Visit NASA's Home Page Jet Propulsion Laboratory California Institute of Technology View the NASA Portal Click to search JPL Visit JPL Home Page Proceed to JPL's Earth Page Proceed to JPL's Solar System Page Proceed to JPL's Stars & Galaxies Page Proceed to JPL's Technology Page Proceed to JPL's People and Facilities Photojournal Home Page View the Photojournal Image Gallery
Top navigation bar

PIA00341: AIRS First Light Data: Typhoon Ramasun, July 3, 2002
Target Name: Earth
Is a satellite of: Sol (our sun)
Mission: Earth Observing System (EOS)
Spacecraft: Aqua
Instrument: Atmospheric Infrared Sounder (AIRS)
Product Size: 362 samples x 814 lines
Produced By: JPL
Full-Res TIFF: PIA00341.tif (680 kB)
Full-Res JPEG: PIA00341.jpg (54.25 kB)

Click on the image to download a moderately sized image in JPEG format (possibly reduced in size from original).

Original Caption Released with Image:

figure 1 for PIA00341figure 2 for PIA00341figure 3 for PIA00341
Figure 1Figure 2Figure 3

Four images of Tropical Cyclone Ramasun were obtained July 3, 2002 by the Atmospheric Infrared Sounder experiment system onboard NASA's Aqua spacecraft. The AIRS experiment, with its wide spectral coverage in four diverse bands, provides the ability to obtain complete 3-D observations of severe weather, from the surface, through clouds to the top of the atmosphere with unprecedented accuracy. This accuracy is the key to understanding weather patterns and improving weather predictions.

Viewed separately, none of these images can provide accurate 3-D descriptions of the state of the atmosphere because of interference from clouds. However, the ability to make simultaneous observations at a wide range of wavelengths allows the AIRS experiment to "see" through clouds.

This visible light picture from the AIRS instrument provides important information about the location of the cyclone, cloud structure and distribution.

The AIRS instrument image at 900 cm-1 (Figure 1) is from a 10 micron transparent "window channel" that is little affected by water vapor but still cannot see through clouds. In clear areas (like the eye of the cyclone and over northwest Australia) it measures a surface temperature of about 300K (color encoded red). In cloudy areas it measures the cloud top temperature, about 200K for the cyclone, which translates to a cloud top height of about 50,000 feet.

On the other hand, most clouds are relatively transparent in microwave, and the Advanced Microwave Sounding Instrument channel image (Figure 2) can see through all but the densest clouds. For example, Taiwan, which is covered by clouds, is clearly visible.

The Humidity Sounder for Brazil instrument channel (Figure 3), also in the microwave, is more sensitive to both clouds and humidity. Only in clear, dry regions, such as the eye of the cyclone or the area north of Australia, does it see the surface. It is also severely affected by suspended ice particles formed by strong convection, which causes scattering and appears to be extremely cold. These blue areas indicate intense precipitation.

The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.


Image Credit:
NASA/JPL


Latest Images Search Methods Animations Spacecraft & Telescopes Related Links Privacy/Copyright Image Use Policy Feedback Frequently Asked Questions Photojournal Home Page First Gov Freedom of Information Act NASA Home Page Webmaster
Bottom navigation bar