text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
Search  
Awards
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website


Award Abstract #0117260
Arabidopsis 2010: Phenylpropanoid Pathway Networks: An Integrated Approach to Establishing Protein/Enzyme Function in Arabidopsis and their Associated Networks


NSF Org: MCB
Division of Molecular and Cellular Biosciences
divider line
divider line
Initial Amendment Date: August 29, 2001
divider line
Latest Amendment Date: May 24, 2004
divider line
Award Number: 0117260
divider line
Award Instrument: Continuing grant
divider line
Program Manager: Parag R. Chitnis
MCB Division of Molecular and Cellular Biosciences
BIO Directorate for Biological Sciences
divider line
Start Date: September 1, 2001
divider line
Expires: August 31, 2005 (Estimated)
divider line
Awarded Amount to Date: $1708514
divider line
Investigator(s): Norman Lewis lewisn@wsu.edu (Principal Investigator)
Vincent Franceschi (Co-Principal Investigator)
Laurence Davin (Co-Principal Investigator)
divider line
Sponsor: Washington State University
NEILL HALL, ROOM 423
PULLMAN, WA 99164 509/335-9661
divider line
NSF Program(s): METABOLIC BIOCHEMISTRY,
BIOMOLECULAR PROCESSES,
BIOMOLECULAR SYSTEMS
divider line
Field Application(s):
divider line
Program Reference Code(s): SMET, BIOT, 9251, 9232, 9178, 9177, 9109, 1684, 1168
divider line
Program Element Code(s): 1168, 1158, 1144

ABSTRACT



The goal of this Arabidopsis 2010 Project is to establish the physiological function of 248 Arabidopsis enzymes and proteins presumed to be involved in various networks of phenylpropanoid-acetate metabolism. There are two main objectives: identifying networks associated with phenylpropanoid coupling/polymerization (e.g. leading to lignins, lignans, suberins, sporopollenins, etc.), including how these enzymes/proteins function. The second objective is to precisely identify the different networks that exist in Arabidopsis that are involved in the conversion of phenylalanine through to the monolignols. In both objectives, functions will be demonstrated in vitro, and we will also establish that this is the true physiological function by demonstrating temporal and spatial correlation with the segments of the metabolic pathway networks involved.

This work will thus define the organization of the various phenylpropanoid radical-radical coupling and related metabolic processes in Arabidopsis through its entire life cycle. The benefits to the scientific community will include rapid dissemination of results (prior to publication) through a website linked to the Arabidopsis sites, and the provision of research materials (genes, constructs, recombinant proteins, transgenic and mutant plants) as needed. Another important benefit will be the new knowledge gained on these hitherto difficult systems (e.g. coupling/polymerization) involving macromolecular assemblies, and the new insights that will be gained. For enzymes/genes chosen that are ultimately not involved in these pathways, it is considered that metabolite profiling will provide a clue as to function, and this will then be examined also.

Further, in addition to lignification, this study will shed important light on other highly regulated radical-radical phenolic coupling systems in vivo including: the construction of seed coats and metabolites therein; in generating the (strengthened) matrix of trichomes; in forming suberized tissue and in strengthening flower stalks; in biosynthesizing sporopollenin (a remarkably stable component of pollen grains); in reinforcing cutinized tissue; in cross-linking cell wall carbohydrates through hydroxycinnamic acid (phenolic) coupling, in producing a plethora of defense compounds and presumably for other purposes awaiting discovery.

In addition to peerreviewed journals, our research findings, information and materials generated by this research will be made available to public databases, updated periodically on a (monthly) basis, by posting data/information on a dedicated website (http://ibc.wsu.edu/lewislab/nsf/index.html) that will be linked up to the Arabidopsis network sites relevant to the project. This information will include: recombinant protein expression vectors constructed by our laboratory; gene identification and gene function analysis; kinetic data results; gene expression profiles; metabolite and lignin analysis; in situ hybridization data; and light microscopy documentation.



 

Please report errors in award information by writing to: awardsearch@nsf.gov.

 

 

Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Web Master | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
April 2, 2007
Text Only


Last Updated:April 2, 2007