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Abstract        
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that sum to either GDP or GDI and compare the two in order to see where the discrepancy 
resides.  We find a few “problem” industries that appear to explain most of the statistical 
discrepancy.  Second, we explore what combination of the expenditure data and the income data 
seem to produce the most sensible data according to a few economic criteria.  A mixture of data 
that do not aggregate either to GDP or to GDI appears optimal. 
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 A man with one watch knows what time it is; 
 A man with two watches is never quite sure. 
  ―French Proverb 
I. Introduction 

 The Bureau of Economic Analysis (BEA) publishes two measures of domestic 

output.  The better known measure, gross domestic product (GDP), is the sum of private 

and government consumption and investment (including inventory investment) and net 

exports.  A second measure, gross domestic income (GDI), is the sum of factor and 

nonfactor payments paid to input providers; these payments include compensation, 

profits and profit-like income, production and import taxes (formerly known as indirect 

business taxes), and the consumption of fixed capital.  GDP and GDI conceptually 

measure the same thing, but because the two are calculated using imperfect source data, 

the two measures differ by what is called the statistical discrepancy. 

 Historically, the level of the statistical discrepancy has been small relative to GDP 

or GDI.  As shown in the upper panel of chart 1, the absolute value of the statistical 

discrepancy as a fraction of the average of nominal GDP and nominal GDI peaked at 

2.1 percent in 1993.  From 1977 to 2001, the fraction averaged 0.8 percent with a 

standard deviation of 0.9 percent. 

Nonetheless, different movements in real GDP and in real GDI can be 

economically meaningful.  The bottom panel of chart 1 plots the average annual growth 

rates of real GDP and GDI.  Although the movements of the two appear to coincide from 

year to year, between 1994 and 2000, real GDI grew on average ½ percentage point 

(annual rate) faster than real GDP, which is sizeable when compared to the average 

growth rate of the two series of 4.1 percent. 
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  The recent difference in the growth rates of the two measures of domestic product 

has been a problem for policymakers.  The two measures imply different paths for 

productivity and potential output, which are important for planning purposes.  Many 

analysts have pointed to the rapid rate of growth of GDI as being more consistent with 

the expected productivity gains from investment in high-tech equipment.  Problems for 

analysts are especially acute when they need to combine data from the expenditure and 

income accounts, such as when modeling the components of national saving or projecting 

tax receipts.  Indeed, the Congressional Budget Office points to the large swing in the 

statistical discrepancy as a substantial hindrance in its ability to forecast tax revenue in 

the past few years (CBO, 2003).  The statistical discrepancy also leads to inconsistencies 

when analyzing particular types of income as a share of GDP. 

 Finally, the existence of the statistical discrepancy is a problem for researchers 

trying to reconcile their estimates of productivity trends by industry using data measured 

on the income side with aggregate estimates of productivity trends that are based on 

product-side measures.   Bartelsman and Beaulieu (2004), Bosworth and Triplett (2003), 

and Nordhaus (2000) use the BEA’s Gross Domestic Product by Industry data (2003 or 

earlier) to model industry-level productivity.  These data aggregate to GDI, making it 

hard to compare their results to the BLS’s measure of productivity in the nonfarm 

business sector, which equals GDP less the value added from a few select sectors.1 

 Several researchers have speculated on the data deficiencies that have led to the 

statistical discrepancy.  GDP may be mismeasured because estimating the consumption 

                                                 
1 Despite what one may infer from the name “Gross Domestic Product by Industry” the industry estimates 
in this dataset aggregate to GDI.  A balancing item is included in this dataset, but this discrepancy is not 
allocated across industries; see Yuskavage and Strassner (2003).  The BEA has recently altered its 
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of services is difficult (Council of Economic Advisers, 1997; Moulton, 2000) or exports 

are underreported (Moulton, 2000).  GDI may be mismeasured because purging income 

of capital gains, which do not represent current production, is hard (Baker, 1998; 

Moulton, 2000), because stock options and other nontraditional forms of compensation 

show up in the compensation statistics without an offset in the profits data (Baker, 1998; 

Moulton, 2000), or because measures of proprietors’ income have to be adjusted for 

underreporting in the tax return data.  These adjustments to proprietors’ income are based 

on an outdated and discontinued study (Council of Economic Advisers, 1997).  Many of 

these explanations appear to be confirmed in Klein and Makino (2000), who find that the 

statistical discrepancy is inversely related to profits and proprietors’ income and 

positively related to government spending and exports.2 

The BEA prefers GDP as its measure of domestic output.  Parker and Seskin 

(1997) write: 

 [The BEA] considers the source data underlying the estimates of GDP to 
be more accurate.  For example, most of the annual source data used for 
estimating GDP are based on complete enumerations, such as the Federal 
Government budget data, or are regularly adjusted to complete 
enumerations, such as the quinquennial economic censuses and census of 
governments….For GDI, only the annual tabulations of employment tax 
returns and Federal Government budget data are complete enumerations, 
and only farm proprietors’ income and State and local government budget 
data are regularly adjusted to complete enumerations.  For most of the 
remaining components of GDI, the annual source data are tabulations of 
samples of income tax returns. 
 

This view is reflected in the presentation of the NIPAs.  The BEA presents only GDP-

related data in its summary tables, and in its decomposition of national income, it 

                                                                                                                                                 
methodology to produce industry data, and its latest estimates of these data now aggregate to GDP; see 
Lawson, et al. (2004). 
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portrays the statistical discrepancy as if it were all an error in the measurement of income 

vis-à-vis GDP.  A few years ago, the BLS appeared to adopt this view when it switched 

its definition of nonfarm business output in its Productivity and Cost release from one 

based on GDI to one based on GDP, as described in Dean, Harper and Otto (1995). 

 Others, however, have argued that GDI has more desirable properties, at least at 

certain points in time.  The Council of Economic Advisers (1997) found that the behavior 

of Okun’s law, the sharp jump in personal tax payments, and the behavior of the real 

product wage were more consistent with the faster growing GDI measure of output in the 

mid 1990s, as measured at that time.  During that same period, Greenspan (2004) 

observed that the rapid rise in measured labor and capital income, along with quiescent 

price inflation, suggested that productivity was increasing briskly.  These productivity 

gains were apparent in the income-side measure, but not in the product-side measure of 

domestic output.  Based on their time-series properties, Weale (1992) argued that GDI 

should be weighted almost twice as much as GDP in an optimal combination of the two 

measures into a single output series. 

The paper presents two sets of exercises. One is to conduct a “forensic” 

examination of the statistical discrepancy by allocating the statistical discrepancy across 

industries; perhaps, we can lessen the size of the aggregate discrepancy through focused, 

improved measurement at the industry level.  Next, we present some metrics that allow us 

to evaluate a sequence of datasets created under varying assumptions regarding the 

quality of the underlying data sources.  Optimizing on these metrics should provide one, 

best, coherent dataset to conduct further research.  

                                                                                                                                                 
2 Recall the convention that more GDP relative to GDI leads to a more positive statistical discrepancy; 
more GDI leads to a more negative discrepancy. 
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The structure of the paper is as follows. In section 2 we describe the underlying 

source data, the manipulations to the data undertaken to make the sources consistent in 

classifications and definitions, and the method used to integrate the varying source data.  

In section 3, we compare estimates of value added by industry from a consistent dataset 

controlled to GDP data with value added by industry from a consistent dataset controlled 

to GDI data to calculate statistical discrepancies by industry.  Two sets of estimates of 

deliveries to final demand by industry also yield statistical discrepancies by industry. 

Similarly, we compare our two sets of estimates of final demand by major expenditure 

category.  It appears that the mismeasurement of deliveries to final demand and value 

added in a few problem industries explains most of the broad movements in the aggregate 

discrepancy.  In the following section, we discuss the metrics used to find an optimal 

combination of the GDP and GDI data to create an integrated dataset.  These metrics are 

based on standard economic arguments.  We find that a mixture of data that do not 

aggregate either to GDP or to GDI appears to generate a dataset that yields the best 

results.  The fifth section concludes. 

 

II. Methodology and Data 

 The main goal of the paper is to construct and compare consistent, integrated 

datasets of the U.S. economy.  We take “dataset” to mean detailed information on the 

gross output, value added, final demand expenditures, and use of intermediate inputs by 

industry.  We define a “consistent” dataset to be one where the underlying components 

are based on the same definitions and industry classifications.  And by “integrated”, we 
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mean that, despite the numerous data sources employed, the estimates conform to the 

accounting identities linking production, income, and expenditures.   

 Integration is not a unique transformation of the data, and so, different 

assumptions and methods to enforce integration can yield different estimates.  We have 

built into our integration technique “tuning parameters” that summarize the specific 

assumptions that we use to obtain unique estimates.  Adjusting these “tuning parameters” 

allows us to obtain different consistent, integrated datasets.  In section 3, we compare two 

datasets based on polar assumptions: one integrates the data assuming that detailed GDP 

expenditures are correct; the other case assumes that income by industry (summing to 

GDI) are correct. In section 4, we estimate numerous datasets by varying the tuning 

parameters between the polar cases to compare their performance on predefined criteria.  

 It should be noted that the integration exercises are carried out on nominal data 

and that any comparisons made in real terms are based on the same deflators applied to 

either side of the comparison.  Issues concerning how price and quantities can be 

consistently aggregated are considered in Moyer, Reinsdorf, and Yuskavage (2004). 

 The rest of this section describes the data and method employed to conduct our 

analysis.  The first subsection illustrates our input-output system that defines the 

components of our dataset.  The second subsection describes the sources of our initial 

estimates of these components and the manipulations we made to make them consistent.  

The final subsection describes the methodology used to integrate the source data to 

satisfy the constraints in our input-output system. 
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II.1.  Our Input-Output System 

 The input-output system that describes the dataset used in this study is shown in 

Figure 1. Domestic industries, represented as the first N rows of the table, produce gross 

output (vector Y) and deliver it to final demand (matrix F) or to other domestic industries, 

(matrix I ), who use it as intermediate inputs in their production processes.  The fact that 

the sum of each industry’s deliveries to final demand and to other industries equals its 

gross output is called the gross output identity. The value added of an industry equals its 

gross output less the sum of its use of intermediate inputs (value added identity).  The 

sum across industries of deliveries to final demand equals GDP (GDP identity), and the 

sum of value added across industries equals GDI (GDI identity).  The reconciliation 

identity that integrates the system is that GDP equals GDI.  

Figure 1 
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 The first N rows of the system represent flows of goods from domestic industries.  

In order to simplify the exposition of our analysis, we account for the flows of imported 

goods in a nonstandard fashion:  Imported goods that are used in the production process 

of domestic industries or that are delivered to final domestic purchasers are the product of 

a separate industry, called Not Domestic Production, which is the last row of the upper 

blocks.  Deliveries of imports to domestic industries or to domestic purchasers are 

positive entries in the input-output system.  The final demand category, imports, has an 

offsetting negative entry, so that the gross output of imports is zero.  Note that, by 

definition, domestic industries do not deliver any output to the final demand category, 

imports, and so, the first N rows of the import column contain zeros. 

In addition, used and secondhand goods and scrap show up in the input-output 

accounts.  They are used as intermediates to the production process and are either 

delivered to or supplied by the final demand categories.  They do not represent new 

production, so like imports, their gross output equals zero.  Negative entries represent net 

suppliers of the goods; positive entries represent net users.  For example, businesses scrap 

some of their equipment each year, and so, the final expenditure category, business fixed 

investment, is a net supplier of used and secondhand goods and scrap.  These commodity 

flows are also included in the pseudo industry Not Domestic Production. 

I I.2.  Developing consistent initial dataset 

 In order to conduct our analysis, we need to populate the elements of the input-

output system with initial values using consistent definitions.  As described below, these 

initial values come from different published sources that do not match precisely in terms 

of definitions, accounting conventions, basis for data collection, or product and industry 
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classifications.  The GDP and GDI data for the years 1977 through 2001 come from the 

recently released benchmark NIPA data.  Other data were adapted or created from the 

latest published data source from the BEA.   

II.2.a.  Value added by industry 

 Value added for farms, private households, and owner-occupied housing, come 

directly from the NIPAs.  Value added for owner-occupied housing was subtracted out of 

the real estate industry and placed in its own industry (before further aggregation).  For 

other industries, estimates of value added by industry are sourced from the BEA’s 2003 

Gross Domestic Product by Industry dataset.  Pre-1987 data were concorded to the 1987 

SIC as in Bartelsman and Beaulieu (2004).  All of the income components were adjusted 

proportionately so that they sum to the latest aggregate estimates.  

 Value added in the real estate industry was also adjusted to exclude the imputed 

rental value of capital equipment and structures owned by nonprofit institutions.  Instead, 

this imputed income was distributed to industries according to estimates of the 

compensation paid by nonprofit institutions by industry, as estimated in Bartelsman and 

Beaulieu (2004).  Redistributing this income is useful because the final expenditures on 

many of the products produced by nonprofit institutions are not identified as to whether 

they were produced in the nonprofit sector or in the business sector, and so, these 

expenditures will not show up as coming from the real estate sector.   

 In putting together its Gross Domestic Product by Industry dataset, the BEA had 

to adjust some of its source data to put the dataset consistently on an establishment basis.  

In particular, the original information on corporate profits, nonfarm proprietors’ income, 

net interest paid, and capital consumption allowances are measured on a firm basis (U.S. 
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Bureau of Economic Analysis, 2001, pp. M21-M22).  Other data, such as gross output 

and compensation paid, are measured on an establishment basis.  The same income 

components collected on these two bases for the same industry will differ when firms in 

that industry have extensive operations in different lines of work.  Data collected at the 

establishment level will split a multi-establishment firm into different industries, but data 

collected on a firm basis will put all of the firm’s operations into one industry.  For its 

GDP by Industry dataset (2003), the BEA adjusted the source data to put all of it on an 

establishment basis using a cross-classification table.  But, these are difficult adjustments 

to make, and this adjustment could be a source of error in allocating domestic data among 

industries.  The finance industry is one where the distinction between firm and 

establishment data is particularly important (see Bartelsman and Beaulieu, 2004). 

II.2.b.  Deliveries to final demand by industry 

No published data on deliveries to final demand by industry exist, and so, 

estimates based on detailed NIPA expenditure and input-output data had to be developed.  

First, detailed NIPA data on all expenditures, except software investment, construction, 

and inventory investment, were allocated to the input-output tables’ commodity 

classification system.  These mappings are called “bridge tables”, the construction of 

which is described in detail below.  The second step involves dividing final expenditures 

between domestically produced and imported commodities.  Third, estimates of 

deliveries of commodities were converted to deliveries by industries.   The domestic 

production of each commodity is converted to an industry basis using the 1987 and 1992 

make tables, and these industries are then aggregated to the definitions in Appendix A.  
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Imports of all commodities are aggregated into one industry, called Not Domestic 

Production. 

 The method used to estimate the bridge tables differs by expenditure category.  

For personal consumption and equipment investment (including residential equipment), 

detailed bridge tables were published by the BEA for 1987 and 1992.  These bridge tables 

include the fraction of expenditures due to transportation and trade margins; these 

margins are treated as a separate commodity delivered to the specific expenditure 

category.  For exports, imports, and government expenditures, bridge tables were created 

by assigning commodities to specific NIPA categories using the 1987 and 1992 use tables 

to estimate specific proportions.  For exports and imports of goods, NIPA expenditures 

were disaggregated to more detailed Census categories using information in the Census 

report on International Trade in Goods and Services; I-O commodities were assigned to 

these more detailed Census categories.  Export margins for wholesale trade and goods 

transportation were allocated across expenditure categories in the same proportion as 

total margins to all goods exports as shown in the use tables.   

 Bridge tables for government consumption were built by first assigning the 

consumption of fixed capital and the compensation paid to general government 

employees, excluding own-account investment to the general government industry.  

Compensation paid to employees for own-account investment is treated with other 

government investment.  Commodities with positive values in the I-O use tables were 

assigned to government purchases of intermediate durables, nondurables, and services, 

depending on the commodity’s characteristics.  Commodities with negative values in the 
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I-O use table were assigned to government sales.3  Netting out government sales from 

intermediate purchases yields government consumption excluding its own value added.  

The NIPA data on federal nondefense, nondurable consumption were augmented with 

data from the Energy Information Agency to account for purchases and sales from the 

Strategic Petroleum Reserve.  As with trade, margins were distributed to all expenditure 

categories in fixed proportions. 

Bridge tables for government investment were created by first splitting own-

account investment into equipment and structures using pre-revision data on 

compensation paid to force-account construction.  Own-account investment originates 

from the general government.  The remaining investment in structures was assigned to 

the construction industry, and the remaining investment in equipment was split among 

commodities using relative proportions in the 1987 and 1992 I-O use tables.   

Imports are different than other expenditure categories in that all imports are 

counted as coming from one industry.  However, it is necessary to allocate a fraction of 

imports to the domestic final purchases categories and the rest to intermediate inputs to 

domestic production in order to estimate the fraction of each commodity delivered to 

final demand that was produced domestically versus imported.  This split was done by 

assuming that the fraction of an imported commodity delivered to final demand 

categories versus to domestic industries is the same as that observed in the I-O use tables. 

The rest of final demand is then assumed to be produced domestically. 

The production of each commodity was then converted to an industry basis using 

the 1987 and 1992 I-O make tables.  We assumed that the proportion of each commodity 

                                                 
3 The NIPAs provide more detail on intermediate purchases for federal defense and the sales by state and 
local governments that are used to refine these assignments. 
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that was produced by the I-O industry was the same as indicated in the make tables.  

Using 1987 and 1992 data produces two estimates.  For the years 1987 and before we 

used the estimates based on the 1987 tables; for the years 1992 and after we used the 

estimates based on the 1992 tables.  For the years in between, we used a weighted 

average of the two, where the weights are based on the distance from each benchmark 

year.  These industry estimates were then aggregated to the industry definitions as in 

Appendix A. 

Residential and nonresidential investment in structures by industry had to be 

estimated in a different manner than would follow from the published input-output tables.  

Some expenditure categories were assigned directly to specific industries: drilling and 

exploration to mining, mobile homes to the appropriate manufacturing industry, and 

commissions to real estate.  

The I-O tables appear to suggest that the remainder of investment in structures 

originates in the construction industry, but this is not correct.  For construction, the I-O 

tables make an exception to the rule that production is classified according to the primary 

output of an establishment.  Instead, the tables classify all construction regardless of the 

primary output of an establishment to the construction industry, a classification scheme 

known as activity based.  Most of the rest of the input-output data are essentially 

organized on an establishment basis.4  Chart 2 illustrates the problem with mixing 

establishment-based classifications and activity-based classifications: domestic 

investment in structures, excluding government own-account investment in structures 

                                                 
4 Farms and real estate services are the other industries in the input-output tables that are defined on an 
activity basis instead of an establishment basis.  The farm industry, however, is consistently treated in the 
NIPAs.  All royalty income, regardless of its origination, is counted in the real estate industry, but this is 
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exceeds the BEA’s estimate of gross output in the construction industry.  Consequently, 

we have to estimate how much of private structures investment originates in the 

construction industry versus other industries.  

The value of deliveries to final demand by the construction industry was 

calculated as a fraction of BEA’s estimate of gross output.  This equals the interpolated 

values of one minus the ratio of receipts for maintenance and repair to total sales in the 

Censuses of Construction (1977, 1982, 1987, 1992, and 1997). 

The remainder of investment in structures was assigned to other industries based 

on their share of employment of construction workers in 2001 (from the BLS 

occupational survey) times the BEA’s estimate of the real wealth stock of structures by 

industry.  Including the real wealth stock allows the indicators used to allocate the 

estimate of force-account construction to vary over time.   

Software investment was allocated across industries by first splitting investment 

into two components: own account and purchased software using the BEA’s detailed new 

investment-by-industry data.  Own-account investment was then allocated across 

industries using these data.  Purchased software was distributed to industries using the 

1987 and 1992 make tables; 98 percent of the production of purchased software in 1992 

was assigned to the data-processing services industry, SIC 737. 

Inventory investment was allocated to industries based on published NIPA data.  

Farm inventories were assigned to farms.  Manufacturing inventory investment was 

allocated among manufacturing industries using book value data from the Annual Survey 

of Manufacturers (ASM).  ASM data reported on a NAICS basis or on the 1977 SIC were 

                                                                                                                                                 
the same treatment in the GDP by Industry data.  Thus, adjustments are not necessary to improve the 
consistency of these industry estimates. 
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concorded to the 1987 SIC using available concordances.  Wholesale and retail trade 

inventories were simply assigned to the trade industry.  The remainder of inventory 

investment was allocated among other industries using data from the Sources of Income 

(Department of Treasury) for 1995-1997.  Shares for other years were assumed to equal 

either the 1995 or 1997 value. 

 Table 1 describes how well our bridge tables translate the available detailed NIPA 

expenditure data into deliveries to final demand by industry.  As shown in the first row, 

personal consumption expenditures were $3,100.2 billion in 1987.  The BEA breaks up 

total PCE into 141 categories, such as sporting equipment, sugar and sweets purchased 

for off-premise consumption, and spending on theater and opera performances.  On 

average, each of the 141 detailed categories was divided among 6.1 industries.  One 

quarter of PCE was in expenditure categories that were allocated all to just one industry.  

Another 22-1/2 percent of PCE was in categories where over 95 percent of the category 

was allocated to one industry (fifth column).  Only 10-1/2 percent of PCE was in 

categories that were so diffuse that the largest industry did not account for half of the 

category (ninth column). 

 The bridge tables contain a lot of structure that constrains how relative errors in 

the bridge tables can affect our estimates of deliveries to final demand by industry.  For 

example, the value added of the general government, which the BEA publishes, maps to 

only one industry, and so, conditional on this published value, this category cannot 

contribute to an error in our estimates.  To take another example, PCE radio and 

television repair services are estimated to be produced by three industries ― personal 

services, business services, and machinery manufacturing ― with personal services 
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accounting for 95 percent of final demand.  As a result, for this category of consumption, 

a large relative error in the bridge table for business services and machinery 

manufacturing can have only a small effect on the estimated deliveries of personal 

services. 

 To see how errors in the bridge table can translate into variation in our estimates 

of deliveries to final demand by industry, we performed the following experiment.  We 

multiplied the cell values in our 1987 bridge tables by lognormally distributed errors so 

that the standard deviation of the cell values was 10 percent, and then we recontrolled the 

bridge tables so that the sum across industries equaled the published values of the 

detailed expenditure categories.  We then recalculated the implied deliveries to final 

demand.  We repeated this procedure 2,500 times.  As shown in the last column of the 

table, a 10 percent random error in the bridge tables translates to only an average 

variation of deliveries by industry to PCE of 2.4 percent.   

 Other major categories are not measured as well.  For equipment investment a 

10 percent error in the bridge table leads to an average standard deviation of 6.7 percent 

in deliveries to final demand by industry. This weaker performance is like due to the 

poorer precision in the equipment investment bridge table.  On average, there are 11-1/2 

industries per category, and three-quarters of equipment investment is spread among 

categories where the dominant industry accounts for less than 75 percent spending.  For 

all of GDP, a 10 percent error in the bridge tables translates to a 3.3 percent error in 

deliveries to final demand by industry. 
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II.2.c.  Gross output by industry 

 Estimates of gross output by industry come mainly from the published GDP by 

Industry data, except for farms, owner-occupied housing, general government, and 

households, which are available or easily estimated from NIPA data.  In a few early 

years, the estimate of value added by the legal services industry was higher than the 

estimate of gross output.  To allow our analysis to proceed, we boosted the value of gross 

output so that it exceeds value added by at least 5 percent, a figure consistent with the 

1987 I-O use table. 

II.2.d.  Intermediate inputs 

 The starting point for constructing the intermediate block of the consistent dataset 

is the use table from the published BEA benchmark Input-Output data. Unlike the vectors 

and matrices for gross output, deliveries to final demand, and value added, the initial 

values for the intermediate block, I, are calculated only for the base years 1982, 1987, 

and 1992.  Initial values for other years are developed iteratively using results from the 

balancing routine described in the next subsection. 

 Initial values for the base years were calculated twice and then averaged to get 

one estimate.  The first estimate allocates the vector of gross output less deliveries to final 

demand (Y-F) across the columns of I in proportion to the values observed in the 1982, 

1987, or 1992 use tables.  The second estimate allocates the vector of gross output less 

value added (Y’-V) across the rows of I, also in proportion to the values observed in the 

corresponding use tables.  These two estimates, one of which can be thought of as 

consistent with the expenditure-side data, the other as consistent with the income-side 

data, are then combined by taking a geometric average of the two values cell by cell.  
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 The resulting benchmark-year, initial estimates of I are adjusted to subtract out 

the intermediate value of software purchases, which are now counted as final demand 

(see Bartelsman and Beaulieu, 2004), and adjusted to allocate own-account construction 

to the appropriate industries.  Further, the values in the columns from the use table for 

transportation margins and distribution margins are entered as intermediate purchases by 

the industry purchasing the relevant input and as sales to other industries by the “margin 

industries”, such as water and rail transport or retail trade.  

II.3.  Integrating the data 

 The consistent input-output dataset populated with initial values is adjusted, or 

integrated, so that the various constraints in the input-output system are satisfied with cell 

values “close” to the initial estimates.  Specifically, we choose values for each element in 

the input-output system to minimize the weighted sum of squares of the difference with 

its initial estimate subject to the linear constraints.  The inverse of the weights equals the 

absolute value of the cell times a “tuning” parameter; these tuning parameters are what 

we use to control the integration process.  The closer the tuning parameter is to zero, the 

more we restrict the final estimate to lie close to the initial estimate.  If the tuning 

parameter equals zero, the value of the cell is not adjusted.  This solution technique is a 

straight forward generalization of the least-squares method first proposed by Stone, 

Champernowne, and Meade (1942). 

 Formally, denote the initial estimates of each element of the vectors and matrices 

of the input-output system with a bar.  We solve: 
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If σ equals zero, then the weight becomes a Lagrange multiplier and the fact that the cell 

value equals its initial value becomes another restriction in the minimization problem. 

 As indicated in equation (1), because the inverse of the weights are proportional 

to the initial values, initial values that are equal to zero are restricted to remain zero.  In 

our application we restrict the values of σ to be the same for all elements of the same 

vector or matrix.  For example, all values of σ for the value-added vector are equal to σV, 

with one exception that is described in the next section.  One could also allow these 

parameters to differ across industries, for instance, if there was some idea that some 

industries were measured better than others, but we do not pursue this angle.  Finally, it 

should be obvious from equation (1) that only the relative values of σ matter; doubling all 

of them does not change the solution.  Thus, we standardize the parameters by setting 

σI = 1.  Furthermore, to focus our analysis we only consider σY = 0; this leave a pair of 

tuning parameters { },F Vσ σ to vary. 

Other solution techniques have been used for similar problems.  In particular, a 

popular routine is the so-called RAS iterative solution.  In the traditional RAS or bi-

proportional balancing method used for integration, differences between ‘control’ totals 
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and the sum of unadjusted data in one dimension are iteratively applied to proportionally 

adjust data in the other dimension until both restrictions are satisfied within a prescribed 

tolerance level.  Unlike our technique, the iterative RAS method does not have a natural 

role for tuning parameters.5  In addition, a problem with the RAS method arises when the 

controls do not sum to the same total; in practice, one or both of the controls are adjusted 

to coincide before the RAS procedure is applied.  In our method, the ‘controls’ are not 

adjusted before minimization; instead, our routine adjusts the controls simultaneously 

with the other estimates as specified by the tuning parameters. 

 As noted in the previous subsection, our estimation procedure is dynamic in that 

our initial estimates of tI depend on the final results for other years when t ≠ 1982, 1987, 

1992.  We first estimate the system for 1982 and then move backwards in time to 1977 

and forwards in time to 1986, using the final estimate of 1tI ±  as a basis for tI .  

Specifically tI  is calculated by adapting 1tI ±  for demand changes in the various columns 

by multiplying each cell of 1tI ±

1

by the ratio of real gross output of column j in period t to 

real output of j in period t ± .  The matrix 1tI ± is also adapted for price changes in the 

various rows by multiplying each cell by the ratio of the gross output deflators for row i 

in period t to the output deflator in period t ± .  The same process is repeated starting in 

1987 for the years 1983-1991 and starting in 1992 for the years 1988-2001.  This 

1

                                                 
5 The iterative RAS solution is the solution of a minimization problem subject to the biproportional 
constraint, where instead of minimizing quadratic differences, the entropy kernel is used.  Schneider and 
Zenios (1990) credit a Russian mathematician Bregman for this result, although the fact that the first-order 
conditions for the minimization problem yield the RAS iterative solution is not difficult to illustrate; see for 
example Günlük-Şenesen and Bates (1988).  One could therefore weight the entropy kernel to allow for 
tuning parameters, though this would complicate the iterative technique to arrive at a solution.  Bartelsman 
and Beaulieu (2003) explore some of the implications of the choice of balancing technique; see also 
Schneider and Zenios. 
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produces two sets of estimates, in current dollars, for 1983-1986 and for 1988-1991; 

these estimates are averaged to obtain one series of tI for 1977-2001. 

 

III. Results controlled to the GDP or GDI data 

 Equation (1) was first estimated under two sets of tuning parameters.  The first 

set: { }0; 1F Vσ σ= = 6 means that we controlled the estimates to the expenditure-side 

data, and it leads to estimates of industry value added and deliveries to final demand that 

add to GDP.  We allow the initial income-side value-added estimates to inform our final 

estimates, but with 1V Iσ σ= =  the routine treats the estimates of value added 

symmetrically with the initial estimates of I.  The second set of tuning parameters: 

{ }1; 0F Vσ σ= =

MI

 implies that we controlled the estimates to the income-side data; it 

leads to estimates of industry value added and deliveries to final demand that sum to 

GDI.  In both cases, because the income and gross output of these 

industries are already integrated between the expenditure and income accounts.  Early 

experiments with the estimation procedure gave estimates for the Not Domestic 

Production industry that tended to drift.  With both negative and positive values for 

deliveries of this series tied down only to sum to zero, the estimates of this industry can 

be volatile.  As a result,  if it otherwise is not equal to zero.  

Thus, we allow only small differences from the initial estimates for this industry, and it 

means that our estimate for the statistical discrepancy for imports essentially equals zero. 

.
Y V

SC MIσ σ=

NDPσ σ

. 0SC

V F
NDP= =

=

                                                

0.00001

 
6 Recall that in all of our estimates σY= 0 and σI = 1. 
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 Chart 3 plots the difference of the two estimates for each industry’s deliveries to 

final demand in the left column of the panel and the difference of the two estimates for 

each industry’s value added in the right panel.  Using the convention used in the 

definition of the overall discrepancy, the chart plots the difference in the first measure, 

which  aggregates to GDP, less the second measure, which aggregates to GDI.  Each of 

these differences can be considered statistical discrepancies by industry.  The economy-

wide statistical discrepancy is also plotted in all of the panels. 

For most industries, the industry discrepancies are small relative to the overall 

discrepancy.  Three industries, however, stand out: Machinery and Instruments, Trade, 

and Finance and Insurance, where the pattern of deliveries to final demand and value 

added appear to move with the total discrepancy.  Indeed, as shown in chart 4, the 

difference in value added of the combination of these three “problem” industries, moved 

up in the early 1990s and dropped sharply subsequently, more so than the total 

discrepancy.  The coincidence with the discrepancy in deliveries to final demand is not as 

sharp.  The difference in deliveries to final demand of the problem industries remained 

flat in the first half of the 1990s, but like value added, the difference dropped sharply 

after 1996. 

 The fact that these three industries, Machinery and Instruments, Trade, and 

Finance and Insurance, show up as problem industries is not surprising.  The Machinery 

and Instruments industry has evolved significantly over the last twenty-five years as 

productivity growth in high-tech industries has been substantial.  Profit swings have been 

significant, and the adjustment of industry profits from a firm basis to an establishment 

basis is probably difficult.  The semiconductor industry is particularly challenging as 
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several firms have become “fabless.”  These firms develop products but contract out their 

production to overseas fabrication plants.  Morgan Stanley estimates that about 

15 percent of the industry’s worldwide revenue is derived from products outsourced to 

different firms (Edelstone, et al, 2003); much of this figure represents U.S. firm 

contracting with overseas foundries.  Morgan Stanley expects this share to double by 

2010. 

 The difficulties with the Trade industry likely relate to the accounting for margins 

on products sold.  To the extent that these differences represent margins on domestic 

products, there is a corresponding offset in the difference between the two measures in 

the domestic industries producing the output.  If this is the reason for the discrepancy in 

the trade sector, then it cannot be a source for the economy-wide discrepancy.  On the 

other hand, if the differences arise from different margins on imported products, 

difficulties in tracing these products from imports to deliveries to domestic purchasers 

could be a source of the overall discrepancy.  

 Finance and Insurance is clearly an industry fraught with measurement 

difficulties.  A good deal of banking services is not explicitly charged for.  Banks offer 

services like “free checking” to its customers because it can make money by lending the 

balances that customers leave in their accounts; customers choose to deposit their money 

in banks instead of lending it at higher rates to take advantage of the convenience of 

checking.  The BEA has made substantial improvements to its estimation of imputed 

bank service charges in PCE and government consumption to account for these services 

(Fixler, Reinsdorf, and Smith, 2003); however, the division of these services between 

final demand and intermediate inputs to business is probably still imprecise.  The 
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accounting for insurance services is likewise difficult.  The same issue of imputed 

intermediation services arises in insurance.  Moreover, the true value of insurance 

services are not realized only when claims are paid; there is a continual flow of services.  

Over the long run, the difference in premiums received less claims paid equals the 

services provided.  How to estimate the evolution of these services over time is a thorny 

problem; the BEA has also improved its measures of deliveries to final demand of 

property-casualty insurance in the latest revision (Chen and Fixler, 2003).  On the income 

side, adjusting for capital gains has to be more difficult in the Finance and Insurance 

industry than in any other. Another complication may be the allocation of profits of large 

firms, such as GE, General Motors and Ford, with establishments that operate in finance 

and in manufacturing. 

 A few other industries show some important differences that are not related to the 

overall discrepancy.  Since 1995, deliveries to final demand of Chemicals, Refining, and 

Rubber and Plastics controlled to expenditure-side aggregates has risen sharply relative 

to estimated deliveries controlled to income-side aggregates, while for Communications, 

the opposite is true.  Over the same period, the value-added statistical discrepancy in 

Mining and in Health Services has increased rapidly, helping to offset some of the sharp 

decline in the statistical discrepancy of the problem industries.   

 Chart 5 plots the difference in the estimates of total deliveries to final demand by 

major expenditure categories.  As is evident in the chart, essentially all of the run-up in 

the aggregate discrepancy in the first half of the 1990’s occurred in PCE; much of the 

subsequent decline in the aggregate is also reflected in PCE.  At the same time, however, 

the statistical discrepancy in private fixed investment also has trended down because of 
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problems in the Machinery and Instruments industry.  In 2001, there is an anomalous 

jump in the discrepancy in private fixed investment.  Most of this is also in the 

Machinery and Instruments industry, but about $10 billion of this jump comes from 

Business Services, which includes software makers.  As such, the post-Y2K slowdown in 

high-tech shows up more strongly in the dataset controlled to income measures than in 

the dataset controlled to expenditure measures. 

IV. Optimal Combination of the Data 

 In contrast to the exercise in the previous section, we now consider tuning 

parameters chosen to allow both value added by industry and final demand data to 

deviate from their initial estimates. The exercise is to search for a set of tuning 

parameters that provides an optimal result with respect to metrics based on desirable 

economic properties. The economic properties that we consider concerns: 

• the equalization of returns to capital; 
• the orthogonality of total factor productivity shocks; and  
• the stability of the intermediate block. 

Our strategy is to estimate a series of consistent, integrated datasets under different 

assumptions for the tuning parameters { },F Vσ σ .. For the input-output systems integrated 

under a particular set of tuning parameters, we calculate a statistic to evaluate the 

performance of the estimates with respect to each of the three economic properties.  The 

input-output system with the statistics closest to their theoretical values is considered 

optimal. 

IV.1.  Equalization of returns to capital 

 The idea that returns to capital should be equalized across industries is 

straightforward.  Simple arbitrage requires industries with below-average returns to sell 
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their capital to industries with above-average returns to take advantage of the more 

profitable activity.  Of course, if capital cannot be changed instantaneously because of 

adjustment costs, a putty-clay technology, or the quasi-fixity of capital, then the simple 

arbitrage argument breaks down.  The fact that we do not estimate equalized capital 

returns under any calculation suggests that something more than data mismeasurement is 

needed to explain cross-sectional variation in capital returns.  Nonetheless, data 

mismeasurement probably widens the distribution of returns; estimates that minimize the 

variation are indicative of an optimal combination of the expenditure-side and income-

side data with respect to this metric. 

 To measure the performance of each integrated estimate, we calculate the return 

to capital for each year.  We exclude Government Enterprises, Miscellaneous Industries, 

and Not Domestic Production from consideration because there is no presumption of 

profit maximizing behavior in these industries.  For each year we calculate the variance 

of returns across industries and then average the variance over the 1977-2001 period. 

 The return to capital is defined as capital income divided by an estimate of the 

wealth stock.  Capital income equals value added less compensation paid to all types of 

labor less non-capital taxes on production and imports plus government subsidies.  These 

data come from Bartelsman-Beaulieu (2004) as adapted from the Gross Domestic 

Product by Industry data.  Compensation is adjusted to include an imputation for the 

labor income of the self employed; as measured in the NIPAs this income is counted in 

proprietors’ income.7  Non-capital production taxes are composed mostly of sales taxes.  

Simply plugging in the data on compensation, taxes, and subsidies assumes that these 

components of income paid are not mismeasured.  The compensation data, at least to 
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employees, is probably better measured than profits, interest, and proprietors’ income; 

nonetheless, the idea that all of the mismeasurement of income resides in capital income 

is simply a maintained hypothesis that is not pursued further. 

 Estimates of the wealth stock are calculated based on detailed BEA estimates of 

investment by industry and by asset type.  Wealth stocks were calculated using the 

appropriate formula (Hulten, 1990) that is consistent with the age-efficiency schedule 

used in Bartelsman-Beaulieu (2004).  The BEA investment data are adjusted for each 

input-output estimate of total investment to the extent that estimated deliveries to private 

fixed investment differs from the original estimate in the NIPAs on which the detailed 

BEA data are based. 

IV.2.  Orthogonality of innovations to total factor productivity 

 The idea that variation in GDP is driven by productivity shocks that are common 

across industries is a central tenant of real business cycle theories.  Opponents to this 

theory have generally held that the size of the aggregate shock required to generate 

business cycle variation is implausibly large; candidate sources for such aggregate 

shocks, such as the weather, appear to amount to little.  Simply adding up idiosyncratic 

shocks leads to an aggregate productivity shock that does not equal exactly zero, but 

because of the law of large numbers the aggregate is too small unless the sector-specific 

shocks are large.8 

 Inherent in the counter argument to real business cycle models is that industry 

TFP growth rates should be uncorrelated.  With measurement error, however, TFP 

                                                                                                                                                 
7 The BLS makes the same adjustment in its Productivity and Cost estimates. 
8 Horvath (2000) shows that the law of large numbers has to be augmented by the input-output structure of 
the economy.  If the input-output table is sparse, then the law of large numbers applies at a much slower 
rate than is commonly presumed. 
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growth rates can be correlated, even if they are orthogonal in reality.  The measurement 

error can be correlated if it involves an allocation error of a fixed aggregate across 

industries.  If the measurement error affects industries differently and this is somehow 

related to the business cycle ― perhaps due to whether the product is a good or service 

― mismeasurement can also generate a correlation.   

 Economists have tested whether there is a common factor to industry productivity 

shocks (Lebow, 1990; Forini and Reichlin, 1998).  In this exercise we do the opposite: 

We assume that this common factor is small and look for what combination of data 

produces a set of TFP growth rates that are as close to orthogonal as possible.  To 

measure the orthogonality of TFP growth rates, we model the TFP growth rates as a 

linear function of a reduced number of principal components.  The sum of the largest 

handful of standardized eigenvalues is a measure of the percent of the variation explained 

by the corresponding principal components; the smaller this measure, the more 

uncorrelated the TFP growth rates are.9 

 Industry TFP measures are calculated by modeling real gross output as a function 

of capital services, labor hours, and real intermediate inputs, using the usual Divisia 

formulation.  Deflators for gross output come from the BEA’s GPO data set, as adopted 

in Bartelsman and Beaulieu (2004).  The same gross output deflators are used to generate 

a deflator for intermediate input usage.  Industry data on hours and capital services also 

come from Bartelsman and Beaulieu, although capital services built from investment 

flows are adjusted for differences in estimated aggregate deliveries to business fixed 

investment, as in subsection IV.1. 
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IV.3.  Stability of intermediate block 

 The idea that the coefficients of an input-output table should be stable is common 

in the literature.  After all, the coefficients represent the structure and technology of an 

economy that evolve slowly due to “technical progress, exhaustion of natural resources, 

or variation in consumers’ tastes”; the stability of the structure of the economy stands in 

contrast to final demand, which is less stable (Leontief, 1953).  Immediately, the question 

arises whether the stability of input-output coefficients should be measured using 

nominal data or real estimates (see Sawyer, 1992 and references therein), and whether the 

values in the intermediate block should be constant with respect to the gross output of the 

supplying industries or the gross output of the demanding industries.  De Mesnard (2002) 

uses the relative stability of the cells of the intermediate block divided by supplying 

industries versus those divided by demanding industries as a measure of whether an 

industry is “supply oriented” or demand oriented.” 

 For each estimate of the input-output system, we make four different calculations: 

two use nominal data; two use real data, which are calculated by dividing the rows of the 

input-output table by the gross output deflators from Bartelsman and Beaulieu (2004).   

When using deflated measures, we ignore the obvious complications of taking ratios of 

chain-aggregated deflated data (Whelan, 2002).  Let  denote a square matrix with 

the gross output vector Y along the main diagonal and zeros otherwise.  I is the 

intermediate block.  Define allocation and technical coefficients as 

( )D Y

 
1

1

Allocation coefficients : ( )

Technical coefficients : ( ) .
t t

t t t

A D Y I

T I D Y

−
t
−

= ⋅

= ⋅
 

                                                                                                                                                 
9 The fact that we compare 21 series with 24 years of data makes the measurement of orthogonality 
difficult.  If the number of years in our dataset was large relative to the number of series, we could choose a 
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We then take the standard deviation of each cell of  and across time and then 

collapse this matrix into a single statistic by taking a weighted average of the standard 

deviations of each cell, where the weights equal the average of the absolute value of the 

cells of I over time. 

tA tT

IV.4. Results 

 Chart 6 plots the results of these exercises.  On the bottom axis of each panel are 

the values of { },F Vσ σ , displayed as Fσ on top of Vσ .  Two other integrated I-O systems 

were calculated, denoted as { } { }0,  a ,0 .∞nd ∞   The first system, { }0,∞ , is calculated by 

sweeping the vector Y-F across the columns of the initial estimates of I without any 

reference to the initial values of V; the value of V is calculated as a residual according to 

the value added identity.  The second system, { },0∞ , is calculated by sweeping the vector 

Y’-V across the rows of the initial estimates of I, ignoring the initial values of F; the 

resulting value of F is calculated using the gross output identity.10 

 The upper-left panel plots the average cross-sectional standard deviation of the 

return to capital.  Except for the estimate {0, ∞}, this measure of variation in the return to 

capital lies in the range 37.3 to 43.3.  The minimum at 37.38 is at {.7, .3}, but 37.44 at 

{0, .5} is also fairly close to the minimum.  None of the datasets controlled to the GDI 

data (  perform relatively well on this score. 0)Vσ =

 The upper-right panel plots the percent of the variation of TFP growth rates 

explained by the largest principal component and by the largest three components.  One 

                                                                                                                                                 
simpler measure, such as the determinant of the cross-correlation matrix. 
10 Using the notation above, where j is a vector of ones that conforms to I : 

1{0, } ( ) ( )I D Y F D I j I−∞ = − ⋅ ⋅ and 1{ ,0} ( ) ( )I I D I j D Y V−′ ′∞ = ⋅ ⋅ − . 
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principal component explains somewhere between 36 and 41 percent of the cross-

sectional variation of TFP growth rates, with {0, ∞} proving to be the least explainable 

among the integrated datasets calculated.  However, using only one component to 

measure orthogonality is probably too restrictive, and we also present results using the 

three largest principal components.  On this measure {0, ∞} performs the worst, while 

{.8, .2} at 60-1/4 percent has the least amount of variation explained by three principal 

components.  Raising the number of components to four or five does not change this 

result, while adding even more components yields statistics that vary little across 

datasets. 

 The bottom two panels present results on the stability of the input-output 

coefficients.  The bottom-left panel plots the standard deviations of the real and nominal 

allocation coefficients; the bottom-right panel plots the same for the technical 

coefficients.  Excluding the tails,{ } { }0, and ,0∞ ∞ , the dataset with the most stable 

coefficients is {.6, .4}with other datasets that roughly, evenly mix the expenditure and 

income-side data also performing relatively well.  The fact that the { } { }0,  and ,0∞ ∞  

estimates produce the least variation in the standard deviation of real technical 

coefficients is essentially by construction because the calculation of the initial values of I 

are developed under the assumption that the real technical coefficients are constant.  The 

stability of the nominal technical coefficients and the nominal and real allocation 

coefficients also benefit by this construction. 

 Taking the results together, the differences across datasets are not large, and some 

of the results do not smoothly vary when the datasets are ordered by tuning parameters.  

Nonetheless, they appear to point in a consistent direction: datasets constructed by 
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mixing the information from the expenditure-side and income-side without controlling 

the aggregate to equal GDP or GDI yields estimates that perform well on all three 

criteria.  The results also seem to favor a small bias towards the income-side data, a result 

that echoes Weale (1992). 

 

V. Conclusion 

 In this paper we employ industry estimates of deliveries to final demand and 

value added to investigate possible sources of the statistical discrepancy.  We find that 

the expenditure-side data and the income-side data imply two different paths for the 

production of goods and services from the Machinery and Instruments, Trade, and 

Finance and Insurance industries that appear to be related to the statistical discrepancy.  

Important for the measurement of recent movements in productivity, there is an 

anomalous shortfall in 2001 in the change in private fixed investment implied from the 

income-side data relative to that measured from the expenditure-side data, due to 

mismeasurement in sectors that include the high-tech industries.  At a minimum, it might 

be useful to push on the source data for these industries to see if some improvement in 

data collection could help reconcile these discrepancies. 

 Our analysis also uncovered some other possible discrepancies that warrant some 

attention, even if they are not consistently related to the aggregate discrepancy.  There are 

some important differences in our two sets of estimates of deliveries to final demand in 

the Chemicals, Refining, and Rubber and Plastics industry and in the Communications 

industry.  There are also some significant differences in the estimates of value added in 

the Mining and Health Services industries.   
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 Viewed differently, most of the statistical discrepancy shows up in PCE, but 

problems in the Machinery and Instruments industry also affect the statistical discrepancy 

in private fixed investment.   

 As a necessary step of this analysis we produced a consistent, integrated set of 

estimates of industry gross output, deliveries to final demand, intermediates used, and 

value added.  We also produced a series of estimates and offered some means to judge 

how they should be combined.  Some combination of the expenditure-side and income-

side data should be employed, perhaps weighted more to the GDI data than to the GDP 

data.   

 We could not have written this paper if the BEA had not produced the wealth and 

the variety of the data that it does.  Besides all of the information provided in the NIPAs, 

the GDP by Industry data, and the published input-output tables, the importance of 

various estimates that the BEA makes available on its website for researchers, such as the 

tables on underlying expenditure detail and the estimates of investment by industry and 

by asset type should not be overlooked.  Of course, there would be no point in writing 

this paper if the BEA did not publish two estimates of domestic product; some countries 

only produce one estimate by balancing the information from expenditure-side and 

income-side data.  If the BEA published only one estimate of domestic product, then only 

the BEA could have done the forensic analysis in this paper. 

 Even though “the man with two watches is never quite sure what time it is”, the 

man with one watch may not realize that his watch has slowed or even stopped.  An 

English version of this proverb that we have seen starts with “It’s possible to own too 

much …”; as economists we know this cannot be true ― especially with respect to data.  
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Policymakers found important clues in the income-side measures of the transition of the 

economy when the production of and investment in high-tech goods pushed the growth 

rate of potential GDP higher (Jorgenson and Stiroh, 2000). 

 As part of its strategic plan, the BEA has now published integrated value-added 

I-O accounts with GDP-by-Industry accounts.  These integrated data add to GDP 

(Lawson et al., 2004); they supplant the former Gross Domestic Product by Industry data 

that add to GDI.  While a published, consistent, integrated dataset that relates gross 

output, value added, and deliveries to final demand by industry is certainly useful, it 

comes at a cost.  The new GDP by Industry data are inconsistent with the prior data 

because the data now aggregate to GDP instead of GDI. 

 It is easy to recommend that others find resources in their budgets to provide 

additional data.  Fortunately, the BEA already publishes a lot of the data that would be 

needed to develop a set of industry estimates of value added that add to GDI.  In 

Section 6 of the NIPAs – Income and Employment by Industry – the BEA provides data 

on the various components of income paid by industry.  As discussed earlier, the problem 

with using these data directly is that some of the data are organized on a firm basis, 

instead of an establishment basis.  However, if the BEA were to make available on its 

website the factors that it uses to convert the data on a firm basis to an establishment 

basis ― something the BEA will have to develop in-house anyway in order to prepare its 

integrated accounts ― the research community could develop a second, consistent dataset 

in real time that could be used to monitor and investigate future data discrepancies. 
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Appendix A 
Industry SIC 87 Description 
Agriculture 01-09 Farms, agricultural services, forestry, fishing, hunting, and 

trapping. 
Mining 10-14 Metal mining, coal mining, oil & gas extraction, and mineral 

mining. 
Construction 15-17 Construction. 
Wood, Furniture, Paper, and 
Printing 

24-27 Manufacturers of lumber and wood, furniture, paper, and 
printing. 

Primary Durable Mfg. 32-34 Stone, clay and glass, primary metal, and fabricated metal 
manufacturing. 

Machinery and Instruments 35-36, 38-39 Machinery, electrical machinery, instruments, and 
miscellaneous manufacturing.  This industry includes, 
computers, communications equipment, and semiconductors. 

Transportation Equipment 37 Motor vehicles and parts, aircraft and parts, and other 
transportation equipment. 

Food and Tobacco 20-21 Food and beverages and tobacco manufacturing. 
Textiles, Apparel, and Leather 22-23, 31 Textiles, apparel, and leather manufacturing. 
Chemicals, Refining, and Rubber 
& Plastics 

28-30 Chemicals, petroleum refining, and rubber & plastics 
manufacturing. 

Transportation 40-42, 44-47 Trucking, water, rail, and air transport, warehousing, pipelines 
(ex. natural gas), and transportation services. 

Communications 48 Telephone and telegraph, radio and television, and other 
communications services. 

Utilities 49pt. Electrical, natural gas, and water and sanitary services 
utilities.  It excludes government enterprises such as TVA and 
Bonneville. 

Trade 50-59 Wholesale and retail trade. 
Finance and Insurance 60-64, 67 Depository and nondepository institutions, securities dealers 

and brokers, insurance carriers and agents, and holding 
companies. 

Real Estate 65 Real estate, excluding imputations for owner-occupied 
housing and the rental value of nonprofits’ capital.* 

Hotels and Other Lodging 70 Hotels and other lodging. 
Personal Services 72, 75-76 Personal services, automotive repair services and parking, and 

miscellaneous repair services. 
Business Services 73 Business services, including software and data processing. 
Movies and Recreation Services 78-79 Motion pictures, and amusement & recreation services. 
Health Services 80 Health services. 
Legal Services 81 Legal services. 
Other Services 82-84, 86-87, 

89 
Social services, museums, membership organizations, 
engineering, accounting, research, and management services, 
and miscellaneous services. 

Government Enterprises 43, 49pt,  
other 

Federal and State and local government enterprises, including 
the Postal Service, TVA, and Bonneville Power. 

Miscellaneous Industries 88, other Private households, owner-occupied housing, and general 
government. 

Not Domestic Production ― Imports, used and secondhand goods, and scrap. 
   
* The rental value of nonprofits’ capital equipment and structures was distributed to other industries according 
to estimates of nonprofit activity in those industries. 
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Chart 4
Statistical Discrepancy of Problem Industries
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Chart 5
Statistical Discrepancy by Expenditure Category*
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Chart 6
Comparison of I-O Systems to Economic Theory

(Bottom axis: Tuning Parameter for Final Demand Top Row; Tuning Parameter for Value Added Bottom Row)
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Table 1 
Splitting NIPA Expenditure Categories (1987) Across 26 Industries 

  Numb. Indust./ Dominant Industry’s Share of Expenditure Category 
 1987 Expnd. Expnd.      95-          85-      75-       50- Under    Std. 
  Bil. $ Catg. Catg. 100% 100% 95% 85% 75% 50% Dev.♦

Personal Consumption 3,100.2 141 6.1 24.9 22.5 5.2 8.1 28.7 10.6 2.4
Equipment Investment 326.7 27 11.5 8.8 .0 16.0 51.8 17.9 5.5 6.7
Software Investment 29.0 1 23.0 .0 .0 .0 .0 100.0 .0 11.1
Structures Investment 402.1 5 5.8 3.3 1.3 6.1 .0 89.3 .0 10.0
General Government 591.2 1 1.0 100.0 .0 .0 .0 .0 .0 .0
Other Government 408.4 39 7.2 18.8 15.8 .7 5.0 12.1 47.7 5.6
Exports, Goods 257.5 124* 

 

  

 

8.3 .0 8.6 33.9 18.8 27.3 11.4 2.4
Exports, Services 106.4 7 5.6 29.8 18.0 9.6 .0 42.6 .0 7.1
Imports, Goods -414.8 128* 5.5 58.1 27.2 2.3 3.0 9.5 .0 3.0
Imports, Services -94.4 7 4.4 48.9 12.2 .0 .0 20.1 18.8 9.9
Inventory Investment † 27.1 4 6.8 53.8 .0 .0 18.2 .0 57.6

GDP 4,739.5 484 6.9 26.4 14.5 7.0 9.9 30.4 11.8 3.3

* NIPA expenditure categories are divided into more categories using data from the monthly report on International Trade in Goods and Services. 
† Dominant Industry’s share calculated using absolute values instead of actual values.  Standard deviation calculated using normal, additive errors. 
♦ Average standard deviation of deliveries by industry to these major expenditure categories assuming a 10% standard deviation in the bridge tables.   
   Deliveries by industry are subsequently calculated by controlling the bridge tables to the actual values of the detailed expenditure categories. 

 
 




