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Abstract 
 
Cointegration theory provides a flexible class of statistical models that combine long-run (cointegrating) 
relationships and short-run dynamics.  This paper presents three likelihood ratio (LR) tests for simultaneously 
testing restrictions on cointegrating relationships and on how quickly each variable in the system reacts to the 
deviation from equilibrium implied by the cointegrating relationships.  Both the orthogonal complements of the 
cointegrating vectors and of the vectors of adjustment speeds have been used to define the common stochastic trends 
of a nonstationary system.  The restrictions implicitly placed on the orthogonal complements of the cointegrating 
vectors and of the adjustment speeds are identified for a class of LR tests, including those developed in this paper.  It 
is shown how these tests can be interpreted as tests for restrictions on the orthogonal complements of the 
cointegrating relationships and of their adjustment vectors, which allow one to combine and test for economically 
meaningful restrictions on cointegrating relationships and on common stochastic trends. 
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1.  Introduction 
Since its introduction in Granger (1981, 1983) cointegration has become a widely 

investigated and extensively used tool in multivariate time series analysis.  Cointegrated models 

combine short-run dynamics and long-run relationships in a framework that lends itself to 

investigating these features in economic data.  The relationship between cointegrated systems, 

their vector autoregressive (VAR) and vector moving-average (VMA) representations, and 

vector error-correction models (VECM) were developed in Granger (1981, 1983) and in Engle 

and Granger (1987). 

In a cointegrated system of time series, the cointegrating vectors can be interpreted as the 

long-run equilibrium relationships among the variables towards which the system will tend to be 

drawn.  Economic theories and economic models may imply long-run relationships among 

variables.  Certain ratios or spreads between nonstationary variables are expected to be 

stationary, that is, these variables are cointegrated with given cointegrating vectors.  For 

example, neoclassical growth models imply “balanced growth” among income, consumption, 

and investment (for example, see Solow, 1970 and King, Plosser, Stock, and Watson, 1991), 

implying that their ratios are mean-reverting.  Other theories, rather than implying given ratios or 

spreads are cointegrated, may imply that some linear combinations of the variables are 

stationary, that is, the variables are cointegrated without specifying the cointegrating 

relationships (for example, see Johansen and Juselius’ (1990) investigation of money demand).   

Johansen’s (1988) maximum likelihood approach to cointegrated models provides an 

efficient procedure for the estimation of cointegrated systems and provides a useful framework 

in which to test restrictions of the sorts mentioned above.  For example, Johansen (1988, 1991) 

and Johansen and Juselius (1990, 1992) derive likelihood ratio tests for various structural 

hypotheses concerning the cointegrating relationships and the speed of adjustment to the 

disequilibrium implied by the cointegrating relationships (or weights); Konishi and Granger 

(1992) use this approach to derive and test for separation cointegration, and Gonzalo and 

Granger (1995) use this framework for estimation of and testing for their multivariate version of 

Quah’s (1992) permanent and transitory (P-T) decomposition. 

Further, building on the univariate work of Beveridge and Nelson (1981) and the 

multivariate generalization by Stock and Watson (1988), cointegration analysis may be used to 

decompose a system of variables into permanent components (based on the variables’ common 
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stochastic trends) and temporary (or cyclical) components.  Several methods have been proposed 

to separate cointegrated systems into their permanent and temporary components, for example, 

Johansen (1990), Kasa (1992), and Gonzalo and Granger (1995).  In each case, the permanent 

component is based either on the orthogonal complements of the cointegrating relationships or 

on the orthogonal complements of the disequilibrium adjustments to the cointegrating 

relationships.   

In this paper, new hypothesis tests are presented in Johansen’s maximum likelihood 

framework that allow one to combine restrictions on the cointegrating relationships and on their 

disequilibrium adjustments.  These tests possess closed-form solutions and do not require 

iterative methods to estimate the restricted parameters under the null hypothesis.  Secondly, both 

for Johansen’s likelihood ratio tests for coefficient restrictions and for the new tests presented 

below, the restrictions implicitly placed on the orthogonal complements of the cointegrating 

relationships and on the orthogonal complements of the adjustment speeds are presented.  

Johansen’s tests and the tests developed in this paper can be interpreted as tests of restrictions on 

the various definitions of common stochastic trends, since these definitions depend on the 

orthogonal complements either of the cointegrating relationships or of the disequilibrium 

adjustments.  Thus, one has great flexibility in formulating and testing hypotheses of economic 

interest simultaneously on the cointegrating relationships and on the common stochastic trends—

the long-run relationships among the variables in the system and the variables driving the 

trending behavior the system, respectively. 

The organization of this paper is as follows:  In section 2, the basic model and notation are 

introduced, and maximum likelihood estimation of the unrestricted model is briefly described.  

In section 3, Johansen’s (1988, 1989) and Johansen and Juselius’ (1990) likelihood ratio tests for 

restrictions on cointegrating relationships and on their weights are briefly described, and three 

new tests in this framework are presented.  In section 4, the implications for the orthogonal 

complements of the cointegrating vectors and of the adjustment vectors are developed for the 

tests described in section 3.  It is shown how these tests can be used for testing restrictions on the 

orthogonal complements of cointegrating vectors and on the orthogonal complements of the 

disequilibrium adjustment vectors—thus allowing for combinations of tests on cointegrating 

relationships and on the different definitions of common stochastic trends.  Section 5 concludes, 

and the appendix contains the mathematical proofs.  
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2.  The Unrestricted Cointegrated Model 

Let ( )I d  denote a time series that is integrated of order d, that is, d applications of the 

differencing filter, 1 LΔ = − , yield a stationary process.  Let tX  be a p×1 vector of possibly I(1) 

time series defined by the kth-order vector autoregression (VAR),  
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The long-run behavior of the system depends on the rank of the p×p matrix Π.  If the 

matrix has rank 0 (that is, Π = 0), then there are p unit roots in the system, and (2.3) is simply a 

traditional VAR in differences.  If Π has full rank p, then tX  is an I(0) process, that is, tX  is 

stationary in its levels.  If the rank of Π is r with 0 r p< < , then tX  is said to be cointegrated of 

order r.  This implies that there are r <p linear combinations of tX  that are stationary.  Granger’s 

Representation Theorem from Engle and Granger (1987) shows that if tX  is cointegrated of 

order r (the p×p matrix Π has rank r), one can write αβ ′Π = , where both α and β are p×r 

matrices of full column rank.  This and some fairly general assumptions about initial 

distributions allow one to write (2.1) as the vector error-correction model (VECM): 
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The matrix β contains the r cointegrating vectors, and tXβ ′  are the r stationary linear 

combinations of tX .  The matrix β can be interpreted as r equilibrium relationships among the 

variables, and the difference between the current value of the r cointegrating relationships, tXβ ′ , 

and their expected values can be interpreted as measures of disequilibrium from the r different 

long-run relationships.  The matrix α in (2.4) measures how quickly tXΔ  reacts to the deviation 

from equilibrium implied by tXβ ′ .1   

Given a p×r matrix of full column rank, A, an orthogonal complement of A, denoted A⊥ , is 

a p×(p-r) matrix of full column rank such that 0A A⊥′ = .  It is often necessary to calculate the 

orthogonal complements of β and α in order to form the p-r common I(1) stochastic trends of a 

cointegrated system; for example, Gonzalo and Granger (1995) propose tXα⊥′  as the common 

stochastic trends and ( ) 1
tXβ α β α−

⊥ ⊥ ⊥ ⊥′ ′  as the permanent components for a cointegrated system; 

Johansen (1991) proposes the random walks ( ) tL Xα⊥′ Γ  as a cointegrated system’s common 

stochastic trends and  as its permanent components. ( )( ) ( )1
1 tL Xβ α β α

−

⊥ ⊥ ⊥ ⊥′ ′Γ Γ

Several methods have been proposed for identifying, estimating, and conducting inference 

in a cointegrated system (see Watson (1995) and Gonzalo (1994) for explanations of several 

methods and evaluations of their properties).  This paper uses the efficient maximum likelihood 

framework of Johansen (1988).  The log-likelihood function for the parameters in (2.4) is 
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1Note that β and α are not uniquely determined (although Π is); that is, any nonsingular r×r matrix A implies 

( )( )1 1A A AAαβ α β α β αβ− −′
′ ′ ′= = ′= . 
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Maximum likelihood estimation of the parameters in (2.5) involves successively concentrating 

the likelihood function until it is a function solely of β.  To do this one forms two sets of p×1 

residual vectors, 0tR  and 1tR , by regressing, in turn, tXΔ  and 1tX −  on k-1 lags of tXΔ  and the 

deterministic components. 

The VECM in (2.4) can then be written as 

 0 1 , 1, ,t t tR R t Tαβ ε′= + = … . (2.6) 

This equation is the basis from which one derives the hypothesis tests on the cointegrating 

vectors β, on the disequilibrium adjustment parameters α, and on their orthogonal complements, 

β⊥  and α⊥ .  The equation (2.6) has two unknown parameter matrices, α and β.  Maximizing the 

likelihood function is equivalent to estimating the parameters in (2.6) via reduced rank regression 

methods (Anderson, 1951).  Since this involves the product of two unknown full-column rank 

matrices in (2.6), estimating these parameters requires solving an eigenvalue problem.   

Defining the moment matrices for the residual series, 
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for a given set of cointegrating vectors, β, one estimates the adjustment parameters, α, by 

regressing 0tR on 1tRβ ′  to get 

 ( ) ( ) 1
01 11ˆ S Sα β β β β −′= . (2.8) 

The maximum likelihood estimator for the residual variance-covariance matrix is  

 ( ) ( ) 10
1

110100
ˆ SSSS βββββ ′′−=Ω − . (2.9) 

As shown in Johansen (1988), one may write the likelihood function, apart from a constant, as 

  ( ) ( )ββ Ω=− ˆ2
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which can be expressed as a function of β̂ ,  
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As shown in Johansen (1988), maximizing the likelihood function with respect to β is equivalent 

to minimizing (2.11), which is accomplished by solving the eigenvalue problem 

 001
1

001011 =− − SSSSλ  (2.12) 
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for eigenvalues 1̂1 p
ˆλ λ> > >…  and corresponding eigenvectors ( )pvvV ˆ,,ˆˆ

1 …=  normalized by 

.  Thus the maximum likelihood estimate for the cointegrating vectors β is  11
ˆ ˆ

pV S V I′ =

 ( )rvv ˆ,,ˆˆ
1 …=β , (2.13) 

and the normalization implies that the estimate of the weights in (2.8) is 

 . (2.14) βα ˆˆ 01S=

Then, apart from a constant, the maximized likelihood can be written as 

 ( )∏
=

− −=
r

i
i

T SL
1

00
2

max
ˆ1 λ .  (2.15) 

Likelihood ratio tests of the hypothesis of r unrestricted cointegrating relationships in the 

unrestricted VAR model and for r unrestricted cointegrating relationships against the alternative 

of r+1 unrestricted cointegrating relationships—the trace and maximum eigenvalue tests—are 

derived in Johansen (1988).  The asymptotic distribution of the trace and maximum eigenvalue 

tests for different deterministic components may be found in Johansen (1988) and Johansen and 

Juselius (1990), and the tabulated critical values for various values of r and for different 

deterministic components may be found in Johansen (1989, 1996) and Osterwald-Lenum (1992); 

small-sample adjustments to the critical values that are based on response surface regressions 

may be found in Cheung and Lai (1993) and MacKinnon, Haug, and Michelis (1999).  

The unrestricted orthogonal complements of β and α, β⊥  and α⊥ , can be estimated three 

ways:  Gonzalo and Granger (1995) show that one may use the eigenvectors associated with the 

zero eigenvalues of ββ ′  and αα′  (given a p×r matrix of full column rank A, one can quickly 

construct  as the ordered eigenvectors corresponding to the p-r zero-eigenvalues of A⊥ AA′ ); 

they also show that one may estimate α⊥ as the eigenvectors corresponding to the p-r smallest 

eigenvalues that solve the dual of the eigenvalue problem in (2.12), 1
00 01 11 10 0S S S Sλ −− = , 

normalized such that 00ˆ ˆ p rS Iα α⊥ ⊥′ = − , and by setting 10
ˆ ˆSβ α⊥ ⊥= .  Johansen (1996) shows one 

may estimate them from (2.12) by ( )11 1, ,rS v v+ … p  and ( )1
00 01 1, ,rS S v v−

+ … p , respectively. 
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3.  Testing Restrictions on β and α  

Economic theory may suggest that certain ratios or spreads between variables will be 

cointegrating relationships.  For example, some neoclassical growth models with a stochastic 

productivity shock imply “balanced growth” among income, consumption, and investment (that 

is, the ratios are cointegrated), and certain one-factor models of the term structure of the interest 

rates imply that the spreads between the different interest rate maturities will be cointegrated.  

One might also be interested in testing for the absence of certain variables in the system from 

any of the cointegrating relationships.  Complicated restrictions on β or α may be formulated, for 

example, neutrality hypotheses in Mosconi and Giannini (1992) and separation cointegration in 

Konishi and Granger (1992).  Based on their maximum likelihood framework, Johansen (1988, 

1991) and Johansen and Juselius (1990, 1992) formulate a series of likelihood ratio tests for 

linear restrictions on β or α and tests for a subset of known vectors in β or α.  After briefly 

summarizing this set of five tests, three new tests for combining linear restrictions and known 

vectors will be derived.  

The tests for restrictions on the cointegrating relationships and disequilibrium adjustment 

vectors described below are asymptotically chi-squared distributed.  The finite sample properties 

of some of the tests have been studied (see, for example Haug (2002)) and are shown to have 

significant size distortions in small samples, though they generally perform well with larger 

samples.  Johansen (2000) introduces a Bartlett-type correction for tests (1) and (2) below that 

depend on the size of the system, the number of cointegrating vectors, the lag length in the 

VECM, the number of deterministic terms (restricted versus unrestricted), the parameter values, 

and the sample size under the null hypothesis.  Haug (2002) demonstrates that the Bartlett 

correction is successful in moving the empirical size of the test close to the nominal size of the 

test.  Haug (2002) also demonstrates that the power of the tests for restrictions on β depend on 

the speed of adjustment to the long-run equilibrium relationships in the system, with slower 

adjustment speeds leading to tests with lower power.   

The tests below are all based on the reduced rank regression representation of the VECM in 

(2.4),  

 0 1 , 1, ,t t tR R t Tαβ ε′= + = … , (3.1) 
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the same equation that is the starting point for the maximum likelihood estimates of the 

parameters of the VECM.  The estimators and test statistics are all calculated in terms of the 

residual product moment matrices , , 0,1ijS i j =  and by their eigenvalues.  The parameter 

estimates under the restrictions and the maximized likelihood functions can be explicitly 

calculated; other tests not discussed here may be solved using iterative methods (see Doornik 

(1995) and Johansen (1995)).  Denote the unrestricted model of at most r cointegrating 

relationships in the VECM (2.4) as ( )H r .  For any rectangular matrix with full column rank, A, 

define the notation ( ) 1A A A A −′≡ , which implies rA A A A I′ ′= = .  Five tests for restrictions on 

β and α from Johansen (1988, 1989) and Johansen and Juselius (1990) are briefly described 

before turning to three new tests for restrictions on β and α. 

 

(1) 0 :H Hβ φ=  (Johansen, 1988), (3.2) 

where H p×s is known and φ s×r is unknown, r≤s<p. 

 This test places the same p-s linear restrictions on all the vectors in β.  The likelihood ratio 

test of  in  is asymptotically distributed as 0H ( )H r 2χ  with r(p-s) degrees of freedom.  One can 

also use this test also to determine if a subset of the p variables do not enter the cointegrating 

relationships. 
 

 

(2) [ ]0 : ,H Hβ θ=  (Johansen and Juselius, 1990), (3.3) 

where H p×s is known, and θ  p×(r-s) is unknown where Hθ φ⊥=  with H⊥  p×(p-s) known and 

φ (p-s)×(r-s) unknown. 

 This test assumes s known cointegrating vectors and restricts the remaining r-s unknown 

cointegrating vectors to be orthogonal to them.  The likelihood ratio test of  in  is 

asymptotically distributed as 

0H ( )H r

2χ  with s(p-r) degrees of freedom. 

 

 

(3) 0 :H Aα ψ=  (Johansen and Juselius, 1990), (3.4) 
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where A p×m is known and ψ m×r is unknown, m≤r<p. 

 This test places the same p-m linear restrictions on all disequilibrium adjustment vectors in 

α.  This can be interpreted as a test of 0B α′ =  for B A⊥= .  The likelihood ratio test of  in 

 is asymptotically distributed as 

0H

( )H r 2χ  with r(p-m) degrees of freedom.  One may use (3) to 

test that some or all of the cointegrating relationships do not appear in the short run equation for 

a subset of the variables in the system, that is, that a subset of the variables do not error correct to 

some or all of the stochastic trends in the system.  

 

 

(4) [ ]0 : ,H Aα τ=   (Johansen, 1989), (3.5) 

where A p×m is known, and τ  p×(r-m) is unknown where Aτ ψ⊥=  with A⊥  p×(p-m) known and 

ψ (p-m)×(r-m) unknown.  

 This test allows for m known adjustment vectors and restricts the remaining r-m adjustment 

vectors to be orthogonal to them.  The likelihood ratio test of  in 0H ( )H r  is asymptotically 

distributed as 2χ  with m(p-r) degrees of freedom. 

 

 

(5) 0 : ,H H Aβ φ α ψ= =  (Johansen and Juselius, 1990), (3.6) 

where H p×s, A p×m are known and φ s×r, ψ m×r are unknown, r≤s<p. and r≤m<p. 

 This test combines tests (1) and (3), testing for cointegrating vectors with p-s common 

linear restrictions and adjustment vectors with p-m common linear restrictions.  The likelihood 

ratio test of  in  is asymptotically distributed as 0H ( )H r 2χ  with r(p-s)+r(p-m) degrees of 

freedom. 
 

 

 In the same framework as the tests above, three new tests for simultaneous restrictions on 

β and α are presented. 
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(6) [ ]0 : , ,H H Aβ θ α ψ= =  (3.7)  

where H p×s, A p×m are known; θ  p×(r-s) is unknown where Hθ φ⊥=  with H⊥  p×(p-s) known 

and φ (p-s)×(r-s) unknown; and ψ m×r is unknown, s≤r≤m<p. 

 This test combines tests (2) and (3), that is, it tests the restriction that s of the cointegrating 

vectors are known—restricting the remaining r-s cointegrating vectors to be orthogonal to 

them—and that the adjustment vectors share p-m linear restrictions.  For example, if a system of 

variables includes a short-term and a long-term interest rate, (6) could be used to test whether the 

spread between the long-term and short-term interest rates was a cointegrating relationship and 

to test simultaneously whether the short-term interest rate failed to react to any of the 

cointegrating relationships in the system.   

 To calculate the test statistic and the estimated cointegrating relationships and adjustment 

vectors, the reduced rank regression (3.1) first is split into 

 0 1 1 2 1

0

t t t

t t

tA R H R H R A
A R A

ψ ψ φ ε
ε

⊥

⊥ ⊥

′ ′ ′ ′= + +
′ ′=

′
, (3.8) 

where ψ is partitioned conformably with β as [ ]1 2,ψ ψ .  In order to derive the test statistic and to 

estimate the restricted parameters under this hypothesis it is necessary to transform the product 

moment matrices, .  Define two set of moment matrices: ijS

  (3.9) ( ) 1
. 0 00 0 , , 0,1ij A ij i jS S S A A S A A S i j

⊥

−
⊥ ⊥ ⊥ ⊥′ ′= − =

and 

 ( ) 1

. . . 1. 11. 1 . , , 0,1ij A H ij A i A A j AS S S H H S H H S i j
⊥ ⊥ ⊥ ⊥ ⊥

−
′ ′= − = . (3.10) 

 The restricted estimators and the likelihood ratio test statistic and its asymptotic 

distribution are summarized in the following theorems. 

 

THEOREM 3.1:  Under the hypothesis [ ]0 : , ,H H Aβ θ α ψ= =  where H p×s, A p×m are 

known; θ  p×(r-s) is unknown where Hθ φ⊥=  with H⊥  p×(p-s) known and φ (p-s)×(r-s) 

unknown; and ψ m×r is unknown, s≤r≤m<p; the maximum likelihood estimators are found by the 

following steps:   

Solve the eigenvalue problem 
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( ) 1

11. . 10. . 00. . 01. . 0A H A H A H A HH S H H S A A S A A S Hλ
⊥ ⊥ ⊥ ⊥

−

⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =  (3.11) 

for eigenvalues  and corresponding eigenvectors , 

normalized so that 

11 p sλ λ −≥ ≥ ≥ ≥… 0 ( )1, , p sV v v −= …

11. .A HV H S H V I
⊥⊥ ⊥′ ′ = p s− ; and solve the eigenvalue problem 

 
( ) 1

11. 10. 00. 01. 0A A A AH S H H S A A S A A S Hρ
⊥ ⊥ ⊥ ⊥

−
′ ′ ′ ′− =  (3.12) 

for eigenvalues 11 0sρ ρ≥ ≥ ≥ ≥… .  

Then the restricted estimators are 

( srvv −= )~,,~ˆ
1 …φ  (3.13) 

1 2
ˆ ˆ ˆ ˆ ˆ, , ,H H Hβ β β θ φ⊥

⎡ ⎤ ⎡ ⎤ ⎡= = =⎣ ⎦ ⎣ ⎦ ⎣
⎤
⎦  (3.14) 

2 01. .
ˆˆ A HA S Hψ φ

⊥ ⊥′=  (3.15) 

( )( ) 1

1 01. 2 11. 11.
ˆˆ ˆA A AA S H H S H H S Hψ ψ φ

⊥ ⊥ ⊥

−

⊥′ ′ ′ ′= −  (3.16) 

[ ] ( ) ( )( )
( )

11
1 2 01. 1 01. . 2 2 11. 1 1 11. 1

1
01. . 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, ,

ˆ

A A H A A

A H

A A A A A A S S S S

A A A A S

α ψ ψ β β β β β β

β

⊥ ⊥ ⊥ ⊥

⊥

−−

−

⎡ ′ ′ ′ ′= = −⎢⎣
⎤′ ′ ⎦

 (3.17) 

and the maximized likelihood function, apart from a constant, is 

 
( ) (∏∏

=

−

=

− −−=
s

i
i

sr

i
i

T SL
11

00
/2

max
~1~1 ρλ ). (3.18) 

The proof of Theorem 3.1 is in the Appendix. 

  

 THEOREM 3.2:  The likelihood ratio test statistic of the hypothesis 

[ ]0 : , ,H H Aβ θ α ψ= =  verses  is expressed as: ( )H r

 ,
 (3.19) ( )( ) ( ) ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧

−−−+−= ∑ ∑
−

= ==

sr

i

r

j
j

s

i
iiTrHHLR

1 11
0

ˆ1ln~1ln~1ln| λρλ ∑

where { }
1,î i r

λ
=

 are from the unrestricted maximized likelihood in (2.15), and is asymptotically 

distributed as 2χ  with r(p-m)+s(p-r) degrees of freedom. 

The proof of Theorem 3.2 is in the Appendix. 
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(7) [ ]0 : ,H H A,β φ α τ= =  

where H p×s, A p×m are known; φ s×r is unknown; and τ  p×(r-m) is unknown where Aτ ψ⊥=  

with A⊥  p×(p-m) known and ψ (p-m)×(r-m) unknown, m≤r≤s<p. 

 This test combines Johansen’s tests (1) and (4), that is, it tests the restriction that the 

cointegrating vectors share p-s linear restrictions and m of the adjustment vectors are assumed 

known (with the remaining r-m orthogonal to them).  This test would be used, for example, to 

determine if some variable in the system did not enter any of the cointegrating relationships or if 

two variables entered the cointegrating relationships as the spread between them, and to test 

simultaneously that some of the cointegrating vectors only appear in the equation for one of the 

variables.   

The first step in calculating the test statistic and restricted coefficient estimates is to split the 

reduced rank regression into variation independent parts 

 
ttt

ttt

ARHRA
ARHRA

εφψ
εφ

⊥⊥ ′+′′=′
′+′′=′

120

110 , (3.20) 

where φ is partitioned conformably with α as [ ]1 2,φ φ .  In order to derive the test statistics and to 

estimate the restricted parameters under this hypothesis it is again necessary to define a new set 

of residual vectors and transform the product moment matrices, .  Fixing ijS 2φ  and ψ, define the 

residual vector 

 0 2kt t t1R A R H Rψφ⊥′ ′ ′= − . (3.21) 

One can then define the notation 1
1

1 T

k
t

S R
T =

1t ktR′= ∑  and so on, and define the set of product 

moment matrices: 

 . (3.22) 1
. , , 0,1ij k ij ik kk kjS S S S S i j−= − =

 The restricted estimators and the likelihood ratio test statistic and its asymptotic 

distribution are summarized in the following theorems. 
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 THEOREM 3.3:  Under the hypothesis [ ]0 : ,H H A,β φ α τ= =  where H p×s, A p×m are 

known; φ s×r is unknown; and τ  p×(r-m) is unknown where Aτ ψ⊥=  with A⊥  p×(p-m) known 

and ψ (p-m)×(r-m) unknown, m≤r≤s<p; the maximum likelihood estimators are found by the 

following steps: 

Solve the eigenvalue problem  

 ( ) 1
11 10 00 01 0H S H H S A A S A A S Hλ −

⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =

0

 (3.23) 

for eigenvalues  and corresponding eigenvectors 11 sλ λ≥ ≥ ≥ ≥… ( )1, , sV v v= … , normalized 

so that 11 sV H S HV I′ ′ = ; and solve the eigenvalue problem 

 ( ) 1
11. 10. 00. 01. 0k k k kH S H H S A A S A A Sρ −′ ′ ′ ′− =  (3.24) 

for eigenvalues 1 11 0m m sρ ρ ρ ρ+≥ ≥ ≥ > = = =… … . 

Then the restricted estimators are 

(2 1
ˆ , , r mv vφ −= … )

2̂

 (3.25) 

2
ˆ Hβ φ=  (3.26) 

01 2̂ˆ A S Hψ φ⊥′=  (3.27) 

( ) 1
1 11. 10.
ˆ

k kH S H H S Aφ −′ ′=  (3.28) 

( ) 1
1 2 11. 10. 2

ˆ ˆ ˆ ˆ, k kH H S H H S A H,β β β φ−⎡⎡ ⎤ ′ ′= =⎣ ⎦ ⎣
⎤
⎦  (3.29)  

[ ] ( ) 1
01 2

ˆˆ ˆˆ, , ,A A A A A A A A Sα τ ψ −
⊥ ⊥ ⊥ ⊥ ⊥

⎡ ′ ′⎡ ⎤= = =⎣ ⎦ ⎣ β ⎤
⎦ , (3.30) 

where  is calculated from 1
. , , 0,1ij k ij ik kk kjS S S S S i j−= − = (3.22) evaluated at 2̂ ˆ,φ ψ .  

The maximized likelihood function, apart from a constant, is 

 ( ) (∏∏
=

−

=⊥⊥

⊥⊥− −−
′′
′′

=
m

i
i

mr

i
i

kT

AAAA
ASAASA

L
11

00.002
max

~1~1 ρλ ). (3.31) 

The proof of Theorem 3.3 is in the Appendix. 

 

 THEOREM 3.4:  The likelihood ratio test statistic of the hypothesis 

[ ]0 : ,H H A,β φ α τ= =  
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verses  is expressed as: ( )H r

 

( )( )

( ) ( ) ( )
0

00. 00
00

1 1 1

|

ˆln ln ln 1 ln 1 ln 1
r m m r

k
i i

i i j

LR H H r

A S A A S A
T S

A A A A jλ ρ λ
−

⊥ ⊥

= = =⊥ ⊥

=

⎧ ⎫⎡ ⎤′ ′⎪ ⎪− + − + − − −⎨ ⎬⎢ ⎥′ ′⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑ ∑

,

 (3.32) 

where { }
1,î i r

λ
=

 are from the unrestricted maximized likelihood in (2.15), and is asymptotically 

distributed as 2χ  with m(p-r)+r(p-s)degrees of freedom. 

The proof of Theorem 3.4 is in the Appendix. 

 
 

Next, a hypothesis test on αβ ′Π =  of the form 1 2Π = Π + Π  is presented in which 

 is known.  This test, which combines tests (2) and (4), implies one is testing that both 

a subset of the cointegrating vectors and the associated adjustment vectors are known.  It might 

seem too optimistic or restrictive to believe one might not only know certain cointegrating 

vectors but also know the adjustments to them.  A test of this sort, however, might be useful as 

the end of a general-to-simple strategy for testing structural hypotheses or for testing very 

specific theoretical implications.  More usefully, one might estimate the cointegrating 

relationships and adjustment vectors from a subset of a system of variables and then desire to test 

whether these estimated relationships hold in the full system of variables. 

1 AH ′Π =

  

(8) [ ] [ ]0 : , ,H H A,β θ α τ= =    

where both ,H A  are known p×s matrices with s<r, and the unknown parameter matrices are 

orthogonal to ,H A :  Hθ φ⊥= , Aτ ψ⊥=  with H⊥ , A⊥  p×(p-s) known and φ, ψ (p-s)×(r-s) 

unknown.  This implies AH AH Aτθ ψφ H⊥ ⊥′ ′ ′ ′Π = + = + ′

1

. 

Define the vector of residuals  

  0kt t tR R AH R′= − . (3.33) 

The reduced rank regression (3.1) is split into 

  
1 1

kt t

kt t t

A R A
A R H R A

ε

ψ φ ε⊥ ⊥

′ ′=

′ ′ ′ ′= +
. (3.34) 
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In order to derive the test statistics and to estimate the restricted parameters under this hypothesis 

it is again necessary to define a new set of residual vectors and transform the product moment 

matrices, 
1

1 , 1,
T

ik it kt
t

S R R i
T =

′= ∑ k=

k

 and so on, and also define the product moment matrices, 

.   ( ) 1
. , 1,ij A ij ik kk kjS S S A A S A A S i−′ ′= − =

The restricted estimators and the likelihood ratio test statistic and its asymptotic distribution are 

summarized in the following theorem. 

 

 THEOREM 3.5:  Under the hypothesis [ ] [ ]0 : , ,H H A,β θ α τ= =  where ,H A  are known 

p×s matrices; θ  and τ  are unknown p×(r-s) matrices such that Hθ φ⊥=  and Aτ ψ⊥=  with H⊥  

and A⊥  p×(p-s) known and φ, ψ (p-s)×(r-s) unknown; the maximum likelihood estimators are 

found by the following steps: 

Solve the eigenvalue problem 

 ( ) 1
11. 1 . . 1. 0A k A kk A k AH S H H S A A S A A S Hλ −

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′− =  (3.35) 

for eigenvalues  and corresponding eigenvectors 

, normalized so that 

1 11 0s r s r p sλ λ λ λ− − + −≥ ≥ ≥ ≥ = = =… …

( 1, , p sV v v −= … ) 11.A p rV H S H V I⊥ ⊥ −′ ′ = . 

Then the restricted estimators are 

( )1
ˆ , , r sv vφ −= …  (3.36) 

1 2
ˆ ˆ ˆ ˆ, , ,H H Hβ β β θ φ⊥

⎡ ⎤ ⎡ ⎤ ⎡= = =⎣ ⎦ ⎣ ⎦ ⎣
⎤
⎦   (3.37) 

1.
ˆˆ k AA S Hψ φ⊥′= ⊥ , (3.38) 

[ ] ( ) 1
1. 2

ˆ, , , k AA A A A A A A A Sα τ ψ −
⊥ ⊥ ⊥ ⊥ ⊥

⎡ ′ ′⎡ ⎤= = =⎣ ⎦ ⎣ β ⎤
⎦  (3.39) 

and the maximized likelihood function, apart from a constant, is 

 ( )2
max

1

1
r s

T
kk i

i

L S λ
−

−

=

= −∏ . (3.40) 

The proof of Theorem 3.5 is in the Appendix. 
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THEOREM 3.6:  The likelihood ratio test statistic of the hypothesis [ ] [ ]0 : , ,H H A,β θ α τ= =  

verses  is expressed as: ( )H r

 ( )( ) ( ) ( )0 00
1 1

ˆ| ln ln ln 1 ln 1
r s r

kk i j
i j

LR H H r T S S λ
−

= =

⎧ ⎫
= − + − − −⎨ ⎬

⎩ ⎭
∑ ∑ λ , (3.41) 

where { }
1,î i r

λ
=

 are from the unrestricted maximized likelihood in (2.15), and is asymptotically 

distributed as 2χ  with 2ps-s
2
 degrees of freedom. 

The proof of Theorem 3.6 is in the Appendix. 

4.  Testing Restrictions on α
⊥

 and β
⊥

 

Separating an economic time series into permanent (long run) components and cyclical 

(short run, temporary, transitory) components has been used in many contexts in economics.  

Methods proposed include decomposing the series into a deterministic trend component and a 

stationary cyclical component, as in Fellner (1956).  Muth (1960) uses the long-run forecast of a 

geometric distributed lag, that is, the permanent component is the long-run forecast after the 

dynamics (modeled as a distributed lag) have run their course.  Beveridge and Nelson (1981) 

uses the Wold (1938) decomposition to generalize this to ARIMA models, defining the 

permanent component to be a multiple of the random walk component of the series.  This 

method, too, implies that the permanent component of the series in period t is the long-run 

forecast of the time series made in period t.  Watson (1986) uses unobserved components 

ARIMA models based on Watson and Engle’s (1983) methods.  Quah (1992) develops a 

permanent-transitory (P-T) decomposition to derive lower bounds for the relative size of the 

permanent component of a series and showed that restricting it to be a random walk maximizes 

the size of the lower bound. 

Sims (1980) introduced vector autoregressions to empirical economics as a flexible 

multivariate dynamic framework to which the Beveridge-Nelson (1981) decomposition can be 

extended (see Stock and Watson, 1988).  In cointegrated systems, several methods have been 

proposed to decompose the individual time series into their permanent and cyclical components.  

The importance of multivariate information sets for this sort of analysis is argued in Cochrane 
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(1994).  Stock and Watson (1988), Johansen (1990), and Granger and Gonzalo (1995) split a 

system of p cointegrated time series into p-r common stochastic trends (where r is the number of 

cointegrating relationships), linear combinations of which form the permanent components of the 

individual time series.  The cyclical components are some combination of the cointegrating 

relationships, plus, if the common stochastic trends are assumed to be random walks, other 

stationary components.  See Proietti (1997) for a discussion of the relationship among these 

definitions and with the notion of common features by Vahid and Engle (1993) and Engle and 

Kozicki (1993). 

The orthogonal complements of β and α are used to construct the common stochastic 

trends and the permanent components of a cointegrated model.  Kasa (1992) proposes tXβ⊥′  as 

the p-r common stochastic trends and ( ) tX⊥
−

⊥⊥⊥ ′′ ββββ 1  as the permanent components of the 

individual variables in the system.  Gonzalo and Granger (1995) propose tXα⊥′  as the common 

stochastic trends in the system and ( ) 1
tXβ α β α−

⊥ ⊥ ⊥ ⊥′ ′  as the permanent components; Johansen 

(1995) proposes the random walks ( ) tL Xα⊥′ Γ  as the common stochastic trends and random 

walks ( )( ) ( )1
1 tL Xβ α β α

−

⊥ ⊥ ⊥ ⊥′ ′Γ Γ  as the permanent components.   

There is no econometric reason why one definition of a common stochastic trend and 

permanent component is necessarily any better than another; one needs economic justifications 

to choose among them.  One interpretation of the cointegrating relationships, β, derived from 

Johansen’s methodology is that they are the r maximally canonically correlated linear 

combinations of tXΔ  and 1tX − .  So, Kasa’s common stochastic trends would be the p-r 

minimally canonically correlated linear combinations; there, however, is no strong economic 

justification for choosing these linear combinations as the common stochastic trends.  The 

Gonzalo and Granger formulation has the advantage that the cointegrating relationships and 

transitory components have no long-run effect on the common stochastic trends and permanent 

components.  In the Johansen version, the common stochastic trends and permanent components 

are random walks (like the univariate Beveridge-Nelson decomposition), and the permanent 

components of the variables can be seen as the long-run forecasts of the variables once the 

dynamics have worked out themselves.  In the Johansen definition, however, unlike the Gonzalo 

 18



and Granger method, the cointegrating relationships and transitory components can have a 

permanent effect on the common stochastic trends and the permanent components. 

Recall that β and α are p×r matrices of full column rank, that is, the columns of β and α lie 

in r-dimensional subspaces of .  The likelihood ratio tests in section 3 for restrictions on the 

cointegrating vectors and on their disequilibrium adjustment vectors were of two general types:  

The first imposes linear relationships on all the vectors, and the second assumes that a subset of 

the vectors are known.  Johansen (1989) shows that since one actually estimates the space 

spanned by the cointegrating vectors, 

p

( )sp β , restrictions on cointegrating vectors are restrictions 

on the space they span.  The restriction that the r vectors in β share p-s linear restrictions, that is, 

Hβ φ=  where H is a known p×s matrix of full column rank and φ is an unknown s×r matrix, 

can be represented geometrically as ( ) ( )sp sp Hβ ⊂ .  This implies the columns of β are 

restricted to lie in a given s-dimensional subspace of  (Johansen, 1988).  The restriction that 

m of the cointegrating relationships are known, that is, 

p

[ ]ϕβ ,h=  where h contains the known 

p×m relationships and hϕ ϑ⊥=  p×(r-m) is unknown, can be represented geometrically as 

( ) ( )sp h sp β⊂  (Johansen, 1989).  This implies that the known vectors lie in an m-dimensional 

subspace of the space spanned by the vectors in β.  These two restrictions can be written 

. ( ) ( ) ( )sp h sp sp Hβ⊂ ⊂

Restrictions placed on cointegrating vectors or on their adjustment vectors imply that 

restrictions are imposed on the space spanned by their orthogonal complements as well 

(Johansen, 1989).  The restriction that ( ) ( )sp sp Hβ ⊂  implies ( ) (sp H sp )β⊥ ⊥⊂ , where the 

orthogonal complements β⊥  and  are p×(p-r) and p×(p-s) matrices, respectively, of full 

column rank.  This means that a subset of p-s of the p-r vectors in 

H⊥

β⊥  are known, namely those 

contained in .  Thus, the test H⊥ Hβ φ=  implies a test on its orthogonal complement of the 

form [ ],Hβ θ⊥ ⊥=  for which θ is an unknown p×(s-r) matrix of rank s-r. 

Similarly, ( ) ( )sp h sp β⊂  implies ( ) ( )sp sp hβ⊥ ⊥⊂ , where h⊥  is a p×(p-m) matrix of full 

column rank; that is, the vectors in β⊥  share the (p-m) linear restrictions implied by h .  Thus, a ⊥
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test of the form [ ]ϕβ ,h=  implies a test on its orthogonal complement of the form hβ θ⊥ ⊥=  for 

which θ is an unknown (p-m)×(p-r) matrix of rank p-r. 

With minor modifications to the tests in section 3, we may more explicitly state the 

implications for the orthogonal complements and reformulate them as tests on the orthogonal 

complements, that is, use the tests in section 3 as tests on the orthogonal complements. 

 

 PROPOSITION 4.1:  For (1) 0 :H Hβ φ=  where H p×s is known and φ s×r is unknown, 

r≤s<p one may choose  

 ,H Hβ φ⊥ ⊥ ⊥⎡ ⎤= ⎣ ⎦  (4.1) 

where ( ) 1H H H H −′≡ .  Further, one can test the hypothesis  

 ,G Gβ θ⊥ ⊥⎡ ⎤= ⎣ ⎦   (4.2) 

where G p×q is known and θ (p-q)×( p-q-r) is unknown by transforming this problem into 

above setting  and s=p-q.  That is, one may test the hypothesis that certain 

0H  

H G⊥= β⊥  are 

known and the remaining elements of β⊥  are orthogonal to the known vectors. 

 

To check that β⊥  is indeed an orthogonal complement of β, one must verify that 

( )0 p r rβ β − ×⊥′ =   

( )

( )

( )

,

0

0
0

0

p s r

s r r

p r r

s

H H H

H H
H H

I

β β φ

φ
φ φ

φ
φ φ

− ×

− ×

− ×

⊥ ⊥ ⊥

⊥

⊥

⊥

′
′ ⎡ ⎤= ⎣ ⎦

′⎡ ⎤
= ⎢ ⎥′ ′⎣ ⎦

⎡ ⎤
= ⎢ ⎥′⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
=

φ
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 PROPOSITION 4.2:  For (2) 0 : ,H H Hβ φ⊥= ⎡ ⎤⎣ ⎦  where H p×s is known and φ (p-s)× (r-s) is 

unknown, one may choose  

 Hβ φ⊥ ⊥ ⊥= . (4.3) 

Thus, we can test the hypothesis  

 Gβ θ⊥ = , (4.4) 

where G is a known p×q matrix and θ is an unknown q×(p-r) matrix by transforming this 

problem into  above setting 0H H G⊥=  and s=p-q. That is, one may test the hypothesis that the 

vectors in β⊥  share the same p-s linear restrictions.  

 

Again, to check that β⊥  is indeed an orthogonal complement of β, one must verify that 

( )0 p r rβ β − ×⊥′ = :  

 

( )

( ) ( ) ( )

( )

,

,

0,

0 ,0

0

p s

p r s p r r s

p r r

H H H

H H H H

I

β β φ φ

φ φ φ

φ φ φ−

− × − × −

− ×

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

′ ′ ′ ⎡ ⎤= ⎣ ⎦
′ ′ ′ ′⎡ ⎤= ⎣ ⎦
′ ′⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦
= .

 

 

Proofs of the above and following propositions are in the Appendix. 

 

One can apply the ideas from the two examples above to tests (3) through (8) in section 3.  

The results are summarized below. 

  

 

 PROPOSITION 4.3:  For (3) 0 :H Aα ψ=  where A p×m is known and ψ m×r is unknown, 

r≤m≤p, one may choose  

 ,A Aα ψ⊥ ⊥ ⊥⎡ ⎤= ⎣ ⎦ , (4.5) 

where ( ) 1A A A A −′≡ .  Further, one can test the hypothesis 
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 ,B Bα ξ⊥ ⊥⎡ ⎤= ⎣ ⎦  (4.6) 

where B p×n is known and ξ (p-n)×(p-n-r) is unknown by transforming this problem into 

above setting  and m=p-n.  That is, one may test the hypothesis that certain 

0H  

A B⊥= α⊥  are 

known and the remaining vectors in α⊥  are orthogonal to the known vectors. 

 

 

 PROPOSITION 4.4:  For (4) 0 : ,H A Aα ψ⊥⎡ ⎤= ⎣ ⎦  where A p×m is known and ψ (p-m)×r is 

unknown, one may choose  

 Aα ψ⊥ ⊥ ⊥= . (4.7) 

Further, one can test the hypothesis 

 Bα ξ⊥ =   (4.8) 

where B is a known p×n matrix and ξ is an unknown n×(p-r) matrix by transforming this 

problem into  above setting 0H A B⊥=  and m=p-n.  That is, one may test the hypothesis that the 

vectors in α⊥  share the same p-m linear restrictions.  

  

This test is equivalent to the hypothesis test  in Gonzalo and Granger (1995), which uses the 

dual of the eigenvalue problem for (4) used in Proposition 4.4. 

4bH

 

The following four propositions allow one to combine restrictions on the orthogonal 

complements of the cointegrating vectors and of their disequilibrium adjustment vectors. 

 

 

 PROPOSITION 4.5:  For (5) 0 : ,H H Aβ φ α ψ= =  where H p×s, A p×m are known and φ 

s×r, ψ m×r are unknown, r≤s<p and r≤m<p, one may choose 

 , , ,H H A Aβ φ α ψ⊥ ⊥ ⊥ ⊥ ⊥ ⊥⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦ . (4.9) 

Thus, we can test the hypothesis  

 , , ,G G B Bβ θ α ξ⊥ ⊥ ⊥ ⊥⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦    (4.10) 
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where G p×q and B p×n are known matrices and θ (p-q)×(p-q-r) and ξ (p-n)×(p-n-r) are 

unknown matrices by transforming this problem into  above setting , , s=p-q, 

and m=p-n.  This test allows one simultaneously to test for known 

0H H G⊥= A B⊥=

β⊥  vectors and for known α⊥  

vectors. 

 

 

 PROPOSITION 4.6:  For (6) 0 : , ,H H A Aβ φ α ψ⊥⎡ ⎤= = ⎣ ⎦  where H p×s, A p×m are known 

and φ s×r, ψ (p-m)×(m−r) are unknown, m≤ r≤s<p, one may choose 

 ,H Hβ φ⊥ ⊥ ⊥⎡ ⎤= ⎦ A, ⎣ α ψ⊥ ⊥ ⊥= . (4.11) 

Thus, we can test the hypothesis  

 ,G Gβ θ⊥ ⊥⎡ ⎤= ⎣ ⎦ , Bα ξ⊥ =   (4.12) 

where G p×q and B p×n are known matrices and θ (p-q)×(p-q-r) and ξ n×(p-r) are unknown 

matrices by transforming this problem into  above setting 0H H G⊥= , A B⊥= , s=p-q, and 

m=p-n.  This test allows one simultaneously to test for known β⊥  vectors and to place common 

linear restrictions on α⊥ . 

 

 

 PROPOSITION 4.7:  For (7) 0 : , ,H H H Aβ φ α ψ⊥= ⎡ ⎤⎣ ⎦ =  where H p×s, A p×m are known 

and φ (p-s)×(r-s), ψ m×r are unknown, s≤r≤m<p, one may choose  

 Hβ φ⊥ ⊥ ⊥ ⎡= , ,A Aα ψ⊥ ⊥ ⊥ ⎤=   (4.13)  ⎣ ⎦

Thus, we can test the hypothesis  

 Gβ θ⊥ = , ,B Bα ξ⊥ ⊥⎡ ⎤= ⎣ ⎦   (4.14) 

where G p×q and B p×n are known matrices and θ q×(p-r) and ξ (p-n)×(p-n-r) are unknown 

matrices, by transforming this problem into  above setting 0H H G⊥= , A B⊥= , s=p-q, and 

m=p-n.  This test allows one simultaneously to test for common linear restrictions on the β⊥  

vectors and for known α⊥  vectors. 
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 PROPOSITION 4.8:  For (8) 0 : , , ,H H H A Aβ φ α ψ⊥ ⊥⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦  where H p×s, A p×s are 

known and φ,ψ (p-s)×(r-s) are unknown, s≤r<p, one may choose  

 Hβ φ⊥ ⊥ ⊥= , Aα ψ⊥ ⊥ ⊥=   (4.15)  

Thus, we can test the hypothesis  

 Gβ θ⊥ = , Bα ξ⊥ =   (4.16) 

where G p×q and B p×n are known matrices and θ,ξ q×(p-r) are unknown matrices, by 

transforming this problem into  above setting 0H H G⊥= , A B⊥= , s=p-q.  This test allows one 

simultaneously to test for common linear restrictions on the β⊥  vectors and to place common 

linear restrictions on the α⊥  vectors.  

 

These propositions allow one, in addition, to combine the tests on the cointegrating vectors and 

adjustment vectors with those on the respective orthogonal complements.  For example, one 

could use Proposition 4.7 to test that the cointegrating vectors share certain linear restrictions 

(say, ratios or spreads, or that some subset of variables do not enter the cointegrating 

relationships) and that some subset of the common stochastic trends are known: 

0 : , ,H H B Bβ φ α ξ⊥ ⊥⎡= = ⎣ ⎤⎦ .  The tests (1) through (8) can be recast as tests of the hypotheses 

that are displayed below: 
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 Test (1) Hβ φ=
 

,G Gβ θ⊥ ⊥⎡ ⎤= ⎣ ⎦  
  

 Test (2) ,H Hβ φ⊥⎡ ⎤= ⎣ ⎦  
Gβ θ⊥ =

 
  

 Test (3) Aα ψ=  ,B Bα ξ⊥ ⊥⎡ ⎤= ⎣ ⎦    
 Test (4) ,A Aα ψ⊥⎡ ⎤= ⎣ ⎦  Bα ξ⊥ =    
 

Test (5) 
H
A

β φ
α ψ

=
=

 
,

H

B B

β φ

α ξ⊥ ⊥

=

⎡ ⎤= ⎣ ⎦
 

,G G

A

β θ

α ψ
⊥ ⊥⎡ ⎤= ⎣ ⎦
=

 
,

,

G G

B B

β θ

α ξ

⊥ ⊥

⊥ ⊥

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 

 
Test (6) 

,H H

A

β φ

α ψ
⊥⎡ ⎤= ⎣ ⎦

=
 

,

,

H H

B B

β φ

α ξ
⊥

⊥ ⊥

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 
G

A
β θ
α ψ

⊥ =
=

 
,

G

B B

β θ

α ξ
⊥

⊥ ⊥

=

⎡ ⎤= ⎣ ⎦
 

 
Test (7) ,

H

A A

β φ

α ψ⊥

=

⎡ ⎤= ⎣ ⎦
 

H
B

β φ
α ξ⊥

=
=

 
,

,

G G

A A

β θ

α ψ

⊥ ⊥

⊥

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 
,G G

B

β θ

α ξ
⊥ ⊥

⊥

⎡ ⎤= ⎣ ⎦
=

 

 
Test (8) 

,

,

H H

A A

β φ

α ψ

⊥

⊥

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 
,H H

B

β φ

α ξ
⊥

⊥

⎡ ⎤= ⎣ ⎦
=

 
,

G

A A

β θ

α ψ
⊥

⊥

=

⎡ ⎤= ⎣ ⎦
 

G
B

β θ
α ξ

⊥

⊥

=
=

 

where , G H⊥= B A⊥= , θ φ⊥= , ξ ψ ⊥=  and vice versa. 
 

 

5.  Conclusion  
This paper has two aims.  The first is to develop three new hypothesis tests for combining 

structural hypotheses on cointegrating relationships and on their disequilibrium adjustment 

vectors in Johansen’s (1988) multivariate maximum likelihood cointegration framework.  These 

tests possess closed-form solutions for parameter estimates under the null hypothesis.  The 

second is to demonstrate the implications that the tests for restrictions on the cointegration 

vectors and disequilibrium adjustment vectors have for the orthogonal complements of these 

quantities, and how these tests can be formulated as tests on the orthogonal complements.  This 

is useful since the various specifications of multivariate common stochastic trends and 

permanent components are derived from these orthogonal complements.  Thus, one may 

combine tests for restrictions on the long-run relationships represented by cointegrating 

 25



relationships, the adjustments to them, and the common stochastic trends of a system of 

variables.
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Appendix 
 

THEOREM 3.1:  0 : , ,H H H Aβ φ α ψ⊥⎡ ⎤= ⎣ ⎦ =  where H p×s, A p×m are known and φ (p-s)×(r-s), ψ 

m×r are unknown, r≤m<p. 
The reduced rank regression from (2.6) is  
 0 1 1 2 1 ˆt t tR A H R A H R tψ ψ φ ε⊥′ ′ ′= + + , (A.17) 
where ψ is partitioned conformably with β as [ ]1 2,ψ ψ , and is split into 

 0 1 1 2 1 ˆt t t tA R H R H R Aψ ψ φ ε⊥′ ′ ′ ′= + + ′

t

 (A.18) 
and 

 0 ˆtA R A ε⊥ ⊥′ ′= . (A.19) 
This allows one to factor the likelihood function into a marginal part based on (A.19) and a 
factor based on (A.18) conditional on (A.19): 

 0 1 1 2 1 0 ˆt t t t t t̂A R H R H R A R A Aψ ψ φ ω ε ω ε⊥ ⊥ ⊥′ ′ ′ ′ ′ ′= + + + − ′  (A.20) 
where  

 ( 11
AA A A A A A Aω

⊥ ⊥ ⊥
)−−

⊥ ⊥ ⊥′ ′= Ω Ω = Ω Ω . (A.21) 

The parameters in the two equations are variation independent with independent errors, and the 
maximized likelihood will be the product of the maxima of the two factors.   

The maximum of the likelihood function for the factor corresponding to the marginal 

distribution of  is, apart from a constant, 0tA R⊥′
2

max

ˆ
A AT

ML
A A

⊥ ⊥−

⊥ ⊥

Ω
=

′
.  The denominator is estimated 

by  thus,  ( ) 00
ˆ ˆ

A A A A A S A
⊥ ⊥ ⊥ ⊥ ⊥′ ′Ω = Ω = ⊥

 002
max

T
M

A S A
L

A A
⊥ ⊥−

⊥ ⊥

′
=

′
 (A.22) 

Analysis of the factor of the likelihood function that corresponds to the distribution of 
0tA R′  conditional on  and 0tA R⊥′ 1tR  is found by reduced rank regression.  It is equivalent to 

maximizing the concentrated conditional factor as function of the unknown parameter matrix φ .  
First, one estimates ω by fixing 1ψ , 2ψ , and φ and regressing 0 1 1 2t t 1tA R H R Hψ ψ φ ⊥R′ ′ ′ ′− −  on 

.  This yields 0tA R⊥′

 ( ) ( ( 1
1 2 00 1 10 2 10 00ˆ , , A S A H S A H S A A S Aω ψ ψ φ ψ ψ φ −

⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′ ′ ′= − − ) )⊥

1

. (A.23) 

This allows one to correct for  in 0tA R⊥′ (A.19) by forming new residual vectors 

  (A.24) ( ) 1
. 0 00 0 , 0,it A it i tR R S A A S A A R i

⊥

−
⊥ ⊥ ⊥ ⊥′ ′= − =

and product moment matrices 

 
( )

. . .
1

1
0 00 0

1

, , 0,1

T

ij A it A jt A
t

ij i j

S R R
T

S S A A S A A S i j

⊥ ⊥ ⊥
=

−
⊥ ⊥ ⊥ ⊥

′=

′ ′= − =

∑
. (A.25) 
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Thus we can write the conditional regression equation (A.20) as 
 0 . 1 1 . 2 1 . ˆ ˆ ˆt A t A t A t tA R H R H R A Aψ ψ φ ε ω ε

⊥ ⊥ ⊥⊥′ ′ ′ ′ ′= + + − ⊥′ . (A.26) 

To successively concentrate the conditional likelihood until it is solely a function of φ, one 
fixes 2ψ  and φ and then estimates 1ψ  by regressing 0 . 2 1 .t A t AA R H Rψ

⊥ ⊥
′ ′−

⊥
 on  to get 1 .t AH R

⊥
′

 ( )( ) 1

1 01. 2 11. 11.ˆ A A AA S H H S H H S Hψ ψ φ
⊥ ⊥ ⊥

−

⊥′ ′ ′ ′= − . (A.27) 

One then corrects .it AR
⊥

 for by forming new residuals 1 .t AH R
⊥

′

 ( ) 1,0,.1
1

.11.1... =′′−=
⊥⊥⊥⊥⊥

− iRHHSHHSRR AtAAiAitHAit  (A.28) 

and product moment matrices 

 

( ) 1,0,,

1

.1
1

.11.1.

1
......

=′′−=

′=

⊥⊥⊥⊥

⊥⊥⊥

−

=
∑

jiSHHSHHSS

RR
T

S

AjAAiAij

T

t
HAjtHAitHAij . (A.29) 

Thus one can rewrite (A.26) as 
 tHAtHAt uRHRA ˆ..12..0 +′′=′

⊥⊥ ⊥φψ , (A.30) 
for which 
 ttt AAu εωε ˆˆˆˆ ⊥′−′= . (A.31) 
Fixing φ, one estimates 2ψ  by regressing 0 . .t A HA R

⊥
′  on HAtRH ..1 ⊥⊥′′φ .  This gives 

 ( ) 1
..11..012ˆ −

⊥⊥⊥ ⊥⊥
′′′= φφφψ HSHHSA HAHA  (A.32) 

and 
 ( ) HAtHAHAHAtt RHHSHHSARAu ..1

1
..11..01..0ˆ

⊥⊥⊥⊥ ⊥
−

⊥⊥⊥ ′′′′′−′= φφφφ . (A.33) 

The factor of the maximized likelihood corresponding to the conditional distribution is, apart 
from a constant,  

 AA
L

AAAT
C ′

Ω
= ⊥− .2

max

ˆ

 (A.34) 

where 

 
( ) AAAAAAAA

AAAAAAAAAAA

′Ω′Ω′Ω′−′Ω′=

ΩΩΩ−Ω=Ω

⊥
−

⊥⊥⊥

−
⊥⊥⊥⊥⊥

1

1
. . (A.35) 

The maximum likelihood estimate of the conditional variance matrix is 

 
( ) ASHHSHHSAASA

uu
T

HAHAHAHA

T

t
ttAAA

..10
1

..11..01..00

1
. ˆˆ1ˆ

⊥⊥⊥⊥

⊥

⊥
−

⊥⊥⊥

=

′′′′′−′=

′=Ω ∑
φφφφ

 (A.36) 

which gives the maximized conditional likelihood  
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( )

( )

2

max

1

00. . 01. . 11. . 10. .

T

C

A H A H A H A H

L

A S A A S H H S H H S A

A A

φ

φ φ φ φ
⊥ ⊥ ⊥

−

−

⊥ ⊥ ⊥ ⊥

=

′ ′ ′ ′ ′ ′−

′
⊥

. (A.37) 

The maximized likelihood function is the product between the maximized conditional 
factor and maximized marginal factor, for which the only unknown parameters are contained in 
φ; one then has (and noting that ( ) 1A A A A −′≡  implies A A A A′ ′= ) 

             

( )

( )

2

max

1

00 00. . 01. . 11. . 10. .

T

A H A H A H A H

L

A S A A S A A S H H S H H S A

A A A A

φ

φ φ φ φ
⊥ ⊥ ⊥

−

−

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

=

′ ′ ′ ′ ′ ′ ′−

′ ′
⊥

. (A.38) 

From the matrix relationship for nonsingular A and B,  

 1A C
A B C A C B A CB C

C B
− 1−′ ′= − = −

′
 (A.39) 

it follows that 1 B 1B C A C A CB C
A

−′− = − − ′ , and thus one can rewrite (A.38) as 

 

( )

( )

00 00. .2

max

1

11. . 10. . 00. . 01. .

11. .

A HT

A H A H A H A H

A H

A S A A S A
L

A A A A

H S H H S A A S A A S H

H S H

φ

φ φ φ φ

φ φ

⊥

⊥ ⊥ ⊥ ⊥

⊥

⊥ ⊥−

⊥ ⊥

−

⊥ ⊥ ⊥

⊥ ⊥

′ ′
= ×

′ ′

′ ′ ′ ′ ′ ′−

′ ′

⊥

. (A.40) 

 

The variance-covariance matrix is then estimated by 
ˆ ˆ

ˆ
ˆ ˆ

AA AA

A A A A

A A A⊥

⊥ ⊥ ⊥

⊥ ⊥

⎡ ⎤Ω Ω
A

′
⎢ ⎥⎡ ⎤ ⎡Ω = ⎤⎣ ⎦ ⎣⎢ ⎥Ω Ω⎣ ⎦

⎦ , 

where the estimators of A A⊥ ⊥
Ω , 1

AA A Aω
⊥ ⊥ ⊥

−= Ω Ω , and 1
.AA A AA AA A A A A⊥ ⊥ ⊥

−Ω = Ω − Ω Ω Ω
⊥ ⊥

Ω = Ω ˆ ˆ
A A AA⊥ ⊥

 are used to 

recover , , ˆ
A A⊥ ⊥

Ω ˆ ˆˆAA A Aω
⊥ ⊥ ⊥

′Ω = Ω , and . .
ˆ ˆ ˆˆAA AA A A Aω

⊥ ⊥
Ω = Ω + Ω

Maximizing the likelihood function is equivalent to minimizing the last factor of (A.40) 
with respect to φ.  Following From Johansen and Juselius (1990), here, one solves the eigenvalue 
problem 

 ( ) 1

11. . 10. . 00. . 01. . 0A H A H A H A HH S H H S A A S A A S Hλ
⊥ ⊥ ⊥ ⊥

−

⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =  (A.41) 

for eigenvalues  and eigenvectors 11 p sλ λ −≥ ≥ ≥ ≥… 0 ( )1, , p sV v v −= …  normalized so that 

11. .A HV H S H V I
⊥⊥ ⊥′ ′ = p s− ).  Then , from which one then can recover the parameters ( 1

ˆ , , r sv vφ −= …

(3.14) to (3.17), and the maximized likelihood function, apart from a constant, is 
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 (00 00. .2
max

1

1
r s

A HT
i

i

A S A A S A
L

A A A A )λ⊥
−

⊥ ⊥−
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′ ′
=

′ ′ ∏ − . (A.42) 

Rewriting 

  

( )

( )

1

00. . 00. 01. 11. 10.

1

00. 11. 10. 00. 01.

11.

A H A A A A

A A A A A

A

A S A A S A A S H H S H H S A

A S A H S H H S A A S A A S H

H S H
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⊥ ⊥ ⊥ ⊥

⊥

−

−

′ ′ ′ ′ ′= −

′ ′ ′ ′ ′−
=

′

⊥

 (A.43) 

and noting  

 
( )

( )
1

11. 10. 00. 01.

111.

1
sA A A A

i
iA

H S H H S A A S A A S H

H S H
ρ

⊥ ⊥ ⊥ ⊥

⊥

−

=

′ ′ ′ ′−
= −

′ ∏ ,  (A.44) 

where 11 s 0ρ ρ≥ ≥ ≥ ≥…  solves the eigenvalue problem  

 ( ) 1

11. 10. 00. 01. 0A A A AH S H H S A A S A A S Hρ
⊥ ⊥ ⊥ ⊥

−
′ ′ ′ ′− = , (A.45) 

yields 

 (00. . 00.
1

1
s

A H A i
i

A S A A S A )ρ
⊥ ⊥

=

′ ′= ∏ −  (A.46) 

This gives the maximized likelihood function, apart from a constant,  

 ( ) (00 00.2 /
max

1 1

1 1
r s s

AT
i

i i

A S A A S A
L

A A A A
)iλ ρ⊥

−
⊥ ⊥−

= =⊥ ⊥

′ ′
= −

′ ′ ∏ ∏ − . (A.47) 

If C is a p×p matrix of full rank and [ ],X A A⊥= , where A and A⊥ are full column rank p×r and 

p×(p-r) matrices respectively, one may use the properties of determinants to write 
C X CX X X′= ′ .  And since  

 
0

0
A A A A A A

X X
A A A A A A

⊥ A A A A⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

′ ′ ′
′ = = =

′ ′ ′
′ ′  (A.48) 

 ( ) 1A CA A CA
X CX A CA A CA A CA A CA A CA

A CA A CA
−⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥

′ ′
′ ′ ′ ′ ′= = −

′ ′
′  (A.49) 

we have  

 
( ) 1A CA A CA A CA A CA A CA

C
A A A A

−
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

′ ′ ′ ′ ′−
=

′ ′
. (A.50) 

Substituting  and recalling 00S = C ( ) 1
00. 00 00 00 00AS S S A A S A A S

⊥

−
⊥ ⊥ ⊥ ⊥′ ′= −  we have 

 00 00.
00

AA S A A S A
S

A A A A
⊥⊥ ⊥

⊥ ⊥

′ ′
=

′ ′
. (A.51) 

Therefore, apart from a constant, the maximized likelihood is  
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 ( ) ( )2 /
max 00

1 1

1 1
r s s

T
i i

i i

L S λ ρ
−

−

= =

= − −∏ ∏ . � (A.52) 

 
THEOREM 3.2:  The likelihood ratio test for  in H(r) is  0H

 ( )( ) ( )( ) ( )( )0 02 lnLR H H r L H r L H= − .  (A.53) 

The constant terms in both cancel, and one can write from (2.15) and (A.52),  

 ( )( ) ( ) ( ) ( )0 00 00
1 1 1

ˆln ln 1 ln 1 ln ln 1
r s s r

i i
i i i

LR H H r T S S iλ ρ λ
−

= = =

⎧ ⎫= + − + − − − −⎨ ⎬
⎩ ⎭

∑ ∑ ∑ , (A.54) 

which yields the likelihood ratio test statistic 

 ( )( ) ( ) ( ) ( )0
1 1 1

ˆln 1 ln 1 ln 1
r s s r

i i
i i i

LR H H r T iλ ρ
−

= = =

⎧ ⎫= − + − − −⎨ ⎬
⎩ ⎭
∑ ∑ ∑ λ . (A.55) 

The calculation for the limiting distribution and degrees of freedom for these tests are based on 
Johansen (1989, 1991) and Lemma 7.1 in Johansen (1996).  The former set shows that the 
limiting distribution of the likelihood ratio tests for restrictions on β and α given r cointegrating 
relationships is 2χ .  The latter shows that for a×b and c×b matrices of full column rank, X and Y, 
the tangent space of XY ′  has dimension (a+c-b)b.  The number of parameters in the unrestricted 

αβ ′Π =  is (using, p=a, b=r, and c=p), 2pr-r2.  In the restricted model the number of free 
parameters in 1 2A H A Hψ ψ φ ⊥′ ′Π = + ′  is ms+(m+(p-s)-(r-s))(r-s) =mr+pr-ps+sr-r2.  The 
difference between the unrestricted and restricted free parameters, r(p-m)+s(p-r), are the degrees 
of freedom.  So, the likelihood ratio test is asymptotically distributed as 2χ  with r(p-m)+s(p-r) 
degrees of freedom. � 
 
THEOREM 3.3:  0 : , ,H H A Aβ φ α ψ⊥⎡= = ⎣ ⎤⎦   where H p×s, A p×m are known and φ s×r, ψ 

(p-m)×(r-m) are unknown, r≤s<p. 
The reduced rank regression is then 
 0 1 1 2 1 ˆt t tR A H R A H R tφ ψφ ε⊥′ ′ ′ ′= + + , (A.56) 
where φ is partitioned conformably with α as [ ]1 2,φ φ , and is split into 

 0 1 1 ˆt t tA R H R Aφ ε′ ′ ′ ′= +  (A.57) 
and 
 0 2 1 ˆt tA R H R A tψφ⊥ ε⊥′ ′ ′ ′= + . (A.58) 
This allows one to factor the likelihood function into a marginal part based on (A.58) and a 
factor based on the (A.57) conditional on (A.58): 
 ( )0 1 1 0 2 1 ˆt t t t t t̂A R H R A R H R A Aφ ω ψφ ε ω⊥ ε⊥′ ′ ′ ′ ′ ′ ′ ′= + − + −  (A.59) 

where  
 ( ) 11

AA A A A A A Aω
⊥ ⊥ ⊥

−−
⊥ ⊥ ⊥′ ′= Ω Ω = Ω Ω . 

The parameters in (A.59) are variation independent of (A.58) with independent errors. 
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To maximize the likelihood for the marginal distribution, first one fixes 2φ  in (A.58) and 
estimates ψ by regression, giving 

 ( 1
01 2 2 11 2ˆ A S H H S H )ψ φ φ φ −

⊥′ ′ ′=  (A.60) 

and  
 ( ) 1

0 01 2 2 11 2 2 1t̂ t tA A R A S H H S H H Rε φ φ φ −
⊥ ⊥ ⊥′ ′ ′ ′ ′ ′ ′= − φ  (A.61) 

which gives the maximum likelihood estimator for A A A A
⊥ ⊥ ⊥ ⊥′Ω = Ω ,  

 ( ) 1
00 01 2 2 11 2 2 10

ˆ
A A A S A A S H H S H H S Aφ φ φ φ

⊥ ⊥

−
⊥ ⊥ ⊥′ ′ ′ ′ ′ ′Ω = − ⊥ . (A.62) 

The contribution of the marginal distribution, apart from a constant, is  

 
( ) 1

00 01 2 2 11 2 2 102
max

T
M

A S A A S H H S H H S A
L

A A

φ φ φ φ−
⊥ ⊥ ⊥ ⊥−

⊥ ⊥

′ ′ ′ ′ ′ ′−
=

′
 (A.63) 

 
( ) 1

2 11 2 2 10 00 01 200

2 11 2

H S H H S A A S A A S HA S A
A A H S H

φ φ φ φ

φ φ

−
⊥ ⊥ ⊥ ⊥⊥ ⊥

⊥ ⊥

′ ′ ′ ′ ′ ′−′
=

′ ′ ′
. (A.64) 

One maximizes the factor of the marginal contribution by minimizing the second factor 
in (A.64) with respect to the unknown parameter matrix 2φ .  This is done by solving the 
eigenvalue problem  
 ( ) 1

11 10 00 01 0H S H H S A A S A A S Hλ −
⊥ ⊥ ⊥ ⊥′ ′ ′ ′− =

0

 (A.65) 

for eigenvalues  and corresponding eigenvectors 11 sλ λ≥ ≥ ≥ ≥… ( )1, , sV v v= … , normalized 

so that 11 sV H S HV I′ ′ = .  This implies the maximand of the marginal distribution of the likelihood 

function is , from which one then can recover the parameters (2 1
ˆ , , r mv vφ −= … ) (3.25) to (3.27), 

and the maximized contribution is 

 (002
max

1

1
r m

T )M i
i

A S A
L

A A
λ

−
⊥ ⊥−

=⊥ ⊥

′
=

′ ∏ − . (A.66) 

 
To calculate the conditional distribution, given 1φ , 2̂φ , and ψ̂ , one regresses 0 1t t1A R H Rφ′ ′ ′−  

on  to estimate  0 2̂ˆkt t tR A R H Rψφ⊥′ ′= − 1′

) kk ( ) ( 1
1 2 0 1 1

ˆˆ ˆ, , k kA S H S Sω φ φ ψ φ −
⊥′ ′ ′= − , (A.67) 

where 1
1

1 T

k
t

S R
T =

′= ∑ 1t ktR  and so on.  This allows one to correct for ω in (A.59) by forming new 

residual vectors  
 1

. , 0,1,it k it ik kk ktR R S S R i k−= − =  (A.68) 
and product moment matrices 
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 . . .
1

1

1

, , 0,1,

T

ij k it k jt k
t

ij ik kk kj

S R R
T
S S S S i j k

=

−

′=

= − =

∑
. (A.69) 

One can then write (A.59) as 
 tktkt uRHRA ˆ.11.0 +′′=′ φ , (A.70) 
where ˆ ˆ ˆˆt tu A A tε ω ε⊥′= − ′  and, as suggested by Johansen (1989), estimate 1φ  by regression which 
yields 
 ( ) 1

1 11. 10.
ˆ

k kH S H H S Aφ −′ ′= . (A.71) 

The factor of the maximized likelihood corresponding to the conditional distribution is, apart 
from a constant,  

 
.2

max

ˆ
AA AT

CL
A A

⊥−
Ω

=
′

  (A.72) 

where 

 
( )

1
.

1

AA A AA AA A A A A

A A A A A A A A
⊥ ⊥ ⊥ ⊥ ⊥

−

−
⊥ ⊥ ⊥ ⊥

Ω = Ω − Ω Ω Ω

′ ′ ′ ′ ′= Ω − Ω Ω Ω ′
. (A.73) 

The maximum likelihood estimate of the conditional variance matrix is 

 
( )

.
1

1
00. 01. 11. 10.

1ˆ ˆ ˆ
T

AA A t t
t

k k k

u u
T

kA S A A S H H S H H S A

⊥
=

−

′Ω =

′ ′ ′ ′= −

∑
 (A.74) 

which gives, apart from a constant, the maximized likelihood for the conditional distribution as 

 
( ) 1

00. 01. 11. 10.2
max

k k kT
C

kA S A A S H H S H H S A
L

A A

−

−
′ ′ ′ ′−

=
′

 (A.75) 

 
( ) 1

00. 11. 10. 00. 01.

11.

k k k k k

k

A S A H S H H S A A S A A S H

A A H S H

−′ ′ ′ ′ ′−
=

′ ′
 (A.76) 

 (00.

1

1
m

k
i

i

A S A
A A

)ρ
=

′
=

′ ∏ − , (A.77) 

where 1 11 ... 0m m sρ ρ ρ ρ+≥ ≥ ≥ > = = =…  solve the eigenvalue problem 

 ( ) 1
11. 10. 00. 01. 0k k k kH S H H S A A S A A S Hρ −′ ′ ′ ′− = . (A.78) 

 
The variance-covariance matrix is then estimated by 

 
ˆ ˆ

ˆ
ˆ ˆ

AA AA

A A A A

A A ⊥

⊥ ⊥ ⊥

⊥

⎡ ⎤Ω Ω
A A⊥

′
⎢ ⎥⎡ ⎤ ⎡Ω = ⎣ ⎦ ⎣⎢ ⎥Ω Ω⎣ ⎦

⎤⎦ , (A.79) 
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where the estimators of A A⊥ ⊥
Ω , 1

AA A Aω
⊥ ⊥ ⊥

−= Ω Ω , and 1
.AA A AA AA A A A A⊥ ⊥ ⊥

−Ω = Ω − Ω Ω Ω
⊥ ⊥

Ω = Ω ˆ ˆ
A A AA⊥ ⊥

 are used to 

recover , , ˆ
A A⊥ ⊥

Ω ˆ ˆˆAA A Aω
⊥ ⊥ ⊥

′Ω = Ω , and . .
ˆ ˆ ˆˆAA AA A A Aω

⊥ ⊥
Ω = Ω + Ω

Finally, the maximized likelihood is 

 ( ) ( )00 00.2
max

1 1

1 1
r m m

kT
i i

i i

A S A A S A
L

A A A A
λ ρ

−
⊥ ⊥−

= =⊥ ⊥

′ ′
= −

′ ′ ∏ ∏ − . � (A.80) 

 
 
THEOREM 3.4:  The likelihood ratio test for  in H(r) is   0H

 ( )( ) ( ) ( )( )( )0 02 lnLR H H r L H L H r= − .  (A.81) 

The constant terms in both cancel, and one can write the likelihood ratio test statistic from (2.15) 
and (A.80),  

  

( )( )

( ) ( ) ( )
0

00. 00
00

1 1 1

|

ˆln ln ln 1 ln 1 ln 1
r m m r

k
i i

i i j

LR H H r

A S A A S A
T S

A A A A jλ ρ λ
−

⊥ ⊥

= = =⊥ ⊥

=

⎧ ⎫⎡ ⎤′ ′⎪ ⎪− + − + − − −⎨ ⎬⎢ ⎥′ ′⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑ ∑

.

 (A.82) 

The number of free parameters in the unrestricted model for r cointegrating relationships, from 
Theorem 3.2, is 2pr-r

2
.  In the restricted model, 1 2A H A Hφ ψφ⊥′ ′ ′Π = + ′  (from Lemma 7.1 in 

Johansen (1996)) has ms+(p-m+s-(r-m))(r-m) free parameters.  The degrees of freedom for the 
likelihood ratio tests is the difference in free parameters between the unrestricted and restricted 
models, m(p-r)+r(p-s).  So, the likelihood ratio test is asymptotically distributed as 2χ  with 
m(p-r)+r(p-s) degrees of freedom. � 
 
 
THEOREM 3.5: Under the hypothesis 0 : , , ,H H H A Aβ φ α ψ⊥ ⊥⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦  where ,H A  are known 

p×s matrices and φ and ψ (p-s)×(r-s) are unknown, s≤r<p. 
The reduced rank regression given  can be expressed as 0H
 0 1 1t t tR AH R A H R tψφ⊥ ⊥′ ′ ′= + ε+

1

 (A.83) 
After defining 0kt t tR R AH R′= − , for which there are no unknown parameters, one rewrites 
(A.83) as  
 1kt t tR A H Rψφ⊥ ⊥′ ′ ε= +  (A.84) 
and premultiplies (A.84), in turn, by A′  and A⊥′  to get 
 kt tA R A ε′ ′=  (A.85) 
and 
 1 1kt t tA R H R Aψ φ⊥ ⊥ ε′ ′ ′ ′= + . (A.86) 
This allows one to factor the likelihood function into a marginal part based on (A.85) and a 
factor based on (A.86) conditional on (A.85): 
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 1 ˆkt t kt t t̂A R H R A R A Aψφ ω ε ω⊥ ⊥ ⊥′ ′ ′ ′ ′= + + − ε′ , (A.87) 

where ( 11
A A AA )A A A Aω

⊥

−−
⊥′ ′= Ω Ω = Ω Ω .  The parameters in (A.87) are variation independent of 

(A.85) with independent errors. 
To calculate the conditional factor, one fixes φ  and ψ and regresses 1kt tA R Hψφ⊥ ⊥′ ′ ′− R  on 

ktA Rω ′  to estimate 

 ( ) ( )( 1
1, kk k kk )A S A H S A A S Aω φ ψ ψφ −

⊥ ⊥′ ′ ′ ′= −  (A.88) 

This allows one to correct for ω in (A.87) by forming new residual vectors 
 ( ) 1

. , 1,it A it ik kk ktR R S A A S A A R i k−′ ′= − =  (A.89) 

and product moment matrices 

 
( )

. . .
1

1

1

, , 1,

T

ij A it A jt A
t

ij ik kk kj

S R R
T

S S A A S A A S i j k
=

−

′=

′ ′= − =

∑
. (A.90) 

This allows one to write (A.87) as 
 . 1 . ˆkt A t A tA R H Rψφ⊥ ⊥′ ′ ′ u= + , (A.91) 
where ˆ ˆ ˆˆt tu A A tε ω ε⊥′= − ′ .  Fixing φ , one estimates ψ by regressing .kt AA R⊥′  on 1 .t AH Rφ ⊥′ ′ , which 
yields 
 ( ) ( ) 1

1. 11.ˆ k A AA S H H S Hψ φ φ φ φ
−

⊥ ⊥ ⊥ ⊥′ ′ ′= . (A.92) 

The factor of the maximized likelihood corresponding to the conditional distribution is, 
apart from a constant,  

 
.2

max

ˆ
A A AT

CL
A A

⊥ ⊥−

⊥ ⊥

Ω
=

′
,  (A.93) 

where 

 
( )

1
.

1

A A A A A A A AA AA

A A A A A A A A
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

−

−
⊥ ⊥ ⊥

Ω = Ω − Ω Ω Ω

′ ′ ′ ′= Ω − Ω Ω Ω ⊥

. (A.94) 

The maximum likelihood estimate of the conditional variance matrix is 

 

( )

.
1

1
. 1. 11. 1 .

1ˆ ˆ ˆ
T

A A A t t
t

kk A k A A k A

u u
T

A S A A S H H S H H S Aφ φ φ φ

⊥ ⊥
=

−
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′Ω =

′ ′ ′ ′ ′ ′= −

∑

⊥

, 

which gives, apart from a constant, the maximized likelihood for the conditional factor as 

 
( ) 1

. 1. 11. 1 .2
max

kk A k A A k AT
C

A S A A S H H S H H S A
L

A A

φ φ φ φ
−

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
−

⊥ ⊥

′ ′ ′ ′ ′ ′−
=

′

⊥
 (A.95) 

 
( ) 1

. 11. 1 . . 1.

11.

kk A A k A kk A k A

A

A S A H S H H S A A S A A S H

A A H S H

φ φ φ φ

φ φ

−
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⊥ ⊥ ⊥ ⊥

′ ′ ′ ′ ′ ′ ′−
=

′ ′ ′
. (A.96) 
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The conditional likelihood is maximized by minimizing (A.96) with respect to φ , which is done 
by solving the eigenvalue problem 
 ( ) 1

11. 1 . . 1. 0A k A kk A k AH S H H S A A S A A S Hλ −
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′− =  (A.97) 

for  and for eigenvectors 1 11 0s r s r p sλ λ λ λ− − + −≥ ≥ ≥ ≥ = = =… … ( )1, , p sV v v −= … , normalized so 

that 11.A p rV H S H V I⊥ ⊥′ ′ = − .  The maximand of the likelihood function is , from 

which one then can recover the parameters 
( )1

ˆ , , r sv vφ −= …

(3.37) to (3.39), and the maximized likelihood 
function for the conditional piece, apart from a constant, is 

 (.2
max

1

1
r s

kk AT
C

i

A S A
L

A A )iλ
−

⊥ ⊥−

=⊥ ⊥

′
=

′ ∏ − . (A.98) 

The maximum of the factor corresponding to the likelihood function for the marginal piece 

based on (A.85) is, apart from a constant, 2
max

ˆ
AAT

ML
A A

−
Ω

=
′

.  The denominator is estimated by  

( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ ˆAA k k kkA A A A A A A R R A A S
T T T

εε′ ′ ′ ′ ′ ′ ′Ω = Ω = Ω = = = A , and thus 

 2
max

T kk
M

A S A
L

A A
− ′

=
′

. (A.99) 

The variance-covariance matrix is then estimated by [ ] [ ]
ˆ ˆ

ˆ
ˆ ˆ

AA AA

A A A A

A A A⊥

⊥ ⊥ ⊥

A⊥ ⊥

⎡ ⎤Ω Ω ′⎢ ⎥Ω =
⎢ ⎥Ω Ω⎣ ⎦

, 

where the estimators of , AAΩ 1
A A AAω

⊥

−= Ω Ω , and 1
.A A A A A A A AA AA⊥ ⊥ ⊥ ⊥ ⊥

−Ω = Ω − Ω Ω Ω
⊥

 are used to 

recover ˆ
AAΩ , , ˆ ˆˆA A AAω

⊥
Ω = Ω ˆ ˆ

AA A A⊥ ⊥
′Ω = Ω , and .

ˆ ˆ ˆˆA A A A A AAω
⊥ ⊥ ⊥ ⊥

Ω = Ω + Ω
⊥

.  

The product of (A.98) and (A.99) yield, apart from a constant, the maximized likelihood  

 (.2
max

1

1
r s

kk kk AT
i

i

A S A A S A
L

A A A A )λ
−

⊥ ⊥−

=⊥ ⊥

′ ′
=

′ ′ ∏ − . (A.100) 

By the same arguments used in (A.48) to (A.51), one can show that 

 .kk kk A
kk

A S A A S A
S

A A A A
⊥ ⊥

⊥ ⊥

′ ′
=

′ ′
 (A.101) 

so that the maximized likelihood function is 

 (2
max

1

1
r s

T
kk i

i

L S )λ
−

−

=

= ∏ − . � (A.102) 

 
THEOREM 3.6:  The likelihood ratio test for  in H(r) is  0H

 ( )( ) ( ) ( )( )( )0 02 lnLR H H r L H L H r= − .  (A.103) 

The constant terms in both cancel, and one can write the likelihood ratio test statistic from (2.15) 
and (A.102),  
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 ( )( ) ( ) ( )0 00
1 1

ˆ| ln ln ln 1 ln 1
r s r

kk i j
i j

LR H H r T S S λ
−

= =

⎧ ⎫
= − + − − −⎨ ⎬

⎩ ⎭
∑ ∑ λ . (A.104) 

The number of free parameters in the unrestricted model for r cointegrating relationships, from 
Theorem 3.2, is 2pr- r

2
.  In the restricted model, AH A Hψφ⊥′ ′ ′Π = +  (from Lemma 7.1 in 

Johansen (1996)) has ((p-s)+(p-s)-(r-s))(r-s) free parameters.  The degrees of freedom for the 
likelihood ratio tests is the difference in free parameters between the unrestricted and restricted 
models, s(2p-s).  So, the likelihood ratio test is asymptotically distributed as 2χ  with 2ps-s

2
 

degrees of freedom. � 
  
PROPOSITION 4.1:  0 :H Hβ φ=  where H p×s is known and φ s×r is unknown, r≤s<p.  That one 

may choose ,H Hβ φ⊥ ⊥⎡= ⎣ ⊥ ⎤⎦  as the orthogonal complement of β was shown is section 4. 

Consider 
 ,G Gβ θ⊥ ⊥⎡ ⎤= ⎣ ⎦   (A.105) 

where G p×q is known and θ (p-q)×(p-r) is unknown.  ,G Gβ θ⊥ ⊥⎡ ⎤= ⎣ ⎦  implies ( ) ( )sp G sp β⊥⊂ , 

which implies .  Setting ( ) ( )sp sp Gβ ⊥⊂ H G⊥= , a p×(p-q) matrix, implies ( ) ( )sp sp Hβ ⊂ , 
which shows this is a test of the form Hβ φ=  where φ is (p-q)×r.  Noting 

0
,

p q

G H
G G H

IG H
φφ

β β θ φ
θ φθ φ⊥ ⊥

−⊥

′ ⎡ ⎤⎡ ⎤′′ ⎡ ⎤= = = ⎢ ⎥⎢ ⎥⎣ ⎦ ′′ ′⎣ ⎦ ⎣ ⎦
 is zero when θ φ⊥=  (that is, φ θ⊥= ) and setting 

s=q-p shows this is test (1) in section 3. � 
  
PROPOSITION 4.2:  0 : ,H H Hβ φ⊥⎡= ⎣ ⎤⎦  where H p×s is known and φ (p-s)×(s-r) is unknown.  That 

one may choose Hβ φ⊥ ⊥= ⊥  was shown in section 4.  Consider 
 Gβ θ⊥ =  (A.106) 
where G is a known p×q matrix and θ is an unknown q×(p-r) matrix;  Gβ θ⊥ =  implies 

, which implies ( ) (sp sp Gβ⊥ ⊂ ) ( ) ( )sp G sp β⊥ ⊂ .  Setting the H G⊥= , a p×(p-q) matrix, 

implies ( ) ( )sp H sp β⊂ , which shows this is a test of the form [ ],Hβ ζ=  where ζ  is r-(p-q). 

Noting [ ] [ ] [ ] ( ), , 0, 0 ,p r p qG H G H G G Gβ β θ ζ θ θ ζ φ θ ζ θ ζ− × −⊥ ⊥ ⊥′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′⎡ ⎤= = = = ⎣ ⎦  is zero when 

( ) 1G G Gζ φ−
⊥ ⊥ ⊥ ⊥′=  and setting s=q-p shows this is test (1) in section 3. � 

 
The other propositions in section 4 are combinations of the above propositions using α and β. 
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