Laboratory Procedure Manual

Analyte:	Methicillin-Resistant Staphylococcus aureus
Matrix:	Swab
Method:	S. aureus Isolate Screening for Methicillin Resistance
Method No.:	
Revised:	October 2004
as performed by:	Epidemiology and Laboratory Branch Division of Healthcare and Quality Promotion National Center for Infectious Diseases
Contact:	Sigrid McAllister, Ph.D. 404-639-3570

Important Information for Users

The National Center for Infectious Diseases periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated.

Public Release Data Set Information

This document details the Lab Protocol for NHANES 2003–2004 data.

A tabular list of the released analytes follows:

Lab Number	Analyte	SAS Label
	LBXMS1	S. aureus present 1
	LBXM1	MRSA 1
	LBXMT1	tetracycline 1
	LBXMZ1	trimethoprim/sulfamethoxazole 1
	LBXMC1	clindamycin 1
	LBXME1	erythromycin 1
	LBXMP1	penicillin 1
	LBXMI1	imipenem 1
	LBXMV1	vancomycin 1
I35_c	LBXMF1	cefazolin 1
	LBXMO1	oxacillin 1
	LBXMG1	gentamicin 1
	LBXMD1	ciprofloxacin 1
	LBXML1	levofloxacin 1
	LBXMR1	rifampin 1
	LBXMY1	amoxicillin/k clavulanate 1
	LBAMMT1	molecular type 1
	LBXMS2	s. aureus present 2
	LBXMT2	tetracyline 2
	LBXMZ2	trimethoprim/sulfamethoxazole 2
	LBXMC2	clindamycin 2
	LBXME2	erythromycin 2
	LBXMP2	penicillin 2

I35_c	LBXMI2	imipenem 2
	LBXMV2	vancomycin 2
	LBXMF2	cefazolin 2
	LBXMO2	oxacillin 2
	LBXMG2	gentamicin 2
	LBXMD2	ciprofloxacin 2
	LBXML2	levofloxacin 2
	LBXMR2	rifampin 2
	LBXMY2	amoxicillin/k clavulanate 2
	LBAMMT2	molecular type 2
	LBXETA	enterotoxin A
	LBXETB	enterotoxin B
	LBXETC	enterotoxin C
	LBXETD	enterotoxin D
	LBXETE	enterotoxin E
	LBXETH	enterotoxin H
	LBXTSS	toxic shock syndrome toxin 1
	LBXPVL	Panton Valentine leukocidin
	LBXSCC	SCCmec Type

Methicillin-Resistant Staphylococcus aureus Screening

Nasal cultures are collected from both anterior nares using a culturette swab (Becton Dickinson Microbiology Systems, Cockeysville, MD) and refrigerated until shipped overnight on cold packs to CDC. Swabs are first examined for proper labeling and integrity and then plated on mannitol salt agar (MSA; Becton Dickinson Microbiology Systems), a selective media for the isolation of *S. aureus*. MSA plates are incubated at 37°C for 48 hours. Mannitol fermenting colonies (yellow or gold) are selected from the MSA plates and subcultured to trypticase soy agar + 5% sheep blood plates (BAP; Becton Dickinson Microbiology Systems) and incubated at 37°C overnight. MSA plates with little or no growth are re-incubated at 37°C overnight, and plates with non-mannitol fermenting growth are held at room temperature. These plates are reexamined the next day, and any yellow or gold colonies are subcultured to BAP.

Overnight cultures on BAP are first screened using Staphaurex, a rapid latex kit for the identification of *S. aureus* (Remel, Lenexa, KS). A tube coagulase test using rabbit plasma with (ethylenedinitrilo)tetraacetic acid (EDTA; Becton Dickinson Microbiology Systems) is then performed on Staphaurex-negative isolates from BAP with morphology consistent with *S. aureus* and Staphaurex-positive isolates with morphology inconsistent with *S. aureus* (non-hemolytic). Staphaurex-positive isolates and Staphaurex-positive tube coagulase-positive isolates are identified as *S. aureus* and saved for further testing. Staphaurex-positive, tube coagulase-negative isolates are discarded.

S. aureus isolates are screened for methicillin resistance following the National Clinical and Laboratory Standards Institute (NCCLS) disk diffusion method. Overnight cultures from BAP are plated on Mueller-Hinton (MH) agar, and a 1-µg oxacillin (OX) disk is placed on the inoculated plate. Zone diameters are measured and recorded after 24-h incubation at 37°C (sensitive, \geq 13 mm; intermediate, 11–12 mm; resistant, \leq 10 mm).

Isolates resistant to OX (MRSA), intermediate to OX, and every 10th isolate sensitive to OX (MSSA) by disk diffusion are saved for additional testing of organism characteristics. These tests include antibiotic susceptibility testing (MIC) by using broth microdilution using NCCLS reference methods, MicroScan Pos combo 10 panels (Dade MicroScan, West Sacramento, CA); strain typing by pulsed-field gel electrophoresis (PFGE) using *Smal* enzyme; singleplex polymerase chain reaction (PCR) for detection of enterotoxins, toxic shock syndrome toxin-1, and Panton-Valentine Leukocidin toxin; and SCC-mec cassette typing by PCR.