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Abstract

This paper proposes a method for predicting the probability density of a variable of interest
in the presence of model ambiguity. In the first step, each candidate parametric model is
estimated minimizing the Kullback-Leibler ‘distance’ (KLD) from a reference nonparametric
density estimate. Given that the KLD represents a measure of uncertainty about the true
structure, in the second step, its information content is used to rank and combine the estimated
models.
The paper shows that the KLD between the nonparametric and the parametric density

estimates is asymptotically normally distributed. This result leads to determining the weights
in the model combination, using the distribution function of a Normal centered on the average
performance of all plausible models. Consequently, the final weight is determined by the ability
of a given model to perform better than the average. As such, this combination technique does
not require the true structure to belong to the set of competing models and is computationally
simple.
I apply the proposed method to estimate the density function of daily stock returns under

different phases of the business cycle. The results indicate that the double Gamma distribution
is superior to the Gaussian distribution in modeling stock returns, and that the combination
outperforms each individual candidate model both in- and out-of-sample.
Keywords: Density forecast comparison, Kernel density estimation, Entropy, Model Com-

bination.
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1 Introduction

“Prediction may be regarded as a special type of decision making under uncertainty: the

acts available to the predictor are the possible predictions, and the possible outcomes

are success (for a correct prediction) and failure (for a wrong one). In a more general

model, one may also rank predictions on a continuous scale, measuring the proximity of

the prediction to the eventuality that actually transpires, allow set-valued predictions,

probabilistic predictions, and so forth.”1

This paper proposes a method to quantify the plausibility of alternative probabilistic models

and to combine them in a unique weighted predictive distribution, where the weights are function

of the uncertainty about the correct model.

The following three basic observations motivate this analysis. First, even though econometric

models are implemented in order to deal with uncertainty and guide decisions, very often they

are developed without any reference to the “uncertainty about the model.” Second, even when

model uncertainty is acknowledged and a set of finely parameterized models is considered, a typical

implicit assumption is that this set contains the true model. Third, although the approximating

nature of a simple model is recognized, the information contained in the approximation error is

rarely exploited.

In contrast, in this study, I investigate the problem of density prediction allowing for model

ambiguity. Instead of specifying a unique statistical structure and treating it as the true model,

1Gilboa I. and D. Schmeidler; “A Theory of Case-Based Decisions,” 2001, pp 59-60.
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I consider a finite set of competing models not necessarily including the correct model. Thus,

since we do not know the true model and we approximate it by choosing among a set of candidate

models, at most we can aspire to estimate its best approximation. This implies the presence of an

approximation error whose information content can be exploited to combine models.

I develop a method of prediction that ranks different probabilistic models according to the sum

of their similarities to past observations. The similarity is measured by the opposite of the distance,

that is the Kullback-Leibler Information (KI), between the candidate model and the reference model

that is approximated by a nonparametric density. The final weights used to combine models are a

function of these distances which embody the uncertainty about the correct structure.

This modeling approach will permit one to study and exploit model misspecification which is

defined as the discrepancy between the candidate and the actual model and is measured by the KI.

Since the KI is given by the sum of the estimation and approximation errors and since the weights

are function of the KI, through the models’ weights, we are able to account for both errors and to

extract information from a nonparametric estimate.

To implement this methodology, the paper shows that the Kullback-Leibler Information between

the nonparametric fit and the parametric candidate model is asymptotically normally distributed

with mean given by the model’s approximation error.2 This result leads to determining the weights

in the model combination using the cumulative distribution function of a Normal centered on the

average performance of all plausible models. As such, the final weight is determined by the ability

2The literature on nonparametric testing provides me the technical machinery to derive the asymptotic distrib-
ution of the KI. See for example Hall(1984, 1987), Robinson(1991), Fan(1994), Zheng (1996, 2000), and Hong and
White(2000).
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of a given model to provide a realization of misspecification that is lower than the average.

An important advantage of this method is that it increases the model’s flexibility without com-

promising its parsimony. Because often, tightly parameterized models give better out-of-sample

performance, parsimony is a desirable characteristic. As a result, the set of competing models con-

sists of simple parametric alternatives, even when an infinite-dimensional approximation is avail-

able.3 This increases the likelihood that the true model does not belong to the set of candidates and

that more than one model can perform fairly well, such that it can be hard to distinguish among

them. Under these circumstances, the model combination could provide a better hedge against the

lack of knowledge of the correct structure and outperform both in-sample and out-of-sample each of

the competing models. This is because the model combination, providing an explicit representation

of uncertainty across models, gathers information from ‘all’ plausible ones. That is, model combina-

tion can be viewed as a device to increase the flexibility of the estimation procedure. Furthermore,

if the weights in the model combination are not estimated as free parameters but are determined

by the ignorance about the true structure, this extra flexibility does not imply the estimation of

a higher number of parameters. This translates in a lower risk of overparameterization and in a

potentially more robust out-of-sample performance.

I apply the proposed method to determine the predictive density of daily stock returns under

different phases of the business cycle. This empirical application is motivated both by the difficulty

in estimating the probability law of asset returns which usually are modelled with a misspecified

3For example the kernel density estimator (Silverman (1986)) or a countable mixture of Normals (Ferguson (1983))
can approximate arbitrarly close any well-behaving density function. We can view these models as infinite-dimensional
parameter alternatives.
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density function, and by the large availability of data for financial series which facilitates the use

of nonparametric techniques. I find that the model combination outperforms in-sample and out-

of-sample each candidate model including the single best minimizer. The results also indicate

that in the small out-of-sample exercise, the model combination performs slightly better than the

nonparametric density and than the mixture of models where the weights are estimated as free

parameters. Furthermore, in the larger out-of-sample exercise its performance is only marginally

worse than the last mentioned models that can be regarded as more complex alternatives.

This way of implementing probabilistic prediction is important to improve econometric modeling

and to decision making. In fact, my method like others in the literature, can be considered as

a preliminary step to account explicitly for model ambiguity in econometrics. One of the first

studies that uses information criteria to identify the most adequate regression model among a set

of alternatives is due to Sawa (1978). A subsequent work by Sin and White (1996) uses information

criteria for selecting misspecified parametric models. Nevertheless, none of these studies makes use

of a preliminary nonparametric estimation to distinguish among alternative models. Furthermore

and more importantly, none of these papers focuses on model combination.

In the context of model combination, there are two main strands of literature related to this

work. The first includes Bayesian Model Averaging (BMA) and its application to stock returns

predictability and to the investment opportunity set, see for example Avramov (2002) and Cremers

(2002). Unlike the Bayesian approach, in this study it is not necessary to assume that the true

structure belongs to the set of candidate models. Further, this selection and combination procedure
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is based on the idea that although the available database is not sufficient to choose a unique well-

defined model, it still provides relevant knowledge that can be used to differentiate among competing

models. For this reason a pilot nonparametric density, summarizing all information contained in the

data, is used to guide the estimation. Finally, this methodology, being based only on an objective

measure of the proximity between multiple candidate models and actual data, aims to overcome

the necessity to have a specific prior over the set of models and about parameters belonging to each

of the models under consideration. It refers only to the analogy between past samples (actually

encountered cases) and models at hand. This requires a limited amount of hypothetical reasoning

since it relies directly on data that are available to any observer without ambiguity. The cognitive

plausibility of my methodology is founded on case-based decision theory (CBDT). In particular

the behavioral axioms of Inductive Inference developed by Gilboa and Schmeilder (2001) provide

support for my prediction method4.

The second vein, though characterized by a completely different approach, represents the studies

about forecast evaluation and combination: Diebold and Lopez (1996), Hendry and Clements (2001)

and Giacomini (2003) among others. Finally, there is a third strand partially related to this work.

It consists of the vast literature on dynamic portfolio choice under model misspecification where

investors try to learn from historical data, see for example Uppal and Wang (2002) and Knox(2003).

The paper is organized as follows: Section II illustrates the model combination technique;

Section III analyzes the asymptotic distribution of the uncertainty measure; Section IV contains

4As shown in Gilboa-Schmeidler (2001) this is also the same principle at the base of Maximum Likelihood Esti-
mation.
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the empirical application to stock returns; and Section V concludes. Analytical proofs and technical

issues are discussed in the Appendix.

2 Description of the selection and combination method

2.1 Model selection

I consider a prediction problem for which a finite set of parametric candidate models is given:

M ≡ {fj(x, θ), j = 1, ..., J}θ∈Θ . The goal of the predictor is to rank these models and to combine

them in a similarity-weighted probability distribution. Given the set M, we define the set of

elements that have to be ranked as Θ =
©
θfj : fj(x, θ) ∈M

ª
, and Θ ⊂ Rd.

The information set Ω is a finite set of Q samples of Nq independent realizations of the random

variable X. Given the set Ω, its information content is processed estimating a nonparametric

density cfn (x) for each sample q = 1, ...Q. Subsequently, from the set Ω, I derive the set of past

cases C =
ncfnq(x) : x ∈ Ω o, which is the final information that the predictor posses to judge the

different models. The problem is then to describe how to process and recall this information to

assess the similarity of past observations to the set of candidate models.

Lets define the weight a map w : Θ×C → R, it assigns a numerical value wqj to each pair of

past case cfnq(x) and parameter θfj , representing the support that this case lends to the model
fj(x, θ) inM.

The sum of weights wqj represents the tool through which the predictor judges the similarity

of a particular model to the estimated distributions which his knowledge is equipped with. More

precisely, these weights represent the degree of support that past distributions lend to the specific
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model at hand. However, they also embody the misspecification contained in each model, that

being just an approximation of the reality still preserves a distance from the actual data. It seems

reasonable that the model with the lowest distance from the nonparametric densities, is also the

model with the highest similarity to past observations. As such, it has to be the model characterized

by the highest sum of weights.

For these reasons, it seems natural to determine wqj by the opposite of the distance between

the nonparametric density cfnq(x) and the model fj(x, θ) :
wqj = −KI

³cfnq(x), fj(x, θ)´ , (1)

where KI
³cfnq(x), fj(x, θ)´ is the Kullback-Leibler distance, whose empirical version in this study

is defined as follows:

cKIqj =

NqX
i=1

cfnq(xi) logÃ cfnq(xi)
fj(xi, θ)

!
, (2)

where i is the index for all observations contained in a sample q.

If the values of the optimal parameters were known, the prediction rule - ranking the plausibility

of each model through the sum of their weights (over the past cases) - will lead us to choose as

predictive density f1 rather than f2 if and only if:

X
q∈C

wq1 >
X
q∈C

wq2, (3)

or equivalently: X
q∈C

KI
³cfnq(x), f1(x, θ)´ <

X
q∈C

KI
³cfnq(x), f2(x, θ)´ . (4)
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The sum of the weights relative to model f1 can be interpreted as in Gilboa and Schmeilder

(2001) as the “aggregate similarity or plausibility” of model f1. However, as the values of the optimal

parameters are unknown, it is necessary to estimate them as described in D’Amico (2003a), that

is:

max
θfj

X
q∈C

wqj = min
θfj

X
q∈C

KI
³cfnq(x), fj(x, θ)´ . (5)

It follows then that the rank of the competing models is obtained as follows:

f1 Â f2 IFF min
θf1∈Θ

X
q∈C

KI
³cfnq(x), f1(x, θ)´ < min

θf2∈Θ

X
q∈C

KI
³cfnq(x), f2(x, θ)´ , (6)

which in turn implies that the best model can be represented by the following prediction rule:

inf
{ j:1,...,J}

 min
θfj∈Θ

X
q∈C

KI
³cfnq(x), fj(x, θ)´

 . (7)

2.2 Model Combination

Selecting a single model as described in the previous section, even if implicitly recognizes the

presence of misspecification, does not account explicitly for model ambiguity. More importantly,

it does not consider that the true structure may not belong to the initial set of candidate models,

as such to use only the best minimizer is not necessarily the ultimate solution. This implies

that in order to incorporate the information contained in the KI, the combination of all plausible

models in a similarity-weighted predictive distribution is needed, where the weights are function of

cKI
³cfn(x), fj(x,bθ)´.
The intuition is the following : KIj , can be interpreted as a measure of uncertainty or ignorance

about the true structure. When computed at the optimal value of the parameter bθfj , it can be
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considered as a measure of the goodness of the model, since it represents the margin of error of

this model in a particular sample. If it is different from zero for each candidate distribution and/or

there are many models that exhibit a similar loss, then the econometrician fearing misspecification

will explicitly account for it by combining the models in the predictive distribution M(bθfj ) =P
j pj(

cKI)fj(x,bθ). The similarity-weight pj(cKI) can be loosely interpreted as the probability of

model fj being correct. In contrast, if the predictor selected a single distribution fj , he would

overestimate the precision of this model, since he would implicitly assign to the model probability

(pj(cKI)) of being correct equal one.

In order to better appreciate the importance of the information contained in the model’s mis-

specification and subsequently in M(bθfj ), it is necessary to give a brief description of the spaces
in which we operate, when the statistical structural assumptions are not necessarily true. Define

G to be the space of functions to which the true unknown model g(x) belongs: by assumption

g(x) minimizes the KI over G. FΘfj
⊆ G represents the finite dimensional space to which the

parametric candidate models belong, we can call it the approximation space and it is also the space

where the estimation is carried out. The best approximation fj(x, θ
∗) in FΘfj

to the function g(x)

is the p.d.f. that minimizes the KI over FΘfj
, while fj(x,bθ) ∈ FΘfj

minimizes the sample version

of the KI. The distance between fj(x,bθ) and fj(x, θ∗) represents the estimation error that vanishes
as n → ∞. Instead, the approximation error5 given by the distance between fj(x, θ

∗) and g(x),

can be reduced only if the dimension of FΘfj
grows with the sample size. Model combination can

therefore be considered as a method to increase the dimension of the parameter space accounting

5See Chen X. and J.Z. Huang (2002).
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for the approximation error.

Only if FΘfj
≡ G, then g(x) = fj(x, θ0) = fj(x, θ

∗) and bθ is a consistent estimator of the
true parameter θ0. Typically, because of the advantages6 offered by parsimonious models, FΘfj

is

a small subset of G and hence model misspecification can be a serious problem also affecting the

asymptotic results. Furthermore, in finite sample the cKIj embodies information about both the

estimation and approximation errors relative to fj , and as such it can not be ignored.

Once it is decided to use the combinations of p.d.f. M(bθfj ) as predictive density, the main task
consists in determining the probability pj(cKI). For this purpose, I show that (see the next section

and the Appendix for more details) cKIj minus a correction term (mn
∼= dist(fj(θ

∗), g)), mainly

due to the approximation error, is asymptotically distributed Normal N(0, σ2), where a consistent

estimate of σ2 is determined only by the nonparametric density. Then, the probability of being the

correct model can be determined by the probability of obtaining a misspecification cKIj worse than

the one actually obtained (ki). That is:

pj(cKI) = 1− P (cKIj ≤ ki). (8)

Since it is well known that KI(g, fj(θ)) ≥ 0, where the equality attains if and only if g = fj ,

then pj(cKI) = 1 if and only if ki = 0. This follows trivially from the fact that P (cKIj ≤ 0) = 0.

Consequently, pj(cKI) will be less than one for any positive realization of cKIj . Accordingly, if the ki

is very small, then the probability (P (cKIj ≤ ki)) of obtaining a realization of the misspecification

even smaller than a such low value will be very little; it then follows that the probability pj(cKI)

6Closed form solution, ease of interpretation and low computational costs.

11



of having a good model will be very high.

It is clear that to determine the weight it is just sufficient to compute the cumulative distribution

function of a Normal with mean mn and variance σ2 for the realized value ki. Nevertheless, in the

implementation of this methodology, it is necessary to pay attention to the mean mn that, being

affected by the approximation error, varies with the candidate model. In the next section and in

the appendix, the device to fix this problem and the measurement of mn are described in more

details.

3 Asymptotic results

3.1 Assumptions

Before proceeding with the theorems let me state first all the assumptions:

A1:{Xi} are i.i.d with compact support S, their marginal density g exists, is bounded away

from zero, and is twice differentiable. Its first order derivative is also bounded and moreover

|g00(x1)− g00(x2)| ≤ C |x1 − x2| for any x1, x2 ∈ S and for some C ∈ (0,∞).

A2: The kernel K is a bounded symmetric probability density function around zero, s.t :(i)R
K(u)du = 1; (ii)

R
u2K(u)du <∞; (iii) h = hn → 0 as n→∞; (iv) nhn →∞ as n→∞.

A3: Given the set M, it is possible to select a kernel K that satisfies A2 and such that the

tail-effect terms involved in the use of the KI are negligible.

A4: Θ is a compact and convex subset of Rd, the family of distributions F (θ) has density

f(θ, x) which are measurable in x for every θ ∈ Θ and continuous in θ for every x ∈ Ω; Eg[log g(x)−

log f(θ, x)] exists and has a unique minimum at an interior point θ∗of Θ; log f(θ, x) is bounded by
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a function b(x) for all θ ∈ Θ, where b(x) is integrable w.r.t. the true distribution G.

A5: The first and second derivative of log f(θ, x) w.r.t. θ and
¯̄̄
∂ log f(θ,x)

∂θ × ∂ log f(θ,x)
∂θ

¯̄̄
are

also dominated by b(x); B(θ∗) = E
h³

∂ log f(θ∗,x)
∂θ × ∂ log f(θ∗,x)

∂θ

´
g2(x)

i
is non singular and A(θ∗) =

E
h
∂2 log f(θ∗,x)

∂θ∂θ g(x)
i
has a constant rank in some open neighborhood of θ∗.

Assumption A1 requires that Xi are continuously distributed and imposes regularity conditions

on the unknown density g. A2 represents the standard assumptions on the kernel function and

the smoothing parameter used in the nonparametric literature. Assumption A3 is a practical

assumption that we need in order to simplify the proofs and ignore the tail-effects due to the use

of the Kullback-Leibler distance. As indicated by Hall(1987) it is important that K is chosen

such that its tails are sufficiently thick with respect to the tails of the underlying function fj(θ, x).

Since we know the candidate parametric models it is always possible to choose an adequate Kernel.

Furthermore, Hall suggested a practical alternative which is given by the Kernel K(u) = 0.1438 ∗

exp[−12 {log(1 + |u|)}2] whose tails decrease more slowly than the tails of the Gaussian Kernel and

that allows in most cases to neglect the tails-effect terms. Finally, the last two assumptions A4 and

A5 are standard to ensure the consistency and asymptotic normality of QMLE (White (1982)).

3.2 Asymptotic distribution of KI: heuristic approach

In order to obtain the weights in the models combination, as indicated by the formula (8), we need

to derive the asymptotic distribution of cKIj , the random variable that measures the ignorance

about the true structure.

The purpose of this section is to provide a sketch of the proof (developed in the Appendix), in
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order to give the main intuition and to convey two main pieces of information. First, the effect of

estimating the true model g by fj(bθ, x) on the limiting distribution of cKIj . Second, how and which

of the different components of the cKIj affect the mean and variance of the asymptotic distribution.

To simplify the notation I drop the index j and I rewrite fj(bθ, x) = fbθ,cfn(x) =cfn and g(x) = g,

then cKI is given by the following formula:

cKI = KI(cfn, fbθ) = Z
x
(lncfn − ln fbθ)cfn dx =

=

Z
x
(lncfn − ln g)d bFn − Z

x
(ln fbθ − ln g)d bFn = cKI1 − cKI2, (9)

where the definition of cKI1 and cKI2 is clear from the previous expression.

1) cKI1 can be approximated in the following way7:

cKI1 '
Z
x

Ãcfn − g

g

!
d bFn − 1

2

Z
x

Ãcfn − g

g

!2
d bFn = cKI11 − 1

2
cKI12, (10)

where cKI11 is a stochastic element that will affect the asymptotic distribution of cKI, while cKI12

is roughly8 the sum of squared bias and variance of cfn. It is O((nh)−1 + h4) and it will contribute

to the asymptotic mean of cKI.

2) cKI2 has a different nature: it represents the part of the KI that is affected by the parameters

estimation. cKI2 can be rewritten in the following way:

cKI2 =

Z
x
(ln fbθ − ln fθ∗)d bFn + Z

x
(ln fθ∗ − ln g(x))d bFn = cKI21 + cKI22, (11)

where fθ∗ = fj(x/s, θ
∗).

7This can be easily seen by rewriting
bfn
g in the following way:

bfn−g+g
g = 1+

bfn−g
g = 1+γ, then ln(1+γ) ' γ− 1

2γ
2.

8 In order to see this, it is just sufficient to rewrite cKI12 as
R ³ cfn−Ecfn+Ecfn−g

g

´2
d bFn.
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Although in this case, the first term cKI21 is stochastic, it will not affect the asymptotic distribu-

tion of cKI. In fact, since it is Op

¡
1
n

¢
when rescaled by the appropriate convergence rate dn = nh1/2

it converges to zero:

dncKI21 −→p 0. (12)

The second term cKI22 has the following behavior:

cKI22 −→p Eg [ln fθ∗ − ln g(x)] = (−KI(g, fθ∗)) ≤ 0, (13)

as such its presence is due to the approximation error. It is important to note that cKI22 varies with

the underlying candidate model and it can not be observed. This implies that a term of the cKI’s

asymptotic mean will depend on the specific model Mj , then in order to determine and estimate a

limiting distribution that is the same for all candidate models the following assumption is needed:

A6: KI22 ∼ αh1/2KI12. (14)

A6 requires that the mean of the approximation error is proportional to a quantity (KI12) whose

estimation depends only oncfn, consequently it will not be influenced by any specific model fj(bθ, x).
Further, when h ∝ n−β with β > 1

5 ,
cKI12 ∼ C(nh)−1, then we obtain that:

dncKI22 −→p αC, (15)

where C is a known positive constant. This assumption can be interpreted as a local misspecifica-

tion, where the resulting local convergence rate is chosen such that it cancel out with the rate at

which the misspecification would converge to infinity.
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Thus collecting all terms together:

cKI ' cKI11 − 1
2
cKI12 −

³cKI21 + cKI22

´
, (16)

we have the next theorem:

THEOREM 1: Given assumptions A1-A6, and given that nh5 −→ 0 as n −→∞, then

nh1/2
µcKI +

1

2
cKI12 + cKI22

¶
−→d N(0, σ2)

where σ2 = 2
nR

K2(u)du− R £R K(u)K(u+ v)du
¤2
dv
o

Proof: See the Appendix.

To better understand the implication of A6 for the determination of the combination weights

pj(cKI), it is helpful to rewrite the previous result as follows:

nh1/2
µcKI +

1

2
cKI12

¶
∼A N(m,σ2) (17)

where m = αC ' KI(g, fθ∗), from (13) and (15). This implies that to estimate the mean of the

distribution it is necessary to pin down the α, whose estimation is based on the ‘plausibility’ of the

candidate models. Assumption A6 elicits the following definition of plausible model:

Def : fj(θ, x) is plausible, thus will be included in the set M, if the expected value of its

approximation error is equal to αC.

In other words, according to A6, all the competing models are on average expected to have the

same distance from the true model g. Subsequently, as suggested by the definition of m, α could

be estimated by a suitably normalized average of all models’ misspecification:
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bα = 1

J

X
j

cKIj/C ' KI(g, fθ∗)/C, (18)

where E(cKIj) can be considered an approximation of the average specification error
¡
KI(g, fθ∗)

¢
that can not be observed.

Therefore, to obtain pj(cKI) we have to employ the c.d.f. of a Normal with mean E(cKIj) and

variance σ2. This entails that, if a model performs better than the average performance of all

plausible models, that is 0 < kij < bmn, then it receives a large weight in the models combination.

On the other hand, if the model performs poorly relative to all other models, that is kij > bmn,

then its probability of being correct (pj(cKI)) will be low.

4 Application to stock returns

A common assumption to many models in finance, such as the capital asset pricing model (CAPM),

the arbitrage pricing theory (APT) and the Black and Scholes option pricing theory, is that of

normally distributed returns. The problem is that very often this assumption is not supported

by empirical evidence. Financial asset returns posses distributions characterized by a sharp peak

around zero, by tails heavier than those of the normal distribution and by a certain degree of

asymmetry.

As early as 1963, Mandelbrot (1963) strongly rejected normality as a distributional model for

asset returns and a subsequent work by Fama (1965) further corroborated such evidence. These

studies give rise to a new probabilistic foundation for financial assets that was based on the Stable

Paretian Distribution, which generalizes the Gaussian distribution and allows for heavy tails and
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skewness. However, this kind of distributions had little success in practice, since they are charac-

terized by infinite variance which is inappropriate for real data and further very often there is not

a closed form expression for the density.

Given the importance of the subject, more recently many economists and statisticians have

focused their attention on tests and models to describe the distribution of asset returns9. First, as

reported by Campbell-Lo-Mackinlay (1997)10, the skewness for daily US stock returns tend to be

negative for stock indexes and positive for individual stocks. Second, the excess Kurtosis for daily

US stock returns is large and positive for both index and individual stocks. Both characteristics

are further documented in Ullah-Pagan11 (1999) using non-parametric estimation of monthly stock

returns’ density from 1834 to 1925. In their analysis it is clearly shown that the density departs

significantly from a normal, because of its asymmetry, the fat tails and the sharp peak around zero.

Third, Diebold-Gunther and Tay (1998) in their application to density forecasting of daily S&P

500 returns indicate that the Normal forecasts are severely deficient. Finally, Knight-Satchell and

Tran (1995) show that scale Gamma distributions are a very good model for UK FT100 index.

4.1 A Set of simple models

I now apply the described prediction method to determine stock returns predictive density, that

subsequently can be used to determine the optimal share to invest in the risky asset. Given the

previous facts, let me assume that the set of candidate models for the risky asset’s returns consists

9See for example, the Handbook of Heavy Tailed Distributions in Finance (2003), for a complete analysis of studies
about modeling the distribution of several financial assets.
10The Econometrics of Financial Markets, 1997, pag. 16 and 17.
11Nonparametric Econometrics, 1999, pag 71-74.

18



of three distributions: a Normal (N(µ, σ2)), a Fisher-Tippet12 (F (α, β)) and a mixture of general

Gamma (G(ς, λ)).

The first model, derives from the ‘convenient’ version of random walk hypothesis. Typically,

due to the hypothesis of asset market efficiency, stock prices are assumed to follow a random walk,

that is:

pt = µ+ pt−1 + �t, �tIID, where pt = log(Pt).

Further, since the most widespread assumption for the innovations �t is normality, stock returns

are normally distributed with mean µ and variance σ2. The second model is suggested by the

empirical evidence reported in the previous paragraph which advocates the use of extreme value

distribution with more probability mass in the tail areas, and the third model is a direct consequence

of the study by Knight-Satchell and Tran (1995).

Let Xt be the log of asset return for day t, it will be modelled using the following densities:

1) f(Xt;µ, σ) ≡ 1

σ
√
2π
exp−(Xt − µ)2

2σ2
,

2) f(Xt;α, β) ≡ 1

β
exp(

Xt − α

β
) exp(− exp(Xt − α

β
)).

The third model requires some more details since Gamma distribution is defined only for 0 ≤

Xt ≤ ∞, as such the distribution for Xt will be a mixture of two Gammas. Following the authors,

let us define the variable:

Zt =
1

0

with probability p
with probability 1-p

12 It is also known as double exponential distribution and a particular case of it is the Gumbel distribution.
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where p is the proportion of returns that are less than a specified benchmark γ. It then follows that

Xt is defined

Xt = γ +X1t(1− Zt)−X2tZt

where Xjt are independent random variables with density fj(·), j = 1, 2. Hence if Zt = 1, Xt ≤ γ

and we sample from the X2 distribution; if Zt = 0,Xt > γ and we sample from the X1 distribution.

f1(·) and f2(·) are defined as follow:

3) f1(X1t; ς, λ) ≡ λς

Γ(ς)
(X1t − γ)ς−1 exp(−λ(X1t − γ))

f2(X2t; ς, λ) ≡ λς

Γ(ς)
(γ −X2t)

ς−1 exp(−λ(γ −X2t))

4.2 The Data

To implement the empirical application I use daily closing price observations on the US S&P500

index over the period from December 1, 1969 to October 31, 2001, for a total of 7242 observations.

The source of the data is DRI. Stock return Xt is computed as log(1 + Rt) where Rt =
Pt−Pt−1
Pt−1 .

Descriptive statistics for the entire sample are provided in the following table.

S&P500 index

Min. value -0.08642
Max. value 0.087089
Mean 0.000319
Std. deviation 0.01005
Kurtosis 4.9333
Skewness -0.10974

Table I

Furthermore, Ang and Bekaert (2001,2002) and Guidolin and Timmermann (2002) have stressed

the importance of distinguishing between ‘bear’ and ‘bull’ regimes in modeling stock returns and
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indicate that these persistent regimes have important economic implications for investors’ portfolio

decisions. Based on these observations, I have chosen to divide the data in two groups. The

first contains all samples relative to contraction (C) and the second includes all samples relative

to expansion (E). These two phases of the business cycle typically coincide with ‘bear’ and ‘bull’

regimes of the stock market. This implies that the optimal model for asset returns is conditional

on the specific regime, which for simplicity I assume to be known at the time of the empirical

analysis13.

Under the assumption that in each regime all subsamples are drawn from a fixed distribution, it

is possible to create for each state a unique sample that includes all contractions and all expansions

respectively. Merging together all the recessions I obtain a sample of 1321 observations, while

combining all expansions I obtain a sample of 5921 observations. The descriptive statistics for

these two subsamples are reported in the following tables.

Expansion S&P500 index

Min. value -0.08642
Max. value 0.087089
Mean 0.00044
Std. deviation 0.009165
Kurtosis 7.1555
Skewness -0.30326

Contraction S&P500 index

Min. value -0.05047
Max. value 0.05574
Mean -0.00039
Std. deviation 0.0132
Kurtosis 1.05685
Skewness 0.26712

Table II

It is evident from Table I and II, that these data are not consistent with the common assumption

that the true model forXt is the Gaussian distribution. These values confirm previous studies where

daily stock returns have been found to exhibit high excess Kurtosis and negative Skewness for index
13The contractions and expansions are those provided by NBER’s Business Cycle Dating Committee for the US

Economy, available at the website www.nber.org/cycles.
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returns. Further, it is very striking how these values differ across regimes. First, as found in other

studies, contractions and in general bear regimes are characterized by high volatility and negative

mean for stock return, which turns out to be a problem in determining the optimal share to invest

in the risky asset. Second, while during expansions stock returns show a positive excess kurtosis

(even bigger than that displayed in Table I for all data) and a negative Skewness (three times bigger

than that for the entire sample), during contractions the excess Kurtosis is negative (lower than

three) and the Skewness is positive. According to these simple descriptive statistics, it is reasonable

to expect different optimal models for stock returns across these two regimes.

4.3 Empirical Results.

For each of these samples I estimate the univariate density of stock returns by Nadaraya-Watson

kernel density estimators. For the Kernel function I employ the second-order Gaussian Kernel and

the bandwidths are selected via least-squares cross-validation (Silverman, 1986, p48).

I then use the Kullback-Leibler entropy to measure the distance between the estimated non-

parametric density and each of the models belonging to the set M. Minimizing this distance I

obtain the parameter estimates for each candidate distribution and a value for cKIj , which allows

me to achieve a ranking of all competing models and the subsequent weight for each of them in the

final model combination. The estimated parameters for each distribution are reported below.

N(µ, σ2) Entire sample Expansion Contractionbµ 0.0004* 0.0005* -0.0008*bσ 0.0082* 0.0075* 0.0123*
KI 0.1897 0.1587 0.0513

*All estimates are significant at 1% level
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F (α, β) Entire sample Expansion Contractionbα -0.00179* -0.0014* -0.00403*bβ 0.008509* 0.00773* 0.01213*
KI 0.9836 0.9209 0.3362

*All estimates are significant at 1% level

G(ς, λ) Entire sample Expansion Contractionbς 1.1104* 1.1212* 1.1237*bλ 146.3839* 160.6803* 97.4237*bγ 0.00031 0.00044 -0.00039bp 0.47878 0.465631 0.53637
1− bp 0.52122 0.5343 0.46363
KI 0.0468 0.0666 0.0776

*All estimates are significant at 1% level

Table III

Examining the tables we see that all the estimates are intuitively reasonable and significantly

different from zero. Comparing all the three models over the entire sample, we can notice that the

model characterized by the double Gamma outperforms the other two models. Its cKI assumes the

lowest value (0.0468) which is four times smaller than that for the Normal and twenty time smaller

than that of Fisher-Tippet. Also in the case of expansion, the double Gamma is clearly better than

the other two models; its cKI equals 0.0666 which is half the value for the Normal. In contrast, for

the sample including all contractions the Gaussian distribution performs slightly better than the

double Gamma. The value of its cKI is equal to 0.0513 which is smaller than the respective value for

the double Gamma (0.0776). Finally, both values are ten times smaller than the cKI for the Fisher-

Tippet distribution. These results contradict the common assumption that the best unique model

for the stock returns is the Gaussian distribution, and confirm that the optimal model changes

across regimes. Further, since more than one model performs fairly well, and because each of them
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has properties that capture particular characteristics of return distribution, it seems reasonable to

combine them.

It is important to stress some characteristics of the double Gamma, since it is overall the model

that provides the best performance in terms of aggregate similarity to the data. First of all, it is

worth mentioning that in all three samples the values of bp suggest that the sample proportions for
negative returns are not very different from that of positive returns. Second, ς’s estimates in all

three samples are greater than unity, which entails that returns are well described by a bimodal

density. All these features of the estimated model confirm the results that Knight-Satchell and

Tran (1995) found in the case of UK stock returns.

The final step to compute the similarity-weighted predictive distribution M(bθfj ) consists in
evaluating for each of the models under consideration the ‘probability’ pj(cKI) of being correct. It

can be helpful to first provide the realizations of dKIj for all models in each of the sample.

All data Expansion Contraction

G 0.0468 0.0666 0.0776
N 0.1897 0.1587 0.0513
F 0.9836 0.9209 0.3362
Table IV: Realized loss for each model

The following table exhibits the value of p(cKIj) for the three models under consideration.

All data Expansion Contraction

G 0.8121 0.7811 0.5689
N 0.7033 0.7086 0.604
F 0.0779 0.0924 0.331
Table V:Optimal weight for each model

As it can be noticed these values represent ‘probabilities’ before normalization since they do not
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sum up to unity. Results contained in table V seem to confirm that this methodology in determining

the “probability of being the correct model” works in the right direction. In fact, in each of the

samples the p.d.f. with the lowest realization of the KI receives the highest pj(cKI), and hence it

will receive the largest weight in the model combination. Further, the very poor performance of the

Fisher-Tippet distribution with respect to the other two candidate models, suggests that it would

be sensible to discard this model in order to conform the application to assumption A6. Thus, in

the next section I present the results obtained combining only the Normal and the double Gamma

distributions.

4.4 In and Out-of-sample performance of model combination

Lets first consider the in-sample performance of model combination. The results are summarized

in the following table, where the values of KI for each single model are reported.

All data Expansion Contraction

wki
g G+wki

n N 0.0256 0.0179 0.0137
G 0.0468 0.0666 0.0776
N 0.1897 0.1587 0.0513

Table VI: In-sample Results

Note: wki
j indicates the weight for model j obtained as function of KI

Using the entire dataset from December 1, 1969 to October 31, 2001- after normalizing the

p(dKIj) - the double GammaG(1.1104, 146.38) receives a weight of 0.5359 and the NormalN(0.0004, (0.0082)2)

receives a weight of 0.4641. The Kullback-Leibler distance between the nonparametric density

estimate and the model combination equals 0.0256, attaining a loss almost half of the best min-

imizer. If I consider the sample including all expansions, to the Gamma G(1.1212, 160.68) it is
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assigned a weight equal to 0.5243 and to the Normal N(0.0005, (0.0075)2) a weight of 0.4757. This

model combination delivers a distance from the nonparametric density equal to 0.0179 which is a

third of that achieved by the best model. Finally, considering only contraction data, the Gamma

G(1.1237, 97.42) receives a weight of 0.4937, while the Normal N(−0.0008, (0.0123)2) attains a

weight equal to 0.5063. In this case as well, the model combination outperforms the best model by

achieving a KI equal to 0.0137, which is one fourth of the distance achieved by the best model.

Now, to verify the performance of the nonparametric KI and of the model combination out-

of-sample, the previous results are analyzed in the context of a different dataset, using the series

of stock returns observed from November 1, 2001 to September 30, 2003, for a total number of

observations of 479. This sample represents the most recent case of expansion, or more precisely

recovery, according to the latest determination of the Business Cycle Committee of the NBER. The

summary statistics are displayed below.

S&P500 index

Min. value -0.01842
Max. value 0.024204
Mean -0.0000556
Std. deviation 0.00619
Kurtosis 0.932
Skewness 0.2804

Table VII

Using this data, but the parameter estimates and the weights obtained from the expansion

sample for the period December 1, 1969 to October 31, 2001, I evaluate the KI distance between the

nonparametric density estimated in the new sample ( bfnOUT ) and the parametric models estimated
in the previous sample. I obtain the following results: the KI between the model combination
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(0.5243GIN + 0.4757NIN) and bfnOUT is equal to 0.7639, between the Gamma distribution and

bfnOUT is equal to 0.7749 and between the Normal and bfnOUT is 0.9235. That is, the model

combination slightly outperforms both models, including the Gamma that in the case of expansion

was the best minimizer.

Models Expansion 2001-03

wki
g G+wki

n N 0.7639
G 0.7749
N 0.9235
wgG+wnN 0.8194bfnIN 0.7927
Table VIII: Out-of-sample Results

Note: wki
j and wj indicate the weight for model j obtained

as function of KI and as free parameter respectively.

Another important comparison to carry out is the following. If the mixture of the Normal and

Gamma distributions is estimated in-sample, where the weights are estimated as free parameters,

how does this mixture perform with respect to the model combination, where the weights are a

function of model misspecification? The mixture that minimizes the distance from the nonpara-

metric density estimated in-sample relative to expansion is equal to 0.4863N(0.0006, 0.00672) +

0.5137G(1.0518, 127.996) and it delivers a KI equal to 0.0037, which is the smallest value obtained

so far.

However, the out-of-sample fit of this mixture is worse than the fit obtained by model combi-

nation, since its distance from the nonparametric density estimated out-of-sample equals 0.8194.

Hence, while increasing the number of parameters leads to better in-sample fit, it gives less good
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out-of-sample results. On the contrary, when the weights are not unrestricted parameters, but

are function of model misspecification, the out-of-sample fit seems to be more robust. This result

regarding the not excellent out-of-sample performance of models that involve the estimation of

a large number of unrestricted parameters is not uncommon (see for example Stock and Watson

(1999), J.H. Wright (2003) and Cogley, Morozov and Sargent (2003)), even though there is not a

definitive explanation for it.

To stress further this last point, I also control the out-of-sample performance of the nonpara-

metric density estimated in-sample. The reason for this check should be clear if we think about

the nonparametric density as an infinite-dimensional parametric alternative. As such, in-sample

it represents the benchmark model, but what about its charcterization of the data out-of-sample?

The answer is in line with the observation that highly parametrized models do not necessarily

perform well out-of-sample. In fact, as shown in Table VIII the KI between the nonparametric fit

obtained in-sample and the nonparametric fit out-of-sample is equal to 0.7927, which is somewhat

worse than the model combination.

Are all these results further corroborated using a larger out-of sample dataset (i.e. 2506 obser-

vation rather than 479)? To verify the stability of the results I have redone the estimation using

as in-sample data the stock return during all the expansions included from February 1961 to June

1990, and as out-of-sample data the stock returns from March 1991 to March 2001, which represents

the longest expansion period available.
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Models Expansion 1961-90

wki
g G+wki

n N 0.0983
G 0.1995
N 0.5249
wgG+wnN 0.0359

Table IX: In-Sample results

In this case, the new double Gamma G(1.1139, 436.15) achieves a KI equal to 0.1995 receiving a

weight of 0.6555, while the Normal N(0.0002, (0.0028)2) obtains a KI that equals 0.5249, receiving

a weight of 0.3445. The Kullback-Leibler distance between the nonparametric density estimate

and the model combination equals 0.0983, attaining once more a loss half of the size of the best

minimizer. On the other hand, the best mixture in-sample is given by 0.4355N(0.003, 0.00242) +

0.5645G(1.05, 349.68) and it delivers a KI equal to 0.0359, that is one third of the distance achieved

by model combination.

Models Expansion 1991-01

wki
g G+wki

n N 0.7786
G 0.8838
N 0.9714
wgG+wnN 0.7562bfnIN 0.7637

Table X: Out-Sample results

The out-of-sample results, on the other hand, confirm only partially the previous findings. It

still holds true that the model combination outperforms the best in-sample minimizer: its KI is

equal to 0.7786 while the Gamma’s KI equals 0.8838. However, the mixture delivers a distance from

the nonparametric fit that equals 0.7562 that, in contrast to the previous out-of-sampel results, is

marginally better than the KI achieved by the model combination. Further, even the nonparametric
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fit attains a KI smaller than that of model combination: 0.7637 versus 0.7786.

These results are not surprising if we think about the large amount of observations in this out-of-

sample exercise. Nevertheless, it is striking that a parsimonious model like the model combination

does not perform much worse than these richer models. Based on both out-of-sample exercises, it

is possible to conclude that the use of model combination, where the weight are function of the

uncertainty about the true model, can provide a useful forecast tool.

5 Conclusions

This paper proposes a method to estimate the probability density of a random variable of interest

in the presence of model ambiguity. The first step consists in estimating and ranking the candidate

parametric models minimizing the Kullback-Leibler information between the nonparametric fit and

the parametric fit. In the second step, the information content of the KI is used to determine the

weights in the model combination, even when the true structure does not necessarily belong to the

set of candidate models.

This approach has the following features. First, it provides an explicit representation of model

uncertainty exploiting models’ misspecification. Second, it overcomes the necessity to have a spe-

cific prior over the set of models and about parameters belonging to each of the models under

consideration. Finally, it is computationally extremely easy.

To implement the model combination, using the technical machinery provided by previous stud-

ies on nonparametric entropy-based testing, I derive the asymptotic distribution of the Kullback-

Leibler information between the nonparametric density and the candidate parametric model. Since
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the approximation error affects the asymptotic mean of the KI’s distribution, the latter varies with

the underlying parametric model. Then, to determine the same distribution for all candidate mod-

els, employing an assumption technically equivalent to a Pitman alternative, I center the resulting

Normal on the average performance of all plausible models. Consequently, the weights in the model

combination are determined by the probability of obtaining a performance worse than that actually

achieved, relatively to that attained on average by the other competing models.

The empirical application to daily stock returns indicates that, during the phases of expansion,

the best model is the double Gamma distribution, while during the phases of recession is the

Gaussian distribution. Moreover, the combination of the Normal and the double Gamma, according

to the weights obtained with the described methodology, outperforms in- and out-of-sample all

candidate models including the best single model. This result can be due to the fact that none

of the candidate models is the true structure, as such the models combination being a higher

dimensional parametric alternative is able to approximate the data more closely. However, this

explanation is not complete. The mixture of models where the weights are estimated as free

parameters, even though is characterized by the same number of parameters does not perform like

the model combination. Most likely, the information contained in model misspecification, when

embodied in the weights of model combination, can improve the robustness of results to future

mistakes.

This suggests that in decision contexts characterized by high uncertainty, such that it can be

hard: to form specific priors, to conceive an exhaustive set of all possible models and/or to use
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the true complex structure, the proposed approach can provide a better hedge against the lack of

knowledge of the correct model. Additionally, this methodology can also be used to form priors in

training sample, before applying more sophisticated Bayesian averaging techniques.

This approach can be further extended to conditional distributions to address more challenging

and complex prediction problems. I leave this problem to future research.

6 Appendix

6.1 Proof Theorem 1:

KI can be rewritten in the following way:

KI =

Z
x

(lncfn(x)−ln fbθ(x))d bFn(x) = Z
x

(lncfn(x)−ln g(x))d bFn(x)−Z (ln fbθ(x)−ln g(x))d bFn(x) = KI1−KI2.

(19)

Similarly to Fan(1994), this representation is very helpful to examine the effect of estimating fθ∗ by fbθ on
the limiting distribution of cKI. From now on the index j for the single model will be omitted.

I start examining the limiting distribution of cKI1 =
1
n

P
i ln
³cfn(xi)

g(xi)

´
that by the Law of Large Numbers

(LLN) can be considered a good approximation of E((lncfn(x)− ln g(x)) = KI1. This first part of the proof

draws heavily upon Hall(1984) and Hong and White(2000).

Using this inequality
¯̄
ln(1 + u)− u+ 1

2u
2
¯̄ ≤ |u|3 for |u| < 1 and defining u = cfn(x)−g(x)

g(x) =
cfn(x)
g(x) − 1 we

obtain the following result:

1

n

X
i

ln

Ãcfn(xi)
g(xi)

!
− 1

n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!
+
1

2n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!2
≤
X
i

u3i . (20)

We can drop the absolute value because of Markov’s inequality, see proof of Lemma 3.1 in Hong-White
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(2000).
Let define bV1n = 1

n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!
and bV2n = 1

n

X
i

Ãcfn(xi)− g(xi)

g(xi)

!2
.

By Lemma 3.1 Hong-White (2000), under assumption A1 and A2, nh4/ lnn→∞, h→ 0. Then:

cKI1 = bV1n − 1
2
bV2n +Op(n

− 3
2h−3 lnn+ h6). (21)

Now we have to analyze the terms bV1n and bV2n. Let define f(xi) = h−1
R
K
¡
x−xi
h

¢
g(x)dx and

an(xi, xj) =
h−1K(xi−xjh )− h−1

R
K
¡
x−xi
h

¢
g(x)dx

g(xi)

bn(xi) =
h−1

R
K
¡
x−xi
h

¢
g(x)dx− g(xi)

g(xi)
.

Then

bV1n = 1

n

X
i

"cfn(xi)− f(xi)

g(xi)
+

f(xi)− g(xi)

g(xi)

#
=

1

n(n− 1)
X
i

X
j,i6=j

an(xi, xj) +
1

n

X
i

bn(xi)

= bV11n + bBn, (22)

where bV11n is a second order U-statistic and it will affect the asymptotic distribution of cKI1. Similarly to

Hall(1984) let rewrite bV11n in the following way:
bV11n = 1

n(n− 1)
X
i

X
j,i6=j

H1n(xi, xj)

H1n(xi, xj) =
1

2h

K
³
xj−xi
h

´
− R K ¡

x−xi
h

¢
g(x)dx

g(xi)
+

K
³
xi−xj
h

´
− R K ¡

x−xi
h

¢
g(x)dx

g(xi)

 ≡ Jn(xi, xj)+Jn(xj , xi)

(23)
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E(H1n(xi, xj)/xi) = 0, then using Theorem 1 in Hall(1984) we can show that

bV11n =
 1

n(n− 1)
X
i

X
j,i6=j

H1n(xi, xj)

Á
(
2E
£
H2
1n(xi, xj)

¤
n2

)
→d N(0, 1). (24)

E
£
J2n(xi, xj)

¤
=

1

4h2

Z Z ³
K
³
xj−xi
h

´
− R K ¡

x−xi
h

¢
g(x)dx

´2
g2(xi)

g(xi)g(xj)dxidxj

applying a change of variable from (xi, xj) = (xi, u) where u =
xj−xi
h we get the following expression

=
1

4h

Z Z
K2(u) +

£
h
R
K(u)g(xi + hu)du

¤2 − 2K(u) £h R K(u)g(xi + hu)du
¤

g2(xi)
g(xi)g(xi + hu)dxidu

=
1

4h

Z
K2(u)du+ o

µ
1

h

¶
= O

µ
1

h

¶
. (25)

Similarly we can show that

E [Jn(xi, xj)Jn(xj , xi)] =
1

4h

Z
K2(u)du+ o

µ
1

h

¶
= O

µ
1

h

¶
. (26)

Then it follows that

E
£
H2
1n(xi, xj)

¤
= E

£
2J2n(xi, xj) + 2Jn(xi, xj)Jn(xj , xi)

¤
=
1

h

Z
K2(u)du+ o

µ
1

h

¶
= O

µ
1

h

¶
, (27)

and

σ21n =
2

n2h

Z
K2(u)du+ o

µ
1

h

¶
. (28)

The second term in (22) is the expected value of a Bias term, that is

bBn =
1

n

X
i

bn(xi) ' h2

2
µ2

Z
g(2)(x)dx+ o(h2), (29)

where g(2)(x) is the second derivative of the p.d.f. and µ2 =
R
u2k(u)du. Hence bBn = Op

¡
n−1/2h2

¢
. Thus,

what we obtain is
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bV1n = bV11n + bBn ∼ σ1nN(0, 1) +
h2

2
µ2

Z
g(2)(x)dx+ o(h2). (30)

bV2n = 1

n

X
i

"cfn(xi)− f(xi)

g(xi)
+

f(xi)− g(xi)

g(xi)

#2
=

1

n

X
i

"cfn(xi)− f(xi)

g(xi)

#2
+
1

n

X
i

·
f(xi)− g(xi)

g(xi)

¸2
+
2

n

X
i

Ãcfn(xi)− f(xi)

g(xi)

!µ
f(xi)− g(xi)

g(xi)

¶
(31)

= bV21n + bV22n + bV23n. (32)

bV21n = 1

n

X
i

 1

n− 1
X
j,i6=j

an(xi, xj)

2

=
1

n(n− 1)2
X
i

X
j,i6=j

a2n(xi, xj) +
2

n(n− 1)
X
i

X
j 6=i

X
z 6=j

an(xi, xj)an(xi, xz). (33)

The first term is a variance term and it will affect the mean of the asymptotic distribution. As n→∞,

by Lemma 2 Hall(1984) the first term of bV21n is given by:
1

n(n− 1)2
X
i

X
j,i6=j

a2n(xi, xj) = σ2n +Op(n
−3/2h−1), (34)

where σ2n =
1
2nσ

2
1n.

The second term equals a twice centered degenerate U-statistic bUn, which is of the same order of mag-
nitude of bV11n and it also affects the asymptotic distribution of cKI1.

2bUn = 2

n(n− 1)
X
i

X
i6=j

Z
an(xj , x)an(xi, x)g(x)dx =

2

n(n− 1)
X
i

X
i6=j

H2n(xi, xj), (35)

H2n(xi, xj) =
1

h2

Z K
³
xj−xi
h

´
− R K ³

xj−xi
h

´
g(xj)dxj

g(xi)

"K ¡
xz−xi

h

¢− R K ¡
xz−xi

h

¢
g(xz)dxz

g(xi)

#
g(xi)dxi.

E
£
H2
2n(xi, xj)

¤
=
1

h4
E

Z K
³
xj−xi
h

´
− R K ³

xj−xi
h

´
g(xj)dxj

g(xi)

ÃK
¡
xz−xi

h

¢− R K ¡
xz−xi

h

¢
g(xz)dxz

g(xi)

!
g(xi)dxi

2
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=
1

h4

Z Z Z K
³
xj−xi
h

´
− R K ³

xj−xi
h

´
g(xj)dxj

g(xi)

ÃK
¡
xz−xi

h

¢− R K ¡
xz−xi

h

¢
g(xz)dxz

g(xi)

!
g(xi)dxi

2 g(xj)g(xz)dxjdxz
=
1

h4

Z Z Z K
³
xj−xi
h

´
K
¡
xz−xi

h

¢
g2(xi)

g(xi)dxi

2 g(xj)g(xz)dxjdxz + o

µ
1

h

¶

=
1

h4

Z Z ·
h

Z
K(u)K(u+ v)

g(xj + hu)
du

¸2
g(xj)g(xj+hu−hz)dxjhdv+o

µ
1

h

¶
=
1

h

Z
1

g2(xj)

·Z
K(u)K(u+ v)du

¸2
g2(xj)dxjdv

= h−1
Z ·Z

K(u)K(u+ v)du

¸2
dv + o

µ
1

h

¶
. (36)

By Lemma 3 in Hall(84), then bUn is asymptotically Normally distributed N(0, σ22n), where

σ22n ' 2n−2h−1
Z ·Z

K(u)K(u+ v)du

¸2
dv. (37)

Finally we have that

bV21n ∼ σ2n +Op(n
−3/2h−1) +

√
2σ2nN(0, 1). (38)

bV22n = 1
n

P
i

h
f(xi)−g(xi)

g(xi)

i2
= 1

n

P
i b
2
n(xi), which is a purely deterministic Bias-squared term, and it will

affect the mean of the asymptotic distribution. That is,

1

n

X
i

b2n =
h4

4
µ22

Z ¡
g(2)(x)

¢
g(x)

2

dx+ o(h4). (39)

Finally we can analyze bV23n:
2bV23n = 2

n

X
i

Ãcfn(xi)− f(xi)

g(xi)

!µ
f(xi)− g(xi)

g(xi)

¶
=

2

n(n− 1)
X
i

H3n(xi, xj), (40)

similarly to Hall(1984) define

H3n(xi, xj) =
X
j

an(xi, xj)bn(xi) =
1

h

Z K ¡
x−xi
h

¢− R K ³
xj−xi
h

´
g(xj)dxj

g(xi)

µf(xi)− g(xi)

g(xi)

¶
dxi .

(41)
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Under assumptions A1 and A2 and given that EH3n = 0, by Lemma 1 in Hall(1984) we have that 2bV23n
is asymptotically normally distributed with zero mean and variance given by:

σ23n ' 2n−1h4µ22
"Z ¡

g(2)(xi)
¢2

g(xi)
dxi −

µZ ³
g(2)(xi)

´
dxi

¶2#
, (42)

which can be easily seen if we consider that f(xi)−g(xi)
g(xi)

= h2µ2g
(2)(xi)

g(xi)
and that

EH2
3n = h4µ22

"Z ¡
g(2)(xi)

¢2
g(xi)

dxi −
µZ ³

g(2)(xi)
´
dxi

¶2#
.

Also this term will affect the asymptotic distribution of cKI1.

To summarize all previous steps, we can rewrite the expansion of cKI1 in the following way:

cKI1 = bV11n + bBn − 1
2

³bV21n + bV22n + 2bV23n´ ∼ (43)

N(0, σ21n)+
h2

2
µ2

Z
g(2)(x)dx+o(h2)−1

2

Ã
σ2n +Op(n

−3/2h−1) + 2N(0, σ22n) +
h4

4
µ22

Z ¡
g(2)(x)

¢
g(x)

2

dx+ o(h4) + 2N(0, σ23n)

!
.

Once more, following Hall(1984), from the definition of bV21n and the fact that nh→∞, we have that the
difference between 1

n(n−1)
P

i

P
j 6=i a

2
n(xi, xj) and σ2n is negligible w.r.t. 2bUn, hence the previous expression

can be rewritten as follows:

cKI1 ∼ (nh1/2)−1
√
2σ1N1 − (nh1/2)−1

√
2σ2N2 − n−1/2h2

√
2σ3N3 + bBn − 1

2
cn, (44)

where N1, N2 and N3 are asymptotically normal N(0,1); and

σ1 =

Z
K2(u)du, σ2 =

Z ·Z
K(u)K(u+ v)du

¸2
dv and σ3 = µ22

"Z ¡
g(2)(xi)

¢2
g(xi)

dxi −
µZ ³

g(2)(xi)
´
dxi

¶2#
,

and cn = (nh)
−1
Z

K2(u)du+
h4

4
µ22

Z µ
g(2)(x)

g(x)

¶2
dx+ o(n−1h−1 + h4). (45)
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It is important to notice that bBn, which isOp(n
−1/2h2), will asymptotically cancel out with n−1/2h2

√
2σ3N3,

since they are of the same order of magnitude.
Thus, we have the following results: as n→∞, h→ 0, nh→∞ and nh5 → 0

nh1/2(cKI1 +
1

2
cn)→d

√
2σ1N1 −

√
2σ2N2.

Since aN(0, 1) + bN(0, 1) can be proved to be asymptotically normal N(0, a2 + b2), then we have that

nh1/2(cKI1 +
1
2cn)→

√
2(σ1 − σ2)N(0, 1).

Let us now examine the term

KI2 =

Z
(ln fbθ(x)− ln g(x))d bFn(x) = Z (ln fbθ(xi)− log fθ∗(xi) + log fθ∗(xi)− ln g(xi))d bFn(xi).

We start examining the limiting distribution of

cKI2 =
1

n

X
i=1

¡
log fbθ (xi)− log fθ∗(xi)¢ bfn(xi) + 1

n

X
i=1

(log fθ∗(xi)− log g(xi)) bfn(xi) = cKI21 + cKI22, (46)

that similarly of cKI1by the LLN, can be considered a good approximation of E(ln fbθ(x) − ln g(x)). This
part of the proof is based mainly on Zheng (1996).

Employing the same expansion used for cKI1, where now u =
fbθ(xi)−fθ∗ (xi)

fθ∗ (xi)
:

1

n

X
i=1

log

µ
fbθ (xi)
fθ∗(xi)

¶
' 1

n

X
i=1

fbθ (xi)− fθ∗(xi)

fθ∗(xi)
− 1

2n

X
i=1

µ
fbθ (xi)− fθ∗(xi)

fθ∗(xi)

¶2
,

we can rewrite cKI21 in the following way:

cKI21(fbθ, fθ∗) ' 1

n

X
i=1

µ
fbθ (xi)− fθ∗(xi)

fθ∗(xi)

¶ bfn(xi)− 1

2n

X
i=1

µ
fbθ (xi)− fθ∗(xi)

fθ∗(xi)

¶2 bfn(xi) = In1 − 1
2
In2. (47)

Applying the mean value theorem to fbθ (xi) we obtain:
fbθ (xi)− fθ∗ (xi) ∼= ∂fθ∗ (xi)

∂θ0
(bθ − θ∗) +

1

2
(bθ − θ∗)

0 ∂2fθ (xi)

∂θ∂θ0
(bθ − θ∗),

where θ lies between bθ and θ∗.
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Thus,

In1 =
1

n

X
i=1

bfn(xi)
fθ∗(xi)

³ bfθ (xi)− fθ∗ (xi)
´
' (48)

1

n

X
i

bfn(xi)
fθ∗(xi)

∂fθ∗ (xi)

∂θ0
(bθ − θ∗) +

1

2n

X
i

(bθ − θ∗)
0 bfn(xi)
fθ∗(xi)

∂2fθ∗ (xi)

∂θ∂θ0
(bθ − θ∗) =

1

n(n− 1)
X
i

X
j

1

h
K

µ
xj − xi

h

¶
∂fθ∗ (xi) /∂θ

fθ∗(xi)
(bθ − θ∗) +

(bθ − θ∗)
0 1

2n(n− 1)
X
i

X
j

1

h
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)
(bθ − θ∗) =

S1n(bθ − θ∗) + (bθ − θ∗)0S2n(bθ − θ∗). (49)

It can be noticed that the U-statistic form of S1n is the same as that of Un defined in theorem 2 D’Amico

(2003a)14 . It follows that S1n = Op(
1√
n
).

E (S2n) =
1

2n(n− 1)
X
i

X
j

E

·
1

h
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)

¸
, (50)

E

·
1

h
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)

¸
=
1

h

Z Z
K

µ
xj − xi

h

¶
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)
g(xi)g(xj)dxidxj =Z Z

K (u)
∂2fθ (xi) /∂θ∂θ

0

fθ∗(xi)
g(xi)g(xi + hu)dxidu. (51)

Similarly to Dimitriev-Tarasenko(1973), applying the Cauchy-Schwartz inequality we obtain that

lim sup
n→∞

E (S2n) ≤
Z

∂2fθ (xi) /∂θ∂θ
0

fθ∗(xi)
g2(x)dx; (52)

then

E (kS2nk) ≤
Z Z

K (u)

°°°°∂2fθ (xi) /∂θ∂θ0fθ∗(xi)

°°°° g(xi)g(xi + hu)dxidu = O(1)

Thus, we have that S2n = Op(1). Taking into account that
√
n(bθ − θ∗) = Op(1), which in turn implies

that (bθ − θ∗) = Op(
1√
n
), it follows that In1 = S1n(bθ − θ∗) + (bθ − θ∗)0S2n(bθ − θ∗) is equal to

14The appendix of this paper is available upon request.
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In1 = Op(
1√
n
) ∗Op(

1√
n
) +Op(

1√
n
) ∗Op(1) ∗Op(

1√
n
) = Op(

1

n
). (53)

Now we have to consider In2:

In2 =
1

n

X
i=1

Ã bfθ (xi)− fθ∗(xi)

fθ∗(xi)

!2 bfn(xi) ' (bθ−θ∗)0 1

n(n− 1)
X
i

X
j

1

h
K

µ
xj − xi

h

¶
∂ ln fθ (xi)

∂θ

∂ ln fθ (xj)

∂θ0
(bθ−θ∗)

(54)
= (bθ − θ∗)0S3n(bθ − θ∗)0. (55)

Similarly to S2n, it can be shown that S3n is Op (1) . It follows that In2

In2 = Op

µ
1√
n

¶
∗Op (1) ∗Op

µ
1√
n

¶
= Op

µ
1

n

¶
. (56)

Finally, we get that:

cKI21(fbθ, fθ∗) ' In1 − 1
2
In2 = Op(

1

n
)− 1

2
Op

µ
1

n

¶
= Op

µ
1

n

¶
,

then it follows that

(nh1/2)cKI21(fbθ, fθ∗) = (nh1/2)Op

µ
1

n

¶
= Op(h

1/2)→p 0. (57)

Now, the same expansion used for cKI21 can be applied to cKI22(fθ∗ , g):

cKI22(fθ∗ , g) ∼= 1

n

nX
i=1

µ
fθ∗(xi)− g(xi)

g(xi)

¶ bfn(xi)− 1

2n

nX
i=1

µ
fθ∗(xi)− g(xi)

g(xi)

¶2 bfn(xi) = Jn1 − 1
2
Jn2, (58)

E (J1n(fθ∗ , g)) = E

µZ µ
fθ∗(xi)− g(xi)

g(xi)

¶ bfn(xi)g(xi)dxi¶ = Z Z
K(u) (fθ∗(x)− g(x)) g(x+ hu)dxdu.

(59)

Applying the same steps used for S2n we can show that

lim sup
n→∞

E (J1n(fθ∗ , g)) ≤
Z
(fθ∗(x)− g(x)) g(x)dx = E (fθ∗(x)− g(x))
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E (kJ1nk) ≤
Z Z

K(u) kfθ∗(x)− g(x)k g(x+ hu)dxdu = O(1)

It follows that J1n(fθ∗ , g) = Op(1). Repeating the same steps once more for J2n(fθ∗ , g) we obtain:

E

Ã
1

n

nX
i=1

µ
fθ∗(xi)− g(xi)

g(xi)

¶2 bfn(xi)! = E

ÃZ µ
fθ∗(xi)− g(xi)

g(xi)

¶2 bfn(xi)g(xi)dxi! =
= E

ÃZ
(fθ∗(xi)− g(xi))

2

g(xi)
bfn(xi)dxi! = Z Z

K(u)
(fθ∗(x)− g(x))2

g(x)
g(x+ hu)dxdu,

lim sup
n→∞

E (J2n(fθ∗ , g)) ≤
Z
(fθ∗(x)− g(x))2 dx (60)

Then also J2n(fθ∗ , g) = Op(1). This implies that cKI22(fθ∗ , g) = Jn1 − 1
2Jn2 = Op(1).

Then it is clear that given assumptions A1-A5, if h→ 0, nh→∞, then

cKI22(fθ∗ , g)→p E (fθ∗(x)− g(x))− 1
2

Z
(fθ∗(x)− g(x))

2
dx, (61)

this implies that nh1/2cKI22 →p ∞, hence we need to rescale it by dn = n−1h−1/2 where dn → 0 as n→∞.

This is embodied in assumption A6, which implies:

cKI22 ' αh1/2cn (62)

Finally we can put all terms together:

cKI =

Z
x

³
lncfn(x)− ln fbθ(x)´cfn(x)dx ∼= cKI1 − cKI2 ∼

·
(nh1/2)−1

√
2σ1N1 − (nh1/2)−1

√
2σ2N2 − 1

2
cn

¸
−
hcKI21(fbθ, fθ∗) + cKI22(fθ∗ , g)

i
, (63)

since we showed that
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(nh1/2)cKI21(fbθ, fθ∗)→p 0 (64)

the entire expression for (nh1/2)KI can be approximated in the following way:

(nh1/2)

·
(nh1/2)−1

√
2σ1N1 − (nh1/2)−1

√
2σ2N2 − 1

2
cn −

µ
Jn1 − 1

2
Jn2

¶¸
. (65)

Thus, if h ∝ n−β with β > 1
5 , cn ' C(nh)−1

(nh1/2)

µcKI +
1

2
cn

¶
∼
√
2σ1N1 −

√
2σ2N2 + αC (66)

then,

(nh1/2)

µcKI +
1

2
cn

¶
→d N

¡
αC, 2

¡
σ21 − σ22

¢¢
. (67)
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