Appendix 6 HISTORIC DATA

Flood information outside that in the systematic record can often be used to extend the record of the largest events to a historic period much longer than that of the systematic record. In such a situation, the following analytical techniques are used to compute a historically adjusted log-Pearson Type III frequency curve.

l. Historic knowledge is used to define the historically longer period of "H" years. The number "Z" of events that are known to be the largest in the historically longer period "H" are given a weight of l.O. The remaining "N" events from the systematic record are given a weight of (H-Z)/(N+L) on the assumption that their distribution is representative of the (H-Z) remaining years of the historically longer period.

2. The computations can be done directly by applying the weights to each individual year's data using equations 6-1, 6-2a, 6-3a, and 6-4a. Figure 6-1 is an example of this procedure in which there are 44 years of systematic record and the 1897, 1919 and 1927 floods are known to be the three largest floods in the 77 year period 1897 to 1973. If statistics have been previously computed for the current continuous record, they can be adjusted to give the equivalent historically adjusted values using equations 6-1, 6-2b, 6-3b, and 6-4b, as illustrated in Figure 6-2.

3. The historically adjusted frequency curve is sketched on logarithmic-probability paper through points established by use of equation 6-5. The individual flood events should also be plotted for comparison. The historically adjusted plotting positions for the individual flood events are
computed by use of equation 6-8, in which the historically adjusted order + number of each event "m" is computed from equations 6-6 and 6-7. The computations are illustrated in Figures 6-1 and 6-2, and the completed plotting

4. The following example illustrates the steps in application of the historic peak adjustment only. It does not include the final step of weighting with the generalized skew. The historically adjusted skew developed by this procedure is appropriate to use in developing a generalized skew.

DEFINITION OF SYMBOLS

- E = event number when events are ranked in order from greatest magnitude to smallest magnitude. The event numbers "E" will range from 1 to (Z + N).
- + X = logarithmic magnitude of systematic peaks excluding zero flood events, peaks below base, high or low outliers
 - X = logarithmic magnitude of a historic peak including a high outlier that has historic information
 - N = number of X's

▲M = mean of X's

- \tilde{M} = historically adjusted mean
- m = historically adjusted order number of each event for use in formulas to compute the plotting position on probability paper
- S = standard deviation of the X's
- \tilde{S} = historically adjusted standard deviation
- G = skew coefficient of the X's
- **+**G = historically adjusted skew coefficient
 - K = Pearson Type III coordinate expressed in number of standard deviations from the mean for a specified recurrence interval or percent chance
 - Q = computed flood flow for a selected recurrence interval or percent chance
 - \tilde{PP} = plotting position in percent
- *P = probability that any peak will exceed the truncation level (used in step 1, Appendix 5)
- # Z = number of historic peaks including high outliers that have historic information
- \star H = number of years in historic period
- +L = number of low values to be excluded, such as: number of zeros, number of incomplete record years (below measurable base), and low + & outliers which have been identified
 - a = constant that is characteristic of a given plotting position formula. For Weibull formula, a = 0; for Beard formula, a = 0.3; and for Hazen formula, a = 0.5
- \mathbf{X} W = systematic record weight

*

*

*

EQUATIONS

$$\mathbf{+}_{W} = \frac{H - Z}{N + L}$$
(6-1)

$$\widetilde{M} = \frac{W \Sigma X + \Sigma X_z}{H - WL}$$
(6-2a)

$$\tilde{S}^{2} = \frac{W \Sigma (X - M)^{2} + \Sigma (X_{z} - M)^{2}}{(H - WL - 1)}$$
(6-3a)

$$\tilde{G} = \frac{H-WL}{(H-WL-1)(H-WL-2)} \left[\frac{W \Sigma (X - \tilde{M})^3 + \Sigma (X_z - \tilde{M})^3}{\tilde{S}^3} \right]$$
(6-4a)

$$\tilde{M} = \frac{WNM + \Sigma X_z}{H - WL}$$
(6-2b)

$$\tilde{S}^{2} = \frac{W (N - 1)S^{2} + WN (M - \tilde{M})^{2} + \Sigma (X_{z} - \tilde{M})^{2}}{(H - WL - 1)}$$
(6-3b)

$$\tilde{G} = \frac{H-WL}{(H-WL-1)(H-WL-2)\tilde{S}^{3}} \left[\frac{W(N-1)(N-2)S^{3}G}{N} + 3W(N-1)(M-\tilde{M})S^{2} + WN(M-\tilde{M})^{3} + \Sigma(X_{Z}-\tilde{M})^{3} \right] (6-4b) + WN(M-\tilde{M})^{3} + \Sigma(X_{Z}-\tilde{M})^{3} \left[(6-4b) + C(M-\tilde{M})^{3} + C$$

$$\mathbf{\hat{m}} = \mathbf{WE} - (\mathbf{W} - 1) (\mathbf{Z} + 0.5); \text{ when: } (\mathbf{Z} + 1) \leq \mathbf{E} \leq (\mathbf{Z} + \mathbf{N} + \mathbf{L})$$
(6-7) **+**

$$\mathbf{PP} = \frac{\mathbf{\tilde{m}} - \mathbf{a}}{\mathbf{H} + 1 - 2\mathbf{a}} 100$$
(6-8)

Figure 6-1. HISTORICALLY WEIGHTED LOG PEARSON TYPE III - ANNUAL PEAKS

Station: 3-6065, Big Sandy River at Bruceton, TN. D. A. 205 square miles Record: 1897, 1919, 1927, 1930-1973 (47 vears) Historical period: 1897-1973 (77 vears) N = 44; 7 = 3; H = 77

Year	Q (ft ³ /s) = Y	Log Y = X	Departure from mean log x = (X-M)	Veight a ^t W	Fvent Numher ≠ E	Veighted order Numher ≖ M	Plotting position (Vethull) pp
1897	25,000	4.39794	0.68212	1.00	1	1.00	1.28
1919	21,000	4.32222	0.60640	1.00	2	2.00	2.56
1927	18,500	4.26717	0.55136	1.00	3	3.00	3.85
1935	17,000	4.23045	0.51464	1,68182	4	4.34	5.56
1937	13,800	4.13988	0.42407		5	6.02	7.72
1946	12,000	4.07918	0.36337		6	7.71	9.88
1972	12,000	4.07918	0.36337		7	9.39	12.04
1956	11,800	4.07188	0.35607		8	11.07	14.19
1942	10,100	4.00432	0.28851		9	12.75	16.35
1950	9,880	3.99475	0.27895		10	14.43	18,50
1930	9,100	3.95904	0.24323		11	16.12	20.67
1967	9,060	3.95713	0.24132		12	17.80	22.82
1932	7,820	3.89321	0.17740		13	19.48	24.97
1973	7,640	3.88309	0.16728		14	21.16	27.13
1962	7,480	3.87390	0.15809	8	15	22.84	29.28
1965	7,180	3.85612	0.14031	60	16	24.53	31.45
1936	6,740	3.82866	0.11285	81	17	26.21	33.60
1948	6,130	3.78746	0.07165	. 6818	18	27.89	35.76
1939	5,940	3.77379	0.05798		19	29.57	37.91
1945	5,630	3.75051	0.03470	1	20	31.25	40.06
1934	5,580	3.74663	0.03082	4	21	32.94	42.23
1955	5,480	3.73878	0.02297	1 2	22	34.62	44.38
1944	5,340	3.72754	0.01173	3)/(44)	23	36.30	46.54
1951	5,230	3.71850	0.00269		24	37.98	48.69
1957	5,150	3.71181	-0.00400		2 5	39.66	50.85
1971	5,080	3.70586	-0.00995	(77	26	41.35	53.01
1953	5,000	3.69897	-0.01684		27	43.03	55.17
1949	4,740	3.67578	-0.04003	" Z	28	44.71	57.32
1970	4,330	3.63649	-0.07932	1(2	29	46.39	59.47
1938	4,270	3.63043	-0.08538		30	48.07	61.62
1952	4,260	3.62941	-0.08640	,	31	49.76	63.79
1947	3,980	3.59988	-0.11593	(H	32	51.44	65.95
1943	3,780	3.57749	-0.13832	1 11	33	53.12	68.10
1961	3,770	3.57634	-0.13947	3	34	54,80	70.25
1958	3,350	3.52504	-0.19077		35	56.49	72.42
1954	3,320	3.52114	-0.19467	1 1	36	58.17	74.58
1933	3,220	3.50786	-0.20795		37	59.85	76.73
1964	3,100	3.49136	-0.22445		38	61.53	78.88
1968	3,080	3,48855	-0.22725		39	63.21	81.04
1969	2,800	3.44716	-0.26865		40	64.90	83.21
1963	2,740	3.43775	-0.27806		41	66,58	85.36
1959	2,400	3.38021	-0.33560		42	68.26	87.51
1931	2,060	3.31387	-0.40194		43	69,94	89.67
1966	1,920	3.28330	-0.43251		44	71.62	91.82
1940	1,680	3.22531	-0.49050		45	73.31	93,99
1960	1,460	3.16435	-0.55146		46	74,99	96.14
1941	1,200	3.07918	-0.63663	1.68182		76.67	98.29

6-4

Solving (Eq. 6-2a) Solving (Eq. 6-3a) $\Sigma x^2 = 3.09755$ $\Sigma X = 162.40155$ $W\Sigma x^2 = 5.20952$ W X = 273.13018 $\Sigma_{x_{7}^{2}} = 1.13705$ $\Sigma X_{7} = 12.98733$ 286.11751 6.34657 M = 286.11751/77 = <u>3.71581</u> \tilde{s}^2 = 6.34657/(77 - 1) = 0.08351ŝ = 0.28898 $\tilde{s}^3 = 0.02413$ Solving (Eq. 6-4a) $\Sigma x^3 = -0.37648$ G = (77) (0.07485) $W\Sigma x^3 = -0.63317$ - = <u>0.0418</u> (76) (75) (0.02413) $\Sigma x_7^3 = 0.70802$ 0.07485 Solving (Eq. 6, Page 13) N = 77 A = -0.33 + 0.08 (0.0418) = -0.32666B = 0.94 - 0.26 (0.0418) = 0.92913

 $MSE_{G} = 10^{[-0.32666 - 0.92913[0.88649]]} = 10^{[-1.150325]} = 0.07074$ Solving (Eq. 9.5, Page 12)

 $G_{W} = \frac{0.302(0.0418) + 0.07074(-0.2)}{.302 + 0.07074} = -0.00409$

% K $G_W = -0.00409$ (S) (K) $\widetilde{S} = .28898$ $\widetilde{M} + (\widetilde{S}) (K) = \log Q$ $\widetilde{M} = 3.71581$ 99 -2.32934 -0.67313 3.04269 95 -1.64599 -0.47566 3.24014 90 -1.28196 -0.37046 3.34535 80 -0.84141 -0.24315 3.47266 50 0.00067 0.00019 3.71600	Q (ft ³ /s) 1,103 1,738
95 -1.64599 -0.47566 3.24014 90 -1.28196 -0.37046 3.34535 80 -0.84141 -0.24315 3.47266	
20 0.84180 0.24326 3.95907 10 1.28110 0.37021 4.08602 4 1.74929 0.50551 4.22132 2 2.05159 0.59289 4.30868 1 2.32340 0.67142 4.38723 .1 3.08455 0.89138 4.60719	2,215 2,969 5,200 9,100 12,190 16,646 20,355 24,391 40,475

Solving (Eq. 6-5)

Solving (Eq. 6-6)

Z = 3 For E = 1; \tilde{m} = E = 1 For E = 2; \tilde{m} = E = 2 For E = 3; \tilde{m} = E = 3 Solving (Eq. 6-8)

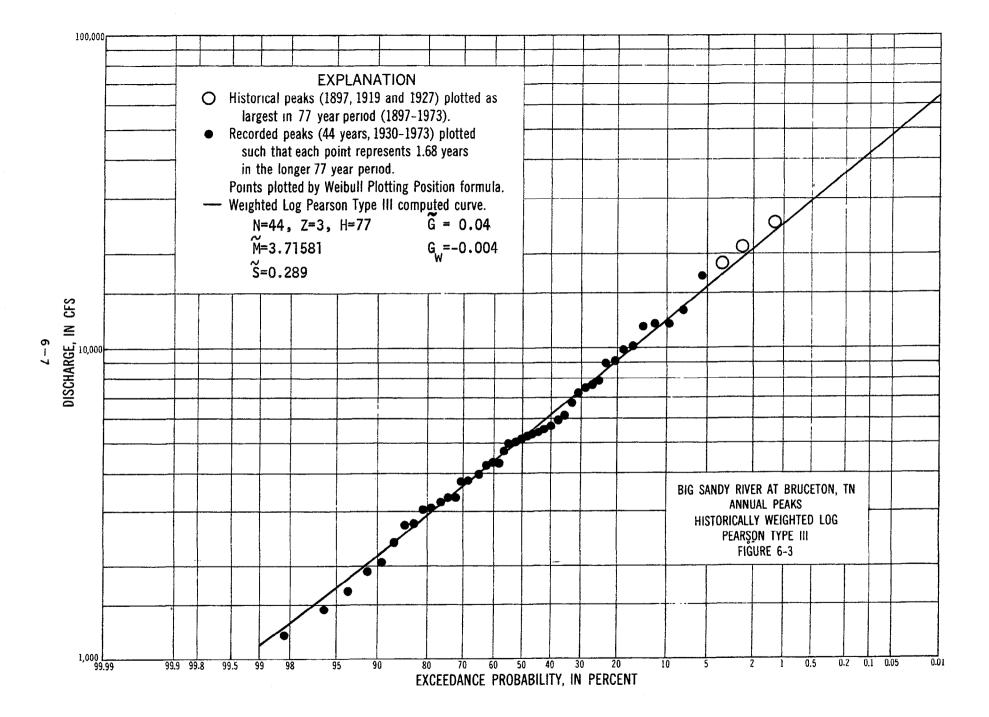
For Weibull: a = 0. $\widetilde{PP} = (100) (\widetilde{m})/(78)$

Solving (Eq. 6-7)

$$(Z + 1) = 4$$

 $(Z + N) = 47$
For $4 \le E \le 47$:
 $\widetilde{m} = (1.682) (E) - (0.682) (3.5)$
 $\widetilde{m} = (1.682) (E) - 2.387$

*


★ Figure 6-2. HISTORICALLY WEIGHTED LOG-PEARSON TYPE III - ANNUAL PEAKS

Results of Standard Computation for the Current Continuous Record

Big	Sandy River at Bruceton, TN. DA - 205 square miles #3-6065 (44 years)
N =	<pre>number of observations used = 44</pre>
M =	= mean of logarithms = 3.69094
	<pre>standard deviation of logarithms = 0.26721</pre>
s ² =	$= 0.07140$ $s^3 = 0.01908$
G =	<pre>coefficient of skewness (logs) = -0.18746</pre>

Adjustment to Historically Weighted 77 Years

Historic Peaks (Z = 3 Years)							
Year	Y_{z} (ft ³ /s)	$Log Y_{z} = X_{z}$	x - M	$(X_z - \widetilde{M})^2$	$(x_z - \widetilde{M})^3$		
1897	25,000	4.39794	0.68213	0.46531	0.31740		
1919	21,000	4.32222	0.60641	0.36774	0.22300		
1927	18,500	4.26717	0.55136	0.30400	0.16762		
Summatic	on	12.98733	1.83990	1.13705	0.70802		
	N = 44	Ζ = 3		H = 77			
<u>Solving (Eq. 6-1)</u> : $W = (77-3)/44 = 1.68182$							
<u>Solving (Eq. 6-2b)</u> : $\widetilde{M} = (1.68182) (44) (3.69094) + (12.98733) = 3.71581$							
$\frac{\text{Solving (Eq. 6-3b)}}{(M - \tilde{M})^2 = 0.000619; (M - \tilde{M})^3 = -0.0000154}$							
$\tilde{s}^2 = \frac{(1.68182)(43)(0.07140) + (1.68182)(44)(0.000619) + (1.13705)}{76} = 0.08351$							
78							
$\tilde{s}^2 = 0.08351$ $\tilde{s}^2 = 0.28898$ $\tilde{s}^3 = 0.02413$							
Solving (Eq. 6-4b):							
$\tilde{G} = \frac{77}{(76)(75)(0.02413)} \left[\frac{(1.68182)(43)(42)(0.01908)(-0.18746)}{44} + \right]$							
(3)(1.68182)(43)(-0.02487)(0.07140) + (1.68182)(44)(-0.0000154) + (0.70802)]							
G = 0.04	118			÷	*		

