Post-Processing Interventions to Control Listeriosis

Don L. Zink, Ph.D. Office of Plant and Dairy Foods and Beverages Center for Food Safety and Applied Nutrition Food and Drug Administration

Risk Management Strategies

- Eliminate L. monocytogenes from the environment of processing plants that produce ready-to-eat foods
- Use a pasteurization processes to destroy L. monocytogenes
 - In-pack pasteurization, or
 - Immediately before packaging
- Use product formulations that prevent the growth of *L. monocytogenes*

* A joint development by ALKAR-RapidPak, Inc., Kraft/Oscar-Mayer and USDA-ERRC

SSP module extends length by two indexes

- Provides a surface kill step immediately before packaging
- Adapts to existing line, no effect on line speed or packaging cost

Machine Configuration

Vacuum Cooling

Steam Injection

Servo lifts product pedestal up into SSP chamber

- Maximum contact time on most difficult area --- ends
- 1.5 second cycle time with 4 alternating steam bursts per cycle

- Hot dogs inoculated with indicator microorganism
- SSP treatment = 1.5 seconds
- 4-log reduction for single-layer package configuration
- Actual Listeria monocytogenes inoculatedpack tests (10² per package) resulted in zero positives
- Double-layer package tests in progress
 Preliminary findings show 2.0 2.5 log reduction

Data and images supplied by Dr. Peter Slade, NCFST

- Uses the combined effects of temperature and high pressure to kill bacteria
 - Minimizes thermal damage to products
 - Reduces treatment time
- Lethal effect of treatment can be modeled and characterized for each product type
- Process can be applied to packaged product
- Not limited to surface-only effects, thus is applicable to sliced products
- A Batch process with significant capital costs

t = 4.0 minutes

Product	Log CFU	Log N/N ₀
Untreated Control	8.28	0
Bologna	4.08	-4.20
Smoked Turkey	2.96	-5.32
Smoked Ham	2.88	-5.40

P = 65 Kpsig (450 MPa) $T = 40^{\circ}C$ t = 6.0 minutes

Data and images supplied by Dr. Peter Slade, NCFST

In-Package Pasteurization

Stork RMS-Protecon (Townsend) Steam-Based Post-Process Pasteurization System

Data and images supplied by Drs. James Marsden and Randall Phebus, Kansas State University

In Package Pasteurization

Log cycle reduction of Listeria monocytogenes at 96.1°C

Data and images supplied by Drs. James Marsden and Randall Phebus, Kansas State University

Sodium or Potassium Lactate

- Weak acid.
- Disrupts membrane pH gradients
- Inhibit energy metabolism.
- Lactate alone only bacteriostatic at high concentrations.

Sodium Diacetate

- Dissociates into acetic acid and sodium acetate.
- Lowers pH due to presence of acetic acid
- Sodium diacetate alone only bacteriostatic at high levels.

Influence of Lactate and Moisture on Predicted Growth Rate of *L. monocytogenes* in a Cured RTE Meat

Influence of Lactate and Moisture on Predicted Growth Rate of *L. monocytogenes* in an Uncured RTE Meat

Salt = 2.2 %, Diacetate = 0.1%

Potassium Lactate Syrup (%)

Application of Lactate – Diacetate to Cured RTE Meat Products

- The model has been incorporated into a spreadsheet.
- Composition (moisture, salt, lactate and diacetate) and an assumption about inoculum are input.
- Growth parameters and a predicted growth curve are generated.
- The model is used interactively to develop formulations that predict acceptable product quality and inhibit *Listeria* growth.

Application of Lactate – Diacetate to Uncured RTE Meat Products

- Growth rates in uncured products are much higher
 - Nitrite inhibits the growth of *Listeria*
- Rigid environmental control programs are important for both cured and uncured products

Level of use		3.3	2.5	2	
	Control	% OptiForm 4	6	% OptiForm 8	your own blend
	% of Finished				
Product Ingredients	Product	Product	Product	Product	Product
Salt (%) =	2.50	2.50	2.50	2.50	2.50
Sodium Diacetate (%) =	0.00	0.13	0.15	0.16	0.12
Potassium Lactate (%) =	0.00	1.85	1.35	1.04	1.00
Finished Product Moisture (%) =	55.00	55.00	55.00	55.00	69.00
Oplawlated COO/ lastate a skutier was al in					

Calculated 60% lactate solution used in your own blend:

Inhibition of Growth of *L. monocytogenes* at 4°C by Buffered Sodium Citrate (Ional[™])

Surface inoculum on beef franks

Data and images supplied by Drs. James Marsden and Randall Phebus, Kansas State University