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Abstract

I present empirical evidence of how the U.S. economy, including per-capita hours
worked, responds to a technology shock. In particular, I present results based on per-
manent changes to a constructed direct measure of technological change for U.S. manu-
facturing industries.
Based on empirical evidence, some claim that hours worked declines and never recovers

in response to a positive technology shock. This paper’s empirical evidence suggests that
emphasizing the drop in hours worked is misdirected. Because the sharp drop in hours
is not present here, the emphasis rather should be on the small (perhaps negative) initial
response followed by a subsequent large positive response. Investment, consumption, and
output have similar dynamic responses.
In response to a positive technology shock, a standard flexible price model would have

an immediate increase in hours worked. Therefore, such a model is inconsistent with
the empirical dynamic responses. I show, however, that a flexible price model with habit
persistence in consumption and certain kinds of capital adjustment costs can better match
the empirical responses.
Some recent papers have critiqued the use of long run VARs to identify the dynamic

responses to a technology shock. In particular they report that, when long run VARs
are applied to data simulated from particular economic models, the point estimates of the
impulse responses may be imprecisely estimated. However, based on additional simulation
evidence, I find that, although the impact response may be imprecisely estimated, a finding
of a delayed response is much more likely when the true model response also has a delayed
response.
Keywords macroeconomic models, vector autoregressions, impulse responses, weak

instruments, long-run identification assumption
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1 Introduction

Recent papers by Gaĺı (1999), Basu, Fernald, and Kimball (2004), and Francis and Ramey
(2003) have claimed that in response to an unexpected improvement in technology, hours
spent working declines. This finding challenges the standard macroeconomic flexible-price
model because that model predicts a strong positive correlation between employment and
technology.

This paper’s empirical evidence suggests that emphasizing the drop in hours worked is mis-
directed. Because the sharp drop in hours is not present in several of the data series examined
here, the emphasis rather should be on the small (perhaps negative) initial response followed
by a subsequent large positive responses. The paper also presents a flexible-price model that
is broadly consistent with the empirical dynamic responses. The empirical evidence describes
how the economy responds to shocks to a productivity measure that has been corrected for
utilization and reallocation. For the quantities considered here (output, consumption, invest-
ment, and hours worked), a consistent pattern emerges. When the technology shock occurs,
the variables respond only slightly. Over time, the variables’ dynamic responses gain strength.

To be consistent with the empirical responses, the standard quantitative dynamic flexible-
price model must be modified. The modifications pursued here are to make utility depend on
past consumption (habit persistence) and to have capital adjustment costs.

Gaĺı (1999) and Francis and Ramey (2003) measure productivity using aggregate labor
productivity. Aggregate labor productivity, however, is a poor measure of technology because
it can change for many reasons besides technological growth. In particular, in response to
changes in the economy, workers sometimes vary their effort and, hence, output. Because
this variation in the utilization of inputs is unobservable, changes in the utilization rate will
appear as changes in productivity. To obtain an accurate measure of how technology increases
productivity, one must control for these changes in utilization. In addition, reallocation of
labor from an industry with low labor productivity to an industry with high labor productivity
will also show up as in improvement in aggregate labor productivity that may not be due to
increases in technology.

Combining the methods of Burnside, Eichenbaum, and Rebelo (1996) and Basu, Fernald,
and Kimball (2004), the current paper constructs a quarterly measure of productivity that
has been corrected for variations in utilization and also for reallocation between industries. In
spite of the steps taken to remove endogenous influences, this productivity measure still might
be influenced by other economic variables. To control for this endogeneity, I use the long-run
approach of Gaĺı (1999) to consider how the economy responds to exogenous shocks to the
productivity series. The empirical results support the view that the immediate response to
a technology shock is either negative or small. Although the initial responses are small, this
paper shows that, within six quarters, the responses are positive and large.

The empirical work is presented with an emphasis on robustness. The paper considers
responses to a technology shock identified under different identification assumptions. In ad-
dition, the paper reports confidence intervals for the impact response of a technology shock
that are valid under the assumption of weak instruments. Although the resulting confidence
intervals are wide, compared to the possible range associated with an unidentified shock, the
identification scheme does restrict the possible responses.

Having documented how the economy responds to a technology shock, the challenge is to

2



construct a model that has the same dynamic responses. The empirical responses are incom-
patible with a standard quantitative dynamic flexible-price model; because, in the standard
model, the period of the technology shock is when the variables respond most. The model
needs to be modified to generate a more realistic delayed dynamic response. Gaĺı (1999) and
Basu, Fernald, and Kimball (2004) propose to resolve the model’s problem by including sticky
prices. Basu (1998) presents a sticky price model that successfully matches the immediate
small empirical responses to a technology shock but fails to match the medium-term empiri-
cal responses. With both sticky prices and wages, Altig, Christiano, Eichenbaum and Linde
(2004) better match these responses. The current paper does not use sticky prices. Rather it
uses a flexible-price model with modifications to both preferences and technology. Preferences
are modified such that today’s utility depends on the previous level of consumption, habit
persistence. Habit persistence implies that consumption responds more slowly to an increase
in technology. Just habit persistence, however, is not enough to match the data. The tech-
nology to transform investment into capital must be modified to dampen the responses by
investment and output. The paper presents two specifications for the investment technology:
time-to-plan and convex capital adjustment costs. When the capital adjustment costs depend
on the ratio of new investment to capital, the model can match the initial period’s responses
but fails to match the subsequent increases. Having the adjustment costs depend on the
growth rate of investment results in a better match to the long-run response. A time-to-plan
model also matches but, with only one kind of investment good, its responses are somewhat
too jagged. These last two specifications work better because although they constrain the
initial response by investment they allow the subsequent responses to be strong.

Although these models can match the consumption, investment and hours worked re-
sponses, the models presented here have a difficult time matching the response of the real
interest rate. Although there is some uncertainty with respect to the true real interest rate
response, the empirical impulse responses, in general, indicate that the real interest rate in-
creases in response to a positive technology shock. Chiefly because of habit persistence, in
the reported economic models, the real interest rate instead falls in response to a positive
technology shock. I show that a model with consumption adjustment costs can better match
the real interest rate response. Even this model, however, does not completely capture the
empirical response by the real interest rate.

Recent papers by Erceg, Guerrieri and Gust (2004) and Chari Kehoe and McGrattan
(2004) have critiqued the use of long-run VARs to construct impulse responses. Using simu-
lated data from particular economic models, they show that, for these particular models, the
point estimates of long run VARs are imprecisely estimated. However, when I adopt their
approach of simulating data from a benchmark model, I find further evidence in favor of study-
ing the shape of the impulse responses. Although the impact response may be imprecisely
estimated, a finding of a delayed response is much more likely when the true model response
also has a delayed response.

2 Empirical Work

This paper’s empirical work combines the two approaches taken in the literature to study
productivity shocks. As in Basu Fernald and Kimball (2004), industry-level data is used to
construct a utilization-corrected aggregate technology series. This series is then used as a
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variable in a vector autoregression, where, as in Gaĺı (1998), exogenous technology shocks are
identified under the assumption that only exogenous technology shocks affect the permanent
level of productivity. In the first subsection, I describe how to use fluctuations in electricity
usage (as in Burnside, Eichenbaum and Rebelo (1996)) and fluctuations in average hours (as
in Basu Fernald and Kimball (2004)) to construct a quarterly utilization-corrected technology
series. In the second subsection, I then use the same vector autoregression approach that
Gaĺı (1999) and Francis and Ramey (2003) used for labor productivity to calculate impulse
responses to a permanent shock to my constructed technology series. The main findings are
that the response by per capita hours worked is initially small but ,within two years, hours
worked experiences a large increase.

2.1 Accounting For Utilization and Reallocation

Forces besides technological progress affect labor productivity. In particular, the effort ex-
pended by workers and machines can vary endogenously over time. One cannot always observe
this time-varying utilization of inputs, which can be a serious issue in measuring technology
growth because a change in utilization can be mistaken for a change in technology.

This section uses methods proposed by Basu, Fernald, and Kimball (2004) [BFK] and
Burnside Eichenbaum and Rebelo (1996) [BER] to approximate the changes in utilization with
changes in observable variables. BFK approximate changes in utilization by using changes in
average hours worked. The intuition for this approximation is that a firm would choose to
vary both workers’ hours and utilization until the costs and the benefits are the same.1 BER
approximate changes in capital services by changes in electricity usage. In addition, because
reallocation can increase aggregate productivity without requiring an increase in technology,
one should also control for reallocation between industries. As is done in BFK, the aggregate
productivity series is constructed by aggregating industry-level productivity series.

To calculate the productivity series at the quarterly frequency requires a few strong as-
sumptions. Because the industry-level capital stock is unobservable at the quarterly frequen-
cies, changes in electricity usage are used to approximate the changes in capital services.
Because data on material usage is unavailable at the quarterly frequency, one must assume
that there is very limited substitutability between materials and a mix of capital services and
labor. BFK have been critical of estimating productivity without data on materials usage.
In trying to measure quarterly productivity growth, it, however, is likely better to implement
partially their methods than not use them at all.

Industry-Level Data The productivity equation is estimated using quarterly data at the
industry level between 1972 to 2001. As in BFK, these industry-level productivity series are
then aggregated to generate an economy-wide productivity series.2 The industries used here
are the eighteen two-digit SIC manufacturing industries. Their names and SIC codes are
reported in Table 1.

1In more formal terms, using hours to approximate for utilization implies an assumption that, at least for
empirically relevant values, the output expansion path is an upward sloping line. The assumption would be
satisfied if output were produced, for example, by a homothetic production function (such as Cobb-Douglas)
using hours and utilization with constant costs of increasing either input.

2A lack of data requires the use of this manufacturing-based technology measure to approximate the
economy-wide fluctuations in technology.
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Applying the methods of BER and BFK results in the following equation whose residual
is a measure of productivity growth. Output and all the inputs are expressed in logged
first differences of quarterly data. For each industry j, the growth rate at quarter t of the
productivity series ∆zj,t will be the residual from the following estimated equation3:

∆yj,t = µj
¡
svk,j∆kj,t + s

v
l,j (∆hj,t +∆ej,t)

¢
+ ξj∆hj,t +∆zj,t (1)

This output data ∆y will be measured by the Federal Reserve’s measures of industrial
production. The capital services variable ∆k will be approximated by data on electricity
usage.4 The average hours ∆h and employment data ∆e are taken from the corresponding
BLS measure. The capital svk and labor shares s

v
l are calculated as the average value-added

shares from the BLS KLEMS database.5 The values of µ and ξ are estimated. The values
of µ and ξ are constrained to be the same for all durable good sectors and the same for all
nondurable good sectors.

In aggregating these industry level estimates, the aggregation equation is the same as in
BFK.6 Aggregate productivity is calculated as

∆zagg,t =
X

wj
∆zj,t

1− µ
j
smj

(2)

The weight wj is the share of value added by industry j. The share of materials smj is
calculated using the materials share of gross-output reported in the KLEMS dataset.

The parameters are estimated using two-step GMM under the assumption that the val-
ues of ∆zit and ∆zjt are correlated but that there is no serial correlation. I use the three
instruments that are commonly used in estimating this kind of production function. One of
the instruments is the previous quarter’s value of the Federal Funds shock resulting from the
monetary VAR estimated in Christiano, Eichenbaum, and Evans (2001). The second instru-
ment is the current and previous quarters’ values of the difference between the aggregate GDP
price deflator and the growth rate of the price of oil.7 The third instrument is the current

3This equation is similar to that estimated in Burnside Eichenbaum and Rebelo (1996) and in Conley and
Dupor (2003) except for two differences. First, these authors don’t use the average hours correction, represented
in Equation 2 by ξhj,t. Second, the value of µ is estimated as the sum of the shares of capital services and labor
which are estimated separately. In other words, they don’t use the information on KLEMS shares but rather
just estimate the shares. Impulse responses generated using this approach were similar to the ones reported in
the paper.

4Some might be concerned that electricity usage might be overly sensitive to weather fluctuations. Because
the electricity usage data is on a national basis, geographic diversification should limit any dependence on
weather.

5The KLEMS dataset is used to measure multi-factor productivity as the annual frequency. It and the
Canadian equivalent are featured in Vigfusson (2003).

6This aggregation equation calculates the increase in aggregate technology resulting from industry-level
technology growth holding the distribution of inputs among industries fixed.

7The results reported here use the IMF world price of oil, an average of international well-head prices. Other
researchers including Basu, Fernald, and Shapiro (2001) have used the Producer Price Index for crude oil as
an instrument. The Producer Price Index, however, only measures the price paid for domestic but not foreign
oil. Not including foreign oil results in a very misleading price series because, between the summer of 1973 and
January 1981, American produced oil was under government-imposed price controls. Because of these price
controls, the PPI does not measure the true cost of oil. In particular, it does not capture the dramatic effect of
the oil shocks of 1973 and 1979 that are observable in other series such as the IMF oil series or the Department
of Energy’s series, Refiner Acquisition Nominal Cost of Imported Crude Oil.
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and previous quarters’ growth rate in real defense spending.8

The GMM estimator requires an estimate of the variance-covariance matrix. Because,
the estimation exercise is a system of equations for eighteen industries, the unconstrained
version of the variance-covariance matrix requires a large (171) number of parameters. To
reduce this number, one could place structure on the correlation between sectors. Conley
and Dupor (2003) assume that the industries that use similar inputs have similar patterns
of productivity. Given my interest in aggregated quantities, this correction has only a small
effect on the aggregated results. 9

2.1.1 Results

The coefficient estimates are reported in Table 2. For the nondurable goods producing sectors,
the estimate of the mark-up parameter µ is less than one. The difference between the estimate
and constant returns, however, is not statistically significant. Some of the estimates reported
in BFK were also less than one. They argue (p.29) that one possible explanation for these low
estimates of µ is the omitted variable bias that would result from not including an estimate
of reallocation effects.

The estimates of ξ are positive and significantly different from zero. Positive coefficients
imply that when utilization growth and, therefore, average hours growth are high, the growth
in the utilization-corrected measure of productivity is less than the growth in the measure of
uncorrected productivity.

Although the work here has tried to construct a technology series that corrects for utiliza-
tion and reallocation, one may be concerned that the series is still affected by measurement
error. A such, this estimated technology series will be combined with a long-run identification
assumption to identify the part of this series that seems to have a long-run affect on the level
of technology. The next section describes how to implement such a long-run identification
assumption.

2.2 Estimating A Vector Autoregression with A Long Run Identification
Assumption

Here, as in Gaĺı (1999), a technology shock will be identified as a permanent shock to produc-
tivity.10 These shocks and resulting impulse responses are computed in the following manner.

8To specify these variables as instruments requires an assumption that these variables are uncorrelated
with the technology shocks. There are models in which this assumption would be violated. For example, if
implementation cycles models (Shleifer 1986) were empirically relevant, then these variables may be correlated.
In such a model, reductions in oil prices could result in an economic expansion that would cause people to
implement their ideas increasing productivity.

9The aggregation, however, does obscure the important role played by industry-specific productivity growth
that is found in US industrial production data in Conley and Dupor (2003) and again in KLEMS data for both
Canada and the United States in Vigfusson (2003).
10Several recent papers have identified a technology shock using a long-run restriction. These papers include

Gali (1999); Francis and Ramey (2003); Altig, Christiano, Eichenbaum, and Linde (2004); and Fisher (2002).
Although these methods have proven popular, some researches have critiqued these methods. In particular,
Faust and Leeper (1997) describe problems associated with constructing confidence intervals (see footnote 15 for
more discussion), and the perils of excluding variables from the VAR. Erceg, Guerrieri,and Gust (2004) present
model-based Monte Carlo evidence on the long-run identification assumption. Their work will be discussed in
section 4.
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Consider the following structural vector autoregression (VAR) for a vector of variables yt

A0yt = A(L)yt−1 +
µ

εzt
vt

¶
(3)

The vector yt consists of n elements. The first element is the growth rate of a productivity
measure, denoted by ∆zt. Gaĺı measured productivity using labor productivity. Here, I will
report results for both labor productivity and also for my constructed measure of technology.
The next n-1 elements are the other variables in the VAR xt.

yt =

µ
∆zt
xt

¶
(4)

The shocks εzt and vt (where vt has n− 1 elements) are assumed to be independent. Gaĺı
identifies the technology shock by assuming that only the technology shock εzt can have a
permanent effect on the level of productivity zt. All other shocks are assumed to have no
long-run effect. To impose this restriction is to impose a restriction on the moving average
representation of the data. Denote the moving average representation by:µ

∆zt
xt

¶
=

Ã
C11(L) [C1j (L)]

n
j=2

[Cj1 (L)]
n
j=2 [Cjk (L)]

n
j,k=2

!µ
εzt
vt

¶
(5)

the restriction that the long run impact on zt is zero for all shocks except the first is that, for
all the other shocks, the sum of moving average coefficients equals zero. (i.e [C1j (1)]

n
j=2 = 0

for all j ≥ 2)
To actually estimate the structural VAR with this long-run restriction requires a restriction

on the structural VAR coefficients. To make the notation clear, I rewrite the structural VAR
as Ã

a0,11 −A11(L) [a0,1j ]
n
j=2 − [A1j (L)]nj=2

[a0,j1]
n
j=2 − [Aj1 (L)]nj=2 [a0,jk]

n
j,k=2 − [Ajk (L)]nj,k=2

!µ
∆zt
xt

¶
=

µ
εzt
vt

¶
(6)

Because (A0 −A(1)) equals C(1)−1, the restriction on C(1) is equivalent11 to the following
restriction on A0 −A(1)

a0,1j −A1j (1) = 0 for all j ≥ 2 (7)

To implement this restriction we estimate the equation12¡
a0,11 −A11(L) Ã(L)(1− L) ¢µ ∆zt

xt

¶
= εzt (8)

To estimate this equation, one has to instrument for ∆xt using xt−1. An discussed in Chris-
tiano, Eichenbaum and Vigfusson (2003), if xt−1 is non-stationary, then xt−1 will be a weak
instrument.13 Section 2.4 considers the weak instrument problem.
11The equivalency can be seen by examination of the co-factor formula for the inverse of a matrix.
12This specification is the “double difference” approach described in King and Watson (1997).
13If the VAR is correctly specified, lagged ∆xt−i’s cannot be used as instruments for ∆xt. For a VAR

with p lags, the first p values of ∆xt−i
¡{∆xt−i}pi=1¢ will also be in the equation. Hence, they cannot serve as

instruments. Other values {∆xt−i}∞i=p+1 are not valid instruments by the definition of the VAR being correctly
specified. Being correctly specified implies that these values cannot contain any information about ∆xt beyond
that contained in {∆xt−i}pi=1.
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Estimating this equation results in a time series of the technology shocks. To calculate
the impulse responses requires the moving average representation of yt in terms of ε

z
t and vt.

One approach to calculate this moving average representations starts with the reduced form
VAR14

yt = B(L)yt−1 + ut (9)

where ut is the vector of the n reduced-form residuals. A regression of ut on εzt results in γ,
the first column of A−10 . The residuals from these regressions would be a linear combination of
the other fundamental error terms vt that are un-correlated with ε

z
t . The impulse response to

a one standard-deviation technology shock σεz can be constructed using the column γ and the
inverted reduced-form VAR coefficients. The formula for the impulse responses Γ is therefore

Γ = (I −B(L)L)−1 γσεz (10)

To summarize, the impulse responses can be calculated using the following four steps.

¡
a0,11 −A11(L) Ã(L)(1− L) ¢µ ∆zt

xt

¶
= εzt (11)

yt = B(L)yt−1 + ut
ut = γεzt + vt

Γ = (I −B(L)L)−1 γσεz

2.3 Impulse Responses

The next section reports the dynamic responses to an exogenous shock to productivity. The
measure of productivity is the result of using Equation 2 to aggregate the industry-level
estimates calculated using Equation 1.

Two sets of results are reported. The first results correspond exactly to the methods
used by Gaĺı (1999) and Francis and Ramey (2003) except that I replace their use of labor
productivity with my productivity measure. Compared to the initial response by hours when
using labor-productivity, the initial response here is much more positive. Either hours declines
less or it does not decline at all. The result reported here do not overturn earlier critiques of
the standard quantitative dynamic flexible-price model. Hours still do not respond positively
to the shock for the first year.

The second set of results report the dynamic responses by investment, output, and con-
sumption as well as hours. These results are useful because they provide the basis upon which
to characterize the ability of the macroeconomic model to match the data. These variables
do not respond much in the period of the shock. In subsequent periods, the variables start to
increase in response to the technology shock.

14Because there are no other restriction on the equation, the results calculated using the reduced form VAR
are identical to results calculated using the structural VAR with coefficients A0 and A(L). Imposing additional
restrictions on A0 such as also identifying a monetary policy shock, as in Altig, Christiano, Eichenbaum, and
Linde (2003), would require using the structural VAR to calculate impulse responses.
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2.3.1 Bivariate VAR with Hours Worked

As in Gaĺı (1999) and Francis and Ramey (2003), the impulse response are from a two-variable
VAR on the growth rates of a productivity series and the growth rates of hours worked. Pro-
ductivity is measured using two different time series: labor productivity and my constructed
aggregate productivity series. In addition, impulse responses are calculated from a VAR of
the constructed productivity series and the levels of per-capita hours worked. Christiano,
Eichenbaum and Vigfusson (2003) argue that estimating the long-run VAR with hours in
first differences is mis-specified relative to estimating a VAR with per-capita hours in levels.
This section, however, reports both sets of results to maximize comparability with the earlier
literature. Confidence intervals around the estimate are calculated using a bootstrapped ap-
proach. Sampling from the residuals with replacement, the estimated VAR is used as a data
generating process to simulate time series. Using the simulated data, the VAR is estimated
and the responses to a permanent positive increase in technology are calculated. After simu-
lating the data 500 times, the variance of each period’s impulse response is calculated. The
resulting confidence interval is the estimated response plus or minus 1.96 times the standard
deviation.15

Figure 1 reports the response of the three different VARs. The three different specifications
have similar responses. Nothing much happens on impact. Subsequently, hours worked begins
to increase. For all three VARs, the response on impact is much greater than that reported
in Gaĺı or in Francis and Ramey. These results, however, are not large enough to overturn
the conclusions of previous work. Hours still do not respond much initially to a positive
productivity shock. Therefore, the evidence is still against models that predict a large initial
response to increases in productivity.

2.3.2 VAR with Hours Worked and Other Variables

To compare the model to the data, one needs to know how other variables in the econ-
omy respond to a technology shock. This section describes how other variables (output yt,
consumption ct, investment it, and the real interest rate rt)

16 respond to a technology shock.
The approach taken here is to estimate the set of equations described in Section 2.2 . The

15Faust and Leeper (1997) note that the standard confidence intervals for impulse responses are not valid
unless restrictive assumptions are made concerning the data generating process. For the bootstrapped confi-
dence intervals considere here, the implicit assumption is the true data generating process actually is a six lag
bivariate vector autoregression. Under such a restrictive assumption, the confidence intervals reported here
would be valid.
16All variables are expressed in logs. The variables span the second quarter of 1972 to the end of 2001 and are

taken from the DRI BASIC Economics (nee Citibase) database. The series with their mnemonics are as follows:
real consumption (the sum of consumption of services GCS, nondurables GCN and government consumption
divided by the gross output price deflator GDPD and consumption of durables GCD), real investment (gross
private investment (GPI) and government investment divided by the output price deflator GDPD), output
(nominal consumption and investment divided by GDPD), real interest rate (3 month Treasury Bill rate minus
the growth rate of the GDP price deflator), and hours worked (nonfarm business hours LBMNU). All quantities
are expressed in per-capita term by dividing by the population over 16. Deflating consumption and investment
by the same price measure rather than using the separate published deflators for investment and consumption
is deliberate. See Whelan (2000) for a discussion of using chain-weighted data.
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vector of other variables is constructed as follows

xt =


ht
rt
∆yt
it − yt
ct − yt

 (12)

Cointegrating relationships are defined between investment and output, and consumption
and output. There is no assumption of a cointegrating relationship between per-capita output
and the technology series, in order to allow for other shocks to have a permanent effect on
per-capita output. Besides this baseline VAR, I also report impulse responses for two other
VARs. One uses the same reduced form VAR but identifies the technology shock not with
a long-run identifying assumption but rather uses a standard recursiveness assumption with
technology ordered first. In other words I estimate the same reduced form VAR but identify
my technology shock εzt as the first element in ut. I then regress ut on εzt to find γ and then
calculate the impulse responses as done earlier. Finally, I report another VAR where I consider
permanent shocks to labor productivity rather than to my constructed productivity series.17

Figure 2 reports the data used in the VAR. The log of per-capita hours worked increases
over this time period. This increase in hours worked is the result of two opposite trends. An
increase in the labor force participation rate (from 60 to 67 percent over this time period)
offsets the decline in average hours worked, (for production workers, the average work week
has declined from 36 hours to 34 hours).

Figure 3 reports the implications for the technology growth series by applying the long-
run identification assumption. The constructed technology series is presented along with the
technology series implied by the VAR and allowing only permanent shocks to technology. In
order to emphasize the role of the long run identification assumption, both series are presented
with mean zero. Perhaps not surprising the series that results from the long run identification
series is much less volatile than the original series.

Impulse responses for the baseline long-run VAR are reported in Figure 4. In general,
quantities take time to respond to the technology shock. Hours worked responds only slightly
in the impact period of the shock. It takes several quarters before hours worked has a strong
response. Consumption only responds gradually over time. In the impact period, the response
is only about half of what it will be 10 quarters later. In percentage terms, the investment
response is stronger on impact but the strongest investment response is about four quarters
later. The real interest rate, however, has a very different response. The real rate jumps 80
basis points on impact. It then steadily declines but it does take six years before the real rate
returns to normal.

The results for the two other VARs are similar. Identify technology shocks with a short-run
recursiveness assumption produces a few small differences. The largest difference is that the

17The labor productivity output series considers total output divided by business hours. As such, this
definition of labor productivity is more like the work by Gali (1999) than the definition used in Francis and
Ramey and Christiano, Eichenbaum, and Vigfusson (2003). As in CEV, I could have defined labor productivity
as the ratio of business output to business hours worked. This has the advantage of avoiding the problem of
increases in government spending being misconstrued as a technology shock. However, it comes at the cost of
being less transparent concerning the imposed cointegration results.
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real interest rate response is much weaker. Also, the consumption response is not as strong
but the investment response is of greater size and duration. For this dataset, identifying a
technology shock as a permanent shock to labor productivity again produces a very similar
set of responses.

2.3.3 The Shape of the Impulse Responses

I have claimed that the delayed response to a positive technology shock is a robust feature
of the data. The following section characterizes this robustness. Using the baseline VAR as
the DGP process, Figure 5 reports that in the majority of cases the response by hours six
quarters after a shock is greater than the response on impact.

Table 3 reports that for the majority of simulations, the impact period response for con-
sumption, investment, or hours worked is much smaller than responses several periods later.

2.4 Weak Instruments And the Delay in the Hours Response

To identify a permanent change in technology requires estimating an instrumental variables
regression. One may be concerned about whether the above conclusions concerning the shape
of the impulse responses are robust to weak instruments. Although the actual instrumen-
tal variables regression may have problems with weak instruments, the evidence is that the
conclusions concerning shape are more robust.18

When instruments are only weakly correlated with the explanatory variables, confidence
intervals can often be much wider than those calculated using standard methods. In the
equation estimated here, the lagged level of hours worked is used to instrument for the growth
rate of hours worked. If hours worked has either a unit root or else approaches a unit root
asymptotically, then hour worked would be a weak instrument.19 Valid confidence intervals
for estimation using weak instruments, however, were established by Anderson and Rubin
(1949). In the present context, their method can be implemented as follows. Begin with the
IV regression where any dependence on lagged values has been removed by a linear projection.
All that is left is to estimate a0, in the following equation,

∆zt −∆xta0 = εzt

with the instruments xt−1. The Anderson Rubin confidence interval can be described (Wright
2002) as the values of a0 that satisfy the following condition:a0 : (∆z −∆xa0)

0
³
x−1

¡
x0−1x−1

¢−1
x0−1

´
(∆z −∆xa0)

(∆z −∆xa0)0 (∆z −∆xa0)
≤ Fχ2 (k,α)


where ∆z, ∆x and x−1 are the vectors of ∆zt, ∆xt and xt−1 and F is the α percent critical
value from a chi-squared distribution with k degrees of freedom, where k is the number
of instruments. Figure 6 plots the results when ∆z is the growth rate of the constructed

18Complementary to this work is a paper by Pesavento and Rossi (2003) where they calculate confidence
intervals for impulse responses at long horizons.
19Addition detail is provided in Christiano, Eichenbaum and Vigfusson for the weak instruments problem

that occurs when hours has a unit root.
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technology series and x is the level of per-capita hours. The first panel of Figure 6 plots the
criterion function. A 95 percent confidence interval for a0 is very large ranging between -7
and 6.2. However, the value of a0 is only important as it affects the measure of γ. Each a0
maps into a value γ, the response by hours to a one standard deviation shock. The second
panel plots the mapping from a0 to γ. The third panel shows that this mapping implies that
the confidence interval for the impact response of hours to a one-standard deviation shock is
between -0.05 percent and 0.11 percent. Although this confidence interval is large, it does
contain information. In particular, if the coefficient were unidentified, the confidence interval
would be between [−σu,σu], the variance of the reduced form residual.20

These confidence intervals are constructed holding as fixed the values of the reduced form
VAR coefficients. Hence if we combine these estimates of the possible values of γ with the
reduced form VAR, the resulting hours response six quarters later is between 0.05 and 0.27.

Similar calculations can be done for the six variable system. A grid search on all the
possible values of a0 would be particularly laborious for the larger system. For example, a five
dimensional space with 100 grid points per dimension would be ten billion points. However,
one can approximate the grid search by instead sampling over the parameter space. A random
sample of the same space should be sufficiently informative.21 Table 4 reports confidence
intervals for γ0 that result from those values of a0 that belong to the AR confidence interval.
Going from the bivariate autoregression to the multivariate regression seems to have both
tightened and shifted upwards the confidence intervals on the hours worked response.

There appears to be a great deal of uncertainty of investment’s response on impact. This
uncertainty does not seem to be reflected in the standard bootstrap confidence intervals re-
ported above. Perhaps the most surprising thing is the improvement of identification that
results from using the constructed technology series.

The emphasis on the shape of the hours worked response can also be studied in the context
of weak instruments. Consider Figure 7, which shows the connection between the response by
hours on impact combined with its response six quarters later. The oval indicates all observed
responses, holding the reduced form VAR coefficients B(L) fixed. The grey area indicates
those values that are associated with a value of the Anderson Rubin statistic less than the 95
percent critical value of 9.488. Although this oval does not take into account the sampling
uncertainty of B(L), the figure is supportive of placing a greater emphasis on the shape of
responses.

The evidence from the weak instruments reinforces the view that the robust finding is

20The proof of this claim is straightforward. By definition the part of xt that does not depend on lagged
xt−i is ut. Given the previously described identity,

ut = γεzt + vt

the response by xt to a one-standard deviation shock to ε
z
t is γσz. But because ε

z
t and vt are uncorrelated, the

variance of u is the following
σ2u = γ2σ2z + σ2v

and therefore, we have the result that
|γσz| ≤ σu

completing the proof.
21The following table is based on 20,000 samples over the parameter space. These results were then checked

by making an additional 30,000 simulations. In no case did these additional samples change the results reported
here.
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that the hours response is initially small but grows over time. Models therefore should be
constructed to attempt to match this finding.

2.5 Sensitivity of Results

The following sections report on the sensitivity to using different data and also to using
different sample periods.

2.5.1 Ex ante Real Interest Rate

To check for data sensitivity, the empirical VAR is estimated using an ex ante measure of the
real interest rate in place of the ex post measure. The ex ante real interest rate is based on
the difference between the three month treasury rate and the forecasted inflation in the GDP
deflator for the next quarter. The forecasted inflation is the median forecast from the Survey
of Professional Forecasters. The results are presented in Figure 8. On impact, the ex ante real
interest rate only increase 50 basis points rather than the ex post real interest rate increase of
100 basis points. However, all of the quantities experience responses that are similar to those
reported in the baseline VAR.

2.5.2 Shorter Sample, Starting in 1983

One might wonder if the strong-interest rate response is stable over time. In particular, Gaĺı,
López-Salido and Vallés (2003) argue that monetary policy changed in the United States with
Paul Volker and that therefore the responses to a technology shock look very different after
1983 than they did earlier. There are two ways to test the stability. The first is to calculate
γ from a regression of just a subsample of the identified technology series on the reduced
form residuals, estimated from the full-sample VAR. This method holds the VAR fixed but
sees whether a particular episode drove the estimation results. These results, although not
reported, are almost identical to the results in Figure 8. Therefore, we have evidence against
any particular technology shock episode driving the results.

The second approach, which was used by Gaĺı López-Salido and Vallés, is to re-estimate
the entire VAR but begin in 1983. The impulse responses from this VAR are reported in Figure
8. For the first year after impact, these responses are quite different from the responses in
the baseline VAR. For the shorter sample VAR, the variables are less responsive on impact.
After two years, the responses by quantities are quite similar. These results emphasizes the
robustness of describing the response to a technology shock as being a delayed response. One
important difference between the two sets of results is that, with the shorter sample, the real
interest rate does not respond to the technology shock.

The shocks identified using the post-1982 VAR are very different from the same shocks
identified using the full sample of data. The full sample shocks are much more volatile. In
addition, they are not closely related to the post-1982 shocks. The post-1982 shocks are the
same sign as the full sample shocks only about 50 percent of the time.

The question is whether the full sample or the truncated sample correctly identifies the true
technology shocks. Determining which is the correct set of responses is a difficult question. A
simple likelihood ratio test would support using the truncated sample. However, to exclude
three of the four recessions in the covered time period throws away a lot of information. As
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such, the analysis here will continue to use the benchmark responses, but with the caveat that
other responses are possible.

3 Models

Having described the empirical responses, the next step is to develop a model that can match
the data. The model presented here has two features that are different from a standard
quantitative dynamic flexible-price model. The first is that the economic agent has habit
persistence in the utility function. Thus, the previous period’s level of consumption affects
current utility. Habit persistence results in a slower response by consumption. (In order to
match the real interest rate response, a model with consumption adjustment costs is also
presented.) The second feature and the focus of the paper is how investment is transformed
into capital. I consider two different specifications of this transformation: time-to-build and
capital-adjustment-cost models. Both specifications have the property of preventing capital
from adjusting quickly.22 The time-to-build model has a lag between the decision to increase
the capital stock and the actual increase in the capital stock. Likewise in the capital adjust-
ment model, increasing investment is expensive and therefore an economic agent will have an
incentive to smooth out investment.

All of these features have been used previously to explain other economic phenomena. In
particular, Christiano and Todd (1995) and Christiano and Vigfusson (2003) document the
properties of a particular parameterization of the time-to-build model, the time-to-plan model,
where investment cannot respond much in the first period of a shock. Christiano and Vigfusson
show that this model is much better than a standard quantitative dynamic flexible-price model
in matching the output growth dynamics and the lead-lag relationship between output and
business investment.23 Models with capital adjustment costs that depend on the ratio of
investment to capital have been used extensively in the Tobin’s Q literature. (See Chirinko
(1993) for a survey.) Boldrin, Christiano, and Fisher (2000) and Beaudry and Guay: (1996)
document how adding capital adjustment costs and habit persistence allows a macroeconomic
model to explain both business cycle facts and asset pricing issues. Topel and Rosen (1988)
make capital adjustment costs depend on the growth rate of investment to explain housing
investment. Christiano, Eichenbaum, and Evans (2001) use a similar specification to generate
improved dynamics in a sticky price model. Francis and Ramey (2003) also consider a capital
adjustment model to explain the low correlations between productivity and employment. In
their model, capital adjustment costs depend on the ratio of investment to capital.

22Models with capital adjustment costs do have a similarity with models of marginal efficiency shocks (Dejong
Ingram and Whiteman 2000). In both models, the amount of output required to produce a unit of capital
(the marginal efficiency of investment) varies over time. The models differ in how they determine the marginal
efficiency. In models with capital adjustment costs, the marginal efficiency varies endogenously as agents vary
how much they invest. In Dejong Ingram and Whiteman (2000), the marginal efficiency is an exogenous random
variable.
23Additional support for time-to-build models comes from Kovea (2000), which presents firm-level evidence

of time-to-build being a feature of investment in structures. Based on reports from newspapers and trade
journals on 106 randomly chosen firms, she estimates an average time-to-build for structures of about two
years. Furthermore, she reports that very few of the projects that she examines were cancelled.
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3.1 The Utility Function

The model has a representative agent who chooses consumption C and the fraction of time
spent working H to maximize utility, where utility is defined as

Et
X

βj (log (Ct+j − bCt+j−1) + η log (1−Ht+j)) (13)

The coefficient b describes the degree of habit persistence in the model.24 The agent maximizes
utility subject to two constraints. The first constraint is the aggregate resource constraint that
for any period t + j, the resources used in that period must be no more than the amount of
output produced. The constraint is:

Ct+j + It+j ≤ F (θt+j ,Kt+j ,Ht+j) (14)

The amount of output produced depends on the amount of labor H, the amount of capital
K, and the level of technology θt.

As an alternative to habit persistence, I also consider a model that features consumption
adjustment costs. In this model, the habit persistence coefficient is set to zero and the resource
constraint is the following.

Ct+j + It+j + ξ

µ
Ct
Ct−1

− x
¶2
Ct−1 +A(Ut+j)Kt+j ≤ F (θt+j ,Kt+j ,Ht+j) (15)

As will be discussed in the section on the real interest rate, consumption adjustment costs

ξ
³

Ct
Ct−1 − x

´2
Ct−1 are a useful alternative to habit persistence. This feature results in the

same dampened consumption response without driving down the response of the real interest
rate.

Two different production functions are considered here. As is common in the macroeco-
nomic literature, I use a Cobb Douglas technology function.

F (θt+j ,Kt+j ,Ht+j) = θt+j (Kt+j)
α (Ht+j)

1−α

In addition, because of the strong interest rate response reported above, I also consider the
following CES production function.25

F (θt+j ,Kt+j ,Ht+j) =
h
α1−ψ (Kt+j)ψ + θt+j (1− α)1−ψ (Hψ

t+j

i1/ψ
The second constraint specifies how investment is transformed into capital and will be

described in Section 3.3
One difference between this model and Francis and Ramey is the specification of the utility

for leisure. They used an indivisible labor model; whereas, here, the model has the standard
24The specification of habit persistence used here is standard in the literature. One drawback of this spec-

ification is that it requires that the level of consumption ct must always be greater than the habit stock bct
to avoid marginal utility being infinite. Carroll, Overland, and Weil (2000) discuss a different specification,
where what matters is the ratio of current consumption to the lagged habit stock. Using the ratio avoids the
problems of infinite marginal utility as long as consumption is positive.
25For the CES production function, technology is labor augmenting. This assumption is important for the

normalization required when technology is a random walk.
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divisible labor utility function. The two specifications imply very different values for the labor
supply elasticity. The labor supply elasticity is much greater for the indivisible labor model,
where the labor supply is infinitely elastic. With divisible labor, the labor supply would
have an elasticity of about three.26 Therefore, the labor supply will be less responsive in the
specification studied here.

3.2 The Technology Shocks

In order to match the data, the model should have growth and therefore the level of technology
should be nonstationary. The level of technology θt has the following functional form

ln θt = µ+ ln θt−1 + εt (16)

where εt has mean zero. The standard assumption is that the shock to the growth rate εt of
technology is independent over time. An alternative specification allows the growth rate to
be autoregressive

εt = ρzεt−1 + ut (17)

where |ρz| is strictly less than one and ut is independent over time. Although most of the
reported results are for a shock where ρz equals zero, some results reported in Section 3.6 are
considered where ρ equals 0.7. The standard deviations of ut is chosen so that the standard
deviation of εt is 0.01.

3.3 Transforming Investment into Capital

This section describes how investment is transformed into capital. Three different specifica-
tions are considered. The first is the time-to-build model of Kydland and Prescott (1982).
In this model, several quarters pass before a desired increase in the capital stock is realized.
The second is the convex capital adjustment costs where the costs are a function of the ratio
of investment to capital. The third has adjustment costs that depend on the growth rate of
investment.27

3.3.1 Time-to-Build

In the time-to-build model (Kydland and Prescott 1982), the investment technology has two
features. The first is that the time between the decision to increase the capital stock and
the actual increase is greater than a quarter. In the current application, four quarters pass
between making a decision to increase the capital stock and the actual increase. The second
feature is that the increase in the capital stock is paid for over time. In other words, a project
xt initiated at quarter t results in an increase in the capital stock Kt+4 − (1 − δ)Kt+3 four
quarter later. The total cost of the project xt equals the increase Kt+4− (1− δ)Kt+3, but the

26Microeconomic evidence suggests that the labor supply elasticities are much smaller. The labor literature
reports labor supply elasticities near zero for males and about 1 for females. Most macroeconomic models,
however, require these larger estimates in order to match the data.
27The emphasis in this paper is on convex adjustment costs. Cooper and Haltiwanger (2000) emphasize that

including firm-level non-convex costs (such as fixed costs) also matters for aggregate investment. Including
such non-convexities is a goal for future work.
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project is paid for in installments. Thus, investment consists of several different projects that
are at various stages of completion. In particular, period t investment equals:

It = φ1xt + φ2xt−1 + φ3xt−2 + φ4xt−3 (18)

where φi ≥ 0 for i = 1, 2, 3, 4, and

φ1 + φ2 + φ3 + φ4 ≡ 1.

Resources in the amount φ1xt must be applied in period t, φ2xt must be applied in period
t+ 1,φ3xt must be applied in period t+ 2, and finally, φ4xt must be applied in period t+ 3.
Once initiated, the scale of an investment project cannot be expanded or contracted.

3.3.2 Capital Adjustment Costs

Two versions of capital adjustment costs are described here. The first, (which I will refer to
as CIK), is the more common version where the cost of capital adjustment is a function of
the ratio of current investment to capital

Kt+1 + γ

µ
It
Kt
− δ

¶2
Kt − (1− δ)Kt − It (19)

The second (which I will refer to as CII) is less common but it allows the adjustment costs to
depend on the ratio of current investment to the previous period’s investment.

Kt+1 + γ

µ
It
It−1

− expµ
¶2
It−1 − (1− δ)Kt − It (20)

For the specifications given here, adjustment costs parameterized by γ, will not affect the
steady state properties of the model. For the two models, these parameters, however, should
be calibrated at different values. For comparable costs of adjustment, the value of γ for the
investment growth rate specification should be δ times the value of γ in the investment to
capital ratio specification 28

3.4 Model Parameterization

At calibrated values, the standard RBC model fails to match the main facts discussed in the
empirical section. In particular, all the variables respond to a positive technology shock most
strongly on impact. Therefore, they completely miss the delayed response observed in the
data.

Recent model estimation has often tried to match impulse responses by using a GMM
weighting function. However, the goal of this paper is to show the flexibility of these macroe-
conomic models to match estimated technology impulse responses. As such, rather than
attempting to match any particular set of responses, I will present a comparative analysis

28The difference in the two specifications can be seen by examining the cost of the investment adjustments
costs when investment is (1 + r) times greater than the steady state value. For the investment to capital ratio
case, the adjustment costs would equal γ (rδ)2K. For the investment growth rate case, the adjustment costs
would equal γ (r)2 δK. Hence, the values of γ must be different for the two specifications.
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that will clarify how the flexible-price models are compatible with the responses observed
both in this paper and in many of the other papers in the literature.

Figure 9 reports results for just the response of hours on impact and how the different
models are able to capture the response of hours to a positive technology shock. For each of
the different models, some of the model’s coefficients were fixed and others were allowed to
vary. The coefficients that were allowed to vary were the ones that characterize the newer
features of the model. In particular, results are reported for different values of both the
degree of habit persistence and the coefficients related to how investment is translated into
capital, (i.e. the degree of investment adjustment costs γ or time-to-build weights φ.). The
other coefficients were held constant.29 The models were log-linearized and solved using the
undetermined coefficients method of Christiano (2001).30

In Figure 9, there are several things to note. First, all three models have parameterization
that are consistent with hours worked falling in response to a positive technology shock.
Many, including Gaĺı and Basu, Fernald, and Kimball, have argued that the earlier empirical
claims of negative hours responses to a technology shock is evidence against flexible-price
models. Clearly, the flexible-price models reported here can imply that hours fall on impact
of a positive technology shock. Therefore, these previous criticism of flexible-price models,
although valid for the standard RBC model, do not apply to these models. Furthermore, for all
three models, different combinations of investment adjustment costs and habit persistence can
generate a given hours response. Habit persistence and investment adjustment costs actually
work against each other. Investment adjustment costs decrease the investment response and
increase the consumption response, and habit persistence increases the investment response
and decreases the consumption response.

Figure 10 illustrates these trade offs for the CII model and how consumption and invest-
ment impact responses depend on the degree of habit persistence and investment adjustment
costs. The shaded areas indicate the bootstrap confidence intervals around the empirical im-
pact effect. For investment, the width of the area suggest that the investment response is not
very informative about the best values of habit persistence and the investment adjustment
cost.

3.5 Dynamic Responses

Figure 11 reports on the ability of all three models to capture the dynamic response of hours
worked, consumption, and investment. The benchmark empirical results from Figure 2 are
reproduced here.

The first panel reports responses for a model with habit persistence and investment adjust-
ment costs that depend on the growth rate of investment, the CII model. As seen in Figure
10, it is fairly easy to find model parameterization that match the consumption response. The
investment response is somewhat more difficult with the response being too strong compared
to the empirical response. The hours worked response is delayed. However, hours actually do
not respond enough on impact and then responds too strongly afterwards. The differences in

29The value of η is 1.5.The following coefficients were taken from Christiano and Eichenbaum (1992). The
vector (β,α, δ) equals

¡
1.03−0.25, 0.36, 0.02

¢
.

30Because the model is assumed to have a unit root in the technology, in calculating a solution, the vari-
ables will be normalized by dividing through by the level of technology. Hence the model will be solved for
{ct, it, kt,Ht} where {ct, it, kt} equals {Ct/θt, It/θt,Kt/θt−1}.
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responses, however, are within the standard bootstrapped confidence intervals, indicated by
the shaded regions.

The second panel reports results from the time-to-build and CIK models. The CIK model
can match the initial responses. However the CIK model can not match the increases in
responses because the ratio of investment to capital does not quickly change. Without a
change in the ratio of investment to capital, the investment adjustment costs remain high. The
time-to-build model does better at creating responses that are small initially but then increase.
The main problem with the time-to-build model is that the responses are too jagged. The
jaggedness results from there being only one kind of capital with only a four period building
period. A time-to-build model with much smoother responses can be found in Edge (2000)
where there are many different kinds of capital goods, with each kind of capital requiring a
different number of periods to build.31

3.6 Real Interest Rate Response

Although both the investment growth rate model and the time-to-plan model have done well
in fitting the responses of consumption, investment and hours worked, this section makes clear
that the models have a much harder time matching the strong interest rate response observed
in the benchmark results. Figure 12 reports the real interest rate results from the empirical
VAR and from the economic models. Given that consumption only slowly increases in both
the CII and time-to-build models, it may seem puzzling that the real interest rate actually
falls on impact. The explanation, however, involves the definition of marginal utility with
habit persistence. First, the real interest rate can be expressed in terms of a ratio of marginal
utilities. In particular, ignoring uncertainty, the real interest rate can be written as

(1 +Rt) =
u0 (Ct)

βu0 (Ct+1)

Assuming no growth, the interest rate would be below the steady state interest rate only if the
current marginal utility is less than next period’s marginal utility. For log utility and without
habit persistence, we have that

(1 +Rt) =
Ct+1
βCt

and so the interest rate only falls below steady state if current consumption is more than
future consumption. With positive investment adjustment costs but no habit persistence,
consumption does spike on impact and then declines somewhat. Therefore, in this case, the
real interest rate declines on impact. Adding habit persistence, however, deepens the puzzle
because then consumption increases over time. With consumption increasing over time and
log utility, the interest rate would increase. However, with habit persistence, marginal utility
depends on both the level and the growth rate of consumption. Because the growth rate of
consumption increase with the impact of a technology shock, the real interest rate falls.

31As is evident in Christiano and Vigfusson (2003), this jaggedness is not a problem when examining the
spectrum implied by the time-to-plan model.
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For further intuition, consider the real interest rate in a model of internal habit which
drops the forward looking part of the external habit specification used here.32

(1 +Rt) =
1

β

(Ct+1 − bCt)
(Ct − bCt−1)

If the difference between Ct and bCt−1 is greater than the difference between Ct+1 and bCt
then the model projects that the real interest rate will fall.

Modeling the production function as a CES production function, rather than Cobb-
Douglas, does strengthen the growth rates of investment. However, this feature does not
overcome the negative interest rate response generated by the habit persistence. Another op-
tion would be to have habit persistence depend on the difference between current consumption
and a habit stock that only slowly evolved with current consumption. In other words, the
new utility function is

U (Ct,Xt,Ht) = ln (Ct − bXt−1)− η ln (1−Ht)
Xt−1 = (1− τ)Xt−2 + τCt−1

Although adding a habit stock ameliorates the decline in the real interest rate, the real interest
rate still falls in response to a positive technology shock.

One partial remedy to the falling real rate is to replace habit persistence with consumption
adjustment costs. With consumption adjustment costs, one continues to delay the consump-
tion response but, unlike habit persistence, consumption adjustment costs do not introduce
the growth rate of consumption into marginal utility. As such, the real interest rate increases
on impact. However, as seen in Figure 12, the rise is not as much or as persistent as the
empirical point estimates.

Consumption adjustment costs may seem particularly ad-hoc. However, like investment
adjustment costs, they help macroeconomic models match the empirical impulse response
functions. Future work will be required to find a more structural mechanism to reduce how
quickly both the level and the marginal utility of consumption increases in response to a
positive technology.

Another possible solution would be to have serially correlated technology shocks. Although
serially correlated shocks can result in a model with a stronger real interest rate response.
Figure 13 reports results with the assumption that the autoregressive coefficient on the growth
rate of technology ρz equals 0.7. As shown in Figure 13, in models with investment adjustment
costs, the real interest rate increases almost 50 basis points on impact. 33 However, this real
interest rate response is less than the estimated response. In addition, the responses of the
other variables particularly investment and hours worked are now too weak compared to the

32With external habit, the real interest rate is a somewhat less tractable

(1 +Rt) =
1

β

1

(ct−b exp(−εt)ct−1)
+ β

−b exp(−εt+1)
(ct+1−b exp(−εt+1)ct)

1

(ct+1−b exp(−εt+1)ct)
+ β

−b exp(−εt+2)
(ct+2−b exp(−εt+2)ct)

33With serially correlated shocks,the standard flexible price model has a delayed response to the onset of a
technology shock. The response on impact however seem to be too negative with both investment and hours
worked falling sharply.
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estimated responses. So any gain in better real interest rate fit is lost in worse fit of hours
worked and the real interest rate.

The real interest rate response is a problem for these models. As mentioned in the empirical
section, the interest rate response is somewhat uncertain with both a wide confidence interval
and being sensitive to the sample period. Therefore, some may question the seriousness of a
failure to match this response. In fact, many researchers have felt that a fall in real interest
rates followed by a positive increase in output is a desirable characteristic in a technology
driven model.

4 Criticisms of Long Run VARs

Recent papers by Erceg, Guerrieri and Gust (2004) and Chari Kehoe and McGrattan (2004)
have criticized the use of long-run VARs to construct impulse response. Both papers have
shown that, for particular model parameterizations, the point estimates of the impulse re-
sponses may be estimated imprecisely. This section provides some additional simulation ev-
idence concerning the responses. I show for a particular set of models that, although, these
authors do have a valid concern about the possible imprecision of the point estimates, the
impulse responses are informative about the shape of the responses. Of specific relevance to
the current paper, simulation evidence shows that these impulse responses can distinguish be-
tween a model where hours responds most on impact and a model where hours have a delayed
(hump shaped) response. However, sign restrictions are not as informative. For the models
considered here, the finding of a positive response is unlikely to allow us to discriminate be-
tween a model that has a positive hours response on impact and a model that has a negative
hours response on impact.

The simulation evidence presented here comes from three models: a standard quantitative
dynamic flexible-price model (where hours responds positively and with the largest response
being immediate), a model with CII investment adjustment costs (where hours responds
positively and with a delayed response), and a model with CII investment adjustment costs
and habit persistence. In order to estimate a non-trivial bivariate VAR, each model has an
additional shock εηt that affects the labor preference parameter η. Hence the utility function
becomes

Et
X

βj (log (Ct+j − bCt+j−1) + η (1 + εηt ) log (1−Ht+j)) (21)

and the shock εηt is assumed to be independent of the technology and shock and have the
following autoregressive structure.

εηt = ρηε
η
t−1 + υt

where υt is i.i.d normal with variance σ
2
η. Using the standard quantitative dynamic flexible-

price model and holding the standard deviation of the technology shock σz fixed at 0.01,
the standard deviation and the persistence of the preference shock is estimated by maximum
likelihood (as described in Christiano and Vigfusson (2003)), by matching the model-based
spectrum of labor productivity growth and the log level of hours worked to the empirical
spectrum of nonfarm business labor productivity and per capita hours worked.34 Based on

34Appendix A describes briefly the estimation procedure.
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data between 1959q1-2000q4, the standard deviation of the labor supply shock equals 0.0093
with a persistence coefficient of 0.975.35

Given these estimates, I then used each model to generate 500 data sets of 200 observations
each on labor productivity and hours worked. For each simulated data set, I then estimated
a long run VAR on the growth rate of labor productivity and the log level of hours worked.
Figure 14 reports the theoretical model response for hours worked and also the average re-
sponse estimated from the simulated data. For all models, the average responses are biased
upwards, but the average responses are reasonably close. However, an interval that contains
90 percent of the simulated responses is very large. Figure 14 plots such an interval for the
CII model. Given these wide intervals, one may be concerned that one could not distinguish
between the models.

Some measures but not others are able to distinguish between the models. Figure 15
reports the probability of observing two results in each model. The top panel reports the
probability of observing a positive impact response. Because of the wide confidence intervals
and the upward bias in the hours response, all three models, including the model where the
true response is negative, have a high probability of observing a positive value. Therefore, a
finding of a positive response is not very informative about the true data generating model.
As can be seen in the bottom panel of Figure 15, the shape results are much more informative.
In the standard RBC model, the downward trend in the hours response is apparent in the
small fraction of responses that are greater than the impact response. Likewise, in the model
with investment adjustment costs, the hump-shaped response is readily apparent by the large
fraction of responses that are greater than the impact response.

One way to quantify the difference between models would be with a posterior odds ratio.
In particular given the observed data y, one would calculate the odds of model one M1 being
preferred over model two M2 as follows.

P (M1|y)
P (M2|y) =

P (y|M1)P (M1)

P (y|M2)P (M2)

Supposing that model one has coefficients θ1, we could define the posterior probability P (y|M1)
as follows

P (y|M1) =

Z
P (y|θ1,M1)P (θ1|M1)dθ1

where P (y|θ,M1) is the likelihood of observing y in model one given parameters θ and
P (θ1|M1) is the prior belief about the distribution of θ. Instead of a full fledged Bayesian
analysis, I will suppose that the data y is the fact that we observed a hump-shaped response
and that our prior belief about the distribution P (θ1|M1) is that P (θ1|M1) equals zero for
all θ1 except for the calibrated values used here. Given these assumptions, one can calculate
the odds ratio as being the ratio of the percentages reported in Figure 15. Therefore, based
on the hump-shaped response, the odds in favor of the CII model relative to the standard
quantitative dynamic flexible-price model are well over two to one. A similar calculation
on the sign of the impact response is not as informative. Because of both the bias and the

35These values were calculated for the version of the flexible price model without any adjustment costs. As
such, a richer structure might result in different parameter estimates. However, the goal of this section is to
provide some evidence on the usefulness of long run VARs to discriminate between models, not a full maximum
likelihood estimation.

22



imprecision of the point estimates, the observation of a positive impact response favors the
standard quantitative dynamic flexible-price model over the CII model with habit persistence
with odds of only 1.22 to one.

These calculations should be taken as only a guideline. Other models with more features
or other shocks might give different results for both the identification of point estimates and
response shapes. However, at least for these simple models where the criticisms of EGG and
CKM are valid, studying the shape of the responses seems to be a valid way to use long-run
VARS to learn about the economy.36

5 Conclusions

The main empirical conclusion of this paper is that, for the U.S. economy, the response by
per-capita hours worked to a technology shock is initially small but subsequently increases.
The small initial response is evidence against any model, including the standard quantitative
dynamic flexible-price model, that predicts a large immediate response by employment to
a technology shock. These results do not, however, completely invalidate the use of real
technology shocks to explain business cycles since variables do respond in the medium term to
these shocks. Therefore, the task is to develop models that can explain both the short-term
and long-term responses to technology shocks.

The current paper presents quantitative dynamic flexible-price models that can be rec-
onciled with the observed responses by quantities to a technology shock. Of course, this
reconciliation is not a rejection of other possible explanations. These other possible explana-
tions might include the examples provided by Basu, Fernald, and Kimball (2004): sticky-price
models, multi-sector reallocation models, and cleansing models of recessions. All of these
explanations should be scrutinized further to determine their relative merits.

The current paper has done three things. First, it has presented new empirical dynamic
responses for models to match. Second, it has shown that the estimated shape of these
dynamic responses may be more informative than the sign of the impact response. Third, it
has put forward flexible-price models that better explain these delayed responses. In effect,
it has raised the standard for criticisms of the flexible-price model. It was easy to show
that the small initial response by hours worked was inconsistent with the standard flexible-
price model. With the additional features discussed here, a flexible-price model can be made
consistent with these observations concerning hours worked. The new challenge will be to
build upon the improved fits described here.

36In the above results, I did not consider the effect of using the growth rate of hours in the long-run VAR.
In these models, hours worked is stationary. As is discussed in CEV (2003), estimating a VAR after first
differencing a stationary variable is a form of specification error. Hence using the first difference VAR on
model-simulated data would be using a misspecficied VAR. As was found in CEV and CKM, I also found that
applying the first difference VARs would result in a very high probability of a negative response by hours on
impact.
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A A Summary of Model Estimation by Maximum Likelihood
in the Frequency Domain

In order to make the paper somewhat more self-contained, this appendix summarizes how
to estimate a model by maximum likelihood in the frequency domain. For more details and
application,. see Christiano and Vigfusson (2003).

Begin with a time series of data, y = [y1, ..., yT ], where yt is a finite-dimensional column
vector with zero mean. In this paper’s analysis, the vector yt is defined as

yt =

·
∆ log(Yt/Ht)
log(Ht)

¸
, (22)

where Yt denotes output and Ht denotes hours worked.
It is well known (Harvey, 1989, p. 193) that for T large, the Gaussian likelihood for such

a time series of data is well approximated by:

L(y,Φ) = −1
2

T−1X
j=0

©
2 log 2π + log [det (F (ωj ;Φ))] + tr

¡
F (ωj ;Φ)

−1I(ωj)
¢ª

(23)

where tr(·) and det (·) denotes the trace and determinant operators, respectively. Also, I(ω)
is the periodogram of the data:

I(ω) =
1

2πT
y(ω)y(−ω)0, y(ω) =

TX
t=1

yt exp(−iωt), (24)

and

ωj =
2πj

T
, j = 0, 1, ..., T − 1.

Finally, F (ω;Φ) is the spectral density of y at frequency ω, and Φ is a vector of unknown
parameters.37

To estimate a model by frequency domain maximum likelihood, one needs the mapping
from the model’s parameters, Φ, to the spectral density matrix of the data, F (ωj ;Φ). The
following describes this mapping.

The first step is to solve a linearized version of the macroeconomic model. One can then
use the linearized solution to write a linear approximation of the yt process

yt = α(L;Φr)εt = α0(Φ
r)εt + α1(Φ

r)εt−1 + α2(Φ
r)εt−2 + ..... (25)

In the two-shock model, yt is defined in (22), α(L;Φ
r) is 2 × 2 matrix polynomial in L,

and

εt =

µ
ηt
ut

¶
, V (Φr) =

·
σ2η 0

0 σ2u

¸
.

37Let C(k;Φ) = Eyty
0
t−k, for integer values of k. Then,

F (ω;Φ) =
1

2π

∞X
k=−∞

C(k;Φ)e−iωk,

for ω ∈ (0, 2π).
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In this case, α(L;Φr) is the infinite moving average representation corresponding to a vector
ARMA model with 2 autoregressive and 2 moving average lags, i.e., a VARMA(2,2).

In all cases, I restrict Φr so that

∞X
i=0

αi(Φ
r)V (Φr)αi(Φ

r)0 <∞,

guaranteeing that the spectral density of yt exists. We also restrict Φ
r so that det [α(z;Φr)] = 0

implies |z| ≥ 1, where | · | denotes the absolute value operator.
The spectral density of yt at frequency ω is

F r(ω;Φr) =
1

2π
α(e−iω;Φr)V α(eiω;Φr)0,

where the superscript, r, on F indicates that the form of α(L;Φr) is restricted by the model.
Using this expression, one can then maximize the likelihood function with respect to the
values of Φr. Christiano and Vigfusson (2003) describe the usefulness of the frequency domain
approach in studying model fit.
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A Tables

Table 1: Manufacturing Industries

Durable Good Producers SIC Code Nondurable Good Producers SIC Code

Lumber 24 Food 20
Furniture 25 Textiles 22

Glass Stone & Clay 32 Apparel 23
Primary Metals 33 Paper 26
Fabricated Metals 34 Printing 27
Industrial Machinery 35 Chemicals 28
Electrical Machinery 36 Petroleum 29
Transportation 37 Rubber and Plastics 30
Instruments 38
Miscellaneous 39

Table 2: Coefficient Estimates

Coef T-stat Coef T-stat

NonDurable Durable
µ 0.82 -1.13 1.04 0.28
ξ 0.31 2.45 0.17 1.65

Results: 18 Manufacturing Industries 1972-2001
GMM Estimation with Asymptotic Standard Errors
T-stat for µ is test of µ equal to one.
T-stat for ξ is test of ξ equal to zero.
Degrees of Freedom Equal to 167
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Table 3 Percent of Simulations where the response
x periods after the shock is greater than the response on impact
x Periods After Shock H C I

1 90.1 77.4 94.1
2 90.7 68.0 92.0
3 91.4 77.0 93.4
4 87.8 74.4 88.4
5 88.5 79.4 88.2
6 90.3 84.7 87.6
7 89.7 83.8 86.3
8 89.0 85.6 85.1
9 88.6 86.0 83.1

Table 4: Estimated Confidence Intervals and Theoretical Bounds
on Impact Response to A Technology Shock

Estimate Confidence Intervals Theoretical Bounds
Technology Labor Productivity Technology Labor Productivity

VAR VAR

Labor Productivity (-0.06, 0.38) (-0.22, 0.36) ±0.518 ±0.55
Hours Worked (-0.007, 0.084) (-0.09, 0.11) ±0.108 ±0.124
Real Interest Rate (28, 98) (-38, 100) ±101.1 ±102.6
Output (-0.05, 0.42) (-0.31, 0.45) ±0.564 ±0.62
Consumption (0.07, 0.32) (-0.03, 0.20) ±0.469 ±0.46
Investment (-0.69, 1.08) (-1.09, 1.30) ±1.32 ±1.41
Notes: Confidence Intervals Constructed using 95 percent critical value
of 11.07 for tech and 9.488 for labor productivity

29



B Figures

Figure 1: Hours Response
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Figure 2: Data Used In the VAR Analysis
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Figure 3: The Result of Applying The Long Run Identification Assumption
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Figure 4: Responses To Productivity Shock
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Figure 5: Shape of The Response of Hours
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Figure 6: Confidence Intervals for a0, Impact Response on Hours, and the Response Six Periods Later
Anderson-Rubin Confidence Set for a0 Mapping from a0 to γ
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Figure 7: Anderson-Rubin Confidence Set
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Figure 8: Robustness of Impulse Responses to Different Subsamples.
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Figure 9: How Hours Responds on Impact
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Figure 10: The Trade-off Between
Investment Adjustment Costs and Habit Persistence
Consumption Investment Response
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Figure 11: Dynamic Responses Comparing Models and Data
Investment Adjustment Costs as Function of Investment Growth
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Figure 12: Real Interest Rate Response
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Diamonds: Model with consumption adjustment costs and investment adjustment costs. (b,φ) = (0.4, 0.2)

41



Figure 13: Model Responses with Correlated Shocks.
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Thick Solid Line: Empirical Response, Thin Line, Standard flexible-price model (b,φ) = 0 with ρz = 0.7
Squares: Model with habit persistence and investment adjustment Costs (b,φ) = (0.4, 0.09) with ρz = 0.7
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Figure 14: Hours Response to A Technology Shock
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Figure 15: Simulations Results
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No Adj Costs: Standard flexible-price model with no investment adjustment costs or habit persistence.
Inv Adj Costs: flexible-price model with CII-type investment adjustment costs (γ = 0.01)
Plus Habit flexible-price model with CII-type investment adjustment costs (γ = 0.01)
and with habit persistence coefficient (b = 0.6)
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