies that may

damage the policy maker’s stabilization goals. Under the assumption that the distribution of

shocks is unknown, the authority chooses elements inK to prevent or minimize worst outcomes

to the performance metric.

Settingwt+1 = ��xt + Cvt+1, and combining (7) and (3), the system may be compactly

11A solution may be obtained using any of a variety of techniques for solving linear dynamic perfect foresight
models. We use the Anderson-Moore algorithm, which computes saddle-point solutions using the QR decom-
position to obviate problems with possible non-singularities. See Anderson and Moore (1985) and Anderson
(2000).

12Note that in every instance, the computations properly account for this dependence as well as the dependence
on the feedback parameters,K.
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represented by,

2
4 xt+1

zt

3
5 =

2
4 � I

H 0

3
5
2
4 xt

wt+1

3
5 : (8)

This describes a state-space system with output,zt, and input,wt+1, where, as noted earlier,

wt+1 should be viewed as the nature’s control variable. Withwt+1 as the instrument of one of

our players, we henceforth treat it not as a stochastic process but as a deterministic sequence

of bounded approximation errors.

We now introduce the mapping from shocks,wt, to the target vector,zt, called thetransfer

function,G. It is obtained by solving (8) forzt as a function ofwt:

zt = H(I � �L)�1wt � Gwt: (9)

We are interested in thesizeof G, because it measures how disturbances, including perturba-

tions to the model, affect target performance. HoweverG is measured, i.e., whatevernormwe

adopt, smaller values are always to be preferred to larger ones.

As first proposed by Basar and Bernhard (1991), the problem of the monetary authority

facing Knightian uncertainty may be cast as a two-person game with a Nash equilibrium: nature

choosing the sequencefwt+1g, taking the authority’s feedback rule as given, and the authority

choosing the vector,K, which feeds back on the state variables. Using the Hansen and Sargent

(1999a) formulation, the decision maker choosesK to minimizewelfare losses, and malevolent

nature chooseswt to maximizewelfare losses:

min
K

max
wt

1X
t=0

z0tzt; (10)

subject to (8) and

1X
t=0

w0
twt � �2 + w0

0w0; (11)

x0 = w0:

The above formulation is a very general and powerful representation of a class of games. In

the special case where� = 0, the policy maker is solely concerned with additive shock distur-

bances. In the more general case where� > 0, the game is determined by the initial value of

the shock process,w0, which, represents the opponent’s commitment to its hostile strategy.

Several results as well as the computations in section 4 require use of the frequency domain.
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Accordingly, we introduce the following one-sided Fourier transform,

X(�) �
1X
t=0

xt�
t;

where� = ei!, and! is a point in the frequency range��; �. Applying this transformation to

(8) and (9), yields the following reformulation of the output vector,zt, and the transfer function,

G, analogous to the transfer function,G, defined in the time domain,

Z(�) = G(�)W (�);

G(�) = H(I � ��)�1:

Applying Parseval’s equality, the game in (10) is equivalently expressed as the finding of a

pair, [K;W], that solves

inf
K

sup
W

1X
t=0

z0tzt = inf
K

sup
W

1

2�

Z �

��
W (�)0G(�)0G(�)W (�)d! (12)

Z �

��
W (�)0W (�)d! � �2 + w0

0w0;

subject to (8). Notice that the integral is defined on the unit disk.

This formulation allows us to describe several possible games, depending on particular

assumptions made about the form of the loss function and the bounds placed on Knightian un-

certainty. The authority may, for various reasons, be interested in minimizing a square measure

of loss, such as a quadratic form, or it may want to minimize the largest absolute deviation of

its losses. In the absense of distributional assumptions, the authority must also decide how

large nature’s shocks can be. Typical assumptions are that shocks are square-summable or that

their largest absolute value is less than some finite number. Such assumptions are typically

expressed asnorms. In our case, we shall be mainly interested in two such norms, denoted`2

and`1, respectively,13

13Let lnp (Z) be the space of all vector-valued real sequences on integers of dimensionn, where x =
(� � � ; x(�1); x(0); x(1); � � �) with x(k) 2 <n, such that

jjxjjp =

0
@ 1X

k=�1

nX
j=1

jxj(k)j
p

1
A

1=p

<1:

If p = 1, jjxjj1 belongs iǹ 1 and is the sum of absolute values. Forp = 2, the norm,jjxjj2 belongs iǹ 2, and its
square is the amount of “energy” in a signal, which, in statistics or economics, is akin to a covariance or quadratic
loss. Forp = 1, jjxjj1 belongs iǹ 1 and is the maximum “magnitude” or “amplitude” a signal can attain over
all time.
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1. `2(X) = (
P1

0 jX(j)j2)1=2: square-root of the sum of squares of X; whenX = z, this is

the linear quadratic regulator (LQR) loss function in (10). The constraint shown in (11),

given� 6= 0, is an`2 norm, whereX = w.

2. `1(X) = supj jX(j)j: the largest absolute size ofX. For X = w, it measures the

maximum amplitude of disturbances.

We now present three versions of the preceding game, each distinguished from the other by

an assumption made about� and the manner in which nature is assumed to have “committed”

to a strategy,W, as manifested by its choice (or lack thereof) of the initial shock,w0. Given

nature’s commitment to a strategy,W, the authority can solve the opponent’s maximization

problem to eliminateW and reduce the problem to one involving anindirect loss function. In

the language of linear operator theory, the resulting loss function, expressed as a norm onG,

is said to be “induced”.14 Of course, the central bank does not know nature’s strategy other

than that it is bounded in some sense. We discuss three versions of the game in (10)-(11), each

determined by particular assumptions concerning the form of the loss function and the bounds

placed upon Knightian uncertainty. As is shown next, by specifying which of the above norms

applies to the loss function and which to the shock process, the authority determines the kind of

one-player, ‘induced” loss function it seeks to minimize. An important feature of that indirect

loss function is that is independent of the opponent’s strategy,fwt+1g.
Table 3 anticipates the indirect loss functions we will derive in the next three sections. The

top row specifies the norm assumed to bound uncertainty, and the leftmost column shows the

assumed norm for the loss function. The cells in the table display the indirect loss functions

that result when one combines assumptions from the top row with loss functions at the left.

The`1 norm is defined in footnote 13 and in section 2.2.3.

Table 1:Loss Functions Induced by Type of Unstructured Model Uncertainty
Model Uncertainty:� > 0 Certainty Equivalence:� = 0

Underlying Loss `2 `1 `2

Quadratic Loss:̀ 2 H1 � H2

Maximum Loss:̀ 1 � `1 �

14Let G (G = (gij) 2 <m�n) be a transfer function fromw to z: z = Gw, then thè p inducednorm ofG is
anoperatorfrom (<n; j:jp) to (<m),

jjGjjp�induced = sup
w 6=0

jjGwjjp
jjwjjp

;

which is the amount of amplification the operatorG exerts on the space,Z. Further,G is a boundedoperator
norm fromW toZ, if its induced norm is finite,jjGjjp <1.
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2.2.1 `2 loss without model uncertainty: the linear quadratic regulator (LQR)

Assume that model uncertainty is not an issue, that is, let� = 0 and allowW (0) = w0 to be

arbitrary. In this case, (11) is satisfied only ifwt = 0 for all t > 0, so thatW (�) = w0, a

constant for all�. Equivalently, the shocks,w, have no spectral density, so thatW (�)0W (�) =

I. The game (12) reduces to the linear-quadratic problem with certainty equivalence,

inf
K

sup
W

1X
t=0

z0tzt � inf
K

sup
W
jjzjj22 = inf

K
sup
W

w0
0

�
1

2�

Z �

��
G(�)0G(�)d!

�
w0

= inf
K
w0
0jjGjj22w0: (13)

Minimization of the loss function is therefore equivalent to minimization of the normjjGjj2 in

H2, (the Hardy space of square-summable analytic functions on the unit disk), where

jjGjj2 =
1

2�

Z �

��
trace[G 0(�)G(�)]d!;

is a function of the authority’s decision rule,K, but not ofw. Each point on a plot of

trace[G(�)0G(�)] represents the contribution of the shock process at frequency point! to the

total loss. Notice thatjjGjj2 is related to a generalized variance, defined by integrating over

spectral frequencies with equal weighting across frequencies. As we shall show below, the ro-

bust authority does not assign equal weights to all frequencies; rather, it assigns larger weights

to frequencies to which the economy is most susceptible to damage from well chosen shocks, in

accordance with its strategy to avoid worst-case outcomes. Since all policies, robust or not, im-

ply a variance measure of loss, different policies can be compared by plottingtrace[G(�)0G(�)],
measuring their relative strengths and vulnerabilities at various frequencies.

2.2.2 `2 loss with `2 bounded model uncertainty: theH1 problem

As noted before, the LQR, with its implication of certainty equivalence, may distort policy if

risk is a real concern. If the authority believes risk to be a significant feature of the environment

it faces, a different approach is required. In terms of the game (12), model uncertainty is

equivalent to letting� > 0 be arbitrary. For the present case, also assume thatW (0) = w0 = 0.

The initial setting,w0 therefore disappears from the constraint, making the problem the same

as if nature made no commitment to an initialw0, at all.15 As before, the authority’s nominal

loss function is assumed to be quadratic. In Hansen and Sargent (1999a) and Zhou et al. (1996)

15Absence of commitment tow0 is a hallmark ofH1 control. As shown in subsection 2.2.4, games that are
intermediate toH2 andH1, assume that nature does commit to somew0 6= 0.
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it is shown that for (12), this problem implies a single-agent minimization problem inH1,

inf
K

sup
W

1

2�

Z �

��
W (�)0G(�)0G(�)W (�)d! � inf

K
sup
W

sup
!2[��;�]

��2
1

2�

Z �

��
W (�)0W (�)d!

� inf
K

sup
W

��2�2 = inf
K
jjGjj21�2; (14)

where�� denotes the singular value ofG, defined as the square root of the largest eigenvalue

of G 0G.16 The idea behind this approach is to spread the consequences of unknown serial

correlations across frequencies by designing a rule that works well over a range of values of

W (�)0W (�), taking the view thatjjwjj2 is the worst that nature can do. The saddlepoint solution

of (14) is equivalent to the infinum of theH1 norm,jjGjj1,

inf
K
jjG(K)jj1 = inf

K
sup
W

jjG(K)jj2
jjwjj2 � ��: (15)

Denoting the minimizing feedback ofK by K̂, �� satisfies the inequality,

jjG(K̂)jj2 � ��jjwjj2; for all w 2 `2; (16)

demonstrating that robust policy can limit the ratio of the two norms. Confining this ratio to ac-

ceptable levels is calleddisturbance attenuationin the engineering control literature. While an

increase in�� always implies an increase in the level of uncertainty, Hansen and Sargent (1999a)

identify declining values of� with rising levels of preference for robustness. Conversely, as

� !1, the preceding criterion converges on the standard LQR policy.

2.2.3 `1 loss with `1 bounded model uncertainty: the MAD criterion

Instead of minimizing deviations from target paths against shocks with square-summable bounds,

the policy maker is now assumed to avoid worst-case scenarios by minimizing the maximum

amplitude of target deviations,jjzjj1, against the largest possible shock satisfyingjjwjj1 < �2.

This assumption represents policies of an authority that feels especially susceptible to unfortu-

nate shocks. This combination of loss function and size of uncertainty induces an`1 indirect

loss onG, defined as the weighted sum of absolute deviations of targets from their desired

16A referee has pointed out the dependence ofwt+1 on the feedback,K, as a potential problem in the analysis
of H1 problems. Since nature may choose awt+1 in response toK that is huge in comparison to other shocks,
even ifG(K) amplifies this shock as little as possible, the damage can be very large. Framed in terms of the game,
the variance restriction on the shocks depends onK, so that

P
w0(K)w(K) < �2 + w00w0. Note, however, the

assumption that� is arbitrary means that the implied robust policy will guarantee adequate performance against
the worst that nature can do, including reacting adversely toK. In any case, this feature is not confined to the
forward-looking model analyzed here; the nature of the game solution makes it generic to all dynamic models.
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levels,jjzjj1.17 Formally, the minimum absolute deviation (MAD) problem solves,

min
K

sup
w
jjGwjj1

s:t jjwjj1 � �2;

which is equivalent to

min
K

sup
w:jjwjj1��2

jjGwjj1
jjwjj1 = min

K
jjGjj1 = min

K
max
1�i�m

nX
i=1

jGijj:

2.2.4 BetweenH2 andH1: Minimum Entropy

A digression that is useful for casting robust control in language that is familiar to economists,

is the case of minimum entropy. Observe that in theH2 control problem, misspecification

becomes irrelevant when� = 0 andw0 is allowed to be arbitrary. By contrast, in theH1

robust control problem,� > 0 allows for model misspecification, whilew0 is assumed to be

zero, or, equivalently, free. An intermediate case commits nature to specify an initial condition,

w0 6= 0, leading to the Lagrangian multiplier game,

inf
K

sup
w:jjwjj2��2+w00w0

jjzjj2: (17)

An interesting result due to Whittle (1990) is that the preceding game reduces to a single-

player control problem with the authority minimizingentropyor, equivalently, arisk-sensitive

function closely related to risk aversion in utility theory.

inf
K

�
1

2�

Z �

��
log det[(G(�)0G(�)� �I)]d!

�
= inf

K
� 2

�
logE(e�

�
2
jjGwjj2); (18)

which is defined only for� > ��, where� is the Lagrangian multiplier in (17), and�� is the

smallest positive scalar for which the integrand is negative semidefinite.18 The relationship

between the entropy criterion and theH1 game is that�� is the infinum of theH1 norm in

17In estimation theory, thè1-norm estimator is known as the least absolute deviation estimator (LAD), pro-
posed by Powell (1981).

18Representing model uncertainty as a game may seem like a stretch to some readers since it gives to what
is normally an exogenous process the fiction of strategic non-cooperative behavior. There is, however, room to
modulate this behavior by adjusting preferences for robustness to fit the problem in a specific way. In the game
(17), it is the multiplier to the constraint which becomes the instrument for disciplining the perceived behavior of
nature, earning it the interpretation as (the inverse of) a measure of preference for robustness. Accordingly, nature,
seeking tomaximizelosses, is penalized ifw0w � �2 + w00w0. The added criterion of robustness is equivalent to
the introducton of apessimisticattitude,w0w, the importance of which is governed by�: small values of� imply
aw that can be large, while large values of� make nature’s threat less important.

14



(15). The parameter,� = �1=�, has an interesting interpretation as a Knightian risk sensitivity

parameter. The relationship between risk sensitivity and robustness is further illuminated by

expanding the last term above in powers of� < 0,

logE(e�
�
2
jjGwjj2) � EK(jjGwjj2) + �

4
varK(jjGwjj2) +O(�2);

whereEK generates a mathematical expectation, andvarK is the variance operator. As� ap-

proaches�1=�� from above, (becoming larger in absolute value), dislike of increasing values

of jjGwjj2 rises. Conversely, as� approaches0, the problem increasingly reduces to the tradi-

tional linear quadratic control problem, as the variance term disappears. Of course, a decrease

in �� of theH1 bound itself represents a decrease in actual model uncertainty.

Finally, Hansen and Sargent (1995) have shown that (18) can be solved using the recursion,

Vt = z0tzt �
2

�
logEue

� 1

2
�Vt+1;

which demonstrates that preference for robustness is like a discount factor, suggesting that

with � 6= 0, the authority has an incentive to forestall future consequences of current model

uncertainty by acting aggressively.

2.3 Structured model uncertainty

2.3.1 Defining the game

We now turn to structured model uncertainty, where uncertainties are assigned to parameters

of the model instead of being consigned to additive shock processes. For convenience we

repeat equation (7) but show the lag operator,L, as an explicit argument of� to emphasize the

dynamic nature of the model,

xt+1 = (�(L) + ��)xt + Cvt+1: (7)

Uncertainty about parameters or about unmodeled dynamics is formally treated as perturba-

tions,�� 2 �, where� is a perturbation blockspanning all approximation errors. These

can include one-time jumps in individual parameters, misspecifications in contemporaneous

channels from policy to the state variables, and omission of critical lag structures affecting the

dynamic behavior of the economy. Analytically, thestructuredperturbations,��, are operators

defined independently of the state vector,xt.

If the authority believes approximation errors to lie within some small neighborhood, then
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individual elements,��
ij, corresponding to the elements of�(L), will have small norms less

thanrÆij, wherer is theradius of allowable perturbations, andÆij is a scaling constant assigned

to the ij-th parameter in�(L).19 In this case the perturbation block may be defined as the

diagonal matrix,� = diagf��
ij=Æijg. The admissible set of perturbations is formally denoted

Dr = f� : jj��
ij =Æijjj < rg, wherer � �r < 1. Accordingly, the set,Dr, is widened as the

radius of allowable perturbations is increased. A game similar to (12) is the Stackelberg game,

min
K

sup
��2Dr

jjzjj22;

subject to (7), whereK is the vector of parameters chosen by the authority, and�� is a diag-

onal matrix of the perturbations (controlled by nature).20 Naturally, the authority is interested

in protecting itself against the widest set of perturbations, but no policy may exist that accom-

plishes this task. Conversely, as one narrows the range of permissible misspecifications, the

menu of possible rules that achieve stability widens and may become unmanageable. As a

result, the authority may seek a unique rule, that, at least for benchmark purposes, guaran-

tees stability of the economy for the maximum range of misspecifications of parameters or lag

structures.

2.3.2 A framework for analyzing structured perturbations

To characterize the perturbation block,�, we may consider time-varying versus time-invariant

perturbations and linear versus nonlinear perturbations. Among linear perturbations, those with

the greatest amount of imposed structure are time-invariant scalar (LTI-scalar) perturbations,

representing such events as one-time shifts in parameters and structural breaks. If the authority

is concerned with misspecification in the lag structure of the model, then the case of infinite

moving average (LTI-MA) perturbations might be the most appropriate to consider, since they

involve perturbations with long memory. An authority that fears dynamic misspecification to

be in the form of LTI lag polynomials seeks out policies that protect against the worst pos-

sible lag misspecifications. For LTI perturbations, the literature has developed techniques in

the frequency domain, which help conserve on the number of parameters. The last in the

19In the exercises, theÆij are functions of the standard errors of estimates of the model.
20The perturbation operator,�, is defined independently of the state,xt. As a consequence, we analyze robust

system stability, in contrast with the procedures for unstructured uncertainty, which yield policies that assure
robustperformance. For a backward looking model, Onatski and Stock (2000) are able to solve for performance
robustness in a special case where the two criteria coincide. Onatski (1999) derives optimal minimax rules for
parametric as well as lag-structure uncertainty in a backward looking model. In the present model, given forward-
looking agents and the need to work with the reduced form representation of the model, this is not possible.
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group of linear perturbations are time-varying (LTV) perturbations. Within the class of nonlin-

ear perturbations, we are able to consider both nonlinear time-invariant (NTI), and nonlinear

time-varying (NTV) perturbations, where the latter allow the widest latitude and greatest non-

parametric generality of model uncertainty. The last three types of perturbations to the model

(LTV, NTI, and NTV) can be treated as one, and we shall refer to them collectively as NTV,

because, as it turns out, the stability conditions for each are identical.

Turning to the task of specifying the perturbation block, denote the space of all causal

perturbations bỳ�. As before,�, denotes the class of allowable perturbations, i.e., those that

carry with them the structure information of the perturbations. In our case,� is the set of all

diagonal perturbations of the form,

� = fdiag(��
ij=Æij)j��

ij 2 `�g

where the��
ij, which can be any of the types of perturbations discussed before, are assumed to

be`p-stable, andp = 2 or1. The subset of� containing elements with̀p norm smaller than

thanr is denotedB�;p, so that

B�;p = f�� 2 �j jj��jj`p�ind < rg:

For reasons that will become clear presently, we represent the perturbed model as anin-

terconnectedsystem of equations linking the state vector,xt, and a vector of perturbations.

Let us suppose that a subset of the elements in� are misspecified, as represented by bounded

perturbations, and suppose this involvesk elements of the state vector,xt. Accordingly, let�

andU be the appropriately dimensioned selector matrices, filled with zeros and ones, that pick

the correctelements of� to be perturbed and elements ofxt that become involved, respectively.

The perturbed and true model is,

xt+1 = (� + ���U)xt + Cvt+1:

By defining an augmentedoutputvector,pt = Uxt and a correspondinginput vector,ht =

��xt, the preceding equation is equivalent to the augmented feedback loop,

2
4 xt+1

pt

3
5 =

2
4 � C �

U 0 0

3
5
2
6664

xt

vt+1

ht

3
7775 ; (19)

ht = ��pt; (20)
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which is in a form amenable to the techniques to be used below.

Once again, we want to analyze the size of a transfer function, although this time around,

the transfer function does not involve the target vector,per se. We solve (19) forxt andpt as a

mapping fromvt andht. This yields the transfer matrix,G, written in partitioned form,

2
4 xt

pt

3
5 =

2
4 In

U

3
5 (I � �L)�1

h
C �

i 24 vt

ht

3
5 ;

�
2
4 G11 G12

G21 G22

3
5
2
4 vt

ht

3
5 : (21)

Notice that the interconnection betweenht andpt is represented by two channels: feedforward

pt = G22ht and feedbackht = ��pt. Why isG22 interesting? For an answer, appeal is made

to the “small gain theorem” (see Dahleh-Diaz-Bobillo (1995) and Zhou, Doyle, and Glover

(1996)), which states that for all�� 2 <Hp, jjG22jjp < 1=r if and only if �� � r. In words,

if the policy rule,K, stabilizes the nominal model (7), then the augmented model (19)-(20)

is stableif and only if the feedback interconnection betweenht andpt in (21) is stable. As

a consequence, only the stability ofG22 need be examined for any desired norm to assure

stability of the full model, under the same criterion. Forp = 2 andp = 1, the mathematics

for evaluating stability under structured perturbations involves thestructured norm,

SN�;p(G22) =
1

inf��[jj��jj`p�inducedj(I �G22��)�1 is not `p � stable]
; (22)

such that if(I�G22�
�)�1 is `p-stable for every�� 2 Dr, thenSN�;p(G22) = 0. Importantly,

themaximal allowable radius of perturbationsis given byr = 1=SN�;p(G22). One implication

of the small gain theorem is the result that the structured norm is a lower bound onG22,

SN�;p(G22) � jjG22jjp; (23)

because ifjj��jjp < 1=jjG22jjp, then (I � G22�
�)�1 is `p-stable. Therefore, ifSN�;p is

`p-norm bounded, then so isG22.

2.3.3 Stability for LTV, NTV, and NTI perturbations

The monetary authority is assumed to choose the elements ofK, that minimize the structured

norm,SN�;p, p = 2 or p = 1. The elements of the transfer matrix,G22, are linear, time-

invariant, and hencè1-stable. This allows us to define an � n matrix, N̂ , of `1 norms of the
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elements ofG22,

N̂ =

0
BBBBBBBBB@

jjG11
22jj1 � � � jjG1n

22 jj1
: : :

: : :

: : :

jjGn1
22 jj1 � � � jjGnn

22 jj1

1
CCCCCCCCCA
;

which must be approximated numerically.

Dahleh and Diaz-Bobillo (1995) show that for LTV, NTV, and NTI perturbations and

bounded̀ 1-induced norms, (p = 1), it is necessary and sufficient that the spectral radius

of N̂ be smaller than the inverse of the radius of allowable perturbations,�(N̂) � 1=r, where

�(N̂) is defined as the largest stable root ofN̂ . With bounded̀ 2-induced norms, (p = 2), the

condition�(N̂) � 1=r is sufficient. Further, since the stability conditions are the same for all

three types of perturbations, the computations are greatly simplified, involving minimization

of �(N̂) over the elements ofK in all cases; and the maximal acceptable radius of perturbation

becomes1=�̂(N̂).

These three cases seem to be the most relevant ones for a monetary authority forming

robust policy, given thatG22 is a function of the reduced-form solution of the parameters of

a forward-looking structural model. If the authority is concerned about the about worst-case

consequences of misspecification in some or all structural parameters, the effect on the reduced

form will be nonlinear and will in general, though not always, involve most of its elements.

In addition, by the Lucas critique, the elements of� may be time varying, so that, generally,

parameter perturbations of any kind in the structural model may also translate into time-varying

perturbations of the reduced form.

2.3.4 Stability with LTI perturbations

Linear time invariant perturbations can involve one-time parametric shifts or changes involving

lags. The analysis is best carried out in the complex plane, which allows for an economical

treatment of perturbations with infinite moving averages. The idea is the following.21 Assume

we can model theij-th diagonal component of the worst-case perturbation,��
ij(L), obeying

jj��
ij=Æijjj1 = rij < r, with a very general infinite-order moving average, expressed as a

21We would like to thank Alexei Onatski for clarifying for us a number of points in the following discussion.
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polynomial onL,

��
ij=Æij = �rij(L� zij)=(1� zijL)

= �rij
h
�zij + (1� z2ij)L + (1� z2ij)zijL

2 + � � �
i
; (24)

wherezij 2 (�1; 1). Notice that forzij =0, the effect of a perturbation is via the�rijL
operator, so that the worst-case effect of a dynamic misspecification involves only one lag.

Conversely, ifjzijj is close to 1, all terms except the first are vanishingly small. Hence, this

situation represents the case when the effect of the operator is not dynamic but scalar:�rijzij,
such as a structural break. For values ofzij between 0 and 1,��

ij(L) represents a complex

perturbation equivalent to an infinite-order polynomial inL with rate of decay determined by

zij.22

In Zhou et al. (1996) it is shown that the linear time invariant perturbation in (24) satisfies,

��
ij(!0) = Æijrije

i!ij ; (25)

wherei =
p�1, and!0 2 [0; �). The following correspondence can be established between

(24) and (25): the sign in (24) is positive if!ij 2 [0; �), and it is negative if!ij 2 (��; 0).
Hence, in both instances,zij = (ei!0 � ei!=(1� ei(!0+!ij)). Therefore, by identifying!0 and

rij, it is possible to unravel the structure of��
ij.

The next step is to determine a feedback vectorK for which the important condition,

jj��
ij=Æijjj1 = rij < r, under which the preceding results hold, is, indeed, satisfied. The small

gain theorem then guarantees that the system will be stable under the worst-case scenario.

Equation (25) can be evaluated numerically, again by exploiting the small gain theorem, this

time in the frequency domain, to define a transfer functionG22 eqivalent toG22 above. Consider

the augmented input output system (19)-(20). The transfer function from both disturbances,vt,

and perturbations,ht, to the state,xt, and the augmented state,pt, is denotedG to distinguish

it from G:

2
4 xt

pt

3
5 =

2
4 In

U

3
5 �Ie� � �

��1 h
C �

i 24 vt

ht

3
5 ;

�
2
4 G11 G12
G21 G22

3
5
2
4 vt

ht

3
5 :

22For the numerical exercises, we found that thezij ’s, which we do not report, implied an average persistence
with mean lag of about 3 quarters.
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To develop a notion of stability under LTI perturbations, we define yet another variation on

structured norms, thestructured singular value function. The feedback loop betweenpt and

ht, which links the perturbations,��, to the system variables,xt, is pt = G22ht. Forp = 2 and

p =1, thestructured singular value functionis then defined as,

��2LTIp[G22] =
1

inf��2LTIpf��[�̂�]jdet(I � G22��) = 0g = inf
��2LTIp

�(G22��);

and if there is no�� 2 Dr such thatdet(I � G22��) = 0, then���2LTI(G22) = 0.

The structured singular value function may be thought of as the frequency domain parallel to

the structured norm function(22). The authority now choosesK to minimize thestructured

singular value, �

� = inf
K
SN�LTV;p

(G22) = inf
K

sup
!2[0;2�]

��LTIp
[G22] � inf

K
sup
�

��(G22);

where�(G22) is the singular value of(G22).
The maximum radius of allowable LTI perturbations is the inverse of�,

sup
K

r =
1

minK sup!2[0;2�] ��LTIp
[G22] :

3 The model

We seek a framework for policy that is simple, empirical, and realistic from the point of view

of a monetary authority. Towards this objective, we construct a simple New Keynesian model

along the lines of Fuhrer and Moore (1995b). The key to this model, as in any Keynesian model,

is the price equation or Phillips curve. Our formulation is very much in the same style as the

real wage contracting model of Fuhrer and Moore (1995a). By making use of the Fuhrer-Moore

formulation, we ‘slip the derivative’ in the price equation, making inflation sticky and not just

the price level, thereby ruling out the possibility of costless disinflation. However, instead of

the fixed-term contract specification of Fuhrer-Moore, we adopt the stochastic contract duration

formulation of Calvo. In doing this, we significantly reduce the state space of the model,

thereby accelerating the numerical exercises that follow.

Equations (26) and (27) together comprise a forward-looking Phillips curve, with� and

c measuring aggregate and core inflation, respectively, andy is the output gap, a measure of

excess demand. Equation (26) gives inflation as a weighted average of inherited inflation,�t�1,

and expected core inflation,Et�1ct+1. Following Calvo (1983), the expiration of contracts
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is given by an exponential distribution with hazard rate,Æ. Assuming that terminations of

contracts are independent of one another, the proportion of contracts negotiated s periods ago

that are still in force today is(1� Æ)Æt�s.

�t = Æ�t�1 + (1� Æ)Et�1ct + v�t (26)

ct = (1� Æ)Et�1(�t + 
yt) + ÆEt�1ct+1 (27)

yt = �1yt�1 + �2yt�2 + �3Rt�1 + vyt (28)

Rt =
1

1 +D
Et�1

1X
i=0

(
D

1�D
)i(rt+i � �t+i) (29)

rt = grrt�1 + (1� gr)(��t + r�) + g�(��t � ��) + gyyt; (30)

where it is assumed that the central bank reacts to the behavior of the average rate of infla-

tion over the past year, where�� = 1
4

P4
1 �t�i. In equation (27), core inflation is seen to be a

weighted average of future core inflation and a markup of excess demand over inherited infla-

tion. Equations (26)and (27) differ from the standard Calvo model only in that the dependent

variables are rates of changes rather than levels. Equation (28) is a very simple aggregate

demand equation with output being a function of two lags of output as well as the laggedex

antelong-term real interest rate,R. Equation (29) follows Fuhrer and Moore (1995b) in using a

constant approximation to duration formula by Macaulay (1938) defining theex antelong-term

real interest rate as a geometrically declining weighted average of current and future short-term

real interest rates. Finally, equation (30) is a generic interest rate reaction function, written here

simply to complete the model. We may assume that it is the empirical manifestation of an op-

timal decision rule by the Federal Reserve, which manipulates the nominal federal funds rate,

r, and implicitly deviations of the real rate from its equilibrium level,r� � ��, with the aim

of moving average annual inflation to its target level,��, reducing excess demand to zero, and

penalizing movements in the instrument itself.

The model is stylized, but it does capture what we would take to be the fundamental aspects

of models that are useful for the analysis of monetary policy. Among these, stickiness of

inflation is foremost. Other integral features of the model include that policy acts on demand

and prices with a lag. This rules out monetary policy that can instantaneously offset shocks

as they occur. The model also assumes that disturbances to aggregate demand have persistent

effects, as are the effects of demand itself on inflation. These features imply that in order to

be effective, monetary policy must look ahead, setting the federal funds rate today to achieve

objectives in the future. However, the stochastic nature of the economy implies that these plans

will not be achieved on a period-by-period basis. Rather, the contingent plan set out by the

authority in any one period will have to be updated as new information is revealed regarding
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the shocks that have been borne by the economy.

3.1 The estimated model

We estimated the key equations of the model on U.S. data from 1972Q1 to 1996Q4.23 Since the

precise empirical estimates of the model are not fundamental to the issues examined here, we

will keep our discussion of them concise. A couple of important points should be mentioned

however. We measure goods-price inflation,�, with the quarterly change in the chain-weight

GDP price index, a producer’s price. However, we proxyEt�1ct+1 with the median of the

Michigan survey of expected future inflation. The survey has some good features as a proxy.

First, it is an unbiased predictor of future inflation. At the same time, it is not efficient: Other

variables do help in predicting movements in future inflation. Second, it measures consumer

price inflation expectations, precisely the rates that would theoretically go into wage bargaining

decisions, and thereby into unit labor costs. GDP price inflation can then be thought of as a

pseudo-mark-up over these expected future costs. The disadvantage is that the survey is for

inflation over the next twelve months, which does not match the quarterly frequency of our

model. However, most of the predictive power of the survey to predict inflation over the next

twelve months comes from its ability to predict inflation in the very short term rather than later

on, so this problem is not too serious.

Equation (27) can be substituted into equation (26) to yield a restricted Phillips curve. The

estimates of this equation along with two others are presented in Table 1 below. Unemployment

gaps–defined as the deviation of the demographically adjusted unemployment rate less the

NAIRU–performed better in estimation than did output gaps, and so the former appears in

equation (A) of the table. We then supplemented the empirical model with a simple Okun’s

Law relationship, equation (C), and then substituted it in order to arrive at the appropriate

estimates for the equations (26) through (30).

The equation of primary interest is our Phillips curve. As equation (A) in the table shows,

we supplemented the basic formulation with a small number of exogenous supply shock terms,

including oil prices, a variable to capture the effects of the Nixon wage-and-price controls, and

a constant term. These are traditional and uncontroversial inclusions. Roberts (1995) has found

oil prices to be important for explaining inflation in estimation, using Michigan survey data.

The key parameters are the ‘contract duration’ parameter,Æ̂, and the excess demand param-

eter, 
̂. If this were alevel contracts model,Æ = :41 would be an unreasonably low number

since it implies a very short average contract length. For the present model, this interpretation

23The estimated interest reaction function is based on data ranging from 1980Q1 to 1998Q4 to reflect the now
relevant policy regime spanned by the Volcker-Greenspan chairmanships of the Federal Reserve Board.
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Table 2:Estimates of the Basic Contract Model (1972Q1 - 1996Q4)

A. � = [1� (1� Æ)2]�1[Æ�t�1 + (1� Æ)2
ut�1 + (1� Æ)ct;t+1] + �Za b

Nixon price controls Ẑ1 -5.35 (2.20) R2 = .97
Change in oil prices Ẑ2 0.0019 (.70) SEE = 1.02
Unemployment 
̂ �0.23 (1.49) B-G(1) = .01
Contract duration Æ̂ 0.41 (4.65) Constrained linear IV

B. y = �0 + �1yt�1 + �2yt�2 + �3rlt�1

First lag output �1 1.22 (12.16) R2 = .88 SEE =1.21
Second lag output �2 �0.36 (4.02) B-G(4) = 0.05
Real 5-year real rate �3 �0.26 (2.41) OLS

C. u = 
0 + 
1yt + 
2T + 
3(poilt=pt)

Output gap 
̂1 �0.34 (9.01) R2 = 0.80 SEE =0.60
Time trend 
̂2 0.008 (1.81) B-G(4) = 0.00
Relative oil price 
̂3 0.57 (3.07) 2SLS

D. r = (1� gr)(r
� � ��) + grrt�1 + (1� gr + g�)��t + gyyt

Inflation (1� gr + g�) 0.324 (2.37) R2 = 0.90 SEE =1.23
Output Gap gy 0.148 (2.22 B-G(4) = 0.00
Interest Rate gr 0.803 (13.8) Restricted OLS

aData: change in oil prices is a four-quarter moving average of the price of oil imported into the
U.S.; is the quarterly change at annual rates of the chain-weight GDP price index; is the demograph-
ically corrected unemployment rate, less the natural rate of unemployment from the FRB/US model
database; is proxied by the median of the Michigan survey of expected inflation, 12 months ahead;
is the output gap for the U.S. from the FRB/US model database; is the real interest rate defined
as the quarterly average of the federal funds rate less a four-quarter moving average of the chain-
weight GDP price index; is the price of imported oil relative the GDP price index; and Nixon price
controls equals unity in 1971Q4 and -0.6 in 1972Q1. All regressions also included an unreported
constant term. Constants were never statistically significant. B-G(1) is the probability value of the
Breusch-Godfrey test of first-order serial correlation.

bNotes: Equation (A) is estimated with instruments: constant, time trend, lagged unemployment
gap, four lags of the change in imported oil prices; two lags of inflation, lagged real interest rate,
lagged Nixon wage-price control dummy, and the lagged relative price of imported oil. Standard
errors for all three equations were corrected for autocorrelated residuals of unspecified form using
the Newey-West (1987) method.
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is not warranted, however. An estimate ofÆ = :41 implies substantial persistence in inflation,

much more so than any nominal wage contracting model could furnish. In fact, when equa-

tion (A) is solved, its reduced-form coefficient on lagged inflation is seen to be 0.846. This is

substantial inflation stickiness by any measure.

Turning to the aggregate demand function, it is conventionally believed that demand in the

U.S. responds to movements in the long-term real interest rate.24 Accordingly, we define the

ex antereal interest rate,Rt, as the five-year government bond rate less the average inflation

rate that is expected over the next five years, and compute the latter using a small-scale vec-

tor autoregression.25. Five years is about the time period for which consumer durables and

automobiles are typically financed. The duration, D, in equation (29), is set at 20 quarters in

conformation with the definition of R.

The estimates of the aggregate demand function show the humped shape pattern of re-

sponses to output to demand shocks; that is, an exogenous disturbance to demand tends to

overshoot initially—as determined bŷ�1 = 1:22 > 1—and then drop back, as indicated by

�̂2 = �:36 < 0. The interest elasticity of aggregate demand is large and negative as expected.

After substituting equation (C) into equation (A) and dropping those arguments that are not

of interest to us, we arrive where we began: with equations (26) through (30). The parameters

of the estimated model are broadly similar to estimates of other models, and are reasonable.

Impulse responses of the model to exogenous shocks to the price equation and the aggregate

demand function are consistent with the historical experience in the U.S. as measured by simple

vector autoregressions. The estimated equations do show some remaining residual correlation.

This is a common finding in structural price equations—Roberts (1995) uncovered the same

phenomenon—so as noted above, we have corrected the variance-covariance matrix for this

autocorrelation using the Newey and West (1987) technique. We conclude that our model is

appropriate for the questions we wish to address.

4 Robust Policy Exercises

The monetary policy authority’s task is to keep inflation,�, close to its target level, taken

without loss of generality to be zero, and to do so at minimum cost in terms of output losses,

y, defined as the percent deviation of GDP from trend. We also include a third target variable,

24See Fuhrer and Moore (1995a) for an extensive discussion of the linkage between monetary policy and the
long-term interest rate.

25This is the same methodology as employed in the FRB/US macroeconomic model of the US, built and
maintained by the Federal Reserve Board. For more information, see Brayton and Tinsley (1996) and Brayton,
Mauskopf, Reifschneider, Tinsley and Williams (1997)
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the change in the short-term interest rate,�rt, because in the present model, as in most other

models, the parameters in the interest rate reaction function are absurdly large in the absence

of some penalty on instrument variability.

The model is implicitly derived from first-order conditions determined by optimizing agents

who form rational expectations by solving the model, which they assume to be true. In contrast,

the central bank is assumed to have doubts about that model as a true representation of the

economy.26

In terms of the generic model outlined in Section 2.1, the state vector of the preceding

model is defined by,xt+1 = [yt; �t; rt; yt�1; �t�1; rt�1; �t�2; �t�3; ct+1; Rt+1]
0. The instrument

is rt, and the target vector is,Tt = [yt; �t;�rt]
0. The selector matrices for the mapping from

states to targets in (2) and the weighting matrixQ, are

Mx =

2
6664

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0

3
7775 ; Mu =

2
6664

0

0

1

3
7775 ; Q =

2
6664

p

y 0 0

0
p

� 0

0 0
p

�r

3
7775

We will distinguish two cases of preference orderings over inflation and output perfor-

mance: (1) a central bank with “strong” inflation preferences, i.e., one that puts relatively more

emphasis on controlling inflation, and (2) a central bank with “weak” inflation preferences,

i.e., one that puts relatively more emphasis on controlling output. Formally, the preference

parameters are,

Strong: 
y = :2, 
� = :8, and
�r = :01; Weak : 
y = :8, 
� = :2, and
�r = :01.

In each case, a miniscule weight is placed on interest rate changes. The optimal control

literature as well as most papers on robust control traditionally place emphasis on synthesizing

fully parameterizedfeedback rules. Given the strong interest in simple, Taylor-style interest

rate rules and the impracticality of optimal control solutions with large models, we shall restrict

our attention tosimple robust rulesthat respond to the previous period’s movements in only

three state variables, the output gap,y, the inflation rate,�, and the federal funds rate,r.

Obviously, this restriction imposes an additional burden of choosing a suitable subset of the

state variables, an issue that is still under debate as the growing literature on simple monetary

policy rules demonstrates. Experience suggests that the cost of such parsimony appears to

be negligible. For example, Tetlow and von zur Muehlen (1996) show that for a model very

similar to the one used here, the differences in welfare loss resulting from optimal control and

26We assume that, while the monetary authority is risk-sensitive, agents in the economy believe the reference
model to be true. Hansen and Sargent (1999b) assume that agents and the authority share the same preference for
robustness, indexed by a single parmater,�.
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optimal simple rules are small.

The parameter vector,K, of the policy rule introduced in section 2.1 becomesK =

[gr; g�; gy], multiplying the lagged values of the federal funds rate, the inflation rate, and the

output gap, respectively.

Recall that in section 2, we defined five optimization problems, three associated with un-

structured uncertainty, and two with structured uncertainty. Table 3 serves as a reminder of the

methods utilized in what follows. Under the heading “Unstructured Uncertainty,” the author-

ity chooses a feedback rule,ut = Kxt that minimizes the three loss functionsH2, H1, and

`1. Under the heading “Structured Uncertainty,” the authority choosesK that maximizes the

radius,r̂, of allowable perturbations, as previously defined.

Table 3:Criteria for Robust Policies

Criteria for Criteria for
Unstructured Uncertainty Structured Uncertainty

NTV LTI

minH2; minH1; min `1 r̂ = max 1
�̂(N̂)

r̂ = max 1
�̂(G22)

We consider two ways of looking at the consequences of applying the various robust policy

rules derived here to the estimated model. In each case, we compare the derived rule with the

estimated rule or the optimal (restricted) linear-quadratic rule.

The first and most obvious measures of performance are the rules themselves, their impli-

cations for the steady state, and the implied losses. In the case of structured model uncertainty,

the allowable radius of perturbations (the inverse of the minimum structured norm) gives a

measure of the size of maximum uncertainty the authority is capable of tolerating. Since in

most cases, this may be too strict a criterion, a preferred interpretation of the “maximum of

allowable perturbations” as an upper bound. A wider range of policies becomes available if

the central bank considers the opponent to be less malevolent, that is, if uncertainty can be

bounded in a smaller set.

A second way to view the implications of various policies is to evaluateH2 welfare losses at

various frequencies, making use of the definition in (14). For example, while the optimal linear-

quadratic rule performs well for serially uncorrelated shocks that give rise to cycles at quarterly

to 2-year frequencies, it turns out that it leaves policy vulnerable to small mispecifications of the

temporal and feedback properties of shocks affecting business cycle frequencies. A surprising
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finding is that this is particularly true of historic policy as represented by our estimated rule

and filtered through the model.

4.1 Unstructured model uncertainty

The sets of rules that stabilize performance of the target variablesy, �, and in a minor way,

�r, were calculated forH2,H1, `1 losses. We omit minimum entropy results since it is clear

that they constitute intermediate outcomes betweenH2 andH1 policies.

Tables 4 and 5 show the detailed results for “strong” and “weak” anti-inflation preferences,

respectively. The left-hand column indicates the norms imposed on the loss function and un-

certainty; the next column to the right shows the induced norm, i.e., the indirect loss function

implied by the first column; the next three columns present the impact coefficients of the calcu-

lated optimal rule, and the following two columns present the implied equilibrium reactions to

inflation and output; the largest stable roots are listed under “spectral radius.” The last column

gives the impliedH2 losses, which measure the welfare loss under the original LQR criterion.

This measures how much performance the authority gives up if it is truly paranoid and the only

shocks the economy experiences are those of the estimated variance covariance matrix. This

column shows that robustness against worst-case outcomes can only be achieved at the expense

of average performance. Interestingly, the estimated rule generates the highestH2 loss.

TheH2 LQR rule,

Both tables show that the LQR rule, while less autoregressive than the estimated rule, has

significantly larger reaction coefficients for inflation and output than the estimated rule. This

now familiar result has been the spark for much of recent writing on policy timidity, including

the present paper.

TheH1 robust rule

The results forH1 policies are a bit more subtle and depend on the assumed inflation fight-

ing attitude of the authority. A “strong” inflation fighter practices a policy of anti-attenuation,

reacting to output fluctuations and especially discrepancies of inflation from target with gusto.

The “weak” inflation targeting authority is more circumspect: Its policy rule is much more

comparable to the certainty equivalent rule. In addition, the “weak” authority tends to show

a substantially greater degree of persistence—or instrument smoothing— in its setting of the

funds rate, as shown by the large coefficient on the lagged funds rate term in the rule. This too,

is much like the certainty-equivalent (LQR) rule. The key to understanding this result is recog-

nizing that output control appears earlier in the monetary policy transmission mechanism, and

that it is governed by an AR(2) process: Control of output operates more-or-less directly—but
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with persistence— while control of inflation, to a first approximation, must be carried out indi-

rectly through manipulating output. An authority that cares relatively a great deal about output

will, in the presence of large and persistent (perceived) shocks tend to match that persistence,

using the persistence in output itself, along with persistent movements in the funds rate. That

this may produce poor outcomes in terms of inflation is less of a worry since inflation carries

a low weight in the loss function. A “strong” inflation fighting central bank, by contrast, will

tend to aggressively adjust the funds rate to move output, and work against the persistence in

output, to attack inflation any time it deviates from target.

It is worth noting that the results reported here for robust control with unstructured uncer-

tainty echo the results in previous research. Sargent (1999), for example, finds that robust rules

applied to the backward-looking open-economy model of Ball (1998) are more aggressive than

the optimal LQR rule, and become increasingly aggressive as risk sensitivity approachs that

implied by an optimalH1 solution. Similarly, Onatski and Stock (2000), find that`1 and

H1 criteria produce more aggressive feedback rules in the Rudebusch and Svensson (1999)

backward-looking closed-economy model of the U.S. economy.

Table 4:Rules under Shock and Model Uncertainty:“Strong” Inflation Preference
Bounds Induced Parameters in the Rule Spectral Implied

Loss/Perturbation Norm Impact Equilibrium Spectral RadiusH2 Loss
r �� y �� y

LQR H2 0.73 4.24 1.81 16.7 6.7 0.82 3.8
`2 loss=`2 shock; H1 0.25 16.6 8.5 23.1 11.3 0.65 5.0
`1 loss=`1 shock `1 0.53 9.60 5.23 21.4 11.2 0.73 4.2
Estimated Rule 0.80 0.32 0.15 2.6 0.8 0.88 5.8

Table 5:Rules under Shock and Model Uncertainty: “Weak” Inflation Preference
Bounds Induced Parameters in the Rule Spectral Implied

Loss/Perturbation Norm Impact Equilibrium Spectral RadiusH2 Loss
r �� y �� y

LQR H2 0.66 1.89 3.51 6.6 10.3 0.79 3.8
`2 loss=`2 shock H1 0.70 2.10 2.35 8.0 7.8 0.76 5.0
`1 loss=`1 shock `1 0.25 5.88 16.4 8.8 21.9 0.84 6.6
Estimated Rule 0.80 0.32 0.152.6 0.8 0.88 7.6

The `1 (MAD) robust rule

Under the`1 loss criterion, the authority minimizes absolute target deviations. As stated

earlier, this criterion is the induced loss function when the authority minimizes the maxi-

mum absolute value of target deviations,jjzjj1, against the largest possible shock satisfying

jjwjj1 <1.
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The tables show that MAD policies are universally more reactive than the LQR rules and

less aggressive thanH1 policies under strong inflation preferences than under weak inflation

preferences, both with respect to autoregressivity of the interest-rate rule and the size of impact

reaction parameters. In comparing these two policies, note that underH1 control, the decision

maker protects the average square metric of performance against an average square metric of

misspecification errors, while in a MAD rule, the attempt is to guard against outlier outcomes.

Given the character of the estimated policy channel from interest rate movements to output and

inflation in this model, it appears that a strong preference for preventing economic booms or

busts produces faster and stronger responses to signals from the economy than a concern for

smooth economic behavior.

Frequency decompositions of losses

To illuminate how preference for robustness manifests itself in the potential performance

of the authority’s goals, it is useful to plot theH2 losses implied by the four alternative rules.27

Figure 1 shows this for the strong inflation targeting authority. The curves capture how different

attitudes toward robustness affect average performance, under the assumption that the reference

model is correct. A relatively flat curve suggests that the authority has managed to insulate

itself against shocks in a broad range of frequencies, while a curve that has a peak—power

concentrated within a narrow frequency band—indicates that the authority is vulnerable to

shocks affecting those frequencies. By assumption, nature could choose to concentrate its

choice of shocks to attack that range

The LQR rule, which, by definition has the smallest area beneath it, has a pronounced peak

at a four-year frequency. By contrast, theH1 and MAD policies tend to more evenly dispersed

over all frequencies. As might be expected, the MAD rule, being the most risk sensitive, is the

flattest, followed by theH1 rule. Under these criteria, the authority surrenders some average

performance by increasing the area under the curve in order to minimize the maximum loss—in

other words, the peak.

In contrast to the risk sensitive policies just discussed, which tend to immunize losses

against adverse outcomes concentrated at particular frequencies, the estimated rule impliesH2

losses that are strongly clustered around eight years, leaving the policy maker most vulnerable

at typical business cycle frequencies.

27Technically, the plots showtrace[G0(�)G(�)], which measures theH2 loss at frequency!. G(�) measures the
amplification of shocks as measured by the performance of the loss function in frequency space. The horizontal
axis displays quarters, and the vertical axis shows the value of the loss.
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4.2 Structured model uncertainty

In this section, we offer answers to questions like: “what should robust policy be if the central

bank fears misspecification of a particular parameter, such as the slope of the Phillips curve?”28

or, “what is the best policy against losses arising from worst-case consequences of misspecified

dynamics?” Misspecified or unmodelled dynamics are perhaps the most common sources of

misspecification, given the difficulty of fully capturing all lagged effects in typical economic

models.

As indicated in Section 2.2.2, we work with the reduced form based on the structural model,

given a specification of the policy rule. In our case, it turns out that the top row of the reduced-

form matrix,�, reproduces the structural IS equation with zero elements corresponding to all

other state variables not specified in (28). This means that the reduced-form parameters for

the IS curve are independent of the parameters in the remainder of the model. Any presumed

parameter uncertainty in the remainder of the model has no effect on the uncertainty involving

the IS curve parameters. The remaining parameters in� are nonlinear functions of all other

parameters in the structural model, so that perturbations to any parameter in the structural

model will affect parameters in all but the first row of the reduced form, with the exception of

the own parameters in the IS curve: a perturbation to the slope of the IS curve, for example,

affects only that parameter in the IS curve and all the elements in the second to eleventh rows

of �.

The exercises, while not specifically directed at perturbing structural parameters (as they

would be in a backward looking model), can be interpreted as such in ways to be spelled out

presently. Four interesting cases can be distinguished: (1) perturbations to all parameters, (2)

perturbations to lagged output parameters, (3) perturbations to the slope of the IS curve, and

(4) perturbations to the slope of the Phillips curve. As outlined in the theoretical sections, we

distinguish three types of model perturbations. The LTI-scalar case is most restrictive, limiting

uncertainty to very simple events, such as one-time structural breaks in one or more parameters.

Nonlinear time-varying (NTV) perturbations reflect the most general case of model structure

uncertainty. An intermediate case is LTI-MA, which assumes that the approximation errors of

selected parameters can be modeled as infinite moving averages representing misspecified lag

structures in the model. The results for these cases are summarized in Table 6.29

28The source of misspecification of the slope of the Phillips curve,(1 � Æ)2
, may be mismeasurement of the
output gap. We may decomposey asy = logY � log Ŷ � �y, whereY andŶ are the levels of actual and capacity
output, respectively, and�y is the measurement error of capacity output. Thus, if one cannot distinguish between
a shock toy and a shock to(1 � Æ)2
, then uncertainty about measurement is reflected in uncertainty about the
slope. As noted in the introduction, Orphanides, Porter, Reifschneider, Tetlow and Finan (2000) find that output
gap uncertainty leads to attenuation of interest rate reactions if the monetary authority minimizes Bayesian risk.

29The relevant augmented output vector (see equation (19)) ispt = [�t�1; rt�1; yt�1; �t�2; �t�3; rrlt]
0, andU
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Table 6:Interest Rate Rules with Structured Model Uncertainty
Parameters in the Rule

(1) (2) (3) (4) (5) (6) (7) (8)
Type of Impact Equilibrium Spectral Radius Radius of Implied

Perturbation r �� y �� y �� Perturbationsa H2 Lossb

Perturbations to All Model Parameters
(1) LTI scalar 0.05 1.05 -1.30 2.1 -1.4 0.89 0.24 17.3
(2) LTI MA 0.92 0.08 0.39 1.1 4.8 0.88 0.21 13.6
(3) NTV 0.65 0.74 0.78 3.1 2.2 0.76 0.15 6.6

Perturbations to lagged output parameters (�1; �2)
(4) LTI scalar 0.84 0.16 0.12 2.0 0.8 0.90 0.31 10.8
(5) LTI MA 0.93 0.07 0.38 2.0 5.4 0.89 0.22 14.9
(6) NTV 0.65 0.78 0.82 3.2 2.3 0.76 0.16 6.4

Perturbations to slope of IS curve (�3)
(7) LTI scalar 0.44 1.24 0.65 3.2 1.1 0.77 0.22 4.9
(8) LTI MA -0.08 1.08 -0.48 2.0 -0.4 0.86 0.23 11.4
(9) NTV 0.64 0.73 0.71 3.2 2.0 0.76 0.19 4.8

Perturbations to slope of Phillips curve (Æ; 
)
(10) LTI scalar -.97 1.97 -2.29 2.0 -1.2 0.97 0.39 13.8
(11) LTI MA -0.98 1.98 -0.91 2.0 -0.5 0.98 0.24 13.0
(12) NTV 0.58 0.83 0.70 3.0 1.7 0.75 0.20 4.9

(13) LQRb 0.66 1.89 3.51 6.6 10.3 0.79 3.8
(14) Estimated Rule 0.80 0.32 0.152.6 0.8 0.88 7.6

aThe radius of allowable perturbations is the inverse of the imputed`1 loss.
bEvaluated for weak inflation targeting preference.

is chosen appropriately. The calculations for this section assume that perturbations to the structural parameters lie
approximately within two standard deviations of the estimates.
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To jump to the punchline, as shown in Table 6, in contrast to robust policy against com-

bined model and shock uncertainty, rules that are robust to structured model uncertainty are

less aggressive than optimal LQR rules, in some cases approaching the estimated rule to a

remarkable degree. A convenient measure of the relative aggressiveness of policy is the set

of equilibrium response coefficients exhibited in columns 4 and 5. Compared with the LQR

response to inflation of 6.6, shown in row 13, the inflation responses of the robust rules are

considerably weaker, ranging from 1.1 to 3.2. A similar conclusion holds for responses to the

output gap. By contrast, the equilibrium responses of the robust rules are much more closely

aligned with the estimated rule (row 14), especially in the case of the scalar LTI perturbations

to the lagged output coefficients of the aggregate demand function in row 4. In general, there

appears to be a rough hierarchy from more to less aggressive, depending on how much struc-

ture is imposed on model uncertainty. Policies based on the greatest amount of structure, the

LTI rules, are the most attenuated, while policies based on the least amount of structure, the

NTV rules, are the most aggressive.30 This finding allows us to put into context our earlier

findings on attenuation with unstructured uncertainty with the Bayesian approaches surveyed

above: it appears that the denser the fog of Knightian uncertainty, the greater the tendency for

decisive action. Smaller and more localized uncertainties bring about cautious behavior, while

more generalized ambiguities elicit stronger responses.

Structural breaks

The rows marked “LTI scalar,” show robust rules when the authority attempts to avoid

worst-case outcomes resulting from one-time permanent structural breaks in either the entire

model, or in selected parameters. In each of these cases, policies become substantially attenu-

ated; that is, the coefficients are uniformly lower than the LQR coefficients displayed in row 13

of the table. In particular, robust rules that protect against breaks in the parameters of the ag-

gregate demand function—rows 4 and 7—give equilibrium rule parameters that are very close

to the estimated rule. The same result applies for breaks in the slope of the Phillips curve (row

10), and in all model parameters simultaneously (row 1)—but only for inflation coefficients:

One-time perturbations to the slope of the Phillips curve shown in row 10 lead to “perverse” re-

sponses to output owing to the possible breakdown of the normal lead-lag relationship between

output and future inflation.

Misspecified or unmodeled dynamics

Policies that are sensitive to misspecified or unmodeled dynamics are represented by linear

30This conforms with Onatski and Stock (2000), who also find optimal policies becoming less aggressive as
more structure is placed on uncertainty.
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time-invariant moving-average (LTI-MA) perturbations to any or all parameters in the model

(rows 2, 5, 8 and 11). In general, the LTI-MA rules produce equilibrium responses to inflation

that are close to that of the estimated rule, but with wide variations in equilibrium output gap

coefficients. Considering, once again, the case of perturbations to the persistence parameters

of the aggregate demand function,�1 and�2, shown in row 5, we see that the resulting policy

also comes close to the estimated rule, although it produces too much persistence and too much

aggressiveness in response to the output gap.

Nonlinear time-varying perturbations

The most noteworthy thing about the NTV rules shown in Table 6 (rows 3, 6, 9 and 12) is

how similar they are notwithstanding the different origins of the perturbations considered. All

the rules have impact coefficients on output and inflation of about 0.7 or so, and a coefficient

on the lagged federal funds rate of about 0.6. Moreover, the implied equilibrium coefficients

are all quite close to those of the estimated rule, particularly for inflation. However, the com-

puted impact coefficients are too large, and persistence parameters are too small, to match the

estimated rule.

Both the similarity of the rules across cases and the lack of persistence are manifestations

of two aspects of the model uncertainty that are assumed: The perturbations have very little

temporal stability given their non-linear and time-varying nature, and no persistence. The

former implies that the origins of the shocks are of little use for the design of policy—resulting

in a homogeneity of policy design. The latter suggests that without persistence in disturbances,

there is little benefit to persistence in policy.

Robustness and its costs

Before leaving this topic, it is worth reflecting on the extent to which the policies in Table

6 protect against large shocks, and the costs of this protection. The degree of protection is

measured by the radius of perturbations shown in column 7. The higher the number in the

table, the larger the perturbations that the applicable rule can withstand. Not surprisingly, there

is a tendency that the broader the scope of shocks the authority wants to protect against—

such as in the NTV cases—the smaller the shock that can be protected against: Coverage

against LTI-scalar shocks is shown to be greater than coverage against NTV shocks. Column

8, however, shows the cost of this protection in those instances where the reference model turns

out to be true; that is, when the economy actually faces only the estimated shocks. This column

of the table demonstrates that in most cases, the protection against one-time structural shifts

comes at a substantial price. This contrasts with the NTV cases where losses are uniformly

lower. Evidently, a tinge of apprehension about generalized misspecification comes at a low
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cost relative to strong anxiety about uncertainty of a specific type.

Frequency decomposition of losses

Finally, we turn to the decomposition of losses, analogous to those of Figure 1, discussed

previously. Figures 3 and 5 show the susceptibility of the rules discussed in Table 6 to per-

turbations to all parameters simultaneously, and to the lagged output parameters. These are

the cases that span the shocks to model persistence. Notice that the LTI-scalar and especially

the LTI-MA rules have patterns that closely match those of estimated rule. This observation

confirms the impression left by Table 6 that the estimated rule may have been the outcome of

efforts to protect against misspecified output persistence. Broadly similar, if less pronounced,

results are obtained for the other sources of perturbations shown in Figures 7 and 9.

The most dramatic conclusion for robust policy under structured model uncertainty is that

almost as a general rule, the estimated rule and the policies that best mimic it, are the most

vulnerable to disturbances that produce phenomena at business cycle frequencies. Arguably,

these are just the sort of shocks that central bankers would most often worry about. The excep-

tion are the NTV perturbations shown as the dotted lines in the figures. Taken at face value,

these observations suggest that if central banks can overcome estimation problems with respect

to such things as one-time breaks in trends, the remaining small but exotic perturbations can

be handled well with rules that are robust, plausible, and protect against phenomena at busi-

ness cycle frequencies. Moreover such rules are not costly to implement in terms of foregone

performance in worlds where the reference model is true.

5 Concluding Remarks

We began this paper by reflecting on a puzzle: if monetary policy seeks to minimize output

and inflation fluctuations, how does one explain the fact that historical interest-rate responses

to these two indicators have been far more muted than suggested by optimal policy rules?

We have found, as others have, that optimal linear-quadratic rules derived in the absence of

model uncertainty are indeed more reactive than rules estimated on data for the United States.

Stabilizing a monetary economy is a difficult job. The authority has but one instrument and

usually at least two targets. The instrument works with a lag. Moreover, the authority faces an

economy that is constantly changing, resulting in profound uncertainties regarding estimated

structural parameters. Can such uncertainties explain the observed attenuation of policy? Our

results suggest that the answer is yes and no.

We did find rules that protect against a class of specification errors, modeled as structured

perturbations to a reference model, that resemble the estimated rule. However, we also found
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that robust policy rules that seek to guard against very general forms of misspecifications are

even more reactive than the linear-quadratic rule. The robust rule that comes closest to approx-

imating the estimated rule is one that seeks to guarantee a minimum level of stability against

worst-case specification errors in the dynamics of aggregate demand. It follows that one pos-

sible interpretation of Fed behavior of the last twenty years is that the observed attenuation

in policy was motivated by distrust regarding the estimated degree of output persistence. This

motivation arises in large part because the aggregate demand function determines the dominant

root—and hence the stability—of the model.

Given that the aggregate demand function is specified in terms ofexcessdemand—meaning

output relative to potential output—the literature on mismeasurment of potential output is of

pertinence here. Work by Orphanides (1998), Smets (1999), Orphanides et al. (2000), and

Tetlow (2000), among others, shows that potential output can be badly mismeasured and that

correcting the measurement error can take a long time. Such errors could easily show up as

mismeasured persistence in an aggregated demand function.

But if uncertainty of a particular structure can explain observed Fed behavior, what can be

said about more generalized uncertainty? Our results suggest a hierarchy of policy responses

measured in terms of attenuation or anti-attenuation indexed against the assumed degree of

structure in Knightian uncertainty: The greater the structure on the uncertainty, the more likely

policy attenuation is likely to arise. At the same time however, the more structure is assumed in

the perturbations the authority faces, the larger the losses that are borne if the robustness turns

out to have been unnecessary.

36



References

Anderson, G., Moore, G., 1985, A linear algebraic procedure for solving linear perfect fore-

sight models, Economics Letters 17, 247–252.

Anderson, G. S., 2000, A reliable and computationally efficient algorithm for imposing the

saddlepoint property in dynamic models, Federal Reserve Board Finance and Economics

Discussion Series forthcoming.

Aoki, M. 1967, Optimization of stochastic systems, Academic Press, New York.

Ball, L. 1998, Policy rules for open economies, in: J. B. Taylor ed., Monetary policy rules,

U(niversity of Chicago Press, Chicago), 127–144.

Basar, T., Bernhard, P. 1991,H1�optimal control and related minimax design problems,
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Figure 1:Frequency Decomposition of Expected Losses under Model and Shock Uncertainty
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Figure 2:Frequency Decomposition of Expected Losses under Model and Shock Uncertainty
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Figure 3:Frequency Decomposition of Expected Losses: Perturbations to all Parameters
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Figure 4:Frequency Decomposition of Expected Losses: Perturbations to all Parameters

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

8

9
"WEAK" INFLATION PREFERENCE

trace[G(ξ)’G(ξ)] 

LTI MA 

LTI scalar 

LQG 

NTV 

Estimated 

8 years 4 years 
1 year 

43



Figure 5:Frequency Decomposition of Expected Losses: Perturbations to Lagged Output Coefficients
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Figure 6:Frequency Decomposition of Expected Losses: Perturbations to Lagged Output Coefficients
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Figure 7:Frequency Decomposition of Expected Losses: Perturbations to Slope of IS Curve
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Figure 8:Frequency Decomposition of Expected Losses: Perturbations to Slope of IS Curve
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Figure 9:Frequency Decomposition of Expected Losses: Perturbations to Slope of Phillips Curve
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Figure 10: Frequency Decomposition of Expected Losses: Perturbations to Slope of Phillips
Curve
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