Surface-Enhanced Raman Scattering (SERS) On Any Surface

Name of Contact: Tuan Vo-Dinh; vodinht@ornl.gov; 865-574-6249

- Vo-Dinh and colleagues at ORNL have created a nanoprobe that induces the SERS effect on any surface
- Small-scale probe allows SERS detection in nanoscale environments, on localized surfaces, and inside cells
- Optical fiber with 100-nm-diam tip coated with silver island nanoparticles
- Laser excitation produced oscillations of the electrons in the silver nanoparticles, inducing enormous Raman enhancement (SERS effect)
- SERS probe allows samples to be analyzed directly in their native state
- Could spur renewed interest in SERS as a diagnostic tool
- Research reported in Applied Spectrometry 58, 292-298 (2004) and highlighted in Analytical Chemistry, pg. 151A, May 1, 2004

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

SERS-inducing nanoprobe

Imaging of cells using novel SERS-labelled nanoparticle probes

JT-BATTELLE