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Abstract

Governments in emerging economies have pursued real exchange rate targeting through
Purchasing Power Parity (PPP) rules that link the nominal depreciation rate to either the
deviation of the real exchange rate from its long run level or to the difference between the
domestic and the foreign CPI-inflation rates. In this paper we disentangle the conditions under
which these rules may lead to endogenous fluctuations due to self-fulfilling expectations in a
small open economy that faces nominal rigidities. We find that besides the specification of
the rule, structural parameters such as the share of traded goods (that measures the degree
of openness of the economy) and the degrees of imperfect competition and price stickiness in
the non-traded sector play a crucial role in the determinacy of equilibrium. To evaluate the
relevance of the real (in)determinacy results we pursue a learnability (E-stability) analysis for
the aforementioned PPP rules. We show that for rules that guarantee a unique equilibrium,
the fundamental solution that represents this equilibrium is learnable in the E-stability sense.
Similarly we show that for PPP rules that open the possibility of sunspot equilibria, a common
factor representation that describes these equilibria is also E-stable. In this sense sunspot
equilibria and therefore aggregate instability are more likely to occur due to PPP rules than
previously recognized.
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1 Introduction

It has been claimed that the real exchange rate is perhaps the most popular real target in developing

economies. The reason is that policy makers in these economies are always concerned about avoiding

losses in competitiveness in foreign markets, or similarly, about maintaining purchasing power parity

(PPP). In order to achieve the real exchange target policy makers often follow PPP rules. Such

rules link the nominal rate of devaluation of the domestic currency to the deviation of the real

exchange rate from its long run level or to the difference between the domestic inflation rate and

the foreign inflation rate. For instance, Calvo et al. (1995) argued that Brazil, Chile and Colombia

followed such rules in the past.

The characterization of the channels through which real exchange rate targeting affects the

business cycles in emerging economies is a central issue in the design and implementation of the

PPP rules. The theoretical literature about PPP rules has tried to disentangle these channels.1

One of these important attempts is made by Uribe (2003) who analyzes a PPP rule whereby the

government increases the devaluation rate when the real exchange rate is below its steady-state

level. He pursues a determinacy of equilibrium analysis and argues that PPP rules may lead

to aggregate instability in the economy by inducing endogenous fluctuations due to self-fulfilling

expectations.

From the economic policy-design perspective, this result has important implications. It states

that the aforementioned rules may open the possibility of sunspot equilibria and lead the economy

to equilibria with undesirable properties such as a large degree of volatility. This implication in

turn suggests that a determinacy of equilibrium analysis can be used to differentiate among rules

favoring those that at least avoid sunspot equilibria by guaranteeing a unique equilibrium with a

lower degree of volatility.2 Although appealing this argument is still far from complete and may

suffer from some drawbacks. The reason is that in the typical determinacy of equilibrium analysis,

it is implicitly assumed that agents can coordinate their actions and learn the equilibria (unique or

multiple) induced by the rule. But relaxing this assumption may have interesting consequences for

the design of PPP rules. On one hand, if agents cannot learn the unique equilibrium targeted by

the rule then the economy may end up diverging from this equilibrium. But if this is the case then

it is clear that there are some rules that although guaranteeing a unique equilibrium, do not insure

that the economy will reach it.3 On the other hand, if agents cannot learn sunspot equilibria then
1See Dornbusch (1980,1982), Adams and Gros (1986), Lizondo (1991), Montiel and Ostry (1991) and Calvo et al.

(1995), among others.
2This idea is not specific to PPP rules. In fact the idea that a rule that leads to indeterminacy of equilibrium may

be seen as undesiderable has been emphasized by recent studies about interest rate rules. See Benhabib, Schmitt-

Grohé and Uribe (2001), Carlstrom and Fuerst (2001), Clarida, Gali and Gertler (2000), Rotemberg and Woodford

(1999) and Woodford (2003) among others.
3Bullard and Mitra (2002) have emphasized the importance of this point in the interest rate rule literature.
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one may doubt about the relevance of characterizing rules that lead to multiple equilibria as “bad”

ones. After all, if agents cannot learn sunspot equilibria then they are less likely to occur.

Therefore, it seems clear that a determinacy of equilibrium analysis of PPP rules should in

principle be accompanied by a learnability of equilibrium analysis. Both analyses would help policy

makers to distinguish and design PPP rules satisfying two requirements: uniqueness and learnability

of the equilibrium. The first requirement would prevent the economy from achieving sunspot

equilibria with undesirable properties such as a large degree of volatility. Whereas, the second

requirement would guarantee that agents can indeed coordinate their actions on the equilibrium

the policy makers are targeting.

The present paper is motivated by the interest of studying if particular representations of

the equilibria (unique or multiple) induced by PPP rules are learnable in the Expectational -

Stability (E-Stability) sense proposed by Evans and Honkapohja (1999, 2001).4,5 In fact our purpose

in the present paper is three-fold. First we study and disentangle the structural conditions of

an open economy under which an Uribe-type PPP rule may generate multiple equilibria (real

indeterminacy).6 We use a small open economy model with traded and non-traded goods. We

assume flexible prices for the former and sticky prices for the latter. Under this set-up we show

how the aforementioned conditions depend not only on the responsiveness of the rule to the real

exchange rate but also on some important structural parameters of the economy. For instance

we find that ceteris paribus, given the sensitivity of the rule to the real exchange rate, the lower

the degree of openness of the economy (the lower the share of traded goods), the more likely that

the rule will induce aggregate instability in the economy by generating multiple equilibria. In

addition, keeping the rest constant, the lower (the higher) the degree of price stickiness (the degree

of monopolistic competition) in the non-traded sector, the more likely that the rule will lead to real

indeterminacy.

The second goal of this paper consists of showing that under real determinacy the fundamental

solution that describes the unique equilibrium induced by the PPP rule is learnable in the E-
4Henceforth we will use the terms “learnability”, “E-stability” and “expectational stability” interchangeably in

this paper.
5Evans and Honkapoja (1999, 2001) have argued that a unique equilibrium and sunspot equilibria are not “fragile”

if they are learnable in the sense of E-stability. Technically what they propose is to assume that agents in the model

initially do not have rational expectations but are endowed with a mechanism to form forecasts using recursive

learning algorithms and previous data from the economy. Then they develop some E-stability conditions which

govern whether or not a given rational expectations equilibrium is aymptotically stable under least squares learning.
6From now on we will use the terms “multiple equilibria” and “real indeterminacy” (a “unique equilibrium” and

“real determinacy”) interchangeably. By real indeterminacy we mean a situation in which the behavior of one or

more (real) variables of the model is not pinned down by the model. This situation implies that there are multiple

equilibria and opens the possibility of the existence of sunspot equilibria.
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stability sense.7 In addition we use the recent work by Evans and McGough (2003) to prove that

under real indeterminacy some common factor representations of stationary sunspot equilibria are

also E-stable.8 This result suggests that under some reasonable assumptions agents can learn

and coordinate their actions to achieve sunspot equilibria, making them “more likely” to occur

under PPP rules. In this sense these equilibria should not be perceived as mere mathematical and

theoretical curiosities.

The natural question that arises from these results is whether under a different timing of the

PPP rule, it is possible for policy makers to design a simple rule that avoids sunspot equilibria but

still induces a unique equilibrium whose characterization is learnable. In accord with the findings

in the interest rate rule literature, we find that a PPP rule that is backward-looking in the sense

of being defined in terms of the (deviation of the) past real exchange rate (from its long run level)

satisfies these two requirements.

Finally the third goal of this paper is associated with the original work by Dornbusch (1980,

1982) that studies how a PPP rule whereby the nominal exchange rate is linked to the (deviation of

the) current domestic price level (from its long-run level), may affect the output price-level stability

trade-off by playing a role as an absorber of fundamental shocks.9 We analyze a rule motivated by

Dorbunsch’s works assuming that the nominal devaluation rate is positively linked to the difference

between the domestic and foreign CPI-inflation rates. In fact this specification tries to capture

the previously mentioned stylized facts about PPP rules in Brazil, Colombia and Chile. As before

we state the conditions under which this rule leads to real indeterminacy. We also show that the

common factor representation of stationary sunspot equilibria as well as the fundamental solution

that describes the unique equilibrium induced by the rule are learnable in the E-stability sense.

The remainder of this paper is organized as follows. Section 2 presents the set-up of a sticky-price

model with its main assumptions. Section 3 pursues the determinacy of equilibrium analysis for a

PPP rule defined in terms of the current real exchange rate. Section 4 deals with the learnability

analysis for the aforementioned rule. Section 5 pursues all the previous analyses for a PPP rule

defined in terms of the CPI-inflation rate. Finally Section 6 concludes.
7This fundamental solution is also well-known as the Minimal State Variable solution. See McCallum (1983).
8The common factor representation is an alternative representation of a Rational Expectations Equilibria. See

Evans and Honkapoja (1986).
9Dornbusch (1980,1982) uses a Mundell and Fleming small open economy model with sticky wages á la Taylor

and finds that the aformentioned PPP rule affects the output price-level stability trade-off through two different

channels. On one hand, it tries to maintain constant the real exchange rate stabilizing net exports and therefore

the demand side. On the other hand, it affects the supply side by its effect on the price of imported intermediate

goods. Dornbusch shows that in such a model if the economy is hit by supply shocks then the price volatility always

increases with tighter PPP rules. If the demand channel dominates the supply channel then the PPP rule reduces

the volatility of output. But if the supply channel dominates the demand channel then the volatility of output is

increased.
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2 A Sticky-Price Model

2.1 The Household-Firm Unit

Consider a small open economy inhabited by a large number of identical household-firm units

indexed by j ∈ [0, 1]. The household-firms live infinitely and the preferences of the representative
agent j can be described by the intertemporal utility function10

E0

∞X
t=0

βt

A(cTt (j), cNt (j), hTt (j), hNt (j))− φ

2

Ã
PNt (j)

PNt−1(j)
− 1− π̄N

!2 (1)

A(cTt (j), c
N
t (j), h

T
t (j), h

N
t (j)) = α log(cTt (j)) + (1− α) log(cNt (j)) + ψ

£
1− hTt (j)− hNt (j)

¤
(2)

where α, β ∈ (0, 1), ψ, φ > 0; cTt (j) and cNt (j) denote the consumption of traded and non-traded
goods respectively, hTt (j) and h

N
t (j) are the labor allocated to the production of the traded good

and the non-traded good. Et denotes the expectational operator.11 Equations (1) and (2) imply

that the representative agent derives utility from consuming traded and non-traded goods, and

from not working in either sector.

We assume that the non-traded good is a composite good. We introduce monopolistic competi-

tion in the model by assuming that the household-firm unit j can choose the price of the non-traded

good it supplies, PNt (j), subject to a particular demand constraint described by

yNt (j) ≥ cNt
µ
PNt (j)

PNt

¶−µ
(3)

where cNt =
hR 1
0 c

N
t (j)dj

i
represents the aggregate demand for the non-traded good and µ > 1.

We also assume that there are sticky prices in the production of the non-traded good. This

assumption is useful to understand the last term of the intertemporal utility function (1). Following

Rotemberg (1982) we suppose that the household-unit dislikes having its price of non-traded goods

grow at a rate different from π̄N , the steady-state level of the non-traded goods inflation rate.12

We introduce sluggish adjustment in prices not only because this will enrich our analysis, but also
10The set-up of this model is very similar to Uribe (2003) and Zanna (2003a). However we endogenize labor in both

sectors and introduce technology shocks. Moreover we use specific functional forms to be able to convey the main

message of this paper. In particular we assume separability in terms of both types of consumption. A CES utility

function will not affect the qualitative results of this paper but will make the derivation of our analytical results

cumbersome.
11For the first part of the paper we will assume that agents have rational expectations. However for the E-stability

analysis we will relax this assumption.
12Benhabib et al. (2001a,b) and Dupor (2001) also follow this approach to model price stickiness. An alternative

approach follows Calvo (1983). Our results are invariant to this approach.
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because, as Uribe (2003) points out, one of the main reasons that explains and motivates the real

exchange targeting through PPP rules, is that policy makers believe in eliminating the real rigidities

imposed by a fixed exchange rate system in an environment with nominal rigidities.

The production of traded and non-traded goods only requires labor and uses the following

technologies

yTt (j) = z
T
t

¡
hTt (j)

¢θT and yNt (j) = z
N
t

¡
hNt (j)

¢θN (4)

where θT , θN ∈ (0, 1), zTt and zNt are random productivity parameters that satisfy

ẑTt = %
T ẑTt−1 + ζTt and ẑNt = %

N ẑNt−1 + ζNt (5)

where ẑkt = log(z
k
t ), ζ

k
t v N(0,σ2ζ) and %k ∈ (0, 1) for k = T,N. For simplicity in the analysis we

assume no correlation between the productivity shocks.

The law of one price holds for the traded good and to simplify the analysis we normalize the

foreign price of the traded good to one. Therefore, the domestic currency price of traded goods

(PTt ) is equal to the nominal exchange rate (Et). This simplification in tandem with (1) and (2)

can be used to derive the consumer price index (CPI)

pt =
(Et)α

¡
PNt

¢1−α
αα(1− α)1−α

(6)

Using equation (6) and defining the nominal devaluation rate as

²t = Et/Et−1 − 1 (7)

it is straightforward to derive the CPI-inflation rate, πt, as a weighted average of the nominal

depreciation rate, ²t, and the inflation of the non-traded goods, πNt = P
N
t /P

N
t−1 − 1; that is

1 + πt = (1 + ²t)
α (1 + πNt )

(1−α) (8)

We define the real exchange rate (et) as the ratio between the price of traded goods and the

aggregate price of non-traded goods

et = Et/PNt (9)

From this definition of the real exchange rate we deduce that

et = et−1
µ
1 + ²t
1 + πNt

¶
(10)

We assume that in each period t ≥ 0 the representative agent can purchase two types of

financial assets: fiat moneyMd
t (j) and nominal state contingent claims, Dt+1(j), that pay one unit
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of currency in a specified state of period t+ 1 and that are traded internationally. There exists a

set of these state contingent claims that completely spans the fundamental (intrinsic) uncertainty

associated with productivity shocks. Moreover following Kimbrough (1986), we suppose that money

reduces the transaction costs in goods markets. These costs measured in terms of the traded good

can be described by

gt(j) = A

µ
cTt (j) +

cNt (j)

et

¶1+γ µ
Md
t (j)

Et

¶−γ
(11)

where A, γ > 0.

Using the previous assumptions the representative agent’s flow constraint each period can be

written as13

Md
t (j)+EtQt,t+1Dt+1(j) ≤Wt(j)+EtyTt (j)+PNt (j)yNt (j)−Etτ t−EtcTt (j)−PNt cNt (j)−Etgt(j) (12)

where Qt,t+1 refers to the period-t price of a claim to one unit of currency delivered in a particular

state of period t + 1 divided by the probability of occurrence of that state and conditional of

information available in period t. Hence EtQt,t+1Dt+1(j) denotes the cost of all contingent claims

bought at the beginning of period t. Constraint (12) says that the total end-of-period nominal

value of the financial assets can be worth no more than the value of the financial wealth brought

into the period, Wt, plus non-financial income during the period net of the value of taxes, Etτ t ,
the value of consumption spending and the value of the liquidity transaction costs.

To derive the period-by-period budget constraint of the representative agent, it is important to

notice that total beginning-of-period wealth in the following period is given by

Wt+1(j) =M
d
t (j) +Dt+1(j) (13)

and that EtQt,t+1 corresponds to the price at period t of a claim that pays one unit of currency in

every state in period t + 1 and represents the inverse of the risk-free gross nominal interest rate,

1 + it; that is

EtQt,t+1 =
1

1 + it
(14)

Then we can use equations (12), (13) and (14) to derive the budget constraint of the representative

agent as

EtQt,t+1Wt+1(j) ≤ Wt(j) + EtyTt (j) + PNt (j)yNt (j)− Etτ t −
it

1 + it
Md
t (j) (15)

−EtcTt (j)− PNt cNt (j)− Etgt(j)
13We follow Woodford (2003) to construct the budget constraint of the representative agent.
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The agent is also subject to a Non-Ponzi game condition described by

lim
s→∞Etqt+sWt+s(j) ≥ 0 (16)

at all dates and under all contingencies, where qt represents the period-zero price of one unit of

currency to be delivered in a particular state of period t divided by the probability of occurrence

of that state, given information available at time 0. It is given by

qt = Q1Q2.....Qt (17)

with q0 ≡ 1.
Under this sticky-price set-up the problem of the representative agent is reduced to choose the

sequences {cTt (j), c
N
t (j), h

T
t (j), h

N
t (j),M

d
t (j),Wt+1(j), P

N
t (j)}∞t=0 in order to maximize (1) subject

to (2), (3), (4), (11), (15) and (16), and given W0(j), and π̄N and the time paths for it, Et, PNt ,
cNt , Qt+1, τ t and z

T
t and z

N
t . Note that the utility function specified in (1) and (2) implies that

the preferences of the agent display non-sasiation. This means that constraints (15) and (16) both

hold with equality.

The first order conditions correspond to (15) and (16) both with equality and

α

cTt (j)
= λt(j)

"
1 + Γ

µ
it

1 + it

¶ γ
1+γ

#
(18)

αcNt (j)

(1− α)cTt (j)
= et (19)

µ
PNt (j)

PNt
− δt(j)et

λt(j)

¶
zNt θN

£
hNt (j)

¤(θN−1)
et

= zTt θT
£
hTt (j)

¤θT−1 (20)

Md
t (j)

Et =

·
(Aγ)

µ
1 +

1

it

¶¸ 1
1+γ

µ
cTt (j) +

cNt (j)

et

¶
(21)

λt(j)

Et Qt,t+1 =
λt+1(j)

Et+1 β (22)

βφEt

("
PNt+1(j)

PNt (j)
− 1− π̄N

#
PNt+1(j)£
PNt (j)

¤2
)

= φ

"
PNt (j)

PNt−1(j)
− 1− π̄N

#
1

PNt−1(j)
+ (23)

λt(j)z
N
t

£
hNt (j)

¤θN
PNt et

− δt(j)µc
N
t

PNt

·
PNt (j)

PNt

¸−(1+µ)
where λt(j)/Et corresponds to the multiplier of the budget constraint, δt(j) is the multiplier asso-
ciated with the demand constraint (3) and Γ = A(1 + γ)(Aγ)

− γ
1+γ . The interpretation of the first
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order conditions is straightforward. In particular, equation (18) is the usual intertemporal envelope

condition that makes the marginal utility of consumption of traded goods equal to the marginal

utility of wealth (λt(j)) multiplied by the intertemporal price of consuming traded goods.14 Con-

dition (19) implies that the marginal rate of substitution between traded and non-traded goods

must be equal to the real exchange rate. In addition, condition (20) equalizes the marginal revenue

products of labor among sectors. Equation (21) represents the demand for real balances of money

as an increasing function of consumption expenditure and a decreasing function of the risk-free

nominal interest rate. And finally condition (22) implies a standard pricing equation for one-step-

ahead nominal contingent claims. Note that in each period t there is one condition of this type for

each possible state in period t+ 1.

Finally we postpone the explanation of condition (23). The reason is that it will be used to

derive the augmented Phillips curve for non-traded goods, that is actually one of the relevant

equations for the determinacy and learnability of equilibrium analyses.

2.2 The Government

The government issues two nominal liabilities: money, Ms
t , and state contingent debt D

s
t+1. It also

levies taxes, τ t, pays interest on its debt, and receives revenues from seigniorage. Thus we can write

the government budget constraint as

Et(Qt,t+1W
s
t+1) =W

s
t −

itM
s
t

1 + it
− Etτ t (24)

where W s
t+1 = M

s
t +D

s
t+1. The government follows a Ricardian fiscal policy. That is, it picks the

path of taxes, τ t, satisfying the intertemporal version of (24) in conjunction with the transversality

condition

lim
k→∞

Et(qt+kW
s
t+k) = 0 (25)

Finally we define the monetary policy as in Uribe (2003). The government follows a PPP rule

whereby the government sets the nominal devaluation rate as a function of the deviation of the

current real exchange rate (et) with respect to its long-run level (ē). That is

²t = ρ(et − ē) with ρe =
dρ

det
< 0 (26)

where ρ(.) is a continuous function that in steady state satisfies ²̄ = ρ(0).
14This price is equal to its output cost (=1) plus a term that is a function of the opportunity cost of holding wealth

in monetary form.
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2.3 The Equilibrium

We will focus on a symmetric equilibrium in which all the household-firm units choose the same

price for the good they produce. Therefore in equilibrium all agents are identical and we can drop

the index j. In equilibrium the money market and the non-traded goods market clear. Thus

Md
t =M

s
t (27)

and yNt =
¡
hNt
¢θN = cNt . As usual we ignore the wealth effects due to inflation by assuming that

the transaction liquidity costs, gt, are rebated to the representative agent in a lump-sum fashion.

We also assume free capital mobility. This implies that the following non-arbitrage condition

must hold

Q∗t,t+1 = Qt,t+1
Et+1
Et (28)

where Q∗t,t+1 refers to the period-t foreign currency price of a claim to one unit of foreign currency

delivered in a particular state of period t+1 divided by the probability of occurrence of that state

and conditional of information available in period t. An equivalent condition to (22) holds for the

foreign economy (rest of the world). That is,

λ∗t
PT∗t

Q∗t,t+1 =
λ∗t+1
PT∗t+1

β∗ (29)

where λ∗t , PT∗t and β∗ represent the marginal utility of wealth, the price of traded goods and the
subjective discount rate in the foreign economy respectively. Using (22), (28), (29), the law of one

price for traded goods and the assumption that β∗ = β we can derive that λt+1
λt

=
λ∗t+1
λ∗t
, that holds

at all dates and under all contingencies.15 This equation implies that the domestic marginal utility

of wealth is proportional to its foreign counterpart. Then λt = ξλ∗t where ξ refers to a constant
parameter that determines the wealth difference across countries. Since we are dealing with a small

open economy, λ∗t can be taken as an exogenous variable. To simplify the analysis we assume that
λ∗t is constant and equal to λ

∗. This assumption implies that λt becomes a constant. Consequently

λt = λ = ξλ∗ (30)

But this result of a constant marginal utility and conditions (14) and (22) imply that

1 + it = β−1
·
Et

µ
1

1 + ²t+1

¶¸−1
(31)

15Note that as a consequence of the aforementioned contingent claims that completely span the uncertainty about

productivity shocks the model abstracts from wealth effects due to current account imbalances. In this respect the

model is similar to the ones in Clarida, Gali and Gertler (2001) and Gali and Monacelli (2004).
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where E denotes the expectation operator. Note that condition (31) is very similar to the uncovered

interest parity condition.

Utilizing (20), (23), πNt = P
N
t /P

N
t−1−1, the symmetry in equilibrium, the equilibrium condition

in the non-traded sector (yNt =
¡
hNt
¢θN = cNt ) and (30), we obtain

Et
£
(πNt+1 − π̄N )(1 + πNt+1)

¤
=
1

β
(πNt − π̄N )(1 + πNt ) +

(µ− 1)λcNt
φβet

− µψ

φβθN

µ
cNt
zNt

¶ 1
θN

(32)

that corresponds to the augmented Phillips curve for the non-traded goods inflation.16

Furthermore applying the symmetry in equilibrium and recalling (30), we can rewrite (18), (19)

and (21) as
α

cTt
= λ

"
1 + Γ

µ
it

1 + it

¶ γ
1+γ

#
(33)

αcNt
(1− α)cTt

= et (34)

Md
t

Et =
·
(Aγ)

µ
1 +

1

it

¶¸ 1
1+γ

µ
cTt +

cNt
et

¶
(35)

We proceed giving the definition of a symmetric equilibrium for a government that pursues a

Ricardian fiscal policy and follows a PPP rule that responds to the current real exchange rate as

described by (26).

Definition 1 Given, W0, ²̄, π̄
N and e0 and the exogenous stochastic processes

©
zNt , z

T
t

ª∞
t=0
,

a Symmetric Equilibrium under a Ricardian fiscal policy is defined as a set of stochastic processes

{cTt , cNt , Mt, τ t, et, Qt+1, qt, Et, ²t, πNt , it}∞t=0 satisfying conditions (32), (33), (34), (35), the
intertemporal version of (24) together with (25), the PPP rule defined by (26), the money market

clearing condition (27), definitions (7), (17) and equations (10), (14), and (31).

3 The Determinacy of Equilibrium Analysis

To pursue the determinacy of equilibrium analysis we reduce the model further. To do so we can

use conditions (33) and (34) to obtain

1− α

cNt
=

λ

et

"
1 + Γ

µ
it

1 + it

¶ γ
1+γ

#
(36)

that together with the PPP rule (26) and equations (5), (10), (31) and (32), are the only equations

necessary to pursue the determinacy of equilibrium analysis in our model. They help us to find
16We would have derived a similar augmented Phillips curve if we had follow Calvo’s (1983) approach.
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the stochastic processes {cNt , et, ²t, πNt , it}∞t=0. These set of equations are also useful to define the
non-stochastic steady state. It corresponds to

π̄N = ²̄ (1 + ı̄)β = (1 + ²̄) ē =
λc̄N

(1− α)

"
1 + Γ

µ
ı̄

1 + ı̄

¶ γ
1+γ

#
> 0

where
¡
c̄N
¢ 1
θN = (1−α)(µ−1)θN

µψ

·
1+Γ( ı̄

1+ı̄)
γ

1+γ

¸ and ²̄ denotes the long-run nominal devaluation rate that is
determined by the government.

We point out that we do not need to consider in the determinacy analysis equations (24)

and (25). The reason is that under a Ricardian fiscal policy, the intertemporal version of the

government’s budget constraint in conjunction with its transversality condition will be always

satisfied. Moreover the stochastic processes {cTt , Mt, Qt+1, qt, Et}∞t=0 can be recovered using (7),
(14), (17), (27), (34) and (35).17

We can go further reducing and log-linearizing the model. Using equations (5), (10), (26), (31),

(32), and (36) yields18

Etπ̂
N
t+1 = β−1π̂Nt −Kêt +HEt²̂t+1 +KẑNt (37)

êt = êt−1 +
²̄

1 + ²̄

¡
²̂t − π̂Nt

¢
(38)

ẑNt = %
N ẑNt−1 + ζNt (39)

²̂t =
ρeē

²̄
êt (40)

where x̂t = log(xt)− log(x̄), x̄ represents the steady-state level of xt,

K =
µψ
¡
c̄N
¢ 1
θN

βθ2Nφ²̄(1 + ²̄)
> 0, H = (1− θN )ΩK > 0 (41)

and Ω =
h

²̄Γγµψ
ı̄(1+²̄)(1+γ)(1−α)(µ−1)θN

i ³
ı̄
1+ı̄

´ γ
1+γ ¡

c̄N
¢ 1
θN . For our future analyses it is important to

observe that K > 0 and H > 0. To see this recall our assumptions about the values that are

feasible to assign to the structural parameters of the model and the definition of the steady-state.
17Note that the spirit of the PPP rule and the assumption that PNt is sticky imply that et is a predetermined

variable. As a consequence assuming that PN0 and e0 are given corresponds to assume that E0 is given which in turn
avoids the possibility of nominal indeterminacy.
18Observe that we have not included equation ẑTt = %

T ẑTt−1 + ζTt . The reason is that ẑ
T
t does not affect the other

equations. It may affect the current account. But as in Clarida et al. (2001) and Gali and Monacelli (2004) we are

abtracting from wealth effects due to current account imbalances.
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As we mentioned before in this analysis we only study the possibilities of real indeterminacy

or real determinacy of the equilibrium. By real indeterminacy we mean a situation in which the

behavior of one or more (real) variables of the model are not pinned down by the model. This

situation implies that there are multiple equilibria and opens the possibility of the existence of

sunspot equilibria.

Before we analyze the conditions under which PPP rules may lead to real indeterminacy, it is

worth constructing some intuition using the model of why these rules may induce equilibria in which

expectations are self-fulfilled. In order to accomplish this task we can assume perfect foresight (no

uncertainty). Then we rewrite equations (37) and (38) as

π̂Nt+1 = β−1π̂Nt −Kêt +H²̂t+1 (42)

êt = êt−1 +
²̄

1 + ²̄

¡
²̂t − π̂Nt

¢
In addition we can iterate forward both equations and derive19

π̂Nt =
∞X
k=0

βk [Kêt+k −H²̂t+1+k] (43)

êt+1 − êt = ²̄

1 + ²̄

¡
²̂t+1 − π̂Nt+1

¢
(44)

Equation (43) implies that current inflation of non-traded goods is determined by the discounted

sum of the expected future real exchange rates and nominal depreciation rates. The first term

inside of the parenthesis is associated with future real exchange rates. It captures the fact that

higher expected future real exchange rates make non-traded goods become relatively cheaper than

traded goods. This leads to a higher expected future excesses of demand for non-traded goods

to which the firm-unit responds raising the current price of non-traded goods up and therefore

increasing the current non-traded goods inflation rate. On the other hand, the second term in (43)

that is associated with future nominal depreciation rates captures the effect of the intertemporal

price of consumption on the determination of the current non-traded goods inflation. In essence,

expectations of nominal appreciation (negative nominal depreciation rates) decrease the nominal

interest rate provided that the uncovered interest parity condition holds under perfect foresight.

But a decrease in the nominal interest rate pushes the liquidity transaction costs down, which in

turn expands consumption of non-traded (and traded) goods. This increase in consumption lead

to a positive excess of demand for non-traded goods and therefore to a higher current inflation.
19Here we assume that π̂Nt is a bounded sequence and that Lim

T→∞
βT π̂Nt+T = 0.
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Equation (44) simply describes the depreciation (or appreciation) of the real exchange rate as

a difference between the nominal depreciation rate and the non-traded goods inflation rate.

With these two last equations, equation (42) and the PPP rule, ²̂t =
ρeē
²̄ êt, we can show that

multiple equilibria are possible by constructing a self-fulfilling equilibrium. Assume that at time

t− 1, when the economy is in its steady state, private agents expect a real appreciation after time
t. More explicitly they expect the following path for the (deviation of the) real exchange rate.20

At time t − 1, the real exchange rate is at the steady state level (êt−1 = 0). At times t and t + 1
the real exchange rate is above its steady state level (êt > 0 and êt+1 > 0) and satisfies êt > êt+1,

showing a real appreciation and convergence to the steady state level over time. Given this path of

the real exchange rate and given the PPP rule, the government will induce a nominal appreciation

(²̂t+k =
ρeē
²̄ êt+k with ρe < 0 and k ≥ 0) over time after time t. Then using our interpretation

of (43) we can infer that the expected path for the real exchange rate and the expected nominal

appreciation will motivate the household-firm unit to raise the price of non traded goods in period

t. In other words inflation at time t will go up (π̂Nt > 0). By equation (42) this effect will increase

inflation of non traded goods in period t + 1 (π̂Nt+1 > 0), if it is strong enough to overcome the

opposite effects that the assumed path for the real exchange rate (êt > 0) and the rule-induced path

for the nominal depreciation rate (²̂t+1 < 0) have over inflation of non-traded goods at period t+1

(π̂Nt+1). Observe that this possibility is determined by the values of the structural parameters of the

model that affect H and K, and by the value of the nominal depreciation response coefficient to the

real exchange rate (ρe). But if inflation of non-traded goods goes up (π̂
N
t+1 > 0) and people expect

a nominal appreciation (²̂t+1 < 0) in period t+1 accordingly with equation (44), we conclude that

the real exchange rate will appreciate over time ((êt+1 − êt) < 0). Since all the variables of the

system, including the real exchange rate, converge to their steady state level over time then the

original expectations of a future real appreciation will be self-fulfilled.

Although this intuitive argument points out the possibility of self-fulfilling equilibria induced by

a PPP rule, it is important to disentangle the conditions under which these equilibria are possible.

The following proposition achieves this goal characterizing locally the equilibrium for the model

described by equations (37)-(40).

Proposition 1 Suppose the government follows a PPP rule that is described by ²t = ρ(et− ē) with
ρe =

dρ
det
< 0. Let K and H be defined as in (41) and define

ρ̃e =

h
2(1 + ²̄)

³
1 + 1

β

´
+K²̄

i
h
ē
³
1 + 1

β −H
´i

20 It is important to remember that in the log-linearized set-up all the variables are expressed as deviations from

their steady state level.
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a) If 1 + 1
β < H and ρe < ρ̃e then there is real indeterminacy.

b) If 1 + 1
β < H and ρ̃e < ρe then there is real determinacy.

c) If H < 1 + 1
β then there is real determinacy for any ρe < 0.

Proof. See Appendix.

From Proposition 1 it is clear that conditions under which PPP rules lead to multiple equilibria

do not simply depend on the response coefficient ρe. On the contrary some of the structural para-

meters of the model play a fundamental role in the determinacy of equilibrium. In essence all the

parameters that affect H and K are relevant for the analysis. In order for the PPP rule to induce

multiple equilibria two conditions must be satisfied. The first one constrains the possible values

that the structural parameters may take (1 + 1
β < H); the second one points out the importance

of the PPP rule on inducing real indeterminacy. It sets a threshold for the nominal depreciation

response coefficient that depends on the structural parameters of the model (ρe < ρ̃e). Even more

interesting is the result of part c) in the proposition. It says that for some values that the structural

parameters may take and regardless of the value of the nominal devaluation response coefficient

(ρe), the model displays real determinacy. This result contrasts with the results of Uribe (2003)

that claims that if the elasticity of the PPP rule is sufficiently large then a model with sticky-prices

always displays real indeterminacy.

To understand the important role that some of the structural parameters of the model may

play in the determinacy of equilibrium analysis, we study how the aforementioned threshold (ρ̃e)

varies with respect to some of these structural parameters. Specifically we consider the share of

traded goods (α), the degree of monopolistic competition in the non-traded sector (µ) and the

degree of price stickiness in the non-traded sector (φ).21 Note that the share of traded goods can

be considered a measure of the degree of openness of the economy with α → 0 describing a very

closed economy. The following corollary summarizes the main results.

Corollary 1 Suppose the government follows a PPP rule given by ²t = ρ(et − ē) with ρe < 0.

Let ρ̃e be defined as in Proposition 1 and assume 1+
1
β < H, then a)

∂(ρ̃eē)
∂α < 0; b) ∂(ρ̃eē)

∂µ > 0 and

c) ∂(ρ̃eē)
∂φ < 0.

Proof. See Appendix.

Using Proposition 1 and Corollary 1 we can understand the effects of varying some of the

structural parameters and the semi-elasticity of the rule (ρeē), on the determinacy of equilibrium.
21 It is possible to do the same exercise with respect to other structural parameters such as the share of labor in

the production function (θN ). These results are available upon request. We focus our analyzis on the share of traded

goods (α) because this is a particular feature of open economies. We also concentrate the analysis on the degrees of

monopolistic competition (µ) and price stickiness (φ) in the non-traded sector because these parameters capture an

important asymmetry between the traded and non-traded sectors.
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In fact when 1 + 1
β < H we can conclude that given the semi-elasticity of the PPP rule, the less

open the economy is (the lower α is), the more likely that the PPP rule will induce aggregate

instability in the economy by generating multiple equilibria. In addition, given the semi-elasticity

of the PPP rule and keeping the rest constant, the higher the degree of monopolistic competition in

the non-traded sector (the higher µ), the more likely that the rule will lead to real indeterminacy.

Finally under ceteris paribus and given the semi-elasticity of the rule we find that the lower the

degree of price stickiness in the non-traded sector (the lower φ), the more feasible that the rule will

induce multiple equilibria.

Notwithstanding the relevance of these analytical results, it is crucial to investigate their quan-

titative importance. To accomplish this we rely on a specific parametrization of the model. Since

this exercise is merely indicative we borrow some values of the parameters from previous studies

about emerging and small open economies.22 Following Schmitt-Grohé and Uribe’s (2001) study

about Mexico we assign the following values to some of the relevant structural parameters of the

model: β = 0.98 per quarter, ²̄ = 0.0157 per quarter, γ = 5.25, A = 0.55, µ = 10, and θN = 0.36.

We set α = 0.44, that corresponds roughly to the imports to GDP share in Mexico during the 90’s.

Finally we set φ = 2.80, that corresponds to Dib’s (2001) estimate of φ for Canada in a model

with only nominal rigidities.23 With these values, we will perform four exercises characterizing

locally the equilibrium. We will vary the semi-elasticity of the rule, ρeē and one and only one of

the following structural and policy parameters: α, µ, φ and ²̄. We summarize the parametrization

in the following table.
Table 1

θN φ µ γ A β α ²̄

0.36 2.8 10 5.25 0.55 0.98 0.44 0.0157

The results of our exercises are presented in Figure 1, where “I” stands for real indeterminacy

and “D” stands for real determinacy. As can be observed, this figure confirms the results in Propo-

sition 1 and Corollary 1 showing how significant these results are in quantitative terms. Consider

the top left panel. From this panel we can infer the following. Suppose that the government in

response to a 1 per cent appreciation of the real exchange rate, devalues the nominal exchange rate
22Note that for this exercise we do not need to assign values to all the parameters. We only present the parame-

trization of the relevant parameters.
23There is no clear consensus about the value that this parameter must take in emerging economies. One of the

reasons is the lack of studies that have tried to estimate Phillips curves for these economies and that may give

information about possible values for this parameter. Even for an industrialized economy such as Canada, this

parameter varies between 2.80 and 44.07, depending on the model specification (type of nominal and real rigidities).

See Dib (2001).
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by 2 percent. In other words, assume that the semi-elasticity of the PPP rule is -2. Whereas this

PPP rule may induce multiple equilibria in an economy whose degree of openness is 0.2, the same

rule leads to a unique equilibrium in an economy whose degree of openness is 0.6.

Similar inferences can be pursued from the top right and bottom left panels of Figure 1. That

is although a rule with semi-elasticity of -2 guarantees a unique equilibrium in an economy with a

degree of monopolistic competition of 5 (a degree of price stickiness of 5), the same rule induces

multiple equilibria when the aforementioned degree corresponds to 15 (2).

Although it is not possible to derive an analytical result to see how varying the implied nominal

depreciation target (²̄) and the semi-elasticity of the rule (ρ̃eē) affects the determinacy of equilib-

rium, it is possible to evaluate this quantitatively as presented in the bottom right panel of Figure

1. This panel illustrates that given the semi-elasticity of the rule the lower the implied nominal

depreciation target the more likely is that the PPP rule will induce real indeterminacy. In addition,

it is important to observe that in all four panels of Figure 1 there are regions for which the model

always displays real determinacy regardless of the semi-elasticity of the rule. This agrees with part

c) of Proposition 1.

To finalize this section we want to point out that similar qualitative results to the ones presented

in this section can be obtained if the PPP rule is defined in terms of the real depreciation rate.

That is ²t = ρ(∆et) where ∆et = et
et−1 .

24

4 The Learnability Analysis

The importance of the result from the previous section, that a PPP rule may induce aggregate

instability by generating multiple equilibria in the economy, stems from the fact that such rule opens

the possibility of expectations driven fluctuations in economic activity. In particular, the model

may admit self-fulfilling rational expectations equilibria driven by extraneous processes known as

sunspots.25

However the previous results, as the ones in Uribe (2003), do not discuss the attainability of

these PPP rule induced sunspot equilibria. They do not even mention how attainable the unique

equilibrium is. Strictly speaking, and regardless of real determinacy or real indeterminacy, it is

not clear whether and how agents may coordinate their actions in order to achieve a particular

equilibrium in the model. The purpose of this section is to address this issue. We want to study

the potential of agents to learn the unique equilibrium characterized by the fundamental solution

and sunspot equilibria described by a common factor solution.

As a criterion of “learnability” of an equilibrium we will use the concept of “E-stability” proposed
24See Zanna (2003b).
25The idea of expectation driven fluctuations dates back to Keynes (1936).
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Figure 1: This figure shows how the local determinacy of equilibrium varies with respect to the semi-

elasticity of the rule (ρeē), the share of traded goods (α), the degree of monopolistic competition

in the non-traded sector (µ), the degree of price stickiness in the non-traded sector (φ) and the

implied nominal depreciation rate target (²̄). “I” stands for real indeterminacy (multiple equilibria)

and “D” stands for real determinacy (a unique equilibrium). “ES” corresponds to E-Stability.
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by Evans and Honkapohja (1999, 2001). That is, an equilibrium is “learnable” if it is “E-Stable”.26

Consequently we start by assuming that agents in our model no longer are endowed with rational

expectations. Instead they have adaptive rules whereby agents form expectations using recursive

least squares updating and data from the system. Then we derive the conditions for expectational

stability (E-stability).

In our analysis we will focus on the expectational stability concept for the following reasons.

First, in models that display a unique equilibrium (real determinacy models), Marcet and Sargent

(1989) and Evans and Honkapohja (1999, 2001) have shown that under some general conditions,

the notional time concept of expectational stability of a rational expectation equilibrium governs

the local convergence of real time adaptive learning algorithms. Specifically they have shown that

under E-stability, recursive least-squares learning is locally convergent to the rational expectations

equilibrium. Second, Evans and McGough (2003) have numerically argued that under some as-

sumptions about the parameters of a linear stochastic univariate model, with a predetermined

variable, the same argument applies when this model displays sunspot equilibria. Formally they

have stated that under a strict subset of the structural parameter space, there exist stationary

sunspot equilibria that are locally stable under least square learning provided that agents use a

common factor representation for their estimated law of motion.

We adapt the methodology of Evans and Honkapohja (1999, 2001) and Evans and McGough

(2003) to pursue the learnability (E-stability) analysis. Accordingly we need to define the concept

of E-stability. In order to define it we give an idea of the methodology we apply for the case of real

determinacy.

To grasp the methodology, it becomes useful to reduce our model to the following linear sto-

chastic difference equations system. Use (37), (38), (39) and (40) to rewrite the model as

êt = α̂+ β̂Etêt+1 + δ̂êt−1 + κ̂ẑNt and ẑNt = %
N ẑNt−1 + ζNt (45)

where α̂ = 0,

β̂ =
β (1 + ²̄− ρeē+Hρeē)

σ̂
δ̂ =

1 + ²̄

σ̂
κ̂ =

βK²̄

σ̂
(46)

σ̂ = (β+1)(1+ ²̄)−ρeē+βK²̄ and Et denotes in general (non-rational) expectations. Next, assume

that the agents follow a perceived law of motion (PLM) that in this case of real determinacy

corresponds to the fundamental solution27

26 It is important to observe that for models with multiple stationary equilibria this statement lacks of technical

formality. As pointed out by Evans and McGough (2003) for a model with multiple equilibria, a rational expecta-

tions equilibrium may have different representations. Therefore one should not strictly speak of learnable rational

expectations equilibrium, but whether a rational expectations equilibrium representation is learnable (E-stable).
27The Minimal State Variable (MSV) solution according to McCallum (1983).

19



êt = â+ b̂êt−1 + ĉẑNt

Iterating forward this law of motion and using it to eliminate all the forecasts in the model we

can derive the implied actual law of motion (ALM)

êt = âA + b̂Aêt−1 + ĉAẑNt

Then we obtain the T-mapping T (â, b̂, ĉ) = (âA, b̂A, ĉA), whose fixed points correspond to the

rational expectations equilibria. An equilibrium is said to be E-stable if this mapping is stable at

the equilibrium in question. More formally a fixed point of the T-mapping is E-stable provided

that the differential equation

d(â, b̂, ĉ)

dτ
= T (â, b̂, ĉ)− (â, b̂, ĉ)

is locally asymptotically stable at that particular fixed point, where τ is defined as the “notional”

time.28

For the case of sunspot equilibria we apply the same methodology but in that case the PLM is

augmented by the sunspot and its particular structure. In particular we will focus on the common

factor representation proposed by Evans and McGough (2003). Due to space constraint we refer

the readers to the aforementioned references for a detailed explanation.29

It is important to observe that a fundamental part in the learnability analysis consists of making

explicit what agents know when they form their forecasts. In the E-stability analysis literature it

is common to assume that when agents form their expectations Etêt, they do not know êt. In

this paper this assumption may be inconsistent with the assumptions that we use to derive the

equations of the model. In particular notice that for the derivation of the first order conditions

of the representative agent we assume that EtPNt (j) = PNt (j) (or in a symmetric equilibrium

EtP
N
t = PNt ) and Etet = et. Therefore assuming in the learnability analysis that the agents do

not know et when forming expectations would have some implications for the specification of the

model. Specifically it would require to replace π̂Nt and êt in equations (37), (38) and (40) with the

expectations of π̂Nt and êt, given current information (π̂
N
t−1, êt−1 and exogenous shocks). Henceforth

for the learnability analysis of the model (45) we will assume that when forming expectations agents

know êt.

We proceed to present the results of the learnability analysis for the fundamental solution of

the model (45) in the following Proposition.
28Observe that this definition suggests that to prove E-stability of a fixed point corresponds to prove that all the

eigenvalues of the matrix of derivatives DT (â, b̂, ĉ) are less than 1.
29The proof of learnability of common factor representations of sunspot equilibria in this paper also goes over this

methodology.
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Proposition 2 Suppose the government follows a PPP rule that is described by ²t = ρ(et − ē)
and ρe =

dρ
det

< 0. Let K, H, β̂, δ̂, and κ̂ be defined as in (41) and (46) respectively, and α̂ = 0.

Consider the following AR(1) representation

êt = â+ b̂êt−1 + ĉẑNt (47)

where â = 0, b̂ is defined as a stable root of the quadratic equation β̂b̂2− b̂+ δ̂ = 0, and ĉ is defined by
ĉ = κ̂

1−β̂(b̂+%N ) . Under the real determinacy conditions specified in Proposition 1, there is a unique

equilibrium of the model (45) characterized by the fundamental solution (47), with b̂ ∈ (−1, 1), and
this solution is learnable in the E-stability sense.

Proof. See Appendix.

Proposition 2 points out that when the model displays a unique equilibrium (real determinacy)

then the fundamental solution is E-stable. This is the reason of denoting as “D-ES” the regions

of the four panels of Figure 1 for which the model displays not only real determinacy but also

E-stability. The importance of this result stems from the fact that policy makers will face less

difficulties in implementing PPP rules that lead to a unique equilibrium since they know that

agents will coordinate on that equilibrium and the macroeconomic system will not diverge away

from the targeted equilibrium.

It is also possible to show that under real indeterminacy the fundamental solution or MSV

solution can be E-stable. However in this case policy makers will face other difficulties. In particular

under multiple equilibria there might be self-fulfilling rational expectations equilibria driven by

extraneous processes known as sunspot. These equilibria may be characterized by undesirable

features such as larger volatility of macroeconomic variables suggesting that policy makers should

avoid rules that in principle may induce multiple equilibria.

Although the previous argument may sound appealing, it may suffer from some drawbacks. For

instance, it is not clear whether agents are able to coordinate their actions on a particular sunspot

equilibria. To clarify this issue the next proposition illustrates that some particular representations

of stationary sunspot equilibria can be E-stable. To simplify the analysis and to be able to derive

analytical results we assume that %N = 0.

Proposition 3 Suppose the government follows a PPP rule that is described by ²t = ρ(et− ē) and
ρe =

dρ
det

< 0. Let K, H, β̂, δ̂, and κ̂ be defined as in (41) and (46) respectively, and α̂ = 0, and

assume that %N = 0. Consider the following common factor representation

êt = â+ b̂iêt−1 + d̂ξ̂t +
³
β̂b̂j

´−1
ζ̂
N
t (48)

ξ̂t = b̂j ξ̂t−1 −
³
β̂b̂j

´−1
ζ̂
N
t + η̂et (49)
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where â = 0, b̂i, b̂j ∈ (−1, 1) are unique and correspond to the real roots of the quadratic equation
β̂b̂2 − b̂ + δ̂ = 0, d̂ is arbitrary, ζ̂

N
t = κ̂ζNt and η̂et+1 = êt+1 − Et(êt+1) is a martingale difference

sequence.30

a) Under the real indeterminacy conditions specified in Proposition 1, there are stationary

sunspot equilibria of (45) characterized by the common factor representation (48) and (49),

where b̂i = b̂1 ∈ (0, 1) and b̂j = b̂2 ∈ (−1, 0), and this representation is learnable in the
E-stability sense.

b) Under the real indeterminacy conditions specified in Proposition 1, there are stationary

sunspot equilibria of (45) characterized by the common factor representation (48) and (49),

where b̂i = b̂2 ∈ (−1, 0) and b̂j = b̂1 ∈ (0, 1), and this representation is NOT learnable in the
E-stability sense.31

Proof. See Appendix.

Proposition 3 demonstrates that some common factor representations of sunspot equilibria

induced by PPP rules are learnable in the sense of E-stability. We would like to emphasize the

important role that the common factor representations proposed by Evans and McGough (2003)

play in the learnability analysis. To see this, observe that the typical stationary sunspot equilibrium

representation, êt = â+b̂êt−1+ĉêt−2+d̂ŝt+k̂ζ̂
N
t , where ŝt denotes the sunspot, is never E-stable. The

reason is that such perceived law of motion leads to an actual law of motion êt = âA+b̂Aêt−1+k̂Aζ̂
N
t

that implies that d̂ = 0. But this suggests that the typical sunspot representation is not learnable.

This argument in tandem with Proposition 3 reveal that common factor representations make

stationary sunspot equilibria more likely to arise under private learning than previously recognized.

Our results from the real determinacy and learnability of equilibrium analyses pose the question

of whether changing the timing of the PPP rule avoids sunspot equilibria and still induces a unique

equilibrium that is E-stable. Similarly to the findings in the interest rate rule literature, we find

that a PPP rule that is backward-looking in the sense of being defined in terms of the past real
30Note that strictly speaking since we are assuming that the economy starts at t = 0 and we have an initial

condition for êt, then in the common factor representation of a rational expectations equilibrium êt, equation (48)

should be written as

êt = â+ b̂iêt−1 + d̂ξ̂t +
³
β̂b̂j
´−1

ζ̂
N

t +Nb̂
t+1
j

for t = 0, 1, ....and N arbitrary. However since b̂j ∈ (−1, 1), then as t→∞ the solution êt converges to a process that

satisfies (48).
31Note that NOT introducing the constant â in the perceived law of motion, such that êt = b̂iêt−1+d̂ξ̂t+

³
β̂b̂j
´−1

ζ̂
N

t ,

is not innocuous for statement b) of the proposition. In this case the common factor representation with b̂i = b̂2 ∈
(−1, 0) and b̂j = b̂1 ∈ (0, 1) becomes E-stable.
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exchange rate satisfies these two requirements.32 A backward-looking PPP rule can be described

as ²t = ρ(et−1 − ē) and using this specification and equations (37), (38) and (39), we can reduce
the model to

êt = α̂p + β̂pEtêt+1 + δ̂pêt−1 + κ̂pẑ
N
t and ẑNt = %

N ẑNt−1 + ζNt (50)

where α̂p = 0,

β̂p =

·
1 +

1

β
+
K²̄

1 + ²̄
− (H − 1)ρeē

1 + ²̄

¸−1
δ̂p =

β̂p
β

µ
1 +

ρeē

1 + ²̄

¶
κ̂p = β̂p

µ
K²̄

1 + ²̄

¶
(51)

and Et denotes in general (non-rational) expectations.

The following proposition summarizes the aforementioned result.

Proposition 4 Suppose the government follows a backward-looking PPP rule that is described by

²t = ρ(et−1 − ē) and ρe = dρ(et−1)
det−1 < 0, and consider the model described in (50). Let K, H, β̂p, δ̂p,

and κ̂p be defined as in (41), and (51) respectively and α̂p = 0. Consider the AR(1) representation

êt = â+ b̂êt−1 + ĉẑNt (52)

where â = 0, b̂ is uniquely defined as a stable root of the quadratic equation β̂pb̂
2 − b̂+ δ̂p = 0, and

ĉ is also uniquely defined by ĉ = κ̂p

1−β̂p(b̂+%N )
.

a) If either H > 1+ 1
β and ρe < 0, or H < 1+ 1

β and ρ̆e < ρe < 0, with ρ̆e =
2
³
1+ 1

β

´
(1+²̄)+K²̄

ē
³
H−1− 1

β

´ ,

then the model (50) displays a unique equilibrium (real determinacy) that can be represented

by the fundamental solution (52) with b̂ ∈ (−1, 1). Moreover this solution is E-stable.

b) If H < 1 + 1
β and ρe < ρ̆e < 0 then there exists no equilibrium.

Proof. See Appendix.

5 PPP Rules Defined in Terms of The CPI-Inflation

In this section we analyze a different type of PPP rule. We study rules whereby the government

in response to an increase in the CPI-inflation, increases the nominal depreciation rate. The

motivation to consider this type of rule is twofold. First, from an empirical point of view, Calvo

et al. (1995) mention that starting in 1968, Brazil’s government implemented a rule by which the
32Forward-looking PPP rules defined in terms of the expected future real exchange rate still open the possibility

of sunspot equilibria as shown in Zanna (2003b).

23



exchange rate was adjusted as a function of the difference between domestic and U.S. inflation. In

addition, between 1985 and 1992, Chile used an exchange rate band whose trend was determined

by the difference between the domestic inflation rate and a measure of the average inflation in the

rest of the world. Second, from a theoretical point of view, Dornbusch (1980, 1982) conceives PPP

rules as a means to introduce the necessary real flexibility to cope with intrinsic (fundamental)

uncertainty in a world that faces nominal rigidities. He defines a PPP rule as a function whereby

the nominal exchange rate is positively linked to the domestic price index.

We try to capture the aforementioned stylized facts and some of the flavor of Dornbusch’s

work by defining a rule whereby the nominal depreciation rate is positively linked to the difference

between the domestic CPI inflation (πt) and the foreign CPI-inflation.33 However note that since

in our analysis the foreign variables are considered exogenous and constant, then the specification

of the PPP rule reduces to

²t = ρ(πt) with ρπ =
dρ(πt)

dπt
> 0 (53)

where ρ(.) is a continuous function.

As before we proceed in the following way. First we will prove that such rule may induce

aggregate instability in the economy by generating multiple equilibria and opening the possibility

of sunspot equilibria. Specifically we will study and disentangle the conditions under which this

rule leads to real indeterminacy or to real determinacy. Second, we will study the “learnability”

properties not only of the fundamental solution but also of the common factor representation of

stationary sunspot equilibria.

The following proposition summarizes the conditions under which the aforementioned PPP rule

induces either real determinacy or real indeterminacy in the model.

Proposition 5 Suppose the government follows a PPP rule given by ²t = ρ(πt) with ρπ =
dρ
dπt

> 0.

Let K and H be defined as in (41) and define ρ̃π =
2
³
1+ 1

β

´
+ K²̄
1+²̄

2α
³
1+ 1

β

´
+2(1−α)H+ K²̄

1+²̄

> 0.

a) If ρ̃π < ρπ < 1 then there is real indeterminacy.

b) If either ρπ > max{1, ρ̃π} or ρπ < min{1, ρ̃π} then there is real determinacy.

c) If 1 < ρπ < ρ̃π then there exists no equilibrium.

Proof. See Appendix.

Proposition 5 suggests that multiple equilibria are also possible for PPP rules that depend on

the current CPI-inflation. In particular it points out that a necessary condition for these rules
33This is also the specification in Montiel and Ostry (1991).
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to cause real indeterminacy is that the response coefficient to the CPI- inflation be less than one.

That means that in response to a one percent increase in the CPI-inflation rate, the government

raises the nominal devaluation rate in less than one percent. Interestingly such response seems to

be feasible in the practice of economic policy. However in order to generate real indeterminacy the

nominal depreciation response coefficient, ρπ, must be above a threshold, ρ̃π, which in turn depends

on the structural parameters that affect K and H. Therefore, as before, we proceed studying

analytically and numerically how varying some structural parameters of the model affects the

previously mentioned threshold. In particular we focus our analysis on the degree of openness of

the economy, α, and the degrees of monopolistic competition, µ, and price stickiness, φ, in the

non-traded sector. The results are presented in Corollary 2.

Corollary 2 Suppose the government follows a PPP rule given by ²t = ρ(πt) with ρπ > 0. Let

ρ̃π be defined as in Proposition 5 and satisfy ρ̃π < 1 then a)
∂ρ̃π
∂α > 0, b) ∂ρ̃π

∂µ < 0 and c)
∂ρ̃π
∂φ > 0.

Proof. See Appendix.

Using Proposition 5 and Corollary 2 we can breakdown the effects of varying some of the

structural parameters of the model and the PPP rule response coefficient to CPI-inflation ρπ, on

the determinacy of equilibrium analysis. In fact, when ρπ < 1 we can conclude the following. Given

the PPP rule response coefficient to CPI-inflation, the less open the economy is (the lower α is),

the more likely that the PPP rule will induce aggregate instability in the economy by generating

multiple equilibria. In addition, given the rule response coefficient to CPI-inflation and keeping

the rest constant, the higher the degree of monopolistic competition in the non-traded sector (the

higher µ), the more likely that the rule will lead to real indeterminacy. Finally under ceteris paribus

and given the rule response coefficient to CPI-inflation, the lower the degree of price stickiness in

the non-traded sector (the lower φ), the more feasible that the rule will induce multiple equilibria.

Under the parametrization of Table 1 we construct Figure 2 that corroborates these results

quantitatively. To some extent it also validates numerically how likely is that the aforementioned

PPP rule may destabilize the economy by generating multiple equilibria. Moreover although it is

not possible to derive an analytical result to see how varying the implied nominal depreciation target

(²̄) and the response coefficient to the CPI-inflation (ρπ) affect the determinacy of equilibrium, it

is possible to evaluate this quantitatively. In short the bottom right panel of Figure 2 illustrates

that given the response coefficient of the rule the lower the nominal depreciation target is, the more

likely is that the PPP rule will induce real indeterminacy.

It is also important to observe that similar qualitative results to the ones described in Propo-

sition 5 and Corollary 2 can be obtained if the PPP rule is defined in terms of the non-traded

goods inflation rate. That is ²t = ρ(πNt ) with
dρ(πNt )

dπNt
> 0. Furthermore it is also possible to prove

that a backward-looking rule defined in terms of the past CPI-inflation rate will avoid multiple
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Figure 2: This figure shows how the local determinacy of equilibrium varies with respect to the

PPP rule response coefficient to the CPI-inflation (ρπ) , the share of traded goods (α), the degree

of monopolistic competition in the non-traded sector (µ), the degree of price stickiness in the

non-traded sector (φ) and the implied nominal depreciation rate target (²̄). “I” stands for real

indeterminacy (multiple equilibria), “D” stands for real determinacy (a unique equilibrium) and

“N” for non-existence of equilibrium. “ES” corresponds to E-Stability.
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equilibria.34

We proceed by pursuing the learnability analysis. As argued before this analysis is useful to

evaluate the attainability of the possible unique equilibrium and multiple equilibria induced by the

PPP rule. We use equations (37), (38), (39) and the log-linearized versions of (8) and ²t = ρ(πt)

to reduce the model to

êt = α̂q + β̂qEtêt+1 + δ̂qêt−1 + κ̂qẑ
N
t and ẑNt = %

N ẑNt−1 + ζNt (54)

where α̂q = 0,

β̂q =
1− [α+ (1− α)H] ρπ

σ̂q
δ̂q =

1− αρπ
βσ̂q

κ̂q =
K²̄ (1− ρπ)

(1 + ²̄) σ̂q
(55)

σ̂q = 1−[α+ (1− α)H] ρπ+
1−αρπ

β +K²̄(1−ρπ)
1+²̄ and Et denotes in general (non-rational) expectations.

As before in order to pursue the learnability analysis we use the methodology proposed by

Evans and Honkapohja (1999, 2001). We derive some E-stability conditions and check whether a

particular representation of the equilibrium under analysis satisfies or violates them.

The following proposition summarizes the results.

Proposition 6 Suppose the government follows a PPP rule that is described by ²t = ρ(πt) and

ρπ =
dρ(πt)
dπt

> 0. Let K, H, β̂q, δ̂q, and κ̂q be defined as in (41) and (55) respectively and α̂q = 0.

a) Under the real determinacy conditions specified in Proposition 5 there exists a unique

equilibrium characterized by the fundamental solution

êt = â+ b̂êt−1 + ĉẑNt (56)

where â = 0, b̂ ∈ (−1, 1) is uniquely defined by the quadratic equation β̂q b̂
2 − b̂ + δ̂q = 0,

and ĉ is also uniquely defined by ĉ = κ̂q

1−β̂q(b̂+%N )
. This solution is learnable in the E-stability

sense.35

b) Assume that %N = 0. Under the real indeterminacy conditions specified in Proposition 5

there are stationary sunspot equilibria described by the common factor representation

êt = â+ b̂iêt−1 + d̂ξ̂t +
³
β̂q b̂j

´−1
ζ̂
N
t (57)

ξ̂t = b̂j ξ̂t−1 −
³
β̂q b̂j

´−1
ζ̂
N
t + η̂et (58)

34See Zanna (2003b).
35Under real indeterminacy it is also possible to prove that there is an equilibrium characterized by fundamental

solution (56) with b̂ ∈ (0, 1) which is E-stable.
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where â = 0, b̂i, b̂j ∈ (−1, 1) are unique and correspond to the roots of the quadratic equation
β̂q b̂

2 − b̂ + δ̂q = 0, d̂ is arbitrary, ζ̂
N
t = κ̂qζ

N
t and η̂et+1 = êt+1 − Et(êt+1) is a martingale

difference sequence. In particular, the common factor representation (57) and (58) with

b̂i = b̂1 ∈ (0, 1) and b̂j = b̂2 ∈ (−1, 0) is learnable in the E-stability sense.36

Proof. See Appendix.

Proposition 6 states that when the PPP rule under study induces a unique equilibrium then

this equilibrium represented by the fundamental solution, also known as the MSV solution, is

learnable in the E-stability sense. This result is important since it means that given that the rule

induces a unique equilibrium then agents will be able to coordinate on that particular equilibrium

and therefore the economy will converge towards it over time. In addition as was demonstrated

in Proposition 2, it is also possible to prove for PPP rules defined in terms of the CPI-inflation,

that even under real indeterminacy the fundamental solution is still E-stable. However under real

indeterminacy there are other equilibria such as stationary sunspot equilibria whose feasibility is

worth evaluating in terms of learnabiliy. Accordingly, the second part of Proposition 6 shows

that a common factor representation of stationary sunspot equilibria is learnable in the sense of

E-stability. This result is interesting for two reasons. First, as mentioned before, it suggests that

sunspot equilibria induced by PPP rules are more likely to occur. Second, it warns policy makers

about some of the negative consequences of implementing PPP rules that respond to inflation.

Dornbusch (1980, 1982) conceived PPP rules as a means to introduce the necessary real flexibility

to cope with intrinsic (fundamental) uncertainty in an economy with nominal rigidities. In contrast

our result points out that such PPP rules may open the possibility of learnable representations of

sunspot equilibria aggravating the effects of extrinsic (non-fundamental) uncertainty in an economy

with nominal rigidities.

6 Conclusions

In this paper we establish and disentangle the conditions under which PPP rules lead to real

(in)determinacy in a small open economy that faces nominal rigidities. We find that besides the

specification of the rule, structural parameters such as the share of traded goods (that measures the

degree of openness of the economy) and the degrees of imperfect competition and price stickiness

in the non-traded sector play a crucial role in the determinacy of equilibrium.

More importantly to evaluate the relevance of the determinacy results we also pursue a learn-

ability (E-stability) analysis. We show that for rules that guarantee a unique equilibrium the

36Excluding a constant â in the perceived law of motion such that êt = b̂iêt−1+d̂ξ̂t+
³
β̂b̂j
´−1

ζ̂
N

t is not innocuous for

this part of the proposition. In this case the common factor representation with b̂i = b̂2 ∈ (−1, 0) and b̂j = b̂1 ∈ (0, 1)
is also E-stable.
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fundamental solution that describes this equilibrium is learnable in the E-stability sense. Similarly

we show that for PPP rules that open the possibility of sunspot equilibria, some common factor

representations of these equilibria are also E-stable. That is, agents can coordinate their actions

and learn some representations of stationary sunspot equilibria. In this sense these equilibria are

more likely to occur under PPP rules than previously recognized and therefore these rules are more

prone to cause aggregate instability in the economy.

Dornbusch (1980, 1982) conceived PPP rules as a means of introducing the real flexibility

necessary to cope with intrinsic (fundamental) uncertainty in an economy with nominal rigidities.

Our results indicate that PPP rules must be chosen with care in order to avoid the possibility

of “learnable” sunspot equilibria and the associated aggravation of the effects of extrinsic (non-

fundamental) uncertainty. In other words, PPP rules should satisfy two stability requirements:

uniqueness and learnability. On one hand, the rule should avoid sunspot equilibria that are usually

associated with undesirable properties such as a large degree of volatility. On the other hand, the

rule should guarantee that agents can indeed coordinate their actions on the equilibrium the policy

makers are targeting and that the economy will not in fact diverge away from this target.

There are some possible extensions of the analysis presented in this paper. First, one may

consider extending the model to have two traded goods: a domestic one and a foreign one. This

will enrich the analysis making the model more similar to the ones in Dornbusch (1980, 1982). Under

this set-up one can explore how our results may vary when the government responds to different

measures of inflation in the PPP rule. Second one may study how our determinacy and learnability

of equilibrium results may be affected by following the approach by Preston (2003). That is, instead

of imposing the assumption of non-rational expectations on the derived log-linearized model, we

may impose this assumption as a primitive one of the model. This assumption implies that agents

do not have a complete economic model with which to derive true probability laws since they do

not know other agents’ tastes and beliefs. In this case agents solve multi-period decision problems

whereby their actions depend on forecasts of macroeconomic conditions many periods into the

future. We leave these extensions for further research.

7 Appendix

Lemma 1 In a 2× 2 linearized system of difference equations whose matrix is denoted by J and

whose characteristic equation corresponds to P (w)=w2 + Trace(J)w + Det(J) = 0 if either a)

Det(J) ≤ 0, or b) P (1) < 0 or c) P (−1) < 0 then the system displays real eigenvalues.

Proof. First we recall from Azariadis (1993) that a sufficient condition for such a linearized

system to have real eigenvalues is that [Trace(J)]2 − 4Det(J) ≥ 0. Then to prove a) is trivial.
To prove b) we start by noting that P(1) < 0 means that P(1) = 1− Trace(J) +Det(J) < 0.
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But this implies that 4Trace(J)−4 > 4Det(J) that with the aforementioned sufficient condition in
turn leads to [Trace(J)]2 − 4Det(J) > [Trace(J)]2 − 4Trace(J) + 4 = [Trace(J)− 2]2 ≥ 0. Hence
the eigenvalues are real.

To prove c) we point out that P(−1) < 0 means that P(1) = 1 + Trace(J) + Det(J) < 0.

But this implies that −4Trace(J) − 4 > 4Det(J) that in turn leads to [Trace(J)]2 − 4Det(J) >
[Trace(J)]2 + 4Trace(J) + 4 = [Trace(J) + 2]2 ≥ 0. Hence the eigenvalues are real.

7.1 Proof of Proposition 1

Proof. To prove all the parts of the proposition we use (37), (38), (39) and (40) to derive the

following system Ã
π̂Nt

êt−1

!
=

Ã
J11 J12

J21 J22

!
| {z }

J

Ã
π̂Nt+1

êt

!
+ U η̂πt+1 + V ẑ

N
t+1

where

J11 = β

·
1 +

Hρeē

∆

¸
J12 = β

·
K − Hρeē(1 + ²̄)

²̄∆

¸
J21 = β

²̄

1 + ²̄

·
1 +

Hρeē

∆

¸
J22 = β

·
K²̄

1 + ²̄
− Hρeē

∆

¸
+
∆

1 + ²̄

∆ = 1 + ²̄ − ρeē, η̂πt+1 is the forecast error for the non-traded goods inflation defined as η̂πt+1 =

π̂Nt+1 − Et(π̂Nt+1) and where the forms of U and V are omitted since they are not needed in what

follows. For the the proof of the proposition it is convenient to pursue the determinacy analysis

for the system written in the form ŷt = Jŷt+1 + U η̂πt+1 + V ẑ
N
t+1 where ŷt = (π̂

N
t , êt−1)0 instead of

ŷt+1 = J
−1ŷt− J−1U η̂πt+1 − J−1V ẑNt+1. It will reduce tremendously the number of cases that have

to be analyzed.37 For this linearized system we have that the trace of J , the determinant of J , and

the characteristic polynomial associated with J correspond to

Trace(J) = β

·
1 +

K²̄

1 + ²̄

¸
+
1 + ²̄− ρeē

1 + ²̄
> 0

Det (J) = β

·
1 + ²̄− (1−H)ρeē

1 + ²̄

¸
P(υ) = υ2 − Trace(J)υ +Det(J) = 0

37One can analyze either of the forms because the eigenvalues of J−1 correspond to υ−1i , where υi are the eigenvalues

of J.
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respectively. Using these expressions we obtain

P(1) =
βρeē

³
1
β +H − 1

´
− βK²̄

1 + ²̄
< 0

P(−1) =
βē
³
1 + 1

β −H
´

1 + ²̄
(ρ̃e − ρe)

where ρ̃e =

h
2(1+²̄)

³
1+ 1

β

´
+K²̄

i
h
ē
³
1+ 1

β
−H

´i .

All these expressions together with ρe < 0, K > 0 and H > 0, and the assumptions about the

structural parameters allows us to observe that Trace(J) > 0 and P(1) < 0. By Lemma 1, this last
inequality implies that the eigenvalues are real.

To prove part a) we proceed as follows. Observe that since 1+ 1
β < H then ρ̃e < 0. Hence from

1 + 1
β < H and ρe < ρ̃e < 0 we can conclude that P(−1) < 0. This in conjunction with P(1) < 0

and Trace(J) > 0 imply that the system has two explosive eigenvalues |υ1| > 1 and |υ2| > 1 (which
means that

¯̄̄
1
υ1

¯̄̄
< 1 and

¯̄̄
1
υ2

¯̄̄
< 1). Thus the steady state is a source (See Azariadis, 1993). Since

π̂Nt is the only non-predetermined variable of the system then by Blanchard and Kahn (1980) we

conclude that the model displays real indeterminacy.

To prove b) we note that from 1+ 1
β < H and ρ̃e < ρe < 0 we can conclude that P(−1) > 0. This

in tandem with P(1) < 0 and Trace(J) > 0 imply that the system has one explosive eigenvalue

|υ1| > 1 and one non-explosive eigenvalue |υ2| < 1. Hence the steady state is a saddle path (See

Azariadis, 1993). Since π̂Nt is the only non-predetermined variable of the system then by Blanchard

and Kahn (1980) we conclude that the model displays real determinacy.

Finally to prove c) we use the fact that H < 1+ 1
β implies that ρ̃e > 0 and therefore P(−1) > 0.

Then the analysis pursued to prove part b) follows.

7.2 Proof of Corollary 1

Proof. First use the steady state description and the definition of K and H given by (41) to

calculate

∂ē

∂α
=
(1− θN )ē

(1− α)
> 0

∂c̄N

∂α
= − θN c̄

N

(1− θN )ē

∂ē

∂α
< 0

∂K

∂α
=

K

θN c̄N
∂c̄N

∂α
< 0

∂c̄N

∂µ
=

µ
λθN
ψ

¶ θN
1−θN (1− θN )

µ2ē
> 0

∂K

∂µ
= K

µ
1

µ
+

1

θN c̄N
∂c̄N

∂µ

¶
> 0

∂K

∂φ
= −K

φ
< 0

where we use the assumptions about the structural parameters to determine the sign of the deriv-

atives. Next we use these results and the definition of ρ̃e given in Proposition 1, together with the

assumptions about the structural parameters to derive
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∂(ρ̃eē)

∂α
= Ξ

∂K

∂α
< 0

∂(ρ̃eē)

∂µ
= Ξ

∂K

∂µ
> 0

∂(ρ̃eē)

∂φ
= Ξ

∂K

∂φ
< 0

where Ξ =

³
1+ 1

β

´
[²̄+2HK (1+²̄)]³

1+ 1
β
−H

´2 > 0.

7.3 Proof of Proposition 2

Proof. To prove a) we proceed in the following way. First, we rewrite the first equation in (45) as³
1− β̂

−1
L+ β̂

−1
δ̂L2

´
êt = η̂et −

1

β̂
ζ̂
N
t−1 (59)

where L is the lag operator, ζ̂
N
t = κ̂ζNt and η̂et+1 = êt+1 − Et(êt+1) is a martingale difference

sequence. The associated characteristic equation of (59) is

b̂2 − 1
β̂
b̂+

δ̂

β̂
= 0 (60)

whose roots are denoted by b̂i with i = 1, 2. Second we establish a relationship between the roots

b̂i and the roots υi in the proof of Proposition 1. In particular it is straightforward to show that

b̂i =
1
υi
and that

1

β̂
=
Trace(J)

Det(J)
= Trace(J−1) = b̂1 + b̂2 and

δ̂

β̂
=

1

Det(J)
= Det(J−1) = b̂1b̂2 (61)

where J was defined in the proof of Proposition 1.

Third, using these relationships and the proof in Proposition 1, it is trivial to show that un-

der real determinacy, the unique equilibrium of the model (45) characterized by the fundamental

solution (47) with b̂ ∈ (−1, 1) is in fact a solution of the model (45).
Fourth, we derive the E-stability conditions. Consider the model (45) and assume that the

agents follow a perceived law of motion (PLM) that in this case of real determinacy corresponds

to the fundamental solution

êt = â+ b̂êt−1 + ĉẑNt

Iterating forward this law of motion and taking expectations we obtain Etêt+1 = â+ b̂êt + ĉ%N ẑNt ;

using this to eliminate all the forecasts in the model (45) and assuming that agents know êt when

they make their forecasts, we can derive the implied actual law of motion (ALM)

êt =

Ã
β̂â+ α̂

1− β̂b̂

!
+

Ã
δ̂

1− β̂b̂

!
êt−1 +

Ã
β̂ĉ%N + κ̂

1− β̂b̂

!
ẑNt
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Then we obtain the T-mapping T (â, b̂, ĉ) = [T1, T2, T3]
0 =

h
β̂â+α̂

1−β̂b̂ ,
δ̂

1−β̂b̂ ,
β̂ĉ%N+κ̂

1−β̂b̂

i0
, whose fixed points

correspond to the rational expectations equilibrium with â satisfying â = β̂â+α̂

1−β̂b̂ , b̂ satisfying (60)

and ĉ satisfying ĉ = β̂ĉ%N+κ̂

1−β̂b̂ . Note that since α̂ = 0, then â = α̂
1−β̂b̂−β̂ = 0. Moreover since the

matrix of derivatives DT (â, b̂, ĉ) is block triangular then it is simple to show that its eigenvalues

are ∂T1
∂â =

β̂

1−β̂b̂ ,
∂T2
∂b̂
= β̂δ̂

(1−β̂b̂)2
and ∂T3

∂ĉ =
β̂%N

1−β̂b̂ , which in turn mean that the E-stability conditions

correspond to

β̂

1− β̂b̂
< 1

β̂δ̂³
1− β̂b̂

´2 < 1 and
β̂%N

1− β̂b̂
< 1

Moreover using (60) we can rewrite these conditions as

1
1
β̂
− b̂ < 1

b̂2

δ̂
β̂

< 1 and
%N

1
β̂
− b̂ < 1 (62)

Finally recall that in the proof of Proposition 1 we derived that real determinacy is associated

with one explosive eigenvalue |υ1| > 1 and one non-explosive eigenvalue |υ2| < 1. Then using this
and b̂i = 1

υi
we can infer that b̂1 ∈ (−1, 1) and either b̂2 ∈ (−∞,−1) or b̂2 ∈ (1,∞). Moreover using

(61) we can rewrite the conditions (62) as

1
1
β̂
− b̂ =

1

Trace(J−1)− b̂ =
1

b̂1 + b̂2 − b̂
< 1

b̂2

δ̂
β̂

=
b̂2

Det(J−1)
=

b̂2

b̂1b̂2
< 1 and (63)

%N

1
β̂
− b̂ =

%N

Trace(J−1)− b̂ =
%N

b̂1 + b̂2 − b̂
< 1

For b̂ = b̂1 we have that the E-stability conditions (63) become

1

b̂1 + b̂2 − b̂1
=
1

b̂2
< 1

b̂21
b̂1b̂2

=
b̂1

b̂2
< 1 and

%N

b̂1 + b̂2 − b̂1
=
%N

b̂2
< 1 (64)

Then defining b̂ = b̂1 Proposition 2 follows since it is simple to see that the E-stability conditions

are satisfied given %N ∈ (0, 1), b̂1 ∈ (−1, 1) and either b̂2 ∈ (−∞,−1) or b̂2 ∈ (1,∞).

7.4 Proof of Proposition 3

Proof. This proof builds on Evans and McGough (2003). First, we rewrite the model (45) as³
1− β̂

−1
L+ β̂

−1
δ̂L2

´
êt = η̂et −

1

β̂
ζ̂
N
t−1 (65)
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where L is the lag operator, ζ̂
N
t = κ̂ζNt and η̂et+1 = êt+1 − Et(êt+1) is a martingale difference

sequence. The associated characteristic equation of (65) is

b̂2 − 1
β̂
b̂+

δ̂

β̂
= 0 (66)

whose roots are denoted by b̂i with i = 1, 2. Note that δ̂
β̂
= b̂1b̂2. Recall that in the proof of

Proposition 1 we argued that real indeterminacy was associated with the two explosive eigenvalues

|υ1| > 1 and |υ2| > 1. Then using this and b̂i = 1
υi
we can infer that b̂1 ∈ (−1, 1) and b̂2 ∈ (−1, 1).

Moreover using (61) and the definitions β̂ and δ̂ in (46) we obtain δ̂
β̂
= 1+²̄

β(1−H)ē
³

1+²̄
(1−H)ē−ρe

´ = b̂1b̂2.
Using the conditions of real indeterminacy, 1 + 1

β < H and ρe < ρ̃e, it is simple to derive that

b̂1b̂2 =
δ̂
β̂
< 0. Then using Lemma 1 we can conclude that the roots are real. In addition without

loss of generality we can assume that the roots are b̂1 ∈ (0, 1) and b̂2 ∈ (−1, 0).
Second, we point out that following Propositions 3 and 4 in Evans and McGough (2003), it is

simple to prove that the process êt is a rational expectations equilibrium in (45) with %N = 0, if

and only if there is a martingale difference sequence η̂et+1 such that êt solves (48) with (49).

Third, we derive the E-stability conditions adapting the analysis of Evans and McGough (2003).

In particular, note that we assume that agents knows êt when making the forecast Etêt+1. Consider

the stochastic model (45) and suppose that the agents follow a perceived law of motion (PLM) such

as

êt = â+ b̂êt−1 + ĉêt−2 + d̂ξ̂t + k̂ζ̂
N
t + l̂ζ̂

N
t−1

ξ̂t = χ̂ξ̂t−1 + η̂et

where η̂et+1 = êt+1 − Etêt+1 is a martingale difference sequence. Iterating forward these laws of
motion and taking expectations we obtain Etêt+1 = â + b̂êt + ĉêt−1 + d̂χ̂ξ̂t + l̂ζ̂

N
t ; using this to

eliminate all the forecasts in the model (45) and assuming that agents know êt when they make

their forecasts, we can derive the implied actual law of motion (ALM)

êt =

Ã
β̂â+ α̂

1− β̂b̂

!
+

Ã
β̂ĉ+ δ̂

1− β̂b̂

!
êt−1 +

Ã
β̂d̂χ̂

1− β̂b̂

!
ξ̂t +

Ã
β̂ l̂ + 1

1− β̂b̂

!
ζ̂
N
t

Then we obtain the T-mapping

T (â, b̂, ĉ, d̂, k̂, l̂) = [T1, T2, T3, T4, T5, T6]
0 =

"
β̂â+ α̂

1− β̂b̂
,
β̂ĉ+ δ̂

1− β̂b̂
, 0,

β̂d̂χ̂

1− β̂b̂
,
β̂ l̂ + 1

1− β̂b̂
, 0

#0

whose fixed points correspond to the rational expectations equilibrium with b̂, d̂ and k̂ satisfying

(66), d̂ = β̂d̂χ̂

1−β̂b̂ , k̂ =
β̂l̂+1

1−β̂b̂ , respectively and â = ĉ = l̂ = 0.38 Since the matrix of derivatives
38Note that â = α̂

1−β̂b̂−β̂ = 0 since α̂ = 0.
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DT (â, b̂, ĉ, d̂, k̂, l̂) is block triangular then it is simple to show that the eigenvalues correspond to
∂T1
∂â =

β̂

1−β̂b̂ ,
∂T2
∂b̂
= β̂δ̂

(1−β̂b̂)2
, ∂T3

∂ĉ = 0,
∂T4
∂d̂
= β̂χ̂

1−β̂b̂ ,
∂T5
∂k̂
= 0 and ∂T6

∂ l̂
= 0, which in turn means that

the E-stability conditions reduce to

β̂

1− β̂b̂
< 1

β̂δ̂³
1− β̂b̂

´2 < 1 and
β̂χ̂

1− β̂b̂
< 1

Moreover using (66) and noting that δ̂
β̂
= b̂1b̂2 and 1

β̂
= b̂1 + b̂2 we can rewrite these conditions

as

1

b̂1 + b̂2 − b̂
< 1

b̂2

b̂1b̂2
< 1 and

χ̂

b̂1 + b̂2 − b̂
< 1 (67)

However note that for the last E-stability condition, it is always true that for the common

factor representation we have that either b̂ = b̂1 and therefore χ̂ = b̂2 implying
χ̂

b̂1+b̂2−b̂ = 1,

or, b̂ = b̂2 and therefore χ̂ = b̂1 implying
χ̂

b̂1+b̂2−b̂ = 1. Hence the differential equation for d̂(τ) is
dd̂(τ)
dτ =

³
χ̂

b̂1+b̂2−b̂ − 1
´
d̂(τ).Using a similar argument to the one developed in Evans and Honkapohja

(1992) it is possible to show that as either b̂ → b̂1 or b̂ → b̂2 then d̂(τ) converges to a finite value.

This means that the only stability conditions that are required to be checked are 1
b̂1+b̂2−b̂ < 1 and

b̂2

b̂1b̂2
< 1.

Fourth, we recall our result from the beginning of this proof that states that under real inde-

terminacy the roots are b̂1 ∈ (0, 1) and b̂2 ∈ (−1, 0).
To prove part a) we use the fact that for b̂ = b̂1 we have that the E-stability conditions
1

b̂1+b̂2−b̂ < 1 and
b̂2

b̂1b̂2
< 1 become 1

b̂2
< 1 and b̂1

b̂2
< 1. Since b̂1 ∈ (0, 1) and b̂2 ∈ (−1, 0) it is clear

that these E-stability conditions are satisfied. Hence the common factor representation (48) and

(49) with b̂i = b̂1 ∈ (0, 1) and b̂j = b̂2 ∈ (−1, 0) is learnable in the E-stability sense.
To prove part b) we utilize the fact that for b̂ = b̂2 we have that the E-stability condition
1

b̂1+b̂2−b̂ < 1 is clearly not satisfied for b̂ = b̂2 ∈ (−1, 0), given that b̂1 ∈ (0, 1) implies
1
b̂1
> 1.

7.5 Proof of Proposition 4

Proof. To prove a) first we write the characteristic equation associated with (50) as

P(b̂) = b̂2 − 1

β̂p
b̂+

δ̂p

β̂p
= 0
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where β̂p, and δ̂p are defined in (51). Second using this, and ρe < 0, K > 0 and H > 0, and the

assumptions about the structural parameters we can derive that

P(1) = 1− 1

β̂p
+

δ̂p

β̂p
=

µ
1

β
− 1
¶µ

ρeē

1 + ²̄

¶
− K²̄

1 + ²̄
+
Hρeē

1 + ²̄
< 0

P(−1) = 1 +
1

β̂p
+

δ̂p

β̂p
=
ē
³
H − 1− 1

β

´
1 + ²̄

(ρ̆e − ρe)

where ρ̆e =
2
³
1
β
+1
´
(1+²̄)+K²̄

ē
³
H−1− 1

β

´ . Observe that since P(1) < 0 by Lemma 1 we know that the eigenvalues
are real.

Third note that if either H > 1+ 1
β and ρe < 0, or H < 1+ 1

β and ρ̆e < ρe < 0, then P(−1) > 0.
Using this and the previous results that P(1) < 0 and that the eigenvalues are real we may infer
that the steady state is a saddle with one of the eigenvalues falling in (−1, 1) and the other one
falling in (1,∞) as explained in Azariadis (1993). Given that êt is the only predetermined variable
then by Blanchard and Kahn (1980) we conclude that the model displays real determinacy.

Fourth it is straightforward to prove that the fundamental solution êt = â+ b̂êt−1 + ĉẑNt is in

fact a solution of (50). Fifth we prove that this fundamental solution is E-stable. In order to do

so we need to derive the E-stability conditions. The procedure to derive them is exactly the same

as the procedure followed in the proof of Proposition 2. In fact the conditions are the same as the

ones previously derived. Here we present only the conditions. The E-stability conditions are

1

b̂1 + b̂2 − b̂1
=
1

b̂2
< 1

b̂21
b̂1b̂2

=
b̂1

b̂2
< 1 and

%N

b̂1 + b̂2 − b̂1
=
%N

b̂2
< 1

It is simple to see that the E-stability conditions are satisfied given %N ∈ (0, 1), b̂1 ∈ (−1, 1)
and b̂2 ∈ (1,∞). Then the fundamental solution is learnable in the E-stability sense and statement
a) of this proposition follows.

To prove b) it is enough to note that if H < 1 + 1
β and ρ̆e < ρe < 0 then we can derive that

P(−1) < 0 . Using this and the previous results that P(1) < 0 and that the eigenvalues are real
we may infer from Azariadis (1993) that the steady state is a source with one eigenvalue falling in

(−∞,−1) and the other in (1,∞). Since êt is the only predetermined variable then by Blanchard
and Kahn (1980) we conclude that the model displays no equilibrium for this case.
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7.6 Proof of Proposition 5

Proof. To prove all the parts of the proposition we use (37), (38), (39) and the log-linearized

versions of (8) and ²t = ρ(πt) to derive the following systemÃ
π̂Nt

êt−1

!
=

Ã
J11 J12

J21 J22

!
| {z }

J

Ã
π̂Nt+1

êt

!
+ U η̂πt+1 + V ẑ

N
t+1

where

J11 =
β {1− [α+ (1− α)H] ρπ}

1− αρπ
J12 = βK

J21 =
β²̄ (1− ρπ) {1− [α+ (1− α)H] ρπ}

(1 + ²̄)(1− αρπ)
2

J22 = 1 +
βK²̄(1− ρπ)

(1 + ²̄)(1− αρπ)

η̂πt+1 is the forecast error for the non-traded goods inflation defined as η̂πt+1 = π̂Nt+1 − Et(π̂Nt+1)
and where the forms of U and V are omitted since they are not needed in what follows. For the

the proof of the proposition it is convenient to pursue the determinacy analysis for the system

written in the form ŷt = Jŷt+1 + U η̂πt+1 + V ẑ
N
t+1 where ŷt = (π̂

N
t , êt−1)0 instead of ŷt+1 = J−1ŷt −

J−1U η̂πt+1−J−1V ẑNt+1. It will reduce tremendously the number of cases that have to be analyzed.39
For this linearized system we have that the trace of J , the determinant of J , and the characteristic

polynomial associated with J correspond to

Trace(J) = 1 +
βK²̄(1− ρπ)

(1 + ²̄)(1− αρπ)
+

β {1− [α+ (1− α)H] ρπ}
1− αρπ

Det (J) =
β {1− [α+ (1− α)H] ρπ}

1− αρπ
P(υ) = υ2 − Trace(J)υ +Det(J) = 0

respectively. Using these expressions we obtain

P(1) = − βK²̄(1− ρπ)

(1 + ²̄)(1− αρπ)

P(−1) =
β
h
2α
³
1 + 1

β

´
+ 2(1− α)H + K²̄

1+²̄

i
1− αρπ

(ρ̃π − ρπ)

where ρ̃π =
2
³
1+ 1

β

´
+ K²̄
1+²̄

2α
³
1+ 1

β

´
+2(1−α)H+ K²̄

1+²̄

> 0. In this proof we will use the facts that K > 0 and H > 0, as

well as the constraints imposed on the structural parameters listed in the description of the model.
39One can analyze either of the forms because the eigenvalues of J−1 correspond to υ−1i , where υi are the eigenvalues

of J.
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To prove part a) we proceed as follows. Observe that since ρπ < 1 and α ∈ (0, 1) then ρπ <
1
α

and therefore P(1) < 0. By Lemma 1, this last inequality implies that the eigenvalues are real.

In addition since by assumption ρ̃π < ρπ (and ρπ <
1
α), then we can infer that P(−1) < 0. It is

straightforward to show that P(1) < 0 and P(−1) < 0 imply that Det (J) < −1, a result we will
use later. Hence P(−1) < 0 in tandem with P(1) < 0 help us to conclude that the system has two

explosive eigenvalues |υ1| > 1 and |υ2| > 1 and that the steady state is a source as explained in

Azariadis (1993). This means that
¯̄̄
1
υ1

¯̄̄
< 1 and

¯̄̄
1
υ2

¯̄̄
< 1. Since π̂Nt is the only non-predetermined

variable of the system then by Blanchard and Kahn (1980) we conclude that the model displays

real indeterminacy.

To prove b) consider the assumption ρπ > max {1, ρ̃π} .We have to take into account two cases:
ρπ >

1
α and ρπ <

1
α . For ρπ >

1
α we have that since by assumption ρπ > 1 then P(1) < 0. By

Lemma 1, this last inequality implies that the eigenvalues are real. In addition since by assumption

ρπ > ρ̃π then we can infer that P(−1) > 0. This in tandem with P(1) < 0 imply that the steady
state is a saddle point with one explosive eigenvalue υ1 ∈ (1,∞) and one non-explosive eigenvalue
υ2 ∈ (−1, 1), as shown in Azariadis (1993).

For ρπ <
1
α we have that since by assumption ρπ > 1 then P(1) > 0. In addition since by

assumption ρπ > ρ̃π then we can infer that P(−1) < 0 which in turn implies, by Lemma 1, that the
eigenvalues are real. Since P(1) > 0 and P(−1) < 0, then the steady state is a saddle point and the
system has one explosive eigenvalue υ1 ∈ (−∞,−1) and one non-explosive eigenvalue υ2 ∈ (−1, 1)
as explained in Azariadis (1993).

Now consider the assumption ρπ < min {1, ρ̃π} . Using this we can infer that in any case we
have that since α ∈ (0, 1) then ρπ < 1 < 1

α . But this implies that P(1) < 0. By Lemma 1, we

derive that the eigenvalues are real. In addition since by assumption ρπ < ρ̃π then we can infer

that P(−1) > 0. This in tandem with P(1) < 0 imply that the steady state is a saddle point with
one explosive eigenvalue υ1 ∈ (1,∞) and one non-explosive eigenvalue υ2 ∈ (−1, 1), as shown in
Azariadis (1993).

Therefore under either ρπ > max {1, ρ̃π} or ρπ < min {1, ρ̃π} , the steady state is a saddle path.
Since π̂Nt is the only non-predetermined variable of the system then by Blanchard and Kahn (1980)

we conclude that the model displays real determinacy.

Finally to prove c) we start by observing that ρ̃π <
1
α . Hence 1 < ρπ < ρ̃π <

1
α . These

inequalities imply that P(1) > 0 and P(−1) > 0. Then we have to consider two cases: ρπ >
1

α+(1−α)H and ρπ <
1

α+(1−α)H . For the first case if ρπ >
1

α+(1−α)H then since ρπ <
1
α we have that

Det (J) < 0. By Lemma 1 this implies that the roots are real. Moreover utilizing this and P(1) > 0
and P(−1) > 0 we can infer that the steady state is a sink with two non explosive eigenvalues

υ1 ∈ (0, 1) and υ2 ∈ (−1, 0), as explained in Azariadis(1993).
On the other hand, for the second case we have that since ρπ <

1
α+(1−α)H and ρπ <

1
α+(1−α)H <
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1
α then 0 < Det (J) < 1 (provided that β ∈ (0, 1)). Using this and P(1) > 0 and P(−1) > 0 we can
conclude from Azariadis (1993) that regardless of whether the eigenvalues are real or complex the

steady state is a source with two non explosive eigenvalues υ1 ∈ (−1, 1) and υ2 ∈ (−1, 1).
Therefore in both cases we have concluded that the steady-state is a source. Hence

¯̄̄
1
υ1

¯̄̄
> 1

and
¯̄̄
1
υ2

¯̄̄
> 1.Since π̂Nt is the only non-predetermined variable of the system then by Blanchard and

Kahn (1980) we conclude that the model displays no equilibrium.

7.7 Proof of Corollary 2

Proof. First, observe that ρ̃π < 1 implies that H > 1 + 1
β . Second, from the Proof of Corollary 1

we have that ∂K
∂α < 0,

∂K
∂µ > 0 and

∂K
∂φ < 0. Use all these inequalities in tandem with

∂ρ̃π
∂α

=
2
³
H − 1− 1

β

´ h
2
³
1 + 1

β

´
+ K²̄

1+²̄

i
−Θ∂K

∂α

Φ2

∂ρ̃π
∂µ

= − Θ
Φ2

∂K

∂µ

∂ρ̃π
∂φ

= − Θ
Φ2

∂K

∂φ

where Θ = 2
³
1 + 1

β

´
(1−α)

³
²̄
1+²̄ + 2

H
K

´
> 0 and Φ = α

³
1 + 1

β

´
+2(1−α)H + K²̄

1+²̄ > 0, to derive

a), b) and c).

7.8 Proof of Proposition 6

Proof. First, observe that the characteristic equation associated with (54) is

b̂2 − 1

β̂q
b̂+

δ̂q

β̂q
= 0 (68)

whose roots are denoted by b̂i with i = 1, 2. Second, we establish a relationship between these roots

b̂i and the roots υi in the proof of Proposition 5. In particular it is straightforward to show that

b̂i =
1
υi
and that

1

β̂q
=
Trace(J)

Det(J)
= Trace(J−1) = b̂1 + b̂2 and

δ̂q

β̂q
=

1

Det(J)
= Det(J−1) = b̂1b̂2

where J was defined in Proposition 5.

Third we use these relationships to prove a). Since under real determinacy in the proof of

Proposition 5 we have that either υ1 ∈ (−∞,−1) and υ2 ∈ (−1, 1) or υ1 ∈ (1,∞) and υ2 ∈ (−1, 1)
then we can conclude that b̂1 ∈ (−1, 1) and either b̂2 ∈ (−∞,−1) or b̂2 ∈ (1,∞).

Fourth, it is simple to show that under real determinacy, the unique equilibrium of the model

(54) characterized by the fundamental solution (56) with b̂ ∈ (−1, 1) is in fact a solution of the
model (54).
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Fifth, we derive the E-stability conditions. However the procedure is the same as the one

explained in the proof of Proposition 2. We only rename β̂ and δ̂ as β̂q and δ̂q respectively. Then

following the proof of Proposition 2, it is straightforward to prove that the unique equilibrium

of the model (54) characterized by the fundamental solution (56) with b̂ ∈ (−1, 1) and either
b̂2 ∈ (−∞,−1) or b̂2 ∈ (1,∞) is E-stable.

Sixth to prove b) we start by noting that in (68) we have that δ̂q

β̂q
= b̂1b̂2. Next we recall

that in the proof of a) in Proposition 5 we argued that real indeterminacy is associated with two

non-explosive eigenvalues |υ1| < 1 and |υ2| < 1. Then using this and b̂i = 1
υi
help us to infer

that b̂1 ∈ (−1, 1) and b̂2 ∈ (−1, 1). Furthermore under real indeterminacy it is easy to show that
δ̂q

β̂q
< −1. Hence b̂1b̂2 = δ̂q

β̂q
< 0 which in turn means that the roots are real. Then without loss of

generality we can assume that the roots are b̂1 ∈ (0, 1) and b̂2 ∈ (−1, 0).
Seventh, we point out that following Propositions 3 and 4 in Evans and McGough (2003), it is

simple to prove that the process êt is a rational expectations equilibrium of (54) with %N = 0, if and

only if there is a martingale difference sequence η̂et+1 such that êt solves (57) with (58). Henceforth

we focus on proving the learnability of the common factor representation. However the proof is

similar to the proof for Proposition 3. We just have to rename β̂ and δ̂ as β̂q and δ̂q respectively,

and follow the steps. Then statement b) follows.
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