

The Vision for Space Exploration

On January 14, 2004, the focus of NASA research on ISS was fundamentally changed with President Bush's *Vision for U.S. Space Exploration*

- ISS Focus for NASA before Exploration Vision: Diverse, multi-discipline research
 - Human Life Sciences
 - Biological Sciences
 - Materials Science
 - Fluids Science
 - Combustion Science
 - And all other sciences!

The Vision for Space Exploration

On January 14, 2004, the focus of NASA research on ISS was fundamentally changed with President Bush's *Vision for U.S. Space Exploration*

- NEW ISS Focus for NASA
 - Astronaut health and countermeasure development to protect crews from the space environment during long duration voyages
 - Testing research and technology developments for future exploration missions
 - Developing and validating operational procedures for long-duration space missions

Outline

- Research on Astronaut Health
- Research and Technology Development
- Learn Lessons from ISS Operations
- Life and Physical Sciences in Microgravity

Plans AND Accomplishments

ISS Medical Project

- ISS is the only long-duration microgravity environment for studies of health effects/countermeasures for Mars transit
- To get reasonable numbers of human subjects studies must begin NOW—about 1/3 of planned expeditions are complete!
- Most utilization resources are limited during assembly, and with 3 crew through 2009

Experiments on ISS can address

SPACE SYSTEM

- Advanced life support
- Exercise systems
- Clinical capabilities
- Radiation
- Dust

HUMAN SYSTEM

- Integrated physiology
- Cardiovascular
- Bone & Muscle
- Neurovestibular
- Food and nutrition
- Immunology & infection
- Human behavior & performance

Completed—Distribution of Loss and Recovery of Bone in Microgravity

Normal bone

Osteoporitic bone

Images: MRC Research Updates

Sub-Regional Assessment of Bone Loss in the Axial Skeleton in Long-Term Spaceflight, PI: Thomas F. Lang, University of California, San Francisco

Distribution of bone loss

- Bone lost: 0.9%/month spine, 1.4%/month in femoral neck (a menopausal woman loses ~1% per year)
- In the hip, trabecular (interior) bone is lost at a rate 2.5%/month, compared to 0.5%/month for cortical (outer) bone
- Risk of fracture on return to Earth higher than estimated from average bone loss

1-Year Postflight:

- Bone has substantially recovered
- However, volumetric cortical bone mass and bone strength only partially recovered; affects risk assessments

Next Steps:

 Upcoming studies of biomarkers for bone resorption, bisphosphinate trials

Completed—Quantitative Measurement of Forces for Exercise Countermeasures

Cycle ergometer

Treadmill

Bone and muscle loss vs. exercise countermeasures

Results:

- Preliminary--much less force was experienced than would be experienced when exercising on Earth.
- Knee-joint motion in space is reduced compared to that on Earth, and this has an effect on muscle action
- Detailed data were collected on the loads across all exercise hardware settings during Expeditions 11 and 12

Application to Exercise Operations

- Force/bone loss connection for determining "prescriptions"
- Harness/load devices
- Resistive exercise vs. aerobic exercise

Foot/Ground Reaction Forces During Space Flight, PI: Peter Cavanagh, The Cleveland Clinic, Cleveland, OH

Completed_Interactions

Crewmember and Crew-Ground Interaction During International Space Station Missions, PI: Nick A. Kanas, University of California-San Francisco, CA

Standard mood and interpersonal group climate questionnaires

Results:

- No evidence of 3rd quarter or 2nd half effects
- Displacement of negative feelings from the crew to the ground, and from ground personnel to outside supervisors
- Differences between Americans and Russians and between crew and ground
- Salutogenic effects of being in space

Application to Operations

- Use of measures in upcoming test of crew autonomy
- Discussion within the operations community about phasing effects and displacement

Other recent ISS human research results with key applications for Exploration missions

Clinical Medicine and Telemedicine: *Advanced Ultrasound*

Renal Stone Prevention

Chromosome investigation and ongoing radiation monitoring

ISS Medical Project

- ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions
- Complete programmatic review with medical operations (space medicine/flight surgeons) to identify:
 - Evidence base on risks
 - Gap analysis
- Rapid implementation of key studies to optimize human research return
 - First two of these implemented via fast track during 2006.
 - Ongoing process to identify and develop the most critical studies

Now Begun: Nutrition & Physiological Status

Nutrition Status Assessment, PI: Scott Smith, NASA Johnson Space Center

Medical Requirement observations "Clinical Nutrition Assessment" (MR016L)

Results:

- Body weight, total bone mineral content, and bone mineral density decreased during flight.
- Antioxidant capacity decreased during flight, leading to increased susceptibility to genetic damage from radiation.
- Vitamin D concentration in crew bone was decreased, and bone resorption increased, by long exposure to microgravity.

New In-flight Study (the most comprehensive to date):

- Biomarkers for bone loss process
- Stress hormones
- Oxidative Stress
- B-vitamin status

MELFI—-80°C freezer capability on ISS

In progress: Vitamin and Drug Stability

Analysis of returned foods and drugs from ISS

Results:

- Some pharmaceuticals and vitamins are significantly degraded in space
 - Antibiotics
 - Antihistaminies
 - Vitamin D

New In-flight Study:

- Controlled exposure of food and pharmaceuticals to spaceflight
- Four identical sample kits (containing pharmaceuticals, food, dosimeter and a temperature sensor) will be transported to ISS
- Stored for 0, 6, 12, and 18 months and returned for analysis
- Identical kit in Orbital Environmental Simulator

Stability of Pharmacotherapeutic and Nutritional Compounds, PI: Scott Smith and Lakshmi Putcha, NASA Johnson Space Center

Now Begun: Sleep-Wake Actigraphy

Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long, PI: Charles A. Czeisler, Harvard Medical School

"Slam Shifting" on ISS used to align communications with ground sites for EVA, dockings

Results:

- Crewmembers go through significant shifts in sleep to meet operational requirements—sometimes equivalent to multiple transoceanic flights per month
- Auditory and light environments on ISS can also impact sleep
- Short duration (Shuttle) crewmembers experience significant disruption in sleep patterns that would be expected to produce decrements to performance

New In-flight Study:

- Automatic measurement of sleep patterns
- Automatic measurement of light exposure
- Sleep logging captures subjective elements

Near Term Human Research on ISS

Physiology in Microgravity

- Bone resorption (Nutrition Status Assessment, Bisphosphenates)
- Stress reactivation of viruses (Epstein-Barr, Latent Virus)
- Clinical risks from immune system changes in space, and a flightcompatible immune monitoring strategy (Integrated Immune)
- Cardiovascular (Oxygen uptake assessment, Dysrhythmia, CCISS, Cardiac)

Physiology in Microgravity: Adaptation to Gravity Changes

- Mitigate post-flight locomotor dysfunction (Mobility)
- Prevent post-flight orthostatic intolerance (Midodrine)
- Space motion sickness drug uptake study (PMZ)

Behavior and Performance

- Evaluate the most important factors for coping with isolation and long duration space flight (Journals)
- Whether sleep-wake cycles are disrupted on long-duration flight as they are during short-duration space flight (Sleep)

Technology Development

Completed and Forthcoming—Smoke Detection and Aerosol Measurement

- Current Smoke Detectors, adapted from 1 g
 - Shuttle: Ionization smoke detectors (<1 micron)
 - ISS: Photoelectric smoke detectors (>0.6 microns)
 - Orion: upcoming design decision
- Dust and Aerosol Feasibility Test (DAFT)—Completed
 - Proved the accuracy of COTS dust and particle counters for use in future experiments
 - Documented the excellent performance of the ISS HEPA filtration system
- Next Step: Smoke and Aerosol Measurement Experiment
 - Quantify smoke particulate and aerosol components from on-orbit combustion
 - Compare the performance of existing smoke detection systems
 - Guide future design decisions

Dust and Aerosol Feasibility Test (DAFT) and Smoke and Aerosol Measurement Experiment (SAME) PI: David Urban, NASA Glenn Research Center

Completed and Ongoing—Materials Investigations for the Space Environment

External Exposure to the space environment

- Radiation, atomic oxygen, micrometeoroids, temperature, vacuum
- Importance for satellites of all types and human spaceflight

MISSE 1/2 Spent 4 years exposed

- Tested 400 materials
- Optical changes in thermal control materials
- Mechanisms of atomic oxygen degradation of multilayer materials

MISSE 5

- Test performance of advanced generation solar cells with amateur satellite communication
- Tested 200 materials

Next Step: MISSE 3/4 on orbit, and 6A/6B planned 2007

 Includes seals for Orion advanced docking and berthing system (with and without removable cover, and with/without a metallic coating)

Materials on the ISS Experiment, PIs: William Kinard, NASA Langley Research Center (MISSE 1/2, 3/4, 6A/6B); Robert Walters, Naval research Laboratory (MISSE-5)

Near Term Technology Research on ISS

Environmental Control

- ANITA (Analyzing Interferometer for Ambient Air)
- eNOSE (Electronic Nose)
- VCAM (Vehicle Cabin Air Monitor)

Fluid Flows

Capillary Flow Experiment (Vane gap applications to propellant tank design)

Heat Transfer

- Microheater Array Boiling Experiment
- Nucleate Pool Boiling Experiment

Spacecraft Materials & Systems

- Elastic memory composites for hinges (EMCH)
- Rigidized structure assembly (RIGEX)
- Formation flying, guidance, and navigation (SPHERES)
- Picosatellites (STP-H2-MEPSI, ANDE, RAFT)

Microfluidic Analysis

Lab-on-a-chip Technologies (LOCAD-PTS)

Lessons Learned from ISS Operations

Example—Environmental Monitoring

 Environmental monitoring is performed operationally to insure the health of the spacecraft and crew

Water system results:

- 12 bacterial strains cultured, met safe drinking water standards
- Biocide treatments and other preventative measures are working

Air quality results:

- HEPA filters are effective in controlling trace contaminants
- Performance and repair of Volatile Organics Analyzer
- Lessons learned from regeneration of Metox cannisters—disruption of airflows and temporary formaldehyde accumulations

Just begun: SWAB investigation

- 90% of microbes cannot be cultured
- Legionella, Cryptosporidium, dust mites, endotoxins
- Modern genetic approaches to follow changes in microbial communities on ISS
- Surfaces, Air, Water

Surface, Water and Air Biocharacterization - A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment, PI: Duane L. Pierson, NASA Johnson Space Center

Microgravity

Life and Physical Sciences in Microgravity: Examples Completed and Ongoing

Root Phototropism (Tropi)

InSpace (Magnetorheological Fluids)

- 1. Complete assembly of the ISS
- 2. Develop Orion (Crew Exploration Vehicle)
- 3. Utilize ISS

Summary: NASA ISS Research

- Recognize that, in the near term, completion of ISS limits the amount of research that can be completed (budget, upmass, crewtime)
 - Shuttle retirement in 2010
 - Preparation for 6-person crew by 2009
- Continue, with limited budget, to conduct high priority ISS research that
 - Supports the Exploration Vision
 - Takes maximum advantage of facilities/opportunities provided by ISS
- Partner researchers in international teams to investigate areas of mutual interest
- Focus on ISS utilization once assembly is complete.
 - Expect significant (two- to three-fold) increase in U.S. crewtime for research with 6-person crew

ISS & CEV

Lunar Sortie

Lunar Outpost

Humans to Mars

