Appendix 11
EXPECTED PROBABILITY

The principle of gambling based upon estimated probabilities can be
applied to water resources development decisions. However, because
probabilities must be inferred from random sample data, they are uncertain
and mathematical expectation cannot be computed exactly as errors due to
uncertainty do not necessarily compensate. For example, if the estimate
based on sample data is that a certain flood magnitude will be exceeded
on the average once in 100 years, it is possible that the true exceedance
could be three or four more times per hundred years, but it can never be
less than zero times per hundred years. The impact of errors in one
direction due to uncertainty can be quite different from the impact of
errors in the other direction. Thus, it is not adequate to simply be
too high half the time and too low the other half. It is necessary to
consider the relative impacts of being too high or too low.

It is possible to delineate uncertainty with considerable accuracy
when dealing with samples from a normal distribution. Therefore, when
flood flow frequency curves conform fairly closely to the logarithmic
normal distribution, it is possible to delineate uncertainty of frequency
or probability estimates of flood flows.

Figure 11-1 is a generalized representation of the range of uncertainty
in probability estimates based on samples drawn from a normal population.
The vertical scale can represent the logarithm of streamflow. The
curves show the likelihood that the true frequency of any flood magnitude
exceeds the value shown on the frequency scale. The curve labeled .50
is the curve that would be used for the best frequency estimate of a log-
normal population., From this curve a magnitude of 2 would be exceeded
on the average 30 times per thousand events. The figure also shows a 5
percent chance that the true frequency is 150 or more times per thousand
or a 5 percent chance that the true frequency is two times or less per
thousand events.

If a magnitude of 2.0 were selected at 20 independent locations,
the best estimate for the frequency is 3 exceedances per hundred years
for each location. The estimated total exceedance for all 20 locations
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would be 60 per 100 years. However, due to sampling uncertainties, true
frequencies for a magnitude of 2.0 would differ at each location and
total exceedances per 100 years at the 20 locations might be represented
by the following tabulation.

Exceedances Per 100 Years at Each of 20 Locations*

20 5 3 9
12 5 2 .8
10 4 2 .5 Total Exceedances = Approximately 90
8 4 2 .3
7 3 1 A

*Determined from Figure 11-1 using 0.05 parameter value increments
from .025 through .975.

The total of these exceedances is about 90 per 100 years or 30 more than
obtained using the best probability estimate as the true probability at
each location. If, however, the mathematically derived expected proba-
bility function were used instead of the traditional "best" estimate we
could read the expected probability curve of Figure 11-1<to obtain the
value of about 4.5 exceedances per 100 events. This value when applied
to each of the 20 Tocations would give an estimate of 90 exceedances per
100 years at all 20 locations. Thus, while the expected probability
estimate would be wrong in the high direction more frequently than in

the low direction, the heavier impacts of being wrong in the low direction
would compensate for this. It can be noted, at this point, that expected
probability is the average of all estimated true probabilities.

If a flood frequency estimate could be accurately known--that is,
the parent population could be defined--the frequency distribution of
observed flood events would approach the parent population as the
number of observations approaches infinity. This is not the case where
probabilities are not accurately known. However, if the expected
probabilities as illustrated in Figure 11-1 can be computed, observed



flood frequency for a large number of independent Tocations will approach
the estimated flood frequency as the number of observations approaches
infinity and the number of locations approaches infinity.

It appears that the answer to the question as to whether expected
probability should be used at a single location would be identical to
the answer to the question, "What is a fair wager for a single gamble?"
If the gamble must be undertaken, and ordinarily it must, then the
answer to the above question is that the wager should be proportional to
the expected return. In determining whether the expected probability
concepts should apply for a single location, the same 1ine of reasoning
would indicate that it should.

It has been shown (21) that for the normal distribution the expected
probability PN can be obtained from the formula

Py = Prob [tN_] ' (N—E-T)V?] (1-1)

where Kn is the standard normal variate of the desired probability
of exceedance, N is the sample size, and t, , is the Student's t-sta-
tistic with N-1 degrees of freedom.
The actual calculations can be carried out using tables of
the t-statistic, or the modified values shown in Table 11-1 (31).
To use Table 11-1, enter with the sample size minus 1 and read
across to the column with the desired exceedance probability. The
value read from the table is the corrected plotting position.
The expected probability correction may also be calculated
from the following equations (34) which are based on Table 11-1,
For selected exceedance probabilities greater than 0.50, and a
given sample size, the appropriate PN value equals 1 minus the value in
Table 11-1 or the equations 11-2,
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Exceedance Probability

.0001
.001
01
.05
.10
.30

For floods with an exceedance probability of 0.01 based on
samples of 20 annual peaks, for example, the expected probability

Expected Probability, P

N
.0001 (1.0 + 1600/N'+72)
.001 (1.0 + 280/n"-55)
.01 (1.0 + 26/N'+16)

.05 (1.0 + 6/n1+0%
(1.0 + 3/N1-04

.3 (1.0 + 0.46/N0-925)

(11-2a)
(11-2b)
(11-2¢)
(11-2d)
(11-2e)
(11-2f)

of exceedance from equation 11-2¢ is (.01) (1.0 + 26/32.3) or 0.018.
Comparable equations for adjusting the
computed discharge upward to give a discharge for which the expected

Use of Table 11-1 gives 0.0174,

probability equals the exceedance probability are available (22).
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For use with samples drewn from a normsl populstion

Table 11-1

TABLE OF P, VERSUS Py,

N

1:‘OO
N-1 .50 .30 .10 .05 .01 .001 .0001.
1 .500 .372 2h3 .20k .15k 121 .102
2 .500 37 .193 .16 .090 .057 .043
3 .500 .336 .169 .119 .06k .035 .023
I .500 .330 .154 10k .050 .02k .0137
5 .500 .325 .1h6 .09k o)} 0179 .0092
6 .500 .322 .138 .088 .036 .0138 .0066
7 .500 .319 .135 .083 .032 .0113 .0050
8 .500 .317 131 .079 .029 .0094 .0039
9 . 500 .316 127 .076 .027 .0082 .0031
10 .500 .315 125 .073 .025 .0072 .0025
11 .500 314 .123 071 .023 . 0064 ,0021
12 .500 .313 21 .069 022 .0058 .0018
13 .500 .312 .119 .068 .021 .0052 .0016
1l .500 .311 .118 067 .020 .00L8 .001k
15 .500 311 17 .066 .0196 .00L5 .0013
16 .500 .310 .116 .065 .0190 .0ok2 .0012
17 .500 .310 .115 .06k .0184 .0040 .0011
18 500 .309 .11k .063 ,0179 .0038 .0010
19 .500 .309 .113 062 .017h .0036 .00091
20 . 500 .308 .113 .062 ,0170 .0034 .0008L
21 .500 .308 112 L061 .0167 .0033 .00078
22 .500 .308 A1 .061 .0163 .0031 ,00073
23 .500 .307 11 .060 .0161 .0030 .00068
ol .500 .307 .110 .060 .0158 .0029 . 0006k
25 .500 .307 .110 .059 .0155 .0028 . 00060
26 .500 .306 .109 .059 .0153 .0027 .00057
27 .500 .306 .109 .059 ,0151 .0026 00054
28 .500 .306 .109 .058 .0149 .0026 .00051,
29 500 .306 .108 .058 LO1hT .0025 .000h9
30 .500 .306 .108 .058 ,01L5 002k . 00046
Lo .500 .304 .106 .056 .0133 .0020 .00034
60 .500 .303 .10k .05k ,0122 .0016 .00025
120 .500 ,302 ,102 ,052 L0111 .0013 .00017
© .500 .300 .100 .050 .0100 .0010 .00010
MOTE:

Py values above are usable approximately with Pearson Type III

distributions having small skew coefficients.
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