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tRegressions of investment on Tobin's Q are misspe
i�ed in the pres-en
e of 
apital gestation lags be
ause they don't distinguish betweenthe value of existing 
apital and the value of 
apital at a future date.Current investment should be determined by the anti
ipated shadowvalue of 
apital at the gestation horizon. Under homogeneity 
ondi-tions analogous to Hayashi [1982℄, this value is equal to the fore
ast ofan adjusted version of Q. This misspe
i�
ation helps to explain manypathologies in the literature: attenuated estimates of the 
oeÆ
ient onQ, low �R2, and serially-
orrelated errors. Regressions using aggregatedata suggest that (1) endogeneity problems asso
iated with the stan-dard regression of investment on Q 
an 
an be eliminated by reversingthe regression, (2) fore
astable 
hanges inQ provide additional informa-tion about investment not 
aptured in 
urrent Q, and (3) spe
i�
ationsthat expli
itly a

ount for gestation lags yield 
apital adjustment 
ostsof a more reasonable magnitude.
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I. Introdu
tionPerhaps the most appealing aspe
t of the 
onvex adjustment 
ost Q-theoryof investment is that it redu
es a 
ompli
ated dynami
 optimization problemto a startlingly simple relationship between two observable variables. All of thefa
tors that are relevant for determining 
urrent investment boil down a singlemeasure: the shadow value of 
apital, or marginal q. When the 
onditionsoutlined in Hayashi [1982℄ hold, this shadow value is equal to Tobin's Q|a readily measurable variable. However, despite more than two de
ades ofinvestment-Q regressions, empiri
al support for this theory 
ontinues to bemixed. The general 
onsensus that has emerged from this work is that (1) therelationship between Q and investment is quantitatively small and sometimesstatisti
ally insigni�
ant, and (2) that the la
k of �t (as measured by �R2) andapparent partial signi�
an
e of other variables (su
h as 
urrent 
ash 
ow) inthese regressions refutes the 
laim that Q is a suÆ
ient statisti
 for investment.Although there have been numerous attempts to explain these failures,little attention has been given to the e�e
ts of 
apital gestation lags.1 Amongother things, these lags represent the time required to prepare the designs,arrange external �nan
ing, take delivery and assemble, and to test the 
apitalimprovement.Su
h lags are not well represented by typi
al adjustment 
ost models. Thesemodels share the 
hara
teristi
 that newly-pur
hased 
apital goods be
omeprodu
tive with little or no delay. This may not be a reasonable assumption,sin
e many varieties of 
apital (su
h as manufa
turing plants and new air-
raft) require an extensive planning and/or building pro
ess before they a�e
tprodu
tive 
apa
ity. These requirements alter the timing of the 
osts and ben-e�ts asso
iated with additional investment. In models without gestation lags,a unit of 
apital pur
hased today is a perfe
t substitute for a 
urrent unit ofprodu
tive 
apital, and therefore has the same shadow value (
urrent marginalq). However, when gestation lags are present, the stream of servi
es asso
iatedwith investment are delayed, so that 
urrent investment is asso
iated with thefore
asted shadow value of 
apital when it will be in pla
e for produ
tion.This paper develops a sto
hasti
 model of aggregate investment in whi
hindividual �rms fa
e distin
t gestation lags for planning and building, and1Re
ent literature has fo
used on the non-
onvexity in the adjustment 
ost fun
tion (su
has regions of weak 
on
avity and lump-sum transa
tion 
osts), and has fo
used primarily on�rm-level analysis. See Abel and Eberly [1994℄ for a uni�ed theoreti
al dis
ussion. Caballero,Engel and Haltiwanger [1995℄ and Barnett and Sakellaris [1998℄ are representative of theempiri
al work in this area. 1




onvex 
osts of 
apital adjustment. Under these 
onditions, the true suÆ
ientstatisti
 for 
urrent investment is the fore
asted shadow value of produ
tive
apital at the gestation horizon. This fore
ast is not generally observable.However, when homogeneity assumptions analogous to Hayashi [1982℄ hold, Ishow that it is equal to the anti
ipated value of an adjusted Tobin's Q measurethat 
an be formed using observable data.The results of the model indi
ate that the regressions of investment on Qemployed by Summers [1981℄ and 
ountless others may be seriously misspe
i-�ed be
ause they use an inappropriate proxy for the anti
ipated shadow valueof new 
apital. To the extent that the dis
repan
y between Qt and the an-ti
ipated shadow value is pure noise, the problem 
an be 
orre
ted using themeasurement error remedy employed by Eri
kson and Whited [2000℄, or bysimply reversing the regression.2 However, when viewed from the perspe
tiveof dynami
 general equilibrium, the problem is more serious. As the aggre-gate e
onomy adjusts towards its long run equilibrium, the shadow value of
apital gravitates toward its steady state. Therefore, above-average values ofQ should be asso
iated with downward anti
ipated movements of Q, and vi
eversa. I show that these anti
ipated movements 
an be an additional sour
eof endogeneity that (1) further attenuates the estimated 
oeÆ
ient on Q, and(2) 
auses serial 
orrelation in the error term.These 
laims are investigated using regressions on aggregate data. Pre-liminary tests indi
ate that regressions of investment on Qt su�er from en-dogeneity. This endogeneity appears to be eliminated when the regression isrun with Q as the dependent variable. This indi
ates that the empiri
al prob-lems asso
iated with investment - Q regressions may be largely attributableto mismeasurement of the shadow value of new 
apital. However, I argue thatthe dis
repan
y between the forward and reverse estimates is simply too largeto be 
onsistent with 
lassi
al measurement error. Instead, I show that fore-
astable 
hanges in the shadow value of 
apital are signi�
ant when added tothe reverse regression spe
i�
ation, whi
h suggests a role for gestation lags.Finally, I show that reverse OLS spe
i�
ations that expli
itly a

ount for ges-tation lags yield a more reasonable magnitude of adjustment 
osts than thoseobtained in previous studies.An outline for the paper is as follows. In Se
tion II, I perform a prelimi-nary regression analysis that highlights some of the problems asso
iated withregressions of investment on Tobin's Q, and uses endogeneity tests to justifya reverse regression spe
i�
ation. This serves as a useful introdu
tion to thedis
ussion of gestation lags that is the fo
us of the remainder of the paper,2The approa
h used by Abel and Blan
hard [1986℄ is another potential remedy.2



and as a ben
hmark for subsequent estimates. In Se
tion III, a model of a�rm's investment in the presen
e of gestation lags is developed that serves asa stru
tural basis for the statisti
al analysis in Se
tion IV. The �nal se
tiono�ers 
on
luding 
omments.II. Should Investment be Regressed on Tobin's Q, or is it theOther Way Around?This se
tion dis
usses the relationship between the rate of investment andTobin's Q in OLS regressions. In parti
ular, I 
onsider whether investmentor Q should be 
onsidered the dependent variable in this relationship. Thistranslates to a dis
ussion of the alternative orthogonality restri
tions that areimpli
it in a \forward" spe
i�
ation of the form:~gKt+1 = a + bQt + u1t;(1)and its \reverse" 
ounterpartQt = 
+ d~gKt+1 + u2t;(2)where ~gKt+1 � ~Kt+1~Kt � 1 is the growth rate in the measured 
apital sto
k ~Kt.3In order to obtain 
onsistent estimates, the �rst spe
i�
ation requires orthog-onality between Qt and u1t, while the se
ond requires orthogonality between~gKt+1 and u2t.Both of these forms are motivated by the standard �rst order 
onditionthat links the investment rate to the 
urrent shadow value of 
apital in amodel with 
onvex 
apital adjustment 
osts. Spe
i�
ally, let qt denote the
urrent shadow value of a unit of 
apital, where the pri
e of new 
apital is�xed at one unit of the numeraire. Assume that markets are 
ompetitive,that produ
tion is linearly homogeneous in variable inputs and 
apital, andthat time is 
ontinuous. Let 
apital adjustment 
osts take the quadrati
 andlinearly homogeneous form�( _Kt; Kt) = 
2  _KtKt � �!2Kt;where the parameter 
 governs the magnitude of adjustment 
osts. Then, the�rst order 
ondition requires the shadow value of an additional unit of 
apital3The pra
ti
e of using 
apital growth as an investment measure di�ers slightly fromprevious studies. Using a dire
t measure of investment per unit of 
apital has a negligiblee�e
t on the investment results, sin
e aggregate depre
iation is roughly 
onstant.3



today to equal the marginal 
ost asso
iated with pur
hasing and installing anadditional unit of 
apital:(3) qt = 1 + 
 _KtKt � �! :Hayashi [1982℄ shows that the shadow value of 
apital (whi
h is generallyunobservable) is identi
al to Tobin'sQ in this 
ontext. If we temporarily ignorethe stru
tural justi�
ation for the errors u1t and u2t, the �rst order 
ondition
an be easily manipulated to form either the forward or reverse spe
i�
ations,where the slope 
oeÆ
ients b and d are equal to 
�1 and 
, respe
tively.Previous studies have ex
lusively fo
used on the forward spe
i�
ation ratherthan the reverse spe
i�
ation. Among other things, this may be motivated bythe fa
t that qt (whi
h is a fun
tion of market pri
es and te
hnology afteroptimizing out all variable inputs) is e�e
tively given from the perspe
tive ofa single 
ompetitive �rm. Viewed from this narrow lens, dependen
y 
owsfrom Qt to ~gKt+1, but not in the reverse. However, as many have pointedout, neither Qt nor ~gKt+1 are exogenous from the viewpoint of dynami
 generalequilibrium. Therefore, it is not 
orre
t to think of 
ausation 
owing stri
tlyfrom one variable to the other; they are mutually determined. On the otherhand, the fa
t that the variables are mutually determined need not be a sour
eof in
onsisten
y, depending on the 
hara
teristi
s of the regression disturban
e.For instan
e, if the disturban
e is solely due to 
lassi
al measurement error inQt, then using the reverse spe
i�
ation would be justi�able even though bothvariables are endogenous. This illustrates that there is no truly 
ompellingreason to prefer either the forward or reverse spe
i�
ation. The 
hoi
e shouldbe di
tated by the sour
e of the regression disturban
e.At this point, I postpone dis
ussion of the theoreti
al basis for the regres-sion disturban
e, and ta
kle the spe
i�
ation issue from a purely statisti
alstandpoint. I estimate both spe
i�
ations using a standard framework, whi
his applied to aggregate data. Then, I assess the pra
ti
al viability of the tworegression forms along two dimensions. First, I 
ompare the magnitudes ofthe estimates to reasonable standards, su
h as the implied speed of 
apitaladjustment. Se
ond, I test for the presen
e of regression endogeneity, em-ploying outside variables that should be exogenous a

ording to theoreti
al
onsiderations. 1. DataThis paper analyzes aggregate data on the time dimension, rather than lon-gitudinal �rm-level data. To a large extent, the puzzling relationship between4



investment and Q in the literature is ubiquitous to the 
hoi
e of aggregate or�rm-level data. To the extent that the 
hoi
e is relevant, a number of fa
torsseem to favor aggregate data. First, the assumptions of 
ompetitive marketsand 
onvex adjustment 
osts may better des
ribe higher levels of integration.Arguably, the 
ompetitive markets assumption is better approximated by ag-gregate behavior, sin
e idiosyn
ra
ies owing to market power, measurement,and other problems be
ome less 
onspi
uous. Se
ond, the assumption of 
on-vex adjustment 
osts is probably more reasonable for the aggregate as well.Work by Doms and Dunne [1998℄, Abel and Eberly [1994℄ and others has es-tablished the importan
e of non-
onvex adjustment 
osts and heterogeneity forexplaining lumpy investment behavior at the �rm and plant levels. However,investment is mu
h smoother in the aggregate, where it is dis
iplined by thee�e
ts of integration and 
onsumption smoothing.4 A �nal rationale is thatthe varian
e of measurement errors should be mu
h smaller in the aggregatethan at the �rm level, sin
e idiosyn
rati
 fa
tors be
ome irrelevant.The dataset is 
onstru
ted using quarterly aggregates for non-farm non-�nan
ial U.S 
orporations over the period from 1959Q3 to 2002Q4. Series forQ, the measured growth rate in 
apital, and the rate of 
ash 
ow are formedusing seasonally-adjusted aggregates from the Federal Reserve Board of Gov-ernors Flow of Funds A

ounts, the Bureau of E
onomi
 Analysis (BEA), theBureau of Labor Statisti
s (BLS), and Data Resour
es International (DRI).Data on hours growth, real hourly labor 
ompensation, and output growthare dire
tly from the BLS. The measured 
apital sto
k ( ~Kt) is formed us-ing quarterly �xed investment expenditures by iterating the standard 
apitala

umulation identity ~Kt+1 = (1� Æ) ~Kt + It;whi
h impli
itly assumes a one period time to build.5 Following Hall [2001℄,the aggregate market value of physi
al 
apital is the sum of the market valuesof equity and debt, less the value of all non-
apital assets (in
luding liquidassets), residential stru
tures, and inventories. The value of debt is adjustedfor 
hanges in the interest rate using the algorithm outlined in Hall [2001℄. Thetax adjusted series for Q is 
orre
ted for the e�e
t of investment tax 
reditsand 
apital 
onsumption allowan
es on the e�e
tive pri
e of 
apital, and forthe value of remaining depre
iation allowan
es on existing 
apital.6 Table 1reports the �rst and se
ond sample moments of the data for measured 
apital4The work of Thomas [2002℄ favors this argument. Caballero, Engel and Haltiwanger[1995℄ provide a rationale for aggregate investment lumpiness owing to non-
onvexities atthe �rm level.5To minimize the possibility of error asso
iated with the 
hoi
e of an initial 
apital value,my pre-sample begins in 1946Q4 at the BEA's measure of the 
apital sto
k.6For spe
i�
 details about these tax 
orre
tions, see the data appendix to Millar [2005℄.5



growth and Q, with and without the tax adjustments.2. Empiri
al Results for Forward and Reverse RegressionsI report separate estimates for regressions that employ the forward and re-verse spe
i�
ations, using both tax-adjusted and unadjusted series for Q. Theforward regression results are shown in the top portion of Table 2. Durbin-Watson (DW) statisti
s for the both the adjusted and unadjusted data indi
atea very high degree of positive serial 
orrelation in the estimated errors. The
oeÆ
ient of determination �R2 is modest in both 
ases, ranging from 0.217 (un-adjusted) to 0.244 (adjusted). This veri�es that fa
tors other than Q a

ountfor most of the variation in 
apital growth. The magnitude of the 
oeÆ
ientsobtained using both the adjusted and unadjusted data are roughly in line withprevious OLS estimates of previous studies. The b estimate of .0033 translatesto about .013 at an annual frequen
y, whi
h 
ompares favorably with most pre-vious OLS estimates using aggregate and �rm-level data. The estimates forunadjusted and adjusted data imply elasti
ities of 
apital growth with respe
tto Q (at the sample mean) of 0.29 and 0.32, respe
tively. Although small inmagnitude, the estimates are statisti
ally signi�
ant at the one per
ent levelor higher after making a heteroskedasti
ity and auto
orrelation adjustment(HAC) to the standard errors. In order to assess the importan
e of small sam-ple e�e
ts, the table reports bias-
orre
ted estimates of the 90% 
on�den
einterval generated from a bootstrap simulation. Although the small sampledistribution of the estimates is not as tight as the asymptoti
 approximation,the signi�
an
e of the results is maintained with little eviden
e of bias.The reverse regressions in the bottom portion of Table 2 portray the rela-tionship between investment and Q quite di�erently. Like the forward spe
i-�
ation, the �tted errors exhibit very high auto
orrelation. Nonetheless, themagnitudes of the estimated 
oeÆ
ient d imply that the elasti
ity of 
apitalgrowth to Q (at the sample mean) is about 1.33 for the unadjusted data, and1.29 for the adjusted. This more than quadruples the elasti
ity estimate ob-tained using the forward spe
i�
ation. Using the more robust HAC standarderrors, the estimates of d are signi�
ant at the �ve per
ent and one per
entlevels for the unadjusted and tax adjusted data, respe
tively. Bootstrap sim-ulations indi
ate that the 
oeÆ
ient on 
apital growth may be slightly un-derestimated in a small sample. However, the simulations 
on�rm that theestimates are signi�
ant at �ve per
ent after making a bias 
orre
tion.These results are more in line with previous estimates of 
 in the literaturethan are the results from the forward spe
i�
ation. For instan
e, estimatesin Gil
hrist and Himmelberg [1995℄ imply an estimate for 
 around twenty at6



an annual frequen
y, whi
h is 
onspi
uously smaller than most empiri
al esti-mates. In 
omparison, the point estimate of d for the unadjusted data impliesthat 
 is around 16.5 for annual data. Another standard that 
an be used toassess the relative magnitudes of the estimates is the notion of doubling timeintrodu
ed by Hall [2001℄. A

ording to this metri
, the value of 
 is roughlythe number of periods required for 
apital growth to double in response to adoubling of q. Under this interpretation, the forward estimates suggest dou-bling times ranging from 75 years (using the unadjusted data), to 100 years(using the adjusted data). The 
orresponding durations implied by the re-verse regression are dramati
ally lower, ranging from 17 years (unadjusted) to25 years (adjusted). The latter set of estimates are mu
h 
loser to indepen-dent estimates obtained by Shapiro [1986℄ and Hall [2004℄ using an alternativemethodology that relies on non-�nan
ial data. These studies suggest that thedoubling time is two years or lower.The endogeneity tests reported in the table (labeled NDG(p)) also supportthe reverse spe
i�
ation. The rationale behind this test is that Q and in-vestment should be suÆ
ient for one another using the appropriate regressionform. Therefore, no variables in the time t information set should help explainthe �tted regression error. The variables I 
hose to satisfy this orthogonality
ondition are the 
urrent and lagged growth rates in aggregate labor hours,output, real wages, and federal defense expenditures, and the lagged rate of
ash 
ow. The latter is a measure internal funds, whi
h is a parti
ularly famil-iar suspe
t for endogeneity. Many studies (beginning with Fazzari, Hubbardand Peterson [1988℄) have demonstrated the partial signi�
an
e of 
ash 
owfor explaining investment after 
ontrolling for Qt. The results of the endo-geneity test are reported as a p-value for a null of no endogeneity, for ea
hspe
i�
ation. This null is reje
ted at �ve per
ent signi�
an
e for the forwardspe
i�
ation, but 
annot be reje
ted for the reverse spe
i�
ation.7 The in
lu-sion of the 
urrent rate of 
ash 
ow in the set of exogenous variables did notsubstantively alter the test results.From a purely statisti
al standpoint, these results provide support for us-ing the reverse regression spe
i�
ation rather than the forward spe
i�
ation.However, the stru
tural explanation for this result remains un
lear. One pos-sibility is that the �rst order 
ondition holds exa
tly for the true values of Qand 
apital growth, but that Q is subje
t to 
lassi
al measurement error asin Eri
kson and Whited [2000℄. However, this interpretation is unpalatablein a number of respe
ts. Not only must the measurement error exhibit verystrong serial 
orrelation to be 
onsistent with the low Durbin-Watson statis-7The test performed is a version of the Hausman test that is robust for the presen
e ofauto
orrelation and heteroskedasti
ity, as outlined in Wooldridge [2000℄.7



ti
, but it must be extremely large in relation to the true Q. Spe
i�
ally, theratio of signal-to-noise for Q must be around 1/3 in order to explain the dis-
repan
y between the forward and reverse estimates.8 The measurement errorexplanation is diÆ
ult to re
on
ile with other fa
ts as well. By de�nition,the noise in Q must arise from errors in measuring the repla
ement value of
apital, and/or errors in measuring the market value 
apital. If the error owesto 
apital mismeasurement, it is diÆ
ult to re
on
ile with the apparent la
kof endogeneity in the reverse spe
i�
ation where 
apital growth is 
onsideredindependent. If the error owes to market valuation, we must believe that theerrors are systemati
 a
ross �rms, and serially 
orrelated. These fa
ts wrestlewith the deeply-rooted notions of market eÆ
ien
y and rational expe
tations.An alternative explanation for these results is that there are gestation lagsin the 
apital a

umulation pro
ess. This explanation 
an justify measurementerrors for Q that are serially 
orrelated, systemati
 a
ross �rms, and large inmagnitude. These ideas are developed more formally in the following se
tions.III. The Gestation Lag Model1. The Firm's ProblemThe model developed in this se
tion relates investment toQ for a single 
om-petitive �rm that fa
es distin
t gestation lags for building and planning anda 
onvex adjustment te
hnology for 
apital. The 
hara
terization of buildingis a spe
ial 
ase of the setup in Kydland and Pres
ott [1982℄ with a planningstage similar to Christiano and Todd [1995℄. Although the model is set inpartial equilibrium, it is not possible to stri
tly limit the analysis to �rm-leveladjustment. When the assumptions of 
ompetitive markets and 
onstant re-turns to s
ale hold, the variables that drive the dynami
s of q are e�e
tivelydetermined at the market level of integration. Although this is always true un-der the Hayashi [1982℄ 
onditions, it is parti
ularly important in the presen
eof gestation lags. This is be
ause the �rm's 
urrent investment de
ision arebased on the anti
ipated shadow value of produ
tive 
apital at the gestation8The implied signal-to-noise ratio 
an be determined as follows. Let the varian
e of thetrue value of Q be �2, and the varian
e in its measurement error be �2" . Using well-knownasymptoti
 formulas for 
lassi
al measurement error, plim(d̂) = 
,plim(b̂) = 
�1�1 + �2"�2��1 ; and �2�2" = plim(b̂)plim(d̂)1� plim(b̂)plim(d̂) :Plugging the estimates in Table 2 into this formula yields ratios of 0.28 and 0.33 for theunadjusted and adjusted data, respe
tively. 8



horizon. In order to 
onsider the relationship between investment and 
ur-rent q, one must a

ount for adjustments during the gestation phase that aredriven by aggregate for
es. Rather than develop the problem at both the �rmand aggregate levels, my approa
h is to des
ribe the optimization of a single
ompetitive �rm in detail, and to integrate the for
es of aggregate adjustmentin a stylized, redu
ed form manner.Figure 1 depi
ts a time s
ale of the investment pro
ess under gestation lags.At t, the �rm makes an irrevo
able 
ommitment to its quantity of produ
tive
apital at period t+P+B. After P planning periods, the �rm pur
hases thenew 
apital and a building phase of B periods 
ommen
es.9 After the totalgestation horizon of J=P+B periods is 
omplete, the new 
apital is in pla
eand available for produ
tion.Let It represent the �rm's investment expenditure and Kt its produ
tive
apital sto
k at time t. The 
apital a

umulation 
ondition takes the form(4) Kt+i = Kt+i�1 (1� Æ) + It+i�B;whi
h in
orporates the B period building lag depi
ted in Figure 1. Note thatthis a

umulation s
heme implies an important divergen
e between the trueprodu
tive measure of 
apital Kt and the 
apital measure based on standarda

ounting ~Kt. The standard a

ounting, whi
h maps investment to 
apitalimmediately after the expenditure, 
orresponds to the identity in equation (4)with B=1. Due to this 
onstru
tion, the measured sto
k tends to anti
ipatethe true produ
tive sto
k be
ause it in
ludes investment expenditures thatare still within the building pro
ess. In the s
heme depi
ted above, 
urrentinvestment joins the produ
tive 
apital sto
k exa
tly B�1 periods after itjoins the measured sto
k. Therefore, the produ
tive measure maps to thea

ounting measure by the equation ~Kt+1 = Kt+B. This s
heme requires the�rm to a

ount for a total of J state variables in ea
h period: its 
urrentprodu
tive 
apital sto
k Kt, and its investment 
ommitments It�B+j for j =1; : : : ; J�1. For simpli
ity, I represent this set of state variables by the ve
torKt � (Kt; It�B+1; : : : ; It+P�1)0.Assume that the level of output (gross of adjustment 
osts) is given by a
on
ave and linearly homogeneous produ
tion fun
tion F (K;L), where L is avariable input that 
an be pur
hased at the market wage w(z). Although the�rm 
onsiders the anti
ipated wage path to be given, its dynami
s are 
onsis-tent with equilibrium in the input market. In a dynami
 general equilibriummodel, these dynami
s are 
losely related to the e
onomy's divergen
e from9More generally, the investment spending may be spread throughout the building period.See Millar (2004). 9



its aggregate steady state. These aggregate dynami
s essentially govern themovement of(5) z � ln (Kt=K�t ) ;whi
h measures the degree of departure of the aggregate 
apital sto
kK fromits target in the absen
e of gestation lags and adjustment 
ost fri
tions,K�.10Dynami
 stability of the e
onomy ensures that the e
onomy moves towardsa steady state where these two values are equal, so z moves towards zero inthe long run. Although individual �rms a

ount for these endogenous marketdynami
s in their 
apital a
quisition de
isions, they are treated as given. Thisis be
ause the �rm's a
tions, in isolation, have a negligible impa
t on themarket.The �rm's 
apital is valued a

ording to the 
ow of servi
es that it gener-ates throughout its usable life. The value of the servi
e 
ow in ea
h period(gross of adjustment 
osts) is the variable pro�t after a

ounting for optimalemployment of variable inputs given the available 
apital sto
k:maxLt [F (Kt; Lt)� w(zt)Lt℄ :Sin
e this problem is linearly homogeneous in (Kt; Lt), its value fun
tion takesthe form �(zt)Kt, where �(zt) represents the 
on
entrated marginal produ
tof 
apital after a

ounting for the optimal employment of the variable input.Sin
e this is solely a fun
tion of market pri
es (and indire
tly a fun
tion ofz), it is 
onsidered given by the �rm. In a steady state, �(zt) is equal tothe fri
tionless rental rate for 
apital, RB�1(r + Æ). Otherwise, its magnitudeis inversely related to z, rising when aggregate 
apital is s
ar
e relative to afri
tionless optimum, and de
lining when it relatively abundant.The value of the �rm is equal to the dis
ounted sum of all future 
apital ser-vi
e 
ows net of the 
osts of 
apital adjustment. For simpli
ity, let adjustment
osts in period t be represented by the quadrati
 fun
tion(6) � (It�B+1; Kt) = 
2 �It�B+1Kt � Æ � ��2Kt;whi
h imposes that all the adjustment 
osts asso
iated with a given invest-ment o

ur in the period before it joins the produ
tive 
apital sto
k. This10In models that possess the balan
ed growth property, this fri
tionless target for the
apital sto
k is equal to the sto
k of e�e
tive (or te
hnology-augmented) labor. For example,see King, Plosser, and Rebelo [1988℄. 10



form dire
tly asso
iates the magnitude of the adjustment 
ost with the rate ofgrowth in produ
tive 
apital between t and t+ 1, sin
eIt�B+1Kt � Æ = Kt+1Kt � 1by equation (4). The parameter � is the growth rate in produ
tive 
apital atwhi
h marginal adjustment 
osts are zero. Letting R represent an appropriatedis
ount fa
tor, the 
um-dividend value of the �rm is given by the fun
tion(7) V (Ktjzt) � maxfIt+P+ig1i=0 1Xi=0 R�iEt [�(zt+i)Kt+i � � (It�B+1; Kt)� It+i℄ ;where the maximization is subje
t to the state ve
tor Kt, and the 
apitala

umulation 
ondition (4). By the envelope theorem, ea
h of the J statevariables have an asso
iated shadow value (or 
o-state variable). This di�ersfrom models without gestation lags, where the 
urrent 
apital sto
k and itsshadow value are the only primal-dual pair. Denote the shadow values of Kt bythe ve
tor rKV , and the spe
i�
 element asso
iated with produ
tive 
apitalby q0;t.After some tedious manipulation, one 
an show that the �rst order 
onditionthat governs investment at the planning horizon It+P istq0;t+J = RB +R
 �gKt+J � �� ;(8)where gKt+J is the growth rate in produ
tive 
apital from t + J � 1 to t + Jand tq0;t+J is the expe
ted shadow value of produ
tive 
apital at t + J giveninformation at t. This 
ondition equates the expe
ted shadow value of theprodu
tive 
apital at the gestation horizon to the future value of the marginal
osts asso
iated with the investment plan. These 
osts in
lude the future valueof the outlay required to pur
hase the new 
apital at horizon P , and the futurevalue of the marginal adjustment 
ost paid at horizon J�1. This marginaladjustment 
ost is a linear fun
tion of the growth rate in produ
tive 
apital atthe end of the gestation horizon, whi
h maps exa
tly to the a

ounting growthrate ~gKt+P . This 
ondition is a generalization of the more familiar �rst order
ondition in (3). In the spe
ial 
ase of no planning or building (P =B=0), it
ollapses to a dis
rete-time equivalent of the standard 
ondition.Note that today's investment expenditures are determined by the fore
astedshadow value of 
apital at the building horizon, rather than the 
urrent shadowvalue of 
apital. This is be
ause investment 
ommitments do not 
onvey thesame future bene�ts as produ
tive 
apital. Intuitively, q0;t represents the11



present value of all expe
ted future bene�ts asso
iated with a unit of pro-du
tive 
apital from the 
urrent period onward. This 
an be shown formallyby taking the partial derivative of the value fun
tion with respe
t to Kt toreveal that(9) q0;t = 1Xh=0 � R1� Æ��hEt ��t+h � ��t+h�Kt+h� ;where �t+h is the adjustment 
ost at t + h.11 The expe
ted future bene�tasso
iated with 
apital ownership in ea
h period is its 
on
entrated marginalprodu
t �t+h, net of the marginal e�e
t of an additional unit of 
apital on theadjustment 
ost �t+h. The dis
ount fa
tor R is divided by the fa
tor (1 � Æ)in order to a

ount for physi
al depre
iation in the quantity of 
apital overtime. Sin
e a unit of investment 
ommitted today does not be
ome produ
tiveuntil the gestation horizon, its anti
ipated bene�ts are the same as a unit ofprodu
tive 
apital in J periods, tq0;t+J .These di�eren
es help to explain many of the empiri
al failures of regres-sions of investment on Q. For now, ignore any potential problems asso
iatedwith using Qt as a proxy for the shadow value of produ
tive 
apital q0;t, andassume that the two variables 
an be used inter
hangeably. Then, the �rstorder 
ondition (8) 
an be rearranged to yield the linear relationship(10) ~gKt+1 = ��� RB�1
 � + 1R
 t�P q0;t+Bwhere I have substituted ~gKt+1 for the growth rate gKt+B. When the forwardregression in (1) is interpreted under the lens of this stru
tural relationship,the regression 
oeÆ
ients and errors are the redu
ed formsa = ��� RB�1
 � ; b = 1R
 ; and u1t = b �t�P q0;t+B � q0;t� :If q0;t were orthogonal to the stru
tural error u1t, su
h a regression wouldyield a 
onsistent estimate of b. However, this is unlikely. In a dynami
general equilibrium, q0 tends to revert towards its steady state as part ofthe e
onomy's broad adjustment to short-run ma
roe
onomi
 disequilibrium(Romer [1996℄, Kimball [2003℄). In this 
ase, the steady state value of q is RB,11A �nite solution for q0;t requires the transversality 
onditionlimh!1� R1� Æ��hEt ��t+h � ��t+h�Kt+h�! 0:12



whi
h represents the repla
ement value of the initial investment outlay after Bbuilding periods. When q is above (below) this steady state, �rms will expe
tthis broad pro
ess of adjustment to pull it downward (upward). Hen
e, it islikely that q0;t 
ovaries negatively with the stru
tural error u1t, whi
h is 
loselyrelated to the dire
tion of its future movement. This endogeneity 
auses anattenuation of the 
oeÆ
ient b. Sin
e anti
ipated 
hanges in q are likely to berelated a
ross periods, it 
an also 
ontribute to serial 
orrelation in the �ttedresiduals.As a simple illustration of this point, 
onsider a 
ase with only one buildingperiod and no planning requirement. Suppose that the dynami
s of zt aredes
ribed by the AR(1) pro
ess(11) zt+1 = �zzzt � �z��t+1;where �zz 2 (0; 1), �t+1 is an i.i.d disturban
e to K�t+1. To a �rst-orderapproximation, this is the pro
ess that would govern the e
onomy's dynami
adjustment to a permanent te
hnology sho
k in a standard RBC model withquadrati
 adjustment 
osts and B = 1, in the neighborhood of the balan
edgrowth path.12. In Appendix B, I show that the anti
ipated dynami
s of q0;t
an then be represented by(12) tq0;t+1 � R = �zz �q0;t �R� ;to a �rst order approximation, in the vi
inity of the balan
ed growth path.Therefore, the shadow value of 
apital reverts towards its steady state at arate of de
ay equal to �zz along the saddle path of adjustment for 
apital.Using this dynami
 equation, the stru
tural error u1;t for the one period timeto build 
ase is u1t = b(1� �zz)(R� q0;t):This is negatively 
orrelated to the regressor, whi
h 
auses the estimate b tobe biased downward. Indeed, for this spe
ial 
ase, it 
an be shown that thetrue 
oeÆ
ient on q0;t is 
�zz, so that the adjustment 
ost parameter is notstri
tly identi�ed.Gestation lags 
an pose other potential problems in the presen
e of tempo-rary sho
ks. In parti
ular, suppose that there are unanti
ipated disturban
esto the fa
tor z (emanating from the fri
tionless target K�) that have a dura-tion shorter than the gestation horizon. Sin
e su
h sho
ks a�e
t the relatives
ar
ity of 
apital in the short run, the market value of existing 
apital adjuststo re
e
t this s
ar
ity. While the sho
k is a
tive, this a�e
ts both the value12For details, see Campbell [1994℄. 13



of the servi
e 
ow � (zt), and the value of the stream of all future servi
esq0;t. However, it is unlikely that su
h sho
ks would prompt mu
h investment,sin
e their e�e
t on 
ash 
ow and q dies o� before new 
apital 
an be put inpla
e. In Millar [2005℄, I provide eviden
e of temporary disturban
es that donot a�e
t investment, but in
rease Q and 
ash 
ow. These transitory sho
ksare likely to have two e�e
ts on the relationship between 
urrent investmentand q0;t. First, they serve as a sour
e of noise in the relationship between in-vestment and q0;t be
ause they are orthogonal to investment. This e�e
t a
tslike 
lassi
al measurement error in the forward regression spe
i�
ation, atten-uating the estimate of b and diminishing the �R2. Se
ond, they 
ause serial
orrelation in the �tted regression error to the extent that these 
u
tuationspersist within the gestation horizon.2. The Relationship between the Shadow Value of Produ
tive Capital andTobin's Q in the Presen
e of Gestation LagsNow 
onsider the relationship between Tobin's Q and the 
urrent shadowvalue of produ
tive 
apital in the presen
e of gestation lags. Hayashi [1982℄established the equivalen
e of marginal q and Tobin's Q in 
ontinuous timewith no gestation lags, in the spe
ial 
ase where output and adjustment 
ostsare linearly homogeneous in 
apital and markets are 
ompetitive. As it turnsout, this result 
annot be applied to models with gestation lags without somemodi�
ation. This stems from the fa
t that units of 
ommitted investmentand units of produ
tive 
apital are not perfe
t substitutes. Ea
h has a distin
tshadow value that is re
e
ted in the 
urrent market value of the �rm. As aresult, the standard measure of Tobin's Q, whi
h is formed as the 
urrentmarket value of all 
apital divided by the repla
ement value of all 
apital, isan adulterated measure of q0;t.More formally, let qj;t represent the shadow value of an investment 
om-mittment that is j periods from be
oming produ
tive, for j=1;: : : ;J � 1. InAppendix A, I show that the value of the �rm 
an be de
omposed into partsasso
iated with produ
tive 
apital and ea
h investment 
ommitment that re-mains in its gestation pro
ess:Vt = (q0;tKt +PJ�1j=1 qj;tIt�B+j J > 1;q0;tKt J = 1:This reveals that the value of the �rm di�ers from the value of produ
tive 
ap-ital sto
k by the value asso
iated with the �rm's investment 
ommitments.1313Note that the 
urrent investment 
hoi
e It+P is not re
e
ted in �rm value be
ause the�rst order 
ondition sets its marginal 
ontribution �rm value at zero.14



Hen
e, q0;t generally di�ers from measures of average Q (for example, Vt=Ktor Vt= ~Kt), ex
ept in the spe
ial 
ase where J=1.Fortunately, there is an amended version of Q that will give a pure re
e
tionof the value of produ
tive 
apital under 
ertain 
onditions. In the appendix, Ishow that the amended measure �Qt, de�ned as�Qt � ( VtKt 0 � B � 1VtKt � PB�1j=1 RB�jIt�B+jKt B > 1;will, under 
ertain assumptions, have the same anti
ipated value as the trueshadow value of produ
tive 
apital at horizons of J or longer:tq0;t+J+i = t �Qt+J+i;for all i�0. Note that this equivalen
e only holds in expe
tation for horizonsof J or longer.14 Although this is a mu
h weaker equivalen
e than the resultof Hayashi [1982℄, it 
an still be exploited to explain investment at the plan-ning horizon. This is be
ause the fore
ast error in �Qt+J is orthogonal to theinvestment plan, whi
h depends only on information available at time t.The amended measure �Q is formed by dedu
ting the 
urrent value of allpur
hased 
apital that is within the building pro
ess (after 
ompensating forforegone interest), then dividing by the sto
k of produ
tive 
apital. The in-tuition for this result is that the 
urrent shadow value of a �rm's produ
tive
apital should be measured using only the portion of the �rm's market valuethat is asso
iated with produ
tive 
apital. The value of the �rm in
ludes therepla
ement value of all 
apital that has been a
quired, whether produ
tiveor unprodu
tive. Therefore, the anti
ipated repla
ement value of all 
apital
ommitments that are within their building phase must be dedu
ted from �rmvalue in order to obtain an appropriate measure of the value of produ
tive 
ap-ital. Note that realizations of the 
omponents of �Q are readily observable afterthe fa
t. Therefore, an e
onometri
ian armed with knowledge of the buildinghorizon 
ould form �Q using readily available data, and the appropriate a
-
ounting s
heme for produ
tive 
apital. In the following se
tion, I exploit thisidea to form regressions of Q and investment that a

ount for gestation lagsof varying duration.14In the appendix, I show that the dis
repan
y between the two fore
asts at horizonsshorter than J is a weighted average of anti
ipated fore
ast errors in q0;t.
15



IV. Empiri
al AnalysisIn this se
tion, I ta
kle two issues using regression analysis. First, I pro-vide eviden
e for gestation lags, by showing fore
asted 
hanges in Q provideexplanatory power in a reverse regression of Q on measured 
apital growth.This provides eviden
e for the gestation lag story that distinguishes it frompure measurement error. In the se
ond part, I perform regressions of Q on
apital growth that expli
itly a

ount for the e�e
ts of gestation lags.1. Eviden
e for Gestation LagsIn order to test for the existen
e of gestation lags it is ne
essary to determinewhether expe
ted future values of Q 
ontain information for investment thatis not 
ontained in 
urrent Q. The null hypothesis is that the standard linearQ model without gestation lags holds, and that the orthogonality 
onditionimpli
it in equation (2) is appropriate. The alternative is a spe
i�
ation that is
onsistent with gestation lags. In this 
ase, a simple rearrangement of equation(10) suggests the ba
kwards linear relationshipq0;t = R �RB�1 � 
��+R
~gKt+1 � �q0;t+B � q0;t�+ �q0;t+B � t�P q0;t+B� :(13)This spe
i�
ation suggests that one might test for the existen
e of gestationlags using regressions of the form(14) Qt = �a+�b~gKt+1 + �
 ��BQt+B�+ �ut;for alternative values of B>1, where �d is the d th di�eren
e operator 1� Ld.A reje
tion of a null hypothesis that �
 is zero would o�er eviden
e against thevalidity of the forward spe
i�
ation. An estimate of �
 statisti
ally indistin-guishable from a value of negative one would be 
onsistent with (13), o�eringdire
t eviden
e for gestation lags as the sour
e of this failure.Note that the stru
tural spe
i�
ation in equation (13) is not valid for OLSregression. Although the fore
ast error is orthogonal to 
apital growth underthe assumptions of the gestation lag model, it is never orthogonal to q0;t+B.This motivates an instrumental variables approa
h, where valid instruments
an in
lude ~gKt+1 and any variable available at time t�P , with the ex
eptionof Qt.15 Alternative estimates are obtained using separate instrument sets forthe 
ases P = 0 and P = 2. The instruments sele
ted from ea
h information15Note that Qt 
ould be in
luded for the 
ase where P =0 under the spe
i�
ation in (13).This is be
ause the form in (13) allows no stru
tural justi�
ation for the error under thenull. To be fair to the null, an i.i.d stru
tural error is allowed for by never in
luding Qt inthe instrument set. 16



set are ~gKt+1, the nearest lag of Qt, and the nearest eight lags of growth in realhourly labor 
ompensation. Note that this set overidenti�es the 
oeÆ
ient �
.Overidenti�
ation tests are performed to test both the reasonableness of the
hosen restri
tions and the validity of the time to plan restri
tion impli
it inthe 
hoi
e of P .16Estimates of equation (14) are reported in Table 3 for no planning periodand Table 4 for a planning period of two quarters. Ea
h table reports resultsfor building horizons ranging from one to eight quarters. In ea
h 
ase, separateestimates are obtained using IV and a two-step eÆ
ient GMM estimator thatemploys a HAC weighting matrix. For brevity, only estimates using the taxadjusted Q are reported. Overall, the IV results are roughly similar to thoseobtained from the more eÆ
ient GMM. All spe
i�
ations feature a high degreeof positive serial 
orrelation in the �tted errors. Evidently, there is some in-formation 
ontent in these residuals. Although both estimators are 
onsistent,the GMM estimates of the parameter �b are lower (and more pre
isely esti-mated) than IV estimate in every 
ase. IV estimates of �b range from around87 to as low as 58.7, while GMM estimates range from 82.38 to as low as 40.64.These estimates are often insigni�
ant using the robust HAC errors, ex
ept forlow values of B, and are rarely signi�
ant at any level a

ording to bootstrapsimulations. However, this la
k of signi�
an
e should not be interpreted nega-tively. Among other things, it may be a symptom of multi
ollinearity betweenthe instrumented �BQt+B and ~gKt+1. If this is the 
ase, the la
k of pre
isionin the estimate may re
e
t the ability of the anti
ipated forward 
hange inQ to explain variation in 
apital growth. This is entirely 
onsistent with thegestation lag theory, and largely in
onsistent with the alternative.Although a high degree of auto
orrelation in the regression error is oftenviewed in a negative light, it is a feature that one would expe
t in the pres-en
e of a multi-period gestation lag. This is be
ause the �tted errors havea stru
tural interpretation as the 
umulative fore
ast error in q0;t relative toinformation at t � P , whi
h is serially 
orrelated for J > 1 provided that theunderlying pro
ess z is persistent. Serially 
orrelated residuals are in
onsistentwith most 
onvex formulations of the Q model.17Broadly, the estimates of �
 seem to favor the existen
e of gestation lags.16For the IV regressions, the test of the overidentifying restri
tions is a version of the s
oretests outlined in Wooldridge [1995℄ that is HAC robust. The test for the GMM estimates isa J-test that employs a HAC form of the weighting matrix.17It is not impossible, however. Stru
tural explanations in
lude serially 
orrelated mea-surement error, or an auto
orrelated \target" sho
k to the adjustment 
osts fun
tion. Au-to
orrelation 
ould also be indu
ed by a 
ombination of estimation bias (perhaps owing toendogeneity) and persisten
e in ~gKt+1. 17



The estimates obtained for both IV and GMM are negative in every 
ase, andtend to de
line in absolute magnitude as the horizon B is in
reased. Mostof the values are reasonably 
lose to negative one, parti
ularly those obtainedusing GMM. For the no planning horizon 
ase, the estimates are statisti
allysigni�
ant at ten per
ent or higher using HAC robust standard errors out toB = 5 for the IV estimate, and signi�
ant at one per
ent for all values ofB using robust GMM. There is steady improvement in the pre
ision of theestimate as the building horizon in
reases, undoubtedly due to a 
on
urrentimprovement in instrument power. Although they are not nearly as pre
ise, thebootstrap 
on�den
e intervals largely 
on�rm that these results are appli
ableto a small sample. Indeed, the simulations reveal that there is a (positive)small sample bias in the estimate of �
 at ea
h building horizon that may workagainst reje
tion of the null. Results obtained using a two period planninghorizon are generally less emphati
. The IV estimates are mu
h less pre
iselyestimated (and smaller in magnitude) beyond B=3, although the instrumentsappear to have more explanatory power in terms of the �rst-stage F statisti
.Despite this drop in pre
ision, the GMM estimates are still signi�
ant at levelsof �ve per
ent or higher out to B=7. The overidentifying restri
tions 
annotbe reje
ted in any of the regressions.2. Estimates Using a Modi�ed Statisti
al Approa
hA �nal empiri
al obje
tive is to develop a spe
i�
ation for the investment -Q relationship that does not su�er from the problems related to gestation lags.Rearranging the �rst order 
ondition (8), and using the results of Corollary 2(Appendix A) to repla
e q0;t+J yields the linear spe
i�
ation�Qt = �a+ �bgKt + �ut;where the 
oeÆ
ients �a and �b have the stru
tural form�a = R
 +RB � �; �b = R
; �ut = �Qt � t�J �Qt;and where gKt is the growth rate in produ
tive 
apital entering period t. Sin
ethe growth rate in produ
tive 
apital 
orresponds to investment B periodsearlier, this is a proje
tion of 
urrent investment onto a future realizationof Q. The primary merit of this formulation is that it is amenable to OLSestimation under the assumptions of the model, sin
e the 
umulative fore
asterror in �Q over the gestation horizon is orthogonal to 
urrent produ
tive 
apitalgrowth. Note that the dependent variable is the adjusted measure �Q, whi
h is
al
ulated after dedu
ting the repla
ement value of investment 
ommitmentsthat are within the building pro
ess. 18



Admittedly, the adjustment 
ost parameter 
 is not stri
tly identi�ed inequation 2. However, provided that the dis
ount fa
tor takes a reasonablevalue (whi
h should be 
lose to one at the quarterly frequen
y of the data),it should be approximately equal to 
.18 Hen
e, one metri
 for model evalu-ation should be the size of the �b estimate, whi
h should suggest a reasonablemagnitude of adjustment 
osts.OLS results obtained using both tax-adjusted and unadjusted data for �Qare reported in Table 5, for building horizons of up to eight quarters. Table 6reports 
orresponding measures of �t and endogeneity tests. Ea
h spe
i�
ation
hara
teristi
ally has a modest �R2, and �tted errors that exhibit a high degreeof auto
orrelation. Given the stru
tural interpretation of the model, theseproperties suggest that the 
umulative fore
ast error in �Q a

ounts for mostof its variation. Sin
e serial 
orrelation in the 
umulative fore
ast error wouldbe expe
ted, this provides some support for the model. Endogeneity tests
ondu
ted using the same exogenous variables as the estimates in Table 2 donot suggest any problems with the assumption of orthogonality between theresidual and 
apital growth.It is striking that the point estimates of �b rapidly de
rease in magnitudewith the building horizon, and are 
onsistently lower than the estimates using
urrent q. This property need not favor a gestation lag view over standard
onvex adjustment 
osts, sin
e the de
lining 
oeÆ
ients are observationallyequivalent to the anti
ipated movements in q along a negatively-sloped adjust-ment path. Nonetheless, this steady pattern of de
line provides some broadsupport for the notion of 
onvex adjustment on the aggregate. The estimatesusing unadjusted data de
line from about 62 at B = 1 to 39 at B = 8. Theestimates roughly suggest an elasti
ity of 
apital growth to the q fore
ast (atthe sample mean) between 1.40 and 2.04. The 
orresponding estimates usingadjusted data are higher, ranging between 93 (1.39 elasti
ity) to 61 (2.08 elas-ti
ity). Although the pre
ision of the estimates for �b are similar for all valuesof B, the estimates seem to de
line in signi�
an
e as the building horizon israised. Estimates using unadjusted data and adjusted data are statisti
allysigni�
ant at 10 per
ent or lower out to B = 6 and B = 8, respe
tively. De-spite an apparent negative small sample bias in the estimates, the 
orre
tedbootstrap simulations broadly 
on�rm the inferen
es from the large sampleapproximations after making an appropriate adjustment for auto
orrelation.18The initial assumption of a 
onstant ex ante dis
ount fa
tor R is maintained throughout.
19



V. Dis
ussionThis paper presents a model of investment in the presen
e of gestation lagsand 
onvex 
apital adjustment 
osts with gestation lags. The model addressesmany of the previous empiri
al 
riti
isms of Q theory. A

ording to the model,the fore
ast of Q at the true gestation horizon is the true suÆ
ient statisti
 for
urrent investment, while 
urrent Q is a noisy indi
ator. Among its merits are(1) the ability to explain why Q might be noisy at high frequen
ies, yet stillhave a strong low frequen
y relationship to investment, and (2) why regressionsof investment on Q yield results that seem in
onsistent with models that donot in
orporate gestation.Although the assumption of a 
ommon gestation lag for all types of 
apitalmay be strong, the model does provide a useful framework for thinking aboutthe empiri
al problems posed by gestation lags. Millar [2005℄ dis
usses howgestation lags 
an remain important in the presen
e of 
apital goods withoutshort building lags, provided that these goods are imperfe
t substitutes forother 
apital goods with long horizons.So how reasonable are the statisti
al results of this paper 
ompared to thestandard approa
h? One possible metri
 is Hall's notion of the doubling timefor 
apital growth in response to a doubling of q. The OLS results in Table 2
orresponding to the standard forward spe
i�
ation suggest a doubling timeof about 75 years for the unadjusted data, and about 100 years using the ad-justed data. The 
orresponding �gures in Table 5 suggest mu
h more modestdoubling times, ranging from between 1512 and 934 years for the unadjusteddata, and between 2314 and 1514 years for the adjusted data. This is a sub-stantial improvement, even after a

ounting the building horizon. But whatis a reasonable ben
hmark for the quadrati
 adjustment 
ost parameter? Theestimates of Shapiro [1986℄ and Hall [2004℄, whi
h rely on GMM estimates ofdynami
 Euler 
onditions, suggest \doubling times" of less than two years.Although these estimates are a good bit lower than the estimates listed inTable 5, they are not 
ompletely out of line with the 
on�den
e bands asso
i-ated with these estimates. Therefore, the 
hasm between the adjustment 
ostestimates obtained by dire
tly estimating Euler equations and the estimatesobtained using Q regression may not be as wide as previously re
koned.Nonetheless, the results in this paper fall well short of a 
omplete re
on
il-iation. There remains a fairly large gap between what many would 
onsider areasonable magnitude of adjustment 
osts and the point estimates obtained inthis paper. The statisti
al framework is also somewhat dissatisfying be
auseit provides little guidan
e for dis
erning the appropriate duration of the gesta-20



tion lag. On this last point, there is little hope for determining an appropriategestation lag using a framework that relies solely on investment and Q data.This is be
ause the key feature of the results in Table 5|a positive relationshipbetween investment and leads of Q that diminishes with the time horizon|isobservationally equivalent to what one would expe
t in a 
onvex adjustment
ost model without lags. Nonetheless, estimates of the building lag obtainedusing other methodologies 
an provide guidan
e for determining whi
h esti-mate of the adjustment 
ost is most appropriate. Millar [2005℄ argues that thekey insight for estimating the building lag is that it 
orresponds in durationto the time between the �rst outlay asso
iated with a given 
apital additionand the time when the 
ompleted 
apital addition begins to a�e
t produ
tion.Using aggregate data, this delay is estimated to be as long as eight quarters.Assuming that this estimate of the building lag is a

urate, the lowest esti-mates of the adjustment 
ost parameter obtained in this paper may not beunreasonable.
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A. ProofsTheorem 1 Assume that the �rm's value fun
tion takes the form in (7),where the value fun
tion for gross 
ash 
ow resulting from the intra-temporalproblem is linearly homogeneous in Kt. Further, let �(It�B+1; Kt) be 
onvexin its �rst argument and linearly homogeneous in both of its arguments. Thenthe value fun
tion is linearly homogeneous in the ve
tor Kt.Proof: Consider the following Bellman representation of the problem in (7):V (Ktjzt) � �(zt)Kt � � (It�B+1; Kt)� It +R�1Et [V (Kt+1jzt+1)℄ ;where I allow Let the value fun
tion at t + 1 be linearly homogeneous inKt+1. Given this, it is suÆ
ient to show that V (�Kt j zt) = �V (Kt j zt) forany positive �. Multiply the ve
tor Kt+1 by �. By linear homogeneity, thismultiplies Vt+1 by �, and also multiplies the ve
tor Kt by the proportion �.19By assumption, ea
h of the �rst three terms in Vt are linearly homogeneous inKt, so ea
h in
reases by the multiple �. Therefore, all four of the terms that
ompose Vt in
rease by the proportion �, whi
h establishes the result.Corollary 1 Let the assumptions of Theorem 1 hold for a non-zero gesta-tion horizon J . Then(q0;tKt +PJ�1j=1 qj;tIt�B+j J > 1;q0;tKt J = 1:Proof: This follows from Theorem 1 by applying Euler's theorem for homo-geneous fun
tions to yield that V = rKV � K, using the de�nition of K, andde�ning qj;t = dVtdIt�B+j for j = 1; : : : ; J � 1.Corollary 2 Let the assumptions of Theorem 1 hold for a non-zero gesta-tion horizon J . De�ne:�Qt � (Qt 0 � B � 1Qt � PB�1j=1 RB�jIt�B+jKt B > 1;where Qt � VtKt . Then, the following holds 
onditionally for any i � 0:tq0;t+J+i = t �Qt+J+i:19The latter 
laim follows dire
tly for the investment 
ommitments It�B+j , j = 2; : : : ; J�1. Proportional 
hanges in Kt and It+B+1 must also result be
ause Kt+1 = (1 � Æ)Kt +It�B+1. 22



Proof: First, 
onsider the 
ase where i=0. Move the result of Corollary 1 for-ward J periods, and taking the expe
tation 
onditional on time t informationobtains that tq0;t+J = tVt+J �PJ�1j=1 Et [qj;t+JIt+P+j℄Kt+J ;where Kt+J is outside of the expe
tation be
ause it is known at t. Sin
e theright hand side of this equation is the time t expe
tation of �Qt+J , it is suÆ
ientto show thatEt [qj;t+JIt+P+j℄ = (RB�jEt [It+P+j℄ j = 1; : : : ; B � 10 j � B:Applying the law of iterated expe
tations to Et [qj;t+JIt+P+j℄ yields thatEt [qj;t+JIt+P+j℄ = Et [(t+jqj;t+J) It+P+j℄ ;for j = 1; : : : ; J�1, sin
e It+P+j is observable at time t+j. Using the envelopetheorem and re
ursive substitution, the shadow values asso
iated with the�rm's investment 
ommitments at t + J 
an be derived asqj;t+J = (R�j �t+Jq0;t+J+j � RB � R�1;t+J+j�1� j � BR�jt+Jq0;t+J+j �R�(j�1)�1;t+J+j�1 j = 1; : : : ; B � 1:Taking the 
onditional expe
tation of qj;t+J at t + j for ea
h 
ase, applyingthe law of iterated expe
tations, and using the equilibrium 
ondition (8) yieldsthatt+jqj;t+J = (R�j �t+jq0;t+j+J � RB �R�1;t+j+J�1� = 0 j � BR�j [t+jq0;t+j+J �R�1;t+j+J�1℄ = RB�j j = 1; : : : ; B � 1;where the 
onditional expe
tation operator is not applied to �1;t+j+J�1 be
auseit is known at t+ j. Substituting the above into Et [qj;t+JIt+P+j℄ for j =1; : : : ; J�1, and simplifying, proves the desired result for i=0.To prove the result for i>0, take the time t expe
tation of ea
h side of theequality t+iq0;t+J+i = t+i �Qt+J+i, and use the law of iterated expe
tations.Corollary 3 Let the assumptions of Theorem 1 hold for a non-zero gesta-tion horizon J . De�ne eq0t � q0;t � t�Jq0;tas the 
umulative fore
ast error in q0;t relative to information at t+ J . Then,t+i �Qt+J � t �Qt+J = 8><>:t+ieq0t+J i = 1t+ieq0t+J + i�1Pj=1R�jt+ieq0t+J+j It+P+jKt+J 1<i�J:23



Proof: Using the results of Corollary 1, the results in equation (2), and the�rst order 
ondition (8), the value of the �rm at t+J redu
es toVt+J = q0;t+JKt+J +XJ�1j=1 R�j (t+Jq0;t+J+j �t+j q0;t+J+j) It+P+j+XB�1j=1 R�jIt+P+j:Simplifying using the de�nition of �Qt+J yields�Qt+JKt+J = q0;t+JKt+J +XJ�1j=1 R�j [t+Jq0;t+J+j �t+j q0;t+J+j℄ It+P+j:Using the fa
ts that It+P+j 2 
t+i for i�j and the law of iterated expe
tations,it 
an be established thatEt+i [(t+Jq0;t+J+j �t+j q0;t+J+j) It+P+j℄= (Et+i [t+Jq0;t+J+j �t+j q0;t+J+j℄ It+P+j i<jEt+i [It+P+jEt+j (t+Jq0;t+J+j �t+j q0;t+J+j)℄ = 0 i�j:Taking the 
onditional expe
tation of this expression at t + i, noting thatKt+J 2 
t, and using the fa
ts above 
an obtain thatt+i �Qt+JKt+J =t+i q0;t+JKt+J+Xi�1j=1R�jEt+i [t+Jq0;t+J+j �t+j q0;t+J+j℄ It+P+j;Dedu
ting the result t �Qt+J = tq0;t+J from both sides, and dividing by Kt+Jshows thatt+i �Qt+J�t �Qt+J =t+i q0;t+J�tq0;t+J+Xi�1j=1R�j [t+iq0;t+J+j �t+j q0;t+J+j℄ It+P+j:The desired result 
an then be determined by noting that t+ieq0t+J+j = t+iq0;t+J+j�t+jq0;t+J+j for all i� j�0 by applying the law of iterated expe
tations to thede�nition of the 
umulative fore
ast error eq0t .B. System Dynami
s for the One Period Time to Build CaseAs a �rst step, equation (9) 
an be rearranged into the iterative formq0;t = � (zt)� 
 �gKt+1 � �� �gKt+1 + Æ�+ 
2 �gKt+1 � ��2 + (1� Æ)R�1tq0;t+1:Using the �rst order 
ondition (8), this redu
es to the nonlinear di�eren
eequation: q0;t = ~f q (zt; tq0;t+1)= � (zt) + � R2
 � �� Æ� + 1R ��+ Æ � R
 � tq0;t+1+ (1� Æ)tq0;t+1 + 12
R2 (tq0;t+1)2 :24



For simpli
ity, assume that � (zt) = RB�1(r+Æ)e�azt, whi
h 
an be regarded asa �rst-order log-linear approximation of the fun
tion around its steady state.It 
an be shown that the two variable system 
omposed of (11) and q0;t (above)has steady states(zSS1; qSS1) = (0; R) and (zSS2; qSS2) = (0; R [R + 2
 (r � �)℄) :The �rst of these steady states is saddle path stable provided that r>�, withq serving as the jump variable. The se
ond steady state is a sour
e, with bothq and z a
ting as histori
al variables. Sin
e q is naturally a forward-lookingvariable, the �rst steady state is the relevant one.20 A

ording to the impli
itfun
tion theorem, a fun
tiontq0;t+1 = f q (zt; q0;t)exists in some neighborhood of this steady state, sin
e ~f q2 (0; R) = 1+�1+r 6= 0.Linearizing the system in the vi
inity of the �rst steady state using theimpli
it fun
tion theorem, one obtains� tzt+1tq0;t+1 �R � � � �zz 0f q1 f q2 � � ztq0;t �R � ;where f q1 = �R(r+Æ)1+� > 0 and f q2 = 1+r1+� > 1 are the partial derivatives of f q withrespe
t to its �rst and se
ond arguments. This system has a stable eigenvalue�1 = �zz and an unstable eigenvalue �2 = f q2 . De
oupling this system for thesaddle path 
orresponding to this stable eigenvalue justi�es equation (12).

20It 
an be shown that this is the sole steady state for the aggregated e
onomy.25



t t+P t+J

Capital is ProductiveCapital Planned

P "planning" periods B "building" periods

Expenditure OccursFigure 1: Time s
ale depi
tion of investment with gestation lags.

Table 1: Sample Moments of Measured Capital Growth and Tobin's Q~gKt+1 Qt Qt
tmean 0.0114 1.01 1.47stdev 0.0030 0.42 0.60
orr(~gKt+1; �) { 0.44 0.46Sample Period: 1959Q3 to 2002Q4 (174 observations). Qt
 is Tobin's Q 
al
ulatedusing the net pri
e of new 
apital goods after dedu
ting investment tax 
redits andthe present value of tax shields asso
iated with future depre
iation allowan
es.
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Table 2: Capital Growth and Q: Comparison of Forward and Reverse RegressionsUnadjusted Data Tax-Adjusted Data~gKt+1 onto Qt a b a b
oef 0.0081 0.0033 0.0078 0.0025se 0.0005# 0.0005# 0.0005# 0.0003#ser 0.0012# 0.0009# 0.0005# 0.0007#bias -0.0001 0.0001 -0.0001 0.0001CIb
90 0.0052,0.0101# 0.0008,0.0037z 0.0052,0.0101# 0.0008,0.0037zDW 0.074 0.080�R2 0.217 0.241NDG(p) 0.046 0.040Qt onto ~gKt+1 
 d 
 d
oef 0.25 66.21 0.33 99.50se 0.11z 9.50# 0.16z 13.34#ser 0.28 27.56z 0.37 37.70#bias -0.00 -2.47 -0.00 -3.39CIb
90 -0.31,0.68 20.72,119.31z -0.44,0.93 39.26,172.31zDW 0.075 0.089�R2 0.217 0.241NDG(p) 0.771 0.795Signi�
an
e Levels: y10%, z5%,y #1%. Sample Period: 1959Q3 to 2002Q3 (172 observations). \bias"is an estimate, from the bootstrap, of the small-sample bias asso
iated with estimating the 
oeÆ
ient.HAC standard errors (denoted ser) are estimated with a maximum lag length of ten. NDG(p) isthe p-value for a null of no endogeneity, with robustness for serially 
orrelated and heteroskedasti
errors. CIb
90 denotes bootstrapped 90 per
ent 
on�den
e intervals with 
orre
tion for small-samplebias. These were generated using 10,000 bootstrap repli
ations, where the data were re-sampled inblo
ks of twelve observations to a

ount for auto
orrelation.
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Table 3: Relevan
e of Fore
astable Change in Q for Capital Growth: No PlanningQt = �a+�b~gKt+1 + �
 ��BQt+B�+ �utB �a �b �
IV GMM IV GMM IV GMM+1 qtr 
oef 0.47 0.73 87.68 66.08 -1.80 -1.63 F1 2.675se 0.19z { 16.06# { 0.79z { DWI 0.273ser 0.40 0.27# 41.52z 26.94z 0.76z 0.51# DWG 0.217OvI(p) 0.202CIb
90 -0.12,1.48 0.37,2.03z -10.89,148.66 -66.78,107.84 -9.87,-0.46y -9.81,-0.63# OvG(p) 0.506+2 qtr 
oef 0.57 0.77 79.00 62.85 -1.46 -1.43 F1 2.960se 0.21# { 17.88# { 0.58z { DWI 0.183ser 0.43 0.33z 43.75y 33.43y 0.67z 0.44# DWG 0.167OvI(p) 0.187CIb
90 -0.02,1.78 0.44,2.27z -39.97,139.37 -79.49,103.91 -5.99,-0.41y -5.78,-0.70z OvG(p) 0.566+3 qtr 
oef 0.74 0.86 64.36 52.80 -1.73 -1.59 F1 3.085se 0.25# { 21.00# { 0.54# { DWI 0.188ser 0.46 0.34z 47.86 33.81 0.70z 0.48# DWG 0.163OvI(p) 0.181CIb
90 0.23,2.16z 0.56,2.52# -66.23,120.53 -111.27,88.77 -5.82,-1.25z -4.75,-1.27# OvG(p) 0.464+4 qtr 
oef 0.74 0.89 64.30 50.41 -1.37 -1.09 F1 4.147se 0.23# { 19.63# { 0.38# { DWI 0.122ser 0.23 0.36z 47.86 34.75 0.55z 0.35# DWG 0.082OvI(p) 0.572CIb
90 0.22,2.00z 0.57,2.38# -53.33,122.30 -100.55,88.43 -3.94,-1.01z -3.19,-0.65z OvG(p) 0.562+5 qtr 
oef 0.73 0.95 65.00 45.61 -1.08 -1.09 F1 5.255se 0.22# { 18.70# { 0.29# { DWI 0.084ser 0.47 0.35# 47.72 33.32 0.53z 0.32# DWG 0.080OvI(p) 0.110CIb
90 0.20,1.97z 0.66,2.45# -46.57,125.15 -99.96,80.18 -2.68,-0.67z -2.82,-0.95# OvG(p) 0.650+6 qtr 
oef 0.80 1.02 58.70 40.64 -1.07 -1.11 F1 5.751se 0.23# { 19.23# { 0.27# { DWI 0.074ser 0.51 0.36# 50.86 33.13 0.55y 0.28# DWG 0.076OvI(p) 0.546CIb
90 0.24,2.07z 0.78,2.54# -54.99,121.10 -111.93,70.59 -2.52,-0.41z -2.54,-1.08# OvG(p) 0.612+7 qtr 
oef 0.71 0.96 66.32 45.18 -0.76 -0.94 F1 6.798se 0.21# { 17.51# { 0.21# { DWI 0.048ser 0.50 0.35# 50.03 32.64 0.51 0.27# DWG 0.058OvI(p) 0.570CIb
90 0.13,1.92y 0.67,2.48# -37.24,130.35 -96.84,80.93 -2.24,0.04 -2.32,-0.70z OvG(p) 0.625+8 qtr 
oef 0.66 0.89 69.48 50.66 -0.58 -0.75 F1 7.723se 0.20# { 16.71# { 0.19# { DWI 0.046ser 0.49 0.33# 48.78 30.39 0.50 0.29# DWG 0.048OvI(p) 0.562CIb
90 0.06,1.72y 0.51,2.18# -19.77,136.70 -68.38,95.47 -2.08,0.13 -1.91,-0.25z OvG(p) 0.619Signi�
an
e Levels: y10%, z5%, #1%. Sample Period: 1959Q3 to 2002Q4 (174 observations). HACstandard errors (denoted ser) are estimated with a maximum lag length of ten. OvI(p) and OvG(p)are p-values for the overidenti�
ation test in the IV and GMM spe
i�
ations. F1 is the F -statisti
 forthe �rst-stage regression. CIb
90 denotes bootstrapped 90 per
ent 
on�den
e intervals with 
orre
tionfor small-sample bias. These were generated using 10,000 bootstrap repli
ations, where the data werere-sampled in blo
ks of twelve observations to a

ount for auto
orrelation.28



Table 4: Relevan
e of Fore
astable Change in Q for Capital Growth: 2Q PlanningQt = �a+�b~gKt+1 + �
 ��BQt+B�+ �utB �a �b �
IV GMM IV GMM IV GMM+1 qtr 
oef 0.47 0.55 87.24 82.38 -1.92 -1.146 F1 2.371se 0.20z { 16.46# { 0.84z { DWI 0.309ser 0.40 0.26z 42.32z 26.89# 1.11y 0.63y DWG 0.112OvI(p) 0.453CIb
90 -0.10,1.37 0.08,1.53y -2.62,147.68 -26.34,134.36 -8.74,-0.52y -6.51,0.15 OvG(p) 0.462+2 qtr 
oef 0.55 0.67 80.86 72.27 -1.56 -0.84 F1 3.148se 0.21# { 16.46# { 0.57z { DWI 0.156ser 0.45 0.30z 42.32z 28.90z 0.66z 0.45y DWG 0.068OvI(p) 0.589CIb
90 -0.03,1.65 0.21,1.83z -25.93,142.01 -52.66,125.89 -6.67,-0.55z -5.67,0.06 OvG(p) 0.631+3 qtr 
oef 0.56 0.79 79.38 61.09 -1.58 -1.07 F1 4.117se 0.21# { 17.40# { 0.53# { DWI 0.087ser 0.50 0.35z 47.10 33.98y 0.70z 0.43z DWG 0.084OvI(p) 0.181CIb
90 -0.00,1.78 0.45,2.40z -34.93,139.98 -94.07,102.47 -4.14,-0.40z -4.37,-0.62z OvG(p) 0.623+4 qtr 
oef 0.62 0.79 74.83 63.19 -0.99 -0.91 F1 4.896se 0.21# { 17.61# { 0.32# { DWI 0.072ser 0.52 0.34z 52.47 31.19z 0.73 0.32# DWG 0.061OvI(p) 0.476CIb
90 0.05,1.90y 0.39,2.20z -43.00,137.20 -72.66,114.92 -3.57,-0.29y -3.32,-0.40z OvG(p) 0.652+5 qtr 
oef 0.60 0.81 76.07 60.02 -1.77 -0.86 F1 5.797se 0.21# { 17.15# { 0.26# { DWI 0.055ser 0.53 0.38z 52.86 35.96y 0.67 0.40z DWG 0.058OvI(p) 0.713CIb
90 -0.03,1.81 0.40,2.25z -33.61,143.33 -72.56,110.62 -2.87,0.05 -2.86,-0.35z OvG(p) 0.624+6 qtr 
oef 0.58 0.93 76.80 45.77 -0.64 -0.86 F1 6.735se 0.20# { 16.76# { 0.22# { DWI 0.047ser 0.53 0.39z 52.31 37.64 0.60 0.36z DWG 0.054OvI(p) 0.154CIb
90 -0.06,1.74 0.59,2.54# -24.80,147.16 -105.53,87.29 -2.64,0.13 -2.56,-0.47z OvG(p) 0.633+7 qtr 
oef 0.57 0.89 77.58 49.46 -0.52 -0.79 F1 7.519se 0.20# { 16.38# { 0.19# { DWI 0.041ser 0.52 0.40z 51.12 38.39 0.55 0.37z DWG 0.047OvI(p) 0.391CIb
90 -0.08,1.61 0.56,2.55# -10.41,150.34 -101.10,89.99 -2.39,0.15 -2.41,-0.32z OvG(p) 0.648+8 qtr 
oef 0.52 0.74 80.73 63.05 -0.36 -0.48 F1 8.637se 0.19# { 15.87# { 0.17z { DWI 0.050ser 0.49 0.33z 48.61 30.73z 0.48 0.30 DWG 0.044OvI(p) 0.530CIb
90 -0.23,1.35 0.28,1.79z 12.73,159.29y -39.14,113.90 -2.21,0.22 -1.73,0.16 OvG(p) 0.635Signi�
an
e Levels: y10%, z5%, #1%. Sample Period: 1959Q3 to 2002Q4 (174 observations). HACstandard errors (denoted ser) are estimated with a maximum lag length of ten. OvI(p) and OvG(p)are p-values for the overidenti�
ation test in the IV and GMM spe
i�
ations. F1 is the F -statisti
 forthe �rst-stage regression. CIb
90 denotes bootstrapped 90 per
ent 
on�den
e intervals with 
orre
tionfor small-sample bias. These were generated using 10,000 bootstrap repli
ations, where the data werere-sampled in blo
ks of twelve observations to a

ount for auto
orrelation.29



Table 5: OLS Regression of Forward Q on Capital Growth�Qt+J = �a+�bgKt + �utUnadjusted Data Tax-Adjusted DataJ �a �b �a �b+1 qtr 
oef 0.30 61.97 0.41 92.71se 0.11# 9.67# 0.16z 13.62#ser 0.28 28.13z 0.37 38.61zbias 0.01 -2.81 0.02 -4.37CIb
90 -0.28,0.74 15.23,116.66z -0.35,1.01 27.88,165.51z+2 qtr 
oef 0.32 59.39 0.45 88.92se 0.12# 9.94# 0.17# 14.05#ser 0.28 28.60z 0.38 39.30zbias 0.03 -4.52 0.05 -6.84CIb
90 -0.29,0.76 12.67,116.05z -0.34,1.05 23.88,164.65z+3 qtr 
oef 0.33 57.53 0.48 86.20se 0.12# 10.17# 0.17# 14.41#ser 0.29 29.37z 0.39 40.45zbias 0.04 -5.84 0.07 -8.73CIb
90 -0.31,0.77 9.66,116.23y -0.35,1.08 20.09,165.51z+4 qtr 
oef 0.34 55.47 0.51 86.30se 0.12# 10.38# 0.17# 14.71#ser 0.29 29.40y 0.39 40.52zbias 0.06 -6.91 0.09 -10.23CIb
90 -0.32,0.77 7.62,115.23y -0.33,1.11 16.99,164.60z+5 qtr 
oef 0.36 51.89 0.56 78.54se 0.12# 10.60# 0.18# 15.01#ser 0.36 28.94z 0.38 39.88ybias 0.06 -7.23 0.10 -10.61CIb
90 -0.28,0.80 4.08,112.12y -0.27,1.15 11.48,159.52y+6 qtr 
oef 0.39 48.06 0.62 73.30se 0.13# 10.79# 0.18# 15.26#ser 0.28 28.16y 0.37y 38.81ybias 0.06 -6.65 0.09 -9.64CIb
90 -0.23,0.83 0.56,106.62y -0.20,1.21 6.24,152.71y+7 qtr 
oef 0.43 43.63 0.68 67.20se 0.13# 10.99# 0.18# 15.51#ser 0.27 27.18 0.35y 37.48ybias 0.05 -5.90 0.08 -8.46CIb
90 -0.16,0.87 -3.54,101.23 -0.10,1.28y -0.09,144.52+8 qtr 
oef 0.46 39.38 0.74 61.48se 0.13# 11.22# 0.18# 15.81#ser 0.26y 26.22 0.34z 36.13ybias 0.04 -5.40 0.07 -7.70CIb
90 -0.11,0.89 -7.32,95.69 -0.01,1.33 -4.50,137.57Signi�
an
e Levels: y10%, z5%, #1%. Sample Period: 1959Q3 to 2002Q4 (174 observations). HACstandard errors (denoted ser) are estimated with a maximum lag length of ten. CIb
90 denotes boot-strapped 90 per
ent 
on�den
e intervals with 
orre
tion for small-sample bias. These were generatedusing 10,000 bootstrap repli
ations, where the data were re-sampled in blo
ks of twelve observationsto a

ount for auto
orrelation. 30



Table 6: Fit and Endogeneity Tests: OLS Regression of Forward Q on CapitalGrowth Unadjusted Data Tax-Adjusted DataQuarter +1 +2 +3 +4 +1 +2 +3 +4DW 0.083 0.091 0.083 0.074 0.098 0.106 0.098 0.089�R2 0.189 0.169 0.154 0.140 0.209 0.186 0.170 0.156NDG(p) 0.884 0.966 0.969 0.940 0.736 0.632 0.551 0.508Quarter +5 +6 +7 +8 +5 +6 +7 +8DW 0.080 0.074 0.075 0.073 0.094 0.088 0.087 0.085�R2 0.120 0.101 0.082 0.064 0.136 0.117 0.097 0.079NDG(p) 0.866 0.808 0.718 0.658 0.431 0.374 0.317 0.279Sample Period: 1959Q3 to 2002Q4 (174 observations). NDG(p) is the p-value for the nullof no endogeneity, with robustness for serially 
orrelated and heteroskedasti
 errors. For theendogeneity test, added exogenous variables were 
urrent and lagged 
hanges in (1) growthin government defense expenditures, (2) growth in labor hours, (3) output growth, (4) realhourly labor 
ompensation, and (5) lagged after-tax 
ash 
ow per unit of 
apital.
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