

ISS Configuration

ISS Payload Racks

International Standard Payload Rack (ISPR) interfaces

Power: 3, 6, or 12 KW, 114.5-126 VDC

Low Rate Data: 1Mbps, MIL-STD- 1553 bus

High Rate Data: 100 Mbps

Local Area Network: Ethernet 10 Mbps (802.4)

Video: NTSC

Gases: Nitrogen, Argon, Carbon Dioxide, Helium

Moderate Temp Loop: 16.1 C - 18.3 C; Flow rate=0-45.36 kg/hr

Low Temp Loop: 3.3 C - 5.6 C; Flow rate=233 kg/hr

Venting: 10-3 torr in less than 2 hours

Vacuum: 10-3 torr

Expedite the Processing of Payloads for Space Station (EXPRESS) Rack interfaces

Mass Capacity: 72 lbs

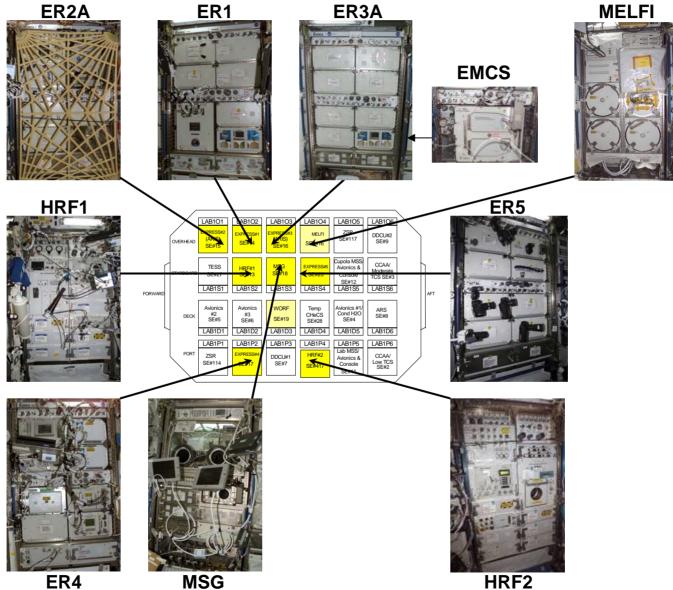
Power: Up to 20 Amps @ 29 VDC

Data:

Video: NTSC

Gases: 1 Nitrogen (shared)

Thermal: Avionics Air @ 15 scfm


Vacuum: 1 (shared) Water Up to 500 W



Destiny Facilities Today

Nine NASA Research Racks On Orbit

> 2 Human Research Facility (HRF) Racks

 Biomedical investigations, including ultrasound, body mass measurement, metabolic gas analysis, pulmonary monitoring, ambulatory blood pressure measurement, Holter monitor, and experiment unique hardware

> 5 Multi-User (EXPRESS) Racks

- Middeck locker scale instruments in various research disciplines such as biotechnology and plant research
- Microgravity Sciences Glovebox (MSG)
 - Principally materials and fluid physics experiments to date
- Minus Eighty-degree Laboratory Freezer for ISS (MELFI)
 - Provides thermal conditioning at +4°C, -26°C and -80°C

Expedition 2 crewmember Susan Helms activating the HRF 1 rack

Expedition 12 crewmember Bill McArthur activating the SLAMMD in the HRF 2 rack

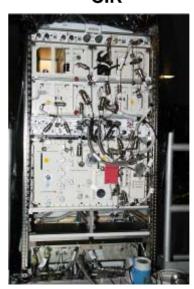
Expedition 3 crewmember Frank
Culbertson conducting cell
culture experiment in CBOSS in
EXPRESS Rack 4

Expedition 14 crewmember Thomas Reiter removing frozen samples from MELFI

Expedition 13 crewmember Jeff Williams performing the PFMI experiment in the Microgravity Science Glovebox

Expedition 14 crewmember Mike Lopez-Alegria conducting TROPI plant growth experiment in EMCS in EXPRESS Rack 3

Planned NASA Research Facilities



NASA pressurized payload rack facilities awaiting launch

- Combustion Integrated Rack (CIR) (2008)
 - Facility dedicated to research in combustion science
- Microgravity Science Research Rack (MSRR) (2008)
 - Facility to support ESA Microgravity Science Lab furnace
- Space Dynamically Responding Ultrasound Matrix System (SpaceDRUMS) (2008)
 - EXPRESS-based containerless (ultrasound) processing facility
- Window Observation Research Facility (WORF) (2008)
 - Facility to support visual and multispectral remote sensing using Lab Optical Window

CIR

SpaceDRUMS

MSRR

WORF

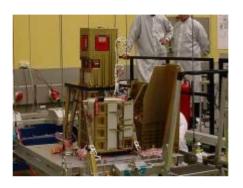
Planned NASA Research Facilities

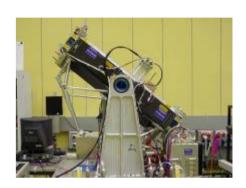
NASA pressurized payload rack facilities awaiting launch

- EXPRESS Rack 6 (2008)
 - Multipurpose payload facility, may also house ISS Galley elements
- Fluids Integrated Rack (FIR) (2009)
 - Facility dedicated to fluid physics research, with Light Microscope Module
- Muscle Atrophy Research Exercise System (MARES) (2009)
 - Facility for musculoskeletal, biomechanical, neuromuscular and neurological physiology measurements

FIR

MARES


Columbus



Columbus Module at KSC

1E November 2007

EUTEF

SOLAR

Biolab

European Drawer Rack

European Physiology Module

European Transport Carrier

Fluid Science Lab 8

Columbus

European Space Agency (ESA)

Research racks launched in Columbus

- > European Physiology Module
 - Facility for human physiology research in neurosciences, cardiology, bone and muscle metabolism
- > Fluid Science Lab
 - Multi-user facility for fluid physics research
- > Biolab
 - Facility for cell culture, tissue, microorganisms, small plants and animals research, includes glovebox, incubator, microscope
- > European Drawer Rack
 - Provide for middeck-class experiments and stowage
- > European Transport Carrier
 - Stowage and transportation rack for experiments

External payloads launched with Columbus

- European Technology Exposure Facility (EuTEF)
 - Provides a platform for investigators to gather science data on the ISS space environment
- > SOLAR
 - A platform with coarse pointing capability for three science instruments to monitor the solar flux in different wavelenghts

Kibo

Kibo Pressurized Module at KSC

1J/A January 2008 1J February 2008 2J/A October 2008

JEM-EF at TkSC

1J/A January 2008

Ryutai

Saibo

HTV1 July 2009

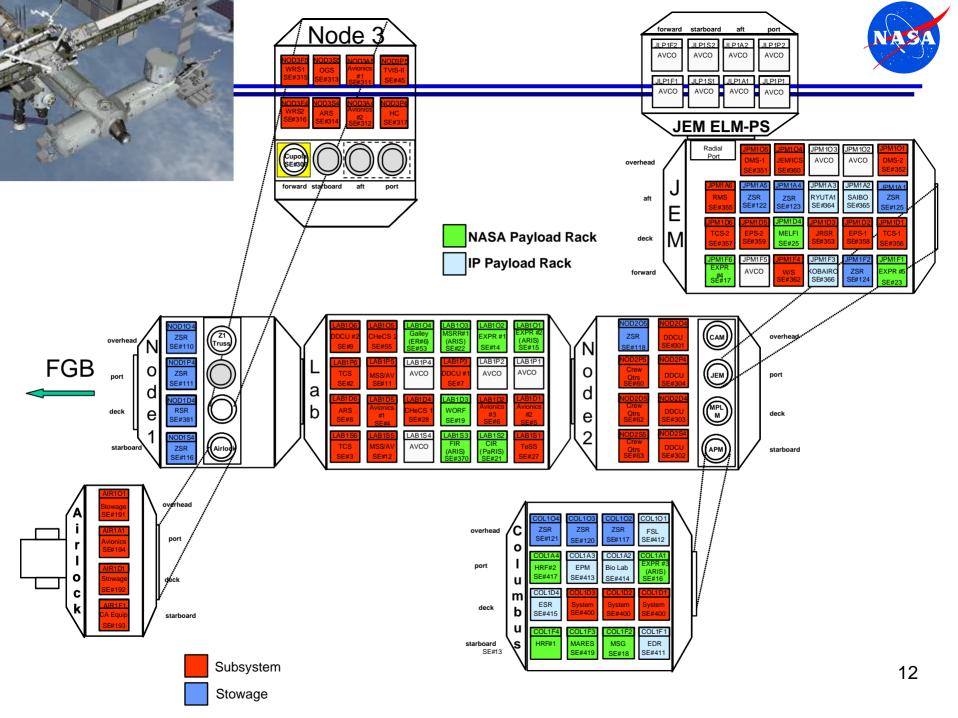
Kobairo

SEDA

MAXI

SMILES

Kibo


Japanese Aerospace Exploration Agency (JAXA)

Research racks launched with pressurized elements or later on HTV

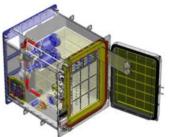
- > Ryutai (2008)
 - Contains four experiments for fluid physics and solution/crystal growth research, including image processing unit
- > Saibo (2008)
 - Cell biology facility, contains Clean Bench and Cell Biology Experiment Facility, including glovebox, incubator, microscope, centrifuge
- > Kobairo (2009)
 - Facility contains the Gradient Heating Furnace for materials processing research

External payloads launched with JEM-EF or later on HTV

- > Space Environment Data Acquisition (SEDA) (2008)
 - Monitor neutron, plasma, atomic oxygen, and heavy ions
- ➤ Monitor All-sky X-ray Image (MAXI) (2008)
 - Observe X-ray bursts by Gas Slit Camera and X-ray CCD Slit Camera
- Superconducting Sub millimeter-wave Limb-Emission Sounder (SMILES) (2009)
 - Demonstrate sub-millimeter sensor technology and conduct submillimeter limb-emission sounding of the atmosphere and perform global observation of trace gases in the Stratosphere

Post-Assembly Research Complement

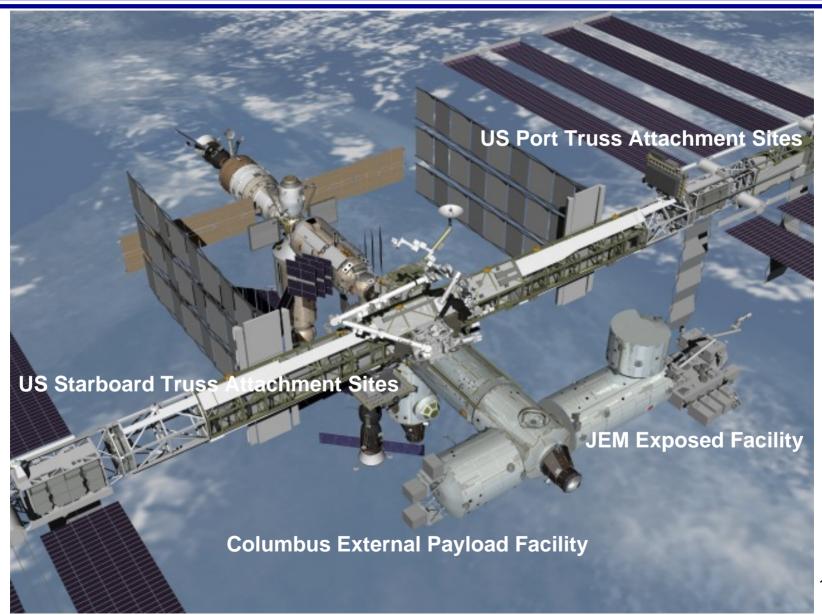
Cold Stowage Accommodations



MELFI
P
i ale men men men men men men men men men me

MERLIN

GLACIER


Single and Double Coldbag w/ICEPAC's

On-orbit stowage	Yes	Possible	Possible	No
Transport	No	Yes	Yes	Yes
Power	Yes	Yes	Yes	No
On-orbit temperature (°C)	+4, -26, -80	+45 to -20	+4 to -185	N/A
Transport temperature (°C)	N/A	+45 to -5	+4 to -160	+4 to -32
Useable volume (L)	175	19	30	6.8/18.7
External volume	1 rack	1 MLE	2 MLE	0.5/1 MLE

External Payload Accommodations

EXPRESS Logistics Carrier

5 EXPRESS Logistics Carriers (ELC) are planned for 2009-2010

Mass Capacity	3,636 kg
Volume	30 m ³
Power	3 kW, 113-126 VDC
Low Data Rate	1 Mbps
High Data Rate	6 Mbps (shared)
Local Area Network	6 Mbps (Ethernet)

12 sites per carrier;

2 sites with payload

power and data

services

Single Adapter Site

Mass Capacity

Volume

1 m³

Power

750 W, 113-126 VDC

500 W @ 28 VDC

per adapter

Thermal

Passive

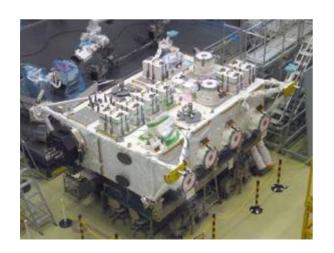
Low Data Rate

1 Mbps

Medium Data Rate


6 Mbps (shared)

IP External Platforms



Columbus External Payload Facility – 4 sites

Mass Capacity	230 kg
Volume	1 m ³
Power	2.5 kW total to carrier (shared)
Thermal	Passive
Low Data Rate	1 Mbps
Medium Data Rate	2 Mbps (shared)

JEM Exposed Facility – 10 sites

Mass Capacity	500 kg standard site
	2,500 kg large site
Volume	1.5 m ³
Power	3 kW, 113-126 VDC
Thermal	3 kW cooling
Low Data Rate	1 Mbps
Medium Data Rate	10 Mbps
High Data Rate	95 Mbps (shared)

Transportation Capabilities

_	Soyuz	Progress	ATV	HTV	Orion	COTS
Up	Crew, limited passive cargo	Passive cargo (limited capability for active cargo)	Passive pressurized cargo	Passive pressurized cargo and ISPR's, passive external cargo	Crew, passive and active cargo	Passive and active (?) cargo
Down	Crew, very limited passive cargo	N/A	N/A	N/A	Crew, passive and active cargo	Passive and active (?) cargo

Summary

- ISS assembly and utilization to date have been relatively trouble-free
- o A robust on-orbit research infrastructure already exists and has yielded a significant amount of valuable research
- This infrastructure will be significantly expanded in the next few years, enhancing pressurized and unpressurized research capabilities
- o International collaboration will take on increasing importance
- o A fleet of transportation vehicles will be available