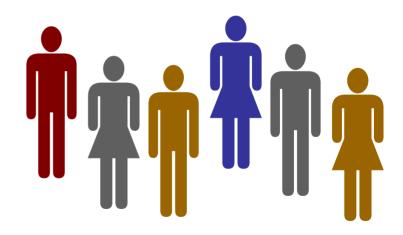
Unit I-B Building Design for Homeland Security


Student Introductions

Name

Affiliation

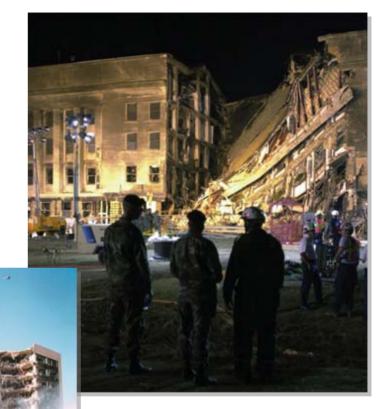
Area of Concentration

Course Expectations

Purpose of Course and FEMA 426 Manual

Provide guidance to building sciences community

Decision-makers determine which threats and mitigation measures


Information

- Not mandatory
- Not applicable to all buildings
- Not applicable when it interferes with other hazards

Course Goal

To enhance student understanding of the measures and technology available to reduce risk from terrorist attack.

FEMA

U.S. AIR FORCE

Course Objectives

Students will be able to:

- 1. Explain the basic components of the assessment methodology.
- 2. Appreciate the different assessment methodology approaches that can be used.
- 3. Perform an assessment for a building by identifying and prioritizing assets, threats, and vulnerabilities and calculating relative risk.

Course Objectives

- 4. Identify available mitigation measures applicable to the site and building envelope.
- 5. Understand the technology limitations and application details of mitigation measures for terrorist tactics and technological accidents.
- 6. Perform an assessment for a given building by identifying vulnerabilities using the Building Vulnerability Assessment Checklist in FEMA 426.

Course Objectives

- 7. Select applicable mitigation measures and prioritize them based upon the final assessment risk values.
- 8. Appreciate that designing a building to mitigate terrorist attacks can create conflicts with other design requirements.

Course Overview – Day 1

Unit I-B – Introduction and Course Overview

Unit II – Asset Value Assessment

Unit III - Threat / Hazard Assessment

Unit IV – Vulnerability Assessment

Unit V – Risk Assessment / Risk Management

Course Overview – Day 2

Unit VI – FEMA 452 Risk Assessment Database

Unit VII – Explosive Blast

Unit VIII – Chemical, Biological, and Radiological (CBR) Measures

Exam and Exam Review

Unit IX-B – Site and Layout Design Guidance

Course Overview – Day 3

Unit X – Building Design Guidance

Unit XI – Electronic Security Systems

Unit XII-B - Finalization of Case Study Results

Unit XIII - Course Wrap-up

Course Materials

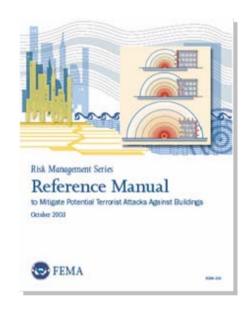
FEMA Publication 426

Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings

FEMA Publication 452

Risk Assessment: A How-To Guide to Mitigate Potential Terrorist Threats Against Buildings

FEMA 426 Reference Manual


Chapter 1 – Asset Value, Threat / Hazard, Vulnerability, and Risk

Chapter 2 – Site and Layout Design Guidance

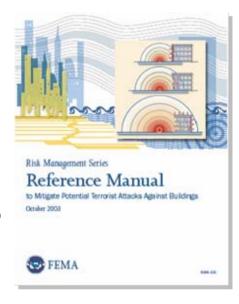
Chapter 3 – Building Design Guidance

Chapter 4 – Explosive Blast

Chapter 5 – CBR Measures

FEMA 426 Reference Manual

Appendix A – Acronyms


Appendix B – General Glossary

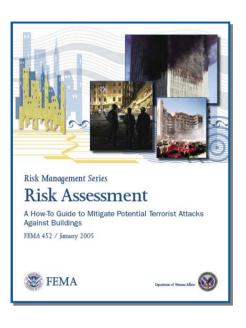
Appendix C - CBR Glossary

Appendix D – Electronic Security Systems

Appendix E – Bibliography

Appendix F – Associations and Organizations

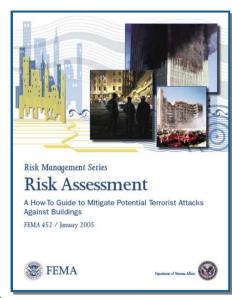
FEMA 452 Risk Assessment How-To


Step 1 – Threat Identification and Rating

Step 2 – Asset Value Assessment

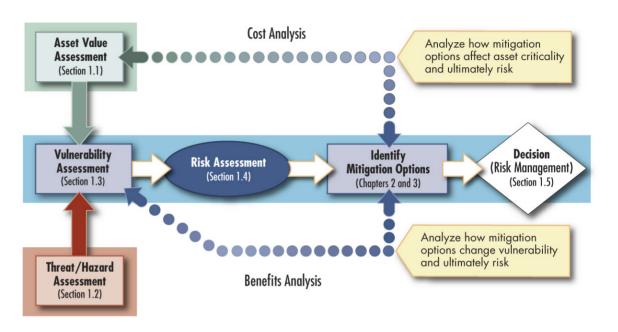
Step 3 – Vulnerability Assessment

Step 4 - Risk Assessment


Step 5 – Consider Mitigation Options

FEMA 452 Risk Assessment How-To

- Appendix A Building Vulnerability
 Assessment Checklist
- Appendix B1 Risk Management
 Database: Assessor's
 User Guide
- Appendix B2 Risk Management
 Database: Database
 Administrator's User Guide

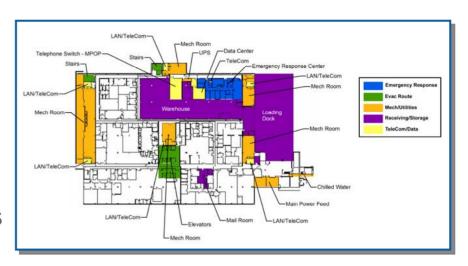


- **Appendix B3** Risk Management Database: Manager's User Guide
- **Appendix C** Acronyms and Abbreviations

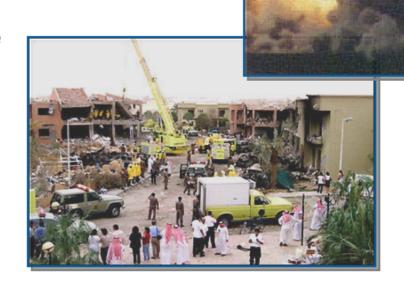
- Asset Value Assessment
- Threat/Hazard Assessment
- Vulnerability Assessment
- Risk Assessment
- Risk Management
- Building Vulnerability Assessment Checklist

Site and Layout Design

- Layout Design
- Siting
- Entry Control/Vehicle Access
- Signage
- Parking
- Loading Docks
- Physical Security Lighting
- Site Utilities



Building Design Guidance


- Architectural
- Building Structural and Nonstructural Considerations
- Building Envelope considerations
- Other Building Design Issues
- Building Mitigation Measures

Explosive Blast

- Building Damage
- Blast Effects and Predictions
- Stand-off Distance
- Progressive Collapse

CBR Measures

- Evacuation
- Sheltering in Place
- Personal Protective Equipment
- Filtering and Pressurization
- Exhausting and Purging

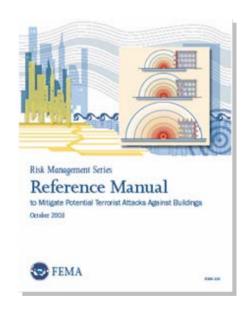
Summary

FEMA 426 is intended for building sciences professionals.

Manmade hazards risk assessments use a "Design Basis Threat."

Site and building systems and infrastructure protection are provided by layers of defense.

Multiple mitigation options and techniques.


Use cost-effective multihazard analysis and design.

Case Study Activities

In small group settings, apply concepts introduced in the course.

Become conversant with contents and organization of FEMA 426.

Unit I-B Case Study Activity

HazardCorp Building Urban Case Study Overview

Requirements

Briefly review Case Study materials.

As a group, complete the worksheet.

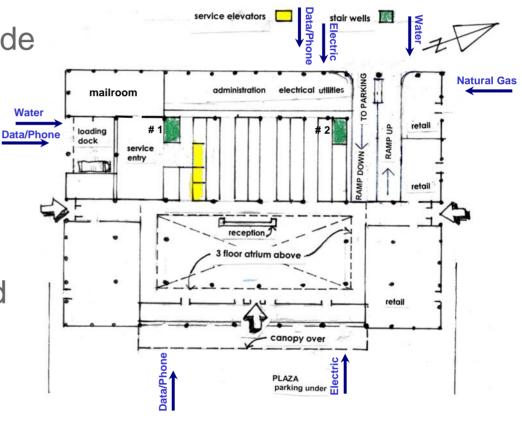
Use only the Case Study data to answer worksheet questions.

HAZARDCORP BUILDING (HZC)

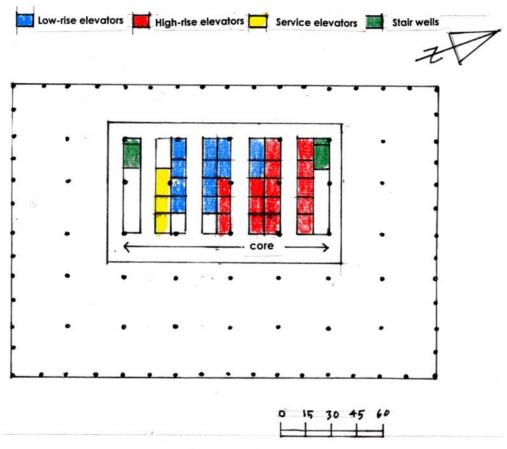
Case Study

Urban Office Rental Property occupied by:

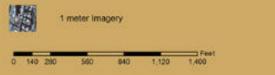
- Building Owner (Building Management)
- Tenants:
 - Retail (Restaurant, Shops)
 - Government (Federal, State, Local)
 - Banking
 - Financial
 - Insurance


HazardCorp Building

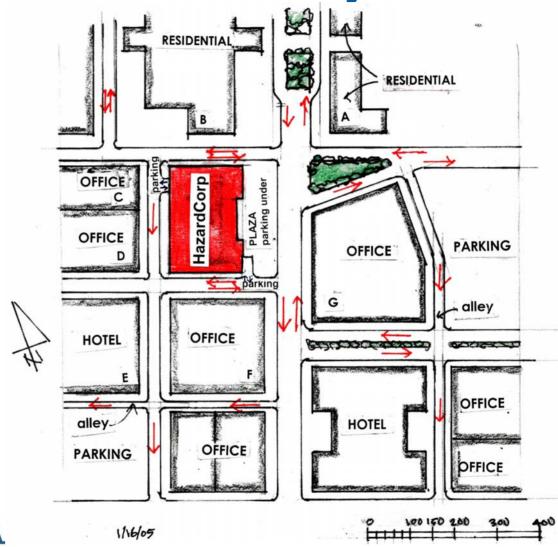
Building Data


- 50-story building completed in 1987
- Loading dock on SW side
- Retail on lower level
- 8,000 occupants
- 1,000 visitors
- 3 levels of underground parking

Upper Level Floor Plan



Aerial Overview


Local Imagery
HazardCorp

HAZARDCORP Site Layout

HAZARDCORP Neighbors

• A and B: 14 - 26-story residential condominiums,

constructed 2001-2005.

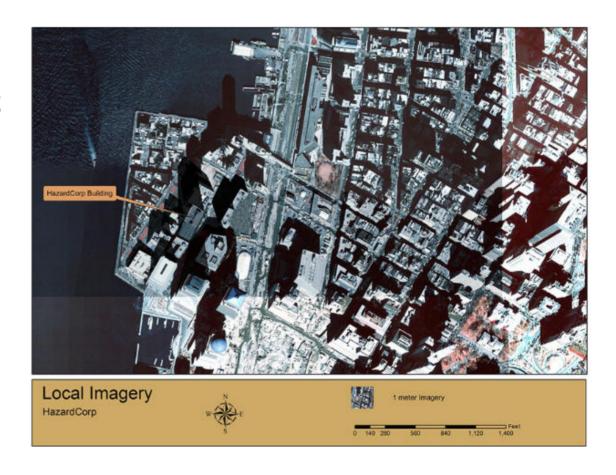
• C: 10-story office, constructed 1925

• D: 10-story office, constructed 1934

• E: 14-story hotel, constructed 1935

• F: 20-story office, constructed 1970

• G: 20-story office, constructed 1994


HAZARDCORP Occupancy

FLOOR	TENANT OCCUPANCY
49-50	Mechanical Floors
31-48	National financial services company
29-30	Bank offices
27-28	Federal government offices (IRS, DOD, CIA)
26	Mechanical room
25	Office of Emergency Management
23-24	Financial service company
20-22	Insurance company
19	State Employment Commission
15-18	Vacant
14	Financial management company
8-13	Federal government offices (SEC, Secret Service)
6-7	Bank offices
4-5	Storage, switch gear, generators, transformers
3	Open to first floor lobby, rentable meeting space, building management
2	Open to first floor lobby, rentable meeting space
1	Lobby, retail, fuel storage, switchgear, building administration, loading dock
UG1	Parking
UG2	Parking
UG3	Parking

Threat Analysis

Terrorist Threat
Intelligence Threat
Criminal Threat

Hazard Analysis

HazMat

- Facilities
- Highway
- Rail
- Maritime

Liquid Fuels

Chemicals

Air Traffic

Natural Hazards

Emergency Response

Police

Fire

EMT

HazMat

Hospitals

Design Basis Threat

Explosive Blast: Car Bomb approximately 500 lb TNT equivalent. Truck Bomb approximately 5,000 lb TNT equivalent (Murrah Federal Building class weapon)

Chemical: Large quantity gasoline spill and toxic plume from the upwind petroleum tank farm or large quantity chlorine release from the upwind chemical storage tank farm. Small quantity (tanker truck and rail car size) spills of HazMat materials (chlorine).

Biological: Anthrax delivered by mail or in packages, smallpox distributed by spray mechanism mounted on truck or aircraft in metropolitan area

Radiological: Small "dirty" bomb detonation within the 10-mile radius of the HazardCorp building

Design Basis Threat

Criminal Activity/Armed Attack: High powered rifle (sniper attack) or handgun shooting (direct assault on individuals).

Cyber Attack: Focus on IT and building systems infrastructure (SCADA, alarms, etc.) accessible via Internet access

Levels of Protection and Layers of Defense

Levels of Protection for Buildings

- GSA Interagency Security Criteria Level IV Building
- DoD Primary Gathering Building

Elements of the Layers of Defense Strategy

- Deter
- Detect
- Deny
- Devalue

Summary

FEMA Publication 426

Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings

FEMA Publication 452

Risk Assessment: A How-To Guide to Mitigate Potential Terrorist Threats Against Buildings

Unit I-B Case Study Activity

Introduction and Overview Background

Emphasis:

- Refamiliarize yourself with Appendix B Case Study and answer general questions
- Get acquainted with FEMA 426

Requirements

Refer to Case Study, and independently answer worksheet questions

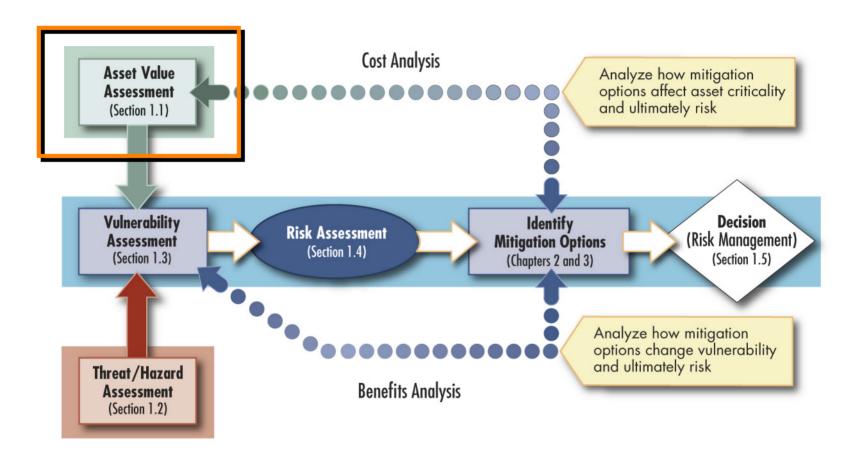
Confer with team members on answers to normalize team information

BUILDING DESIGN FOR HOMELAND SECURITY

Unit II Asset Value Assessment

Unit Objectives

Identify the assets of a building or site that can be affected by a threat or hazard.


Explain the components used to determine the value of an asset.

Determine the critical assets of a building or site.

Provide a numerical rating for the asset and justify the basis for the rating.

Assessment Flow Chart

FEMA 426, Figure 1-3: The Assessment Process Model, p. 1-5

Definition of Risk

Risk is a combination of:

- The probability that an event will occur, and
- The consequences of its occurrence

	Low Risk	Medium Risk	High Risk			
Risk Factors Total	1-60	61-175	≥ 176			
Risk = Asset Value x Threat Rating x Vulnerability Rating						

Infrastructure	Function
Replacement/Repair	People
Loss of Use	

Asset - A resource of value requiring protection. An asset can be tangible, such as buildings, facilities, equipment, activities, operations, and information; or intangible, such as processes or a company's information and reputation.

FEMA 426, Table 1-19: Total Risk Color Code, p. 1-38

People and Asset Value

Asset Value - The degree of debilitating impact that would be caused by the incapacity or destruction of an asset.

Identification of a Building's Assets

Two Step Process

Step 1: Define and understand a building's core functions and processes

Step 2: Identify site and building infrastructure and systems

Asset Value

Core Functions

- Primary services or outputs
- Critical activities
- Identify customers
- Inputs from external organizations

Critical Infrastructure

- Injuries or deaths related to lifelines
- Effect on core functions
- Existence of backups
- Availability of replacements
- Critical support lifelines
- Critical or sensitive information

Asset Value Rating

	Asset Value				
Very High	10	Very High — Loss or damage of the building's assets would have exceptionally grave consequences, such as extensive loss of life, widespread severe injuries, or total loss of primary services core processes, and functions.			
High	8-9	High — Loss or damage of the building's assets would have grave consequences, such as loss of life, severe injuries, loss primary services or major loss of core processes and functions for an extended period of time.			
Medium High	7	Medium High — Loss or damage of the building's assets would have serious consequences, such as serious injuries or impairment of core processes and functions for an extended period of time.			

Key elements

 Loss of assets and/or people would have grave, serious, moderate, or negligible consequences or impact

FEMA 426, Adaptation of Table 1-1: Asset Value Scale, p. 1-13

Asset Value Rating (continued)

	Asset Value				
Medium	Medium — Loss or damage of the building's assets would have moderate to serious consequences, such as injuries or impairment of core functions and processes.		assets would have moderate to pairment of core functions and		
Medium Low	4	Medium Low — Loss or damage of the building's assets would have moderate consequences, such as minor injuries or minor impairment of core functions and processes			
Low	2-3	Low — Loss or damage of the building's assets would have minor consequent or impact, such as a slight impact on core functions and processes for a short period of time.			
Very Low	1	Very Low — Loss or damage of the building's	assets would have negligible		
very Low		consequences or impact.	Kev elements		

Loss of assets and/or people would have grave, serious, moderate, or negligible consequences or impact

FEMA 426, Adaptation of Table 1-1: Asset Value Scale, p. 1-13

Asset Value Notional Example

Asset	Value	Numeric Value
Site	Medium Low	4
Architectural	Medium	5
Structural Systems	High	8
Envelope Systems	Medium High	7
Utility Systems	Medium High	7
Mechanical Systems	Medium High	7
Plumbing and Gas Systems	Medium	5
Electrical Systems	Medium High	7
Fire Alarm Systems	High	9
IT/Communications Systems	High	8

Critical Functions

Function	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Administration				
Asset Value	5	5	5	5
Threat Rating				
Vulnerability Rating				
Engineering				
Asset Value	8	8	8	8
Threat Rating				
Vulnerability Rating				

Critical Infrastructure

Infrastructure	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Site				
Asset Value	4	4	4	4
Threat Rating				
Vulnerability Rating				
Structural Systems				
Asset Value	8	8	8	8
Threat Rating				
Vulnerability Rating				

Summary

Identify a building's Critical Functions and Critical Infrastructure

Assign a value to a building's assets or resources

Input values into the Critical Functions and Critical Infrastructure Matrices

Unit II Case Study Activity

Asset Value Ratings

Background

Asset value: degree of debilitating impact that would be caused by the incapacity or destruction of a building's assets

FEMA 426: Tables 1-1 and 1-2

Requirements

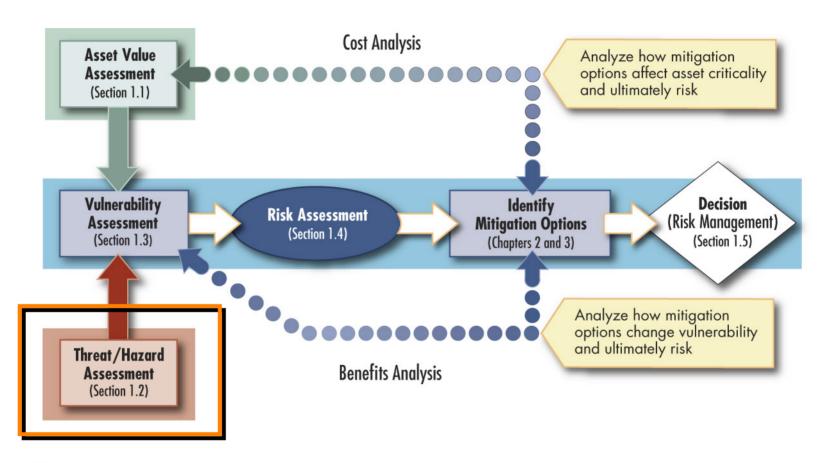
Refer to Case Study and answer worksheet questions:

- Identify Core Functions
- Identify Building Assets
- Quantify Asset Values

Unit III Threat / Hazard Assessment

Unit Objectives

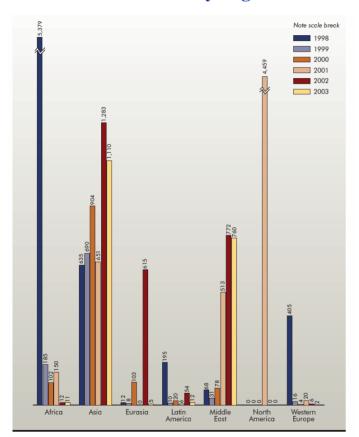
Identify the threats and hazards that may impact a building or site.

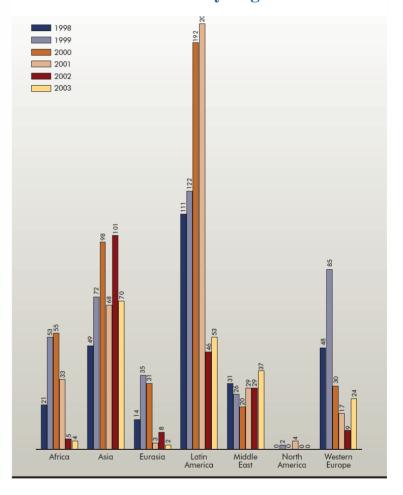

Define each threat and hazard using the FEMA 426 methodology.

Provide a numerical rating for the threat or hazard and justify the basis for the rating.

Define the Design Basis Threat, Levels of Protection, and Layers of Defense.

Assessment Flow Chart

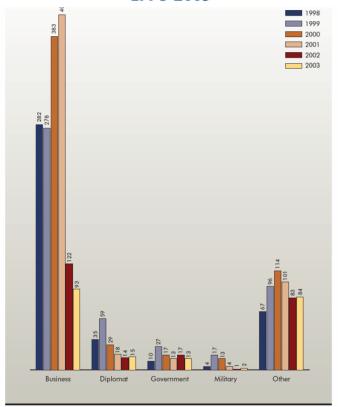


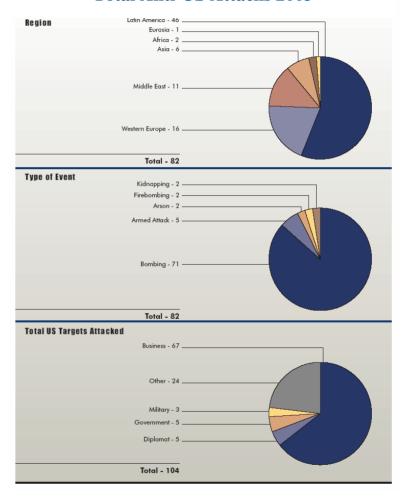

FEMA 426, Figure 1-3: The Assessment Process Model, p. 1-5

Nature of the Threat

International Casualties by Region 1998-2003

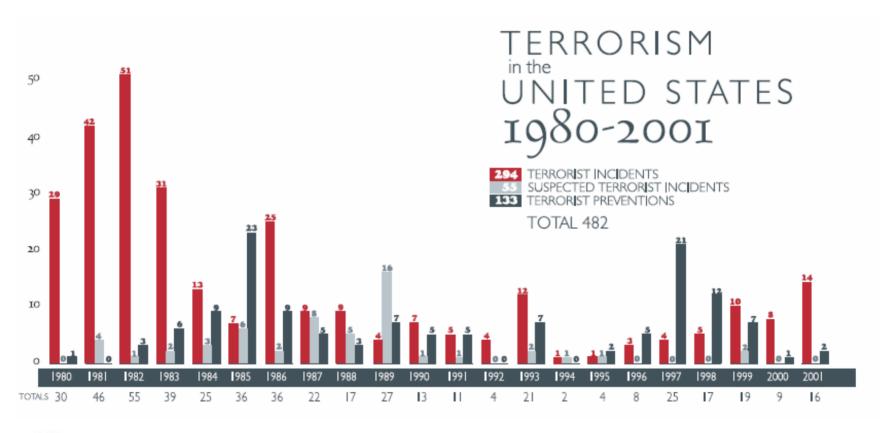
International Attacks by Region 1998-2003



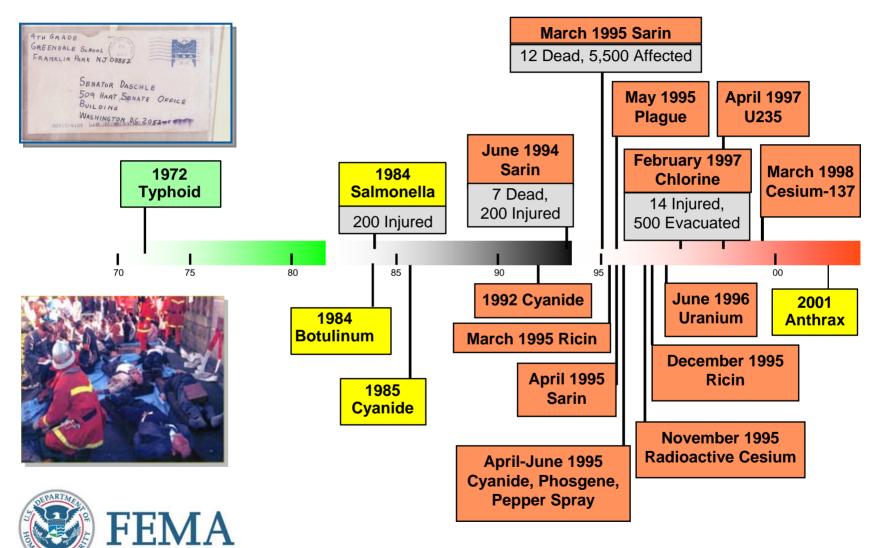

From Patterns of Global Terrorism 2003 Department of State April 2004

Nature of the Threat

Facilities Struck by International Attacks 1998-2003


Total Anti-US Attacks 2003

From Patterns of Global Terrorism 2003 Department of State April 2004


Nature of the Threat

From Terrorism 2000/2001 FBI Publication #0308

CBR Terrorist Incidents Since 1970

Hazard

Hazard - A source of potential danger or adverse condition.

Natural Hazards
 are naturally occurring events
 such as floods,
 earthquakes, tornadoes,
 tsunami, coastal storms,
 landslides, hurricanes,

and wildfires.

FEMA

Manmade Threats

Threats – Any indication, circumstance, or event with the potential to cause loss of, or damage to an asset. They can be technological accidents and terrorist attacks.

Technological accident

Terrorism act

Threat Overview

Any indication, circumstance, or event with the potential to cause loss of, or damage to an asset

Involves two steps:

- Selection of primary threats: tools and tactics as well as people with intent to cause harm
- Determine the threat rating:
 a parameter used to quantify
 your losses

Weapons, tools, and tactics can change faster than a building can be modified.

Threat Overview

- Improvised Explosive Device (Bomb)
- Armed Attack
- Chemical Agent
- Biological Agent
- Radiological Agent
- Cyberterrorism

Step 1: Selection of Primary Threats

Criteria

Selected Threats

- Cyber Attack
- Armed Attack
- Vehicle Bomb
- CBR Attack

			G	iteria			
Scenario	Access to Agent	Knowledge/ Expertise	History of Threats (Building Functions/ Tenants)	Asset Visibility/ Symbolic	Asset Accessibility	Site Population/ Capacity	Level of Defense
9-10	Readily available	Basic knowledge/ open source	Local incident, occurred recently, caused great damage; building functions and tenants were primary targets	Existence widely known/ iconic	Open access, unrestricted parking	> 5,000	Little to no defense against threats. No security design was taken into consideration and no mitigation measures adopted.
6-8	Easy to produce	Bachelor's degree or technical school/open scientific or technical literature	Regional/State incident, occurred a few years ago, caused substantial damage; building functions and tenants were one of the primary targets	Existence locally known/ landmark	Open access, restricted parking	1,001-5,000	Minimal defense against threats. Minimal security design was taken into consideration and minimal mitigation measures adopted.
3-5	Difficult to produce or acquire	Advanced training/rare scientific or declassified literature	National incident, occurred some time in the past, caused important damage; building functions and tenants were one of the primary targets	Existence published/ well-known	Controlled access, protected entry	251-1,000	Significant defense against threats. Significant security design was taken into consideration and substantial mitigation measures adopted.
1-2	Very difficult to produce or acquire	Advanced degree or training/ classified information	International incident, occurred many years ago, caused localized damage; building functions and tenants were not the primary targets	Existence not well-known/ no symbolic importance	Remote location, secure perimeter, armed guards, tightly controlled access	1-250	Extensive defense against threats. Extensive security design was taken into consideration and extensive mitigation measures adopted.

FEMA 452, Table 1-4: Criteria to Select Primary Threats, p. 1-20

Step 1: Selection of Primary Threats

10

Criteria						Score			
Scenario	Access to Agent	Knowledge/ Expertise	History of Threats (Building Functions/ Tenants)	Asset Visibility/ Symbolic	Asset Accessibility	Site Population/ Capacity	Level of Defense		
Improvised Explosive Dev	ice (Bomb)							
1-lb. Mail Bomb	9	9	3	8	3	10	3	45	
5-lb. Pipe Bomb	9	9	3	8	3	10	3	45	
50-lb. Satchel Bomb/Suicide Bomber	8	8	6	8	3	10	5	48	
500-lb. Car Bomb	6	8	7	8	3	10			
5,000-lb. Truck Bomb	4	8	5	8	3	10	Scenario		
20,000-lb. Truck Bomb	2	6	1	8	3	10	Stollario	J.C.IIIIII	

Sc	enari	0	Access to Agent	Knowledge/ Expertise	History of Threats (Building Functions/ Tenants)	Asset Visibility/ Symbolic	Asset Accessibility	Site Population/ Capacity	Level of Defense	
Ch	emico	al Agent								
Chokina	P	Chlorine	5	7	2	8	3	10	5	40
3		Phosgene	3	10	2	8	3	10	5	41
Blood		Hydrogen Cyanide	3	8	2	8	3	10	5	39
Blister		Lewisite	3	6	2	8	3	10	5	37
Nerve		Sarin	3	4	9	8	3	10	5	42

Criteria

Natural Gas

FEMA 452, Adaptation of Table 1-5: Nominal Example to Select Primary Threats for a Specific Urban Multi-story Building, p. 1-21

Step 2: Determine the Threat Rating

	Threat Rating					
Vory High against the site or building is imminent. Internal decision-make		Very High — The likelihood of a threat, weapon, and tactic being used against the site or building is imminent. Internal decision-makers and/or external law enforcement and intelligence agencies determine the threat is credible.	•			
High	8-9	High — The likelihood of a threat, weapon, and tactic being used agains the site or building is expected. Internal decision-makers and/or external law enforcement and intelligence agencies determine the threat is credible.	st			
Medium High	7	Medium High — The likelihood of a threat, weapon, and tactic being used against the site or building is probable. Internal decision-makers and/or external law enforcement and intelligence agencies determine the threat is credible.				

Key elements

- Likelihood of a threat (credible, verified, exists, unlikely, unknown)
- If the use of the weapon is considered imminent, expected, or probable

FEMA 452 Table 1-6: Threat Rating, p. 1-24

Step 2: Determine the Threat Rating

(continued)

		Threat Rating
Medium	5-6	Medium — The likelihood of a threat, weapon, and tactic being used against the site or building is possible. Internal decision-makers and/or external law enforcement and intelligence agencies determine the threat is known, but is not verified.
Medium Low	4	Medium Low — The likelihood of a threat, weapon, and tactic being used in the region is probable. Internal decision-makers and/or external law enforcement and intelligence agencies determine the threat is known, but is not likely.
Low	2-3	Low — The likelihood of a threat, weapon, and tactic being used in the region is possible. Internal decision-makers and/or external law enforcement and intelligence agencies determine the threat exists, but is not likely.
Very Low	1	Very Low — The likelihood of a threat, weapon, and tactic being used in the region or against the site or building is very negligible. Internal decision-makers and/or external law enforcement and intelligence agencies determine the threat is non-existent or extremely unlikely.

Key elements

- Likelihood of a threat (credible, verified, exists, unlikely, unknown)
- If the use of the weapon is considered imminent, expected, or probable

FEMA 452 Table 1-6: Threat Rating, p. 1-24

Critical Functions

Function	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Administration				
Asset Value	5	5	5	5
Threat Rating	8	4	3	2
Vulnerability Rating				
Engineering				
Asset Value	8	8	8	8
Threat Rating	8	5	6	2
Vulnerability Rating				

Critical Infrastructure

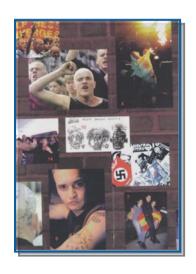
Infrastructure	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Site				
Asset Value	4	4	4	4
Threat Rating	4	4	3	2
Vulnerability Rating				
Structural Systems				
Asset Value	8	8	8	8
Threat Rating	3	4	3	2
Vulnerability Rating				

FEMA 426, Adaptation of Table 1-21: Site Infrastructure Systems
Pre-Assessment Screening Matrix, p. 1-39

Threat Sources

Identify Threat Statements

Identify Area Threats


Identify Facility-Specific Threats

Identify Potential Threat Element Attributes Seek information from local law enforcement, FBI, U.S. Department of Homeland Security, and Homeland Security Offices at the state level.

Design Basis Threat

The threat against which assets within a building must be protected and upon which the security engineering design of the building is based.

Layers of Defense Elements

- Deter
- Detect
- Deny
- Devalue

The strategy of Layers of Defense uses the elements and Levels of Protection to develop mitigation options to counter or defeat the tactics, weapons, and effects of an attack defined by the Design Basis Threat.

Deter: The process of making the target inaccessible or difficult to defeat with the weapon or tactic selected. It is usually accomplished at the site perimeter using highly visible electronic security systems, fencing, barriers, lighting and security personnel; and in the building by security access with locks and electronic monitoring devices.

Detect: The process of using intelligence sharing and security services response to monitor and identify the threat before it penetrates the site perimeter or building access points.

Deny: The process of minimizing or delaying the degree of site or building infrastructure damage or loss of life or protecting assets by designing or using infrastructure and equipment designed to withstand blast and chemical, biological, or radiological effects.

Devalue: The process of making the site or building of little to no value or consequence, from the terrorists' perspective, such that an attack on the facility would not yield their desired result.

Level**	Typical Location	Examples of Tenant Agencies***	Security Measures (based on evaluation)
	10 Employees (Federal) 2,500 Square Feet Low Volume Public Contact Small "Store Front" Type Operation	Local Office District Office Visitor Center USDA Office Ranger Station Commercial Facilities Industrial/Manufacturing Health Care	High Security Locks Intercom Peep Hole (Wide View) Lighting w/Emergency Backup Power Controlled Utility Access Annual Employee Security Training
II	11 - 150 Employees (Federal) 2,500 - 80,000 Square Feet Moderate Volume Public Contact Routine Operations Similar to Private Sector and/or Facility Shared with Private Sector	Public Officials Park Headquarters Regional/State Offices Commercial Facilities Industrial Manufacturing Health Care	Entry Control Package w/Closed Circuit Television (CCTV) Visitor Control/Screening Shipping/Receiving Procedures Guard/Patrol Assessment Intrusion Detection w/Central Monitoring CCTV Surveillance (Pan-Tilt, Zoom System) Duress Alarm w/Central Monitoring

FEMA 426, Table 1-6: Classification Table Extracts, p. 1-26

Levels of Protection (continued)

Level**	Typical Location	Examples of Tenant Agencies***	Security Measures (based on evaluation)
III	151 - 450 Employees (Federal) Multi-Story Facility 80,000 - 150,000 Square Feet Moderate/High Volume Public Contact Agency Mix: Law Enforcement Operations Court Functions Government Records	Inspectors General Criminal Investigations Regional/State Offices GSA Field Office Local Schools Commercial Facilities Industrial Manufacturing Health Care	Guard Patrol on Site Visitor Control/Screening Shipping/Receiving Procedures Intrusion Detection w/Central Monitoring CCTV Surveillance (Pan-Tilt/Zoom System) Duress Alarm w/Central Monitoring
IV	>450 Employees (Federal) Multi-Story Facility >150,000 Square Feet High Volume Public Contact High-Risk Law Enforcement/Intelligence Agencies District Court	Significant Buildings and Some Headquarters Federal Law Enforcement Agencies Local Schools, Universities Commercial Facilities Health Care	Extend Perimeter (Concrete/Steel Barriers) 24-Hour Guard Patrol Adjacent Parking Control Backup Power System Hardened Parking Barriers
V	Level IV Profile and Agency/Mission Critical to National Security	Principal Department Headquarters	Agency-Specific

FEMA 426, Table 1-6: Classification Table Extracts, p. 1-26

DoD Minimum Antiterrorism (AT) Standards for New Buildings

Level of Protection	Potential Structural Damage	Potential Door and Glazing Hazards	Potential Injury
Below AT standards	Severely damaged. Frame collapse/ massive destruction. Little left standing.	Doors and windows fail and result in lethal hazards	Majority of personnel suffer fatalities.
Very Low	Heavily damaged - onset of structural collapse. Major deformation of primary and secondary structural members, but progressive collapse is unlikely. Collapse of non-structural elements.	Glazing will break and is likely to be propelled into the building, resulting in serious glazing fragment injuries, but fragments will be reduced. Doors may be propelled into rooms, presenting serious hazards.	Majority of personnel suffer serious injuries. There are likely to be a limited number (10 percent to 25 percent) of fatalities.

Levels of Protection (continued)

Level of Protection	Potential Structural Damage	Potential Door and Glazing Hazards	Potential Injury
Low	Damaged — unrepairable. Major deformation of non-structural elements and secondary structural members, and minor deformation of primary structural members, but progressive collapse is unlikely.	Glazing will break, but fall within I meter of the wall or otherwise not present a significant fragment hazard. Doors may fail, but they will rebound out of their frames, presenting minimal hazards.	Majority of personnel suffer significant injuries. There may be a few (<10 percent) fatalities.
Medium	Damaged — repairable. Minor deformations of non-structural elements and secondary structural members and no permanent deformation in primary structural members. Glazing will break, but will rer the window frame. Doors will frames, but will not be reusable frames.		Some minor injuries, but fatalities are unlikely.
High	Superficially damaged. No permanent deformation of primary and secondary structural members or non-structural elements.	Glazing will not break. Doors will be reusable.	Only superficial injuries are likely.

DoD Minimum Standards

FEMA 426, Table 4-1, p. 4-9

UFC 4-010-01 APPENDIX B DoD MINIMUM ANTITERRORISM STANDARDS FOR NEW AND EXISTING BUILDINGS		
Standard 1	Minimum Stand-off Distances	
Standard 2	Unobstructed Space	
Standard 3	Drive-Up/Drop-Off Areas	
Standard 4	Access Roads	
Standard 5	Parking Beneath Buildings or on Rooftops	
Standard 6	Progressive Collapse Avoidance	
Standard 7	Structural Isolation	
Standard 8	Standard 8 Building Overhangs	
Standard 9 Exterior Masonry Walls		
Standard 10 Windows, Skylights, and Glazed Doors		
Standard 11	Building Entrance Layout	
Standard 12	Exterior Doors	

UFC 4-010-01 APPENDIX B DoD MINIMUM ANTITERRORISM STANDARDS FOR NEW AND EXISTING BUILDINGS		
Standard 13	Mailrooms	
Standard 14	Roof Access	
Standard 15	Overhead Mounted Architectural Features	
Standard 16	Air Intakes	
Standard 17	Mailroom Ventilation	
Standard 18	Emergency Air Distribution Shutoff	
Standard 19 Utility Distribution and Installation		
Standard 20 Equipment Bracing		
Standard 21	Under Building Access	
Standard 22	Mass Notification	

Summary

Process

- Identify each threat/hazard
- Define each threat/hazard
- Determine threat level for each threat/hazard

Threat Assessment Specialist Tasks

Critical Infrastructure and Critical Function Matrix

Determine the "Design Basis Threat"

Select the "Level of Protection"

Unit III Case Study Activity

Threat Ratings Background

Hazards categories: natural and manmade

Case Study Threats: Cyber Attack, Armed Attack, Vehicle Bomb, and CBR Attack (latter two are main focus of course)

Result of assessment: "Threat Rating," a subjective judgment of threat

Requirements

Refer to Case Study data

Complete worksheet tables:

- Critical Function Threat Rating
- Critical Infrastructure Threat Rating

BUILDING DESIGN FOR HOMELAND SECURITY

Unit IV Vulnerability Assessment

Vulnerability

Any weakness that can be exploited by an aggressor or, in a non-terrorist threat environment, make an asset susceptible to hazard damage

Unit Objectives

Explain what constitutes a vulnerability.

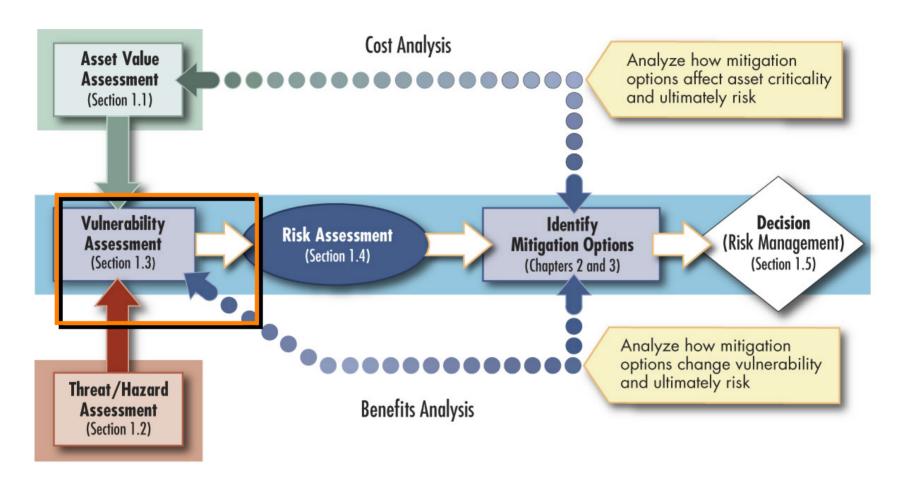
Identify vulnerabilities using the Building Vulnerability Assessment Checklist.

Understand that an identified vulnerability may indicate that an asset:

- is vulnerable to more than one threat or hazard;
- and that mitigation measures may reduce vulnerability to one or more threats or hazards.

Provide a numerical rating for the vulnerability and justify the basis for the rating.

Vulnerability Assessment


Identify site and building systems design issues

Evaluate design issues against type and level of threat

Determine level of protection sought for each mitigation measure against each threat

Assessment Flow Chart

FEMA 426, Figure 1-3: The Assessment Process Model, p. 1-5

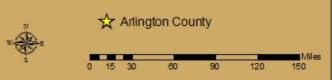
Identifying Vulnerabilities

Multidisciplinary Team

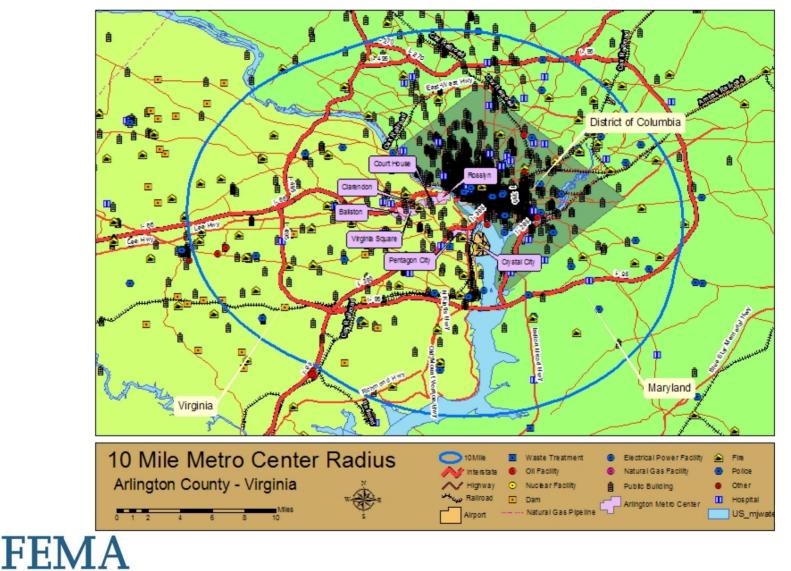
- Engineers
- Architects
- Security specialists
- Subject matter experts
- Outside experts if necessary

Vulnerability Assessment Preparation

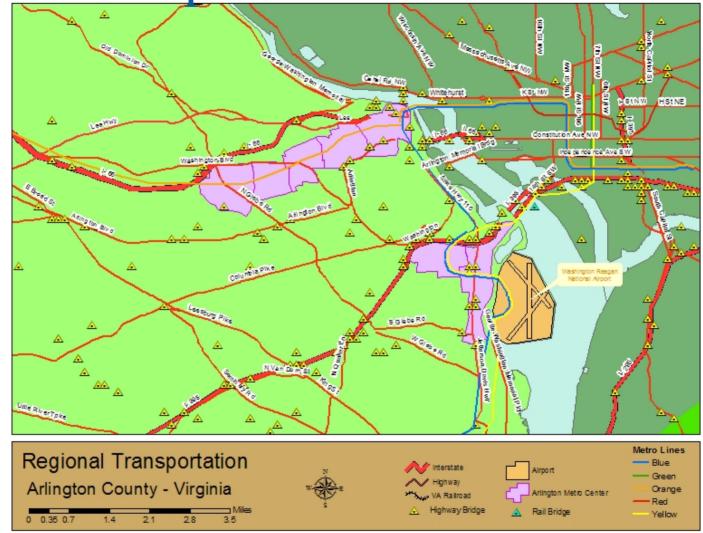
Coordinate with the building stakeholders:


- Site and Building Plans
- Utilities
- Emergency Plans (shelter, evacuation)
- Interview schedules
- Escorts for building access

Assessment GIS Portfolio



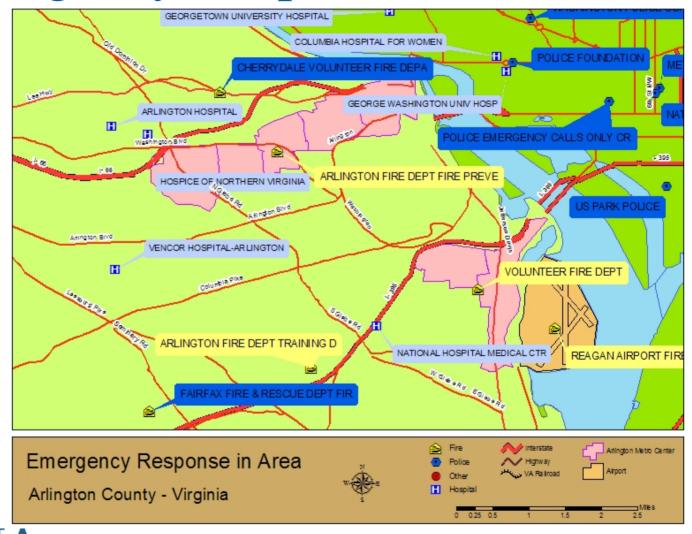
Arlington County Assessments
Arlington County - Virginia

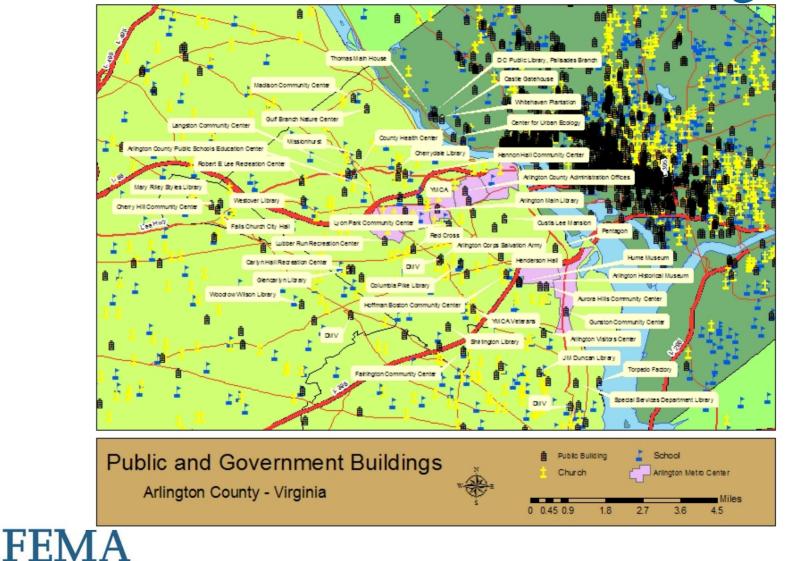


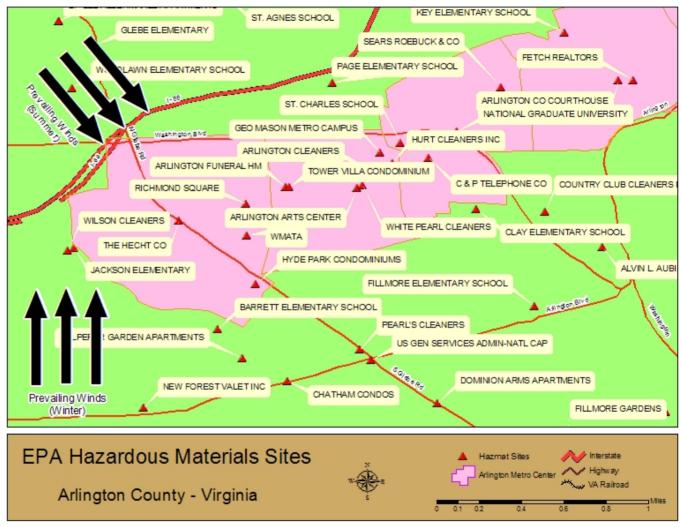
10-Mile Radius

Regional Transportation

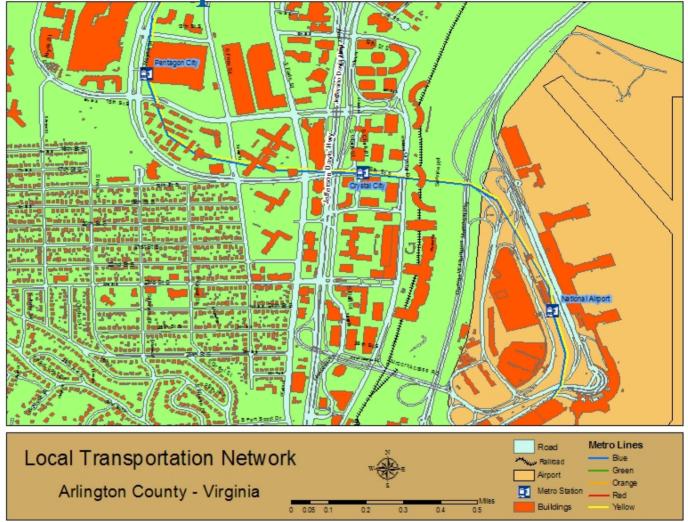
Metro Center Imagery


Metro Center Imagery
Arlington County - Virginia

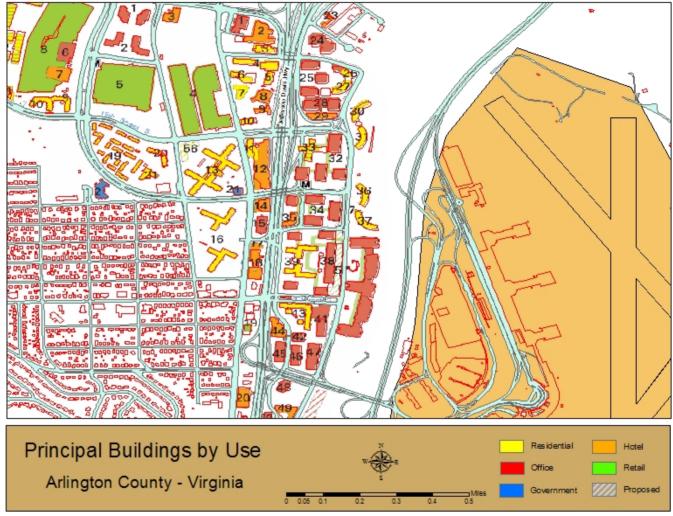



Site Emergency Response

Site Public and Government Buildings

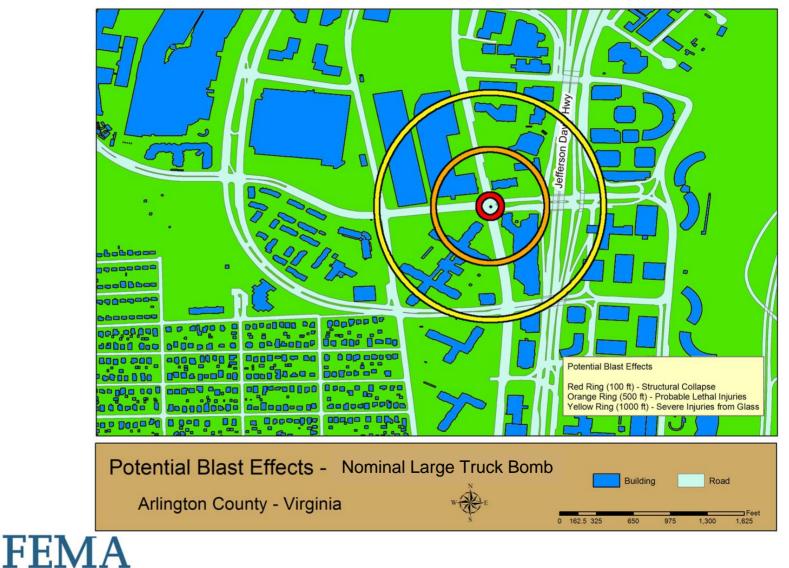


Site HazMat

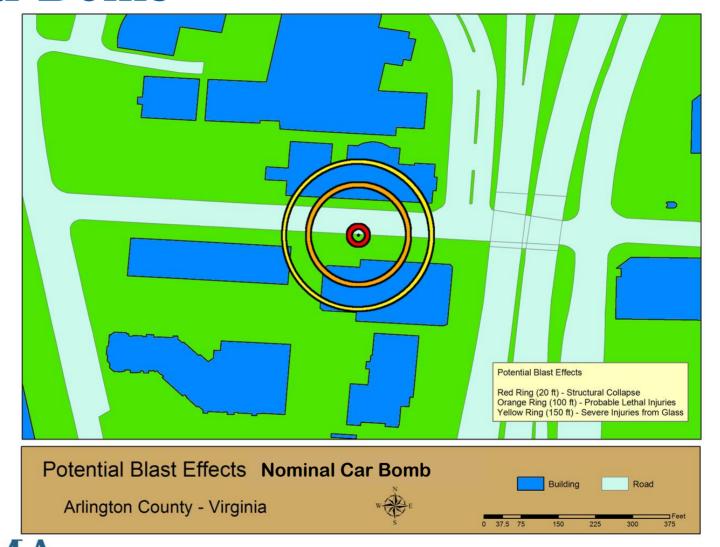


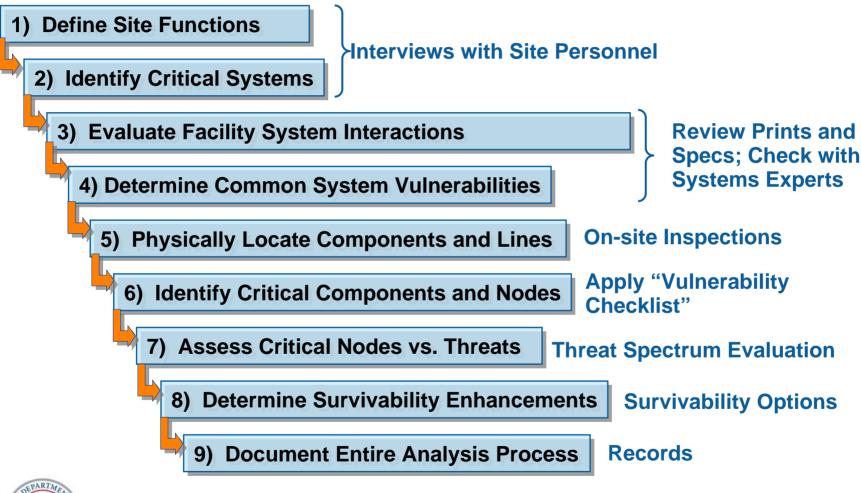
Site Local Transportation Network

Site Principal Buildings by Use



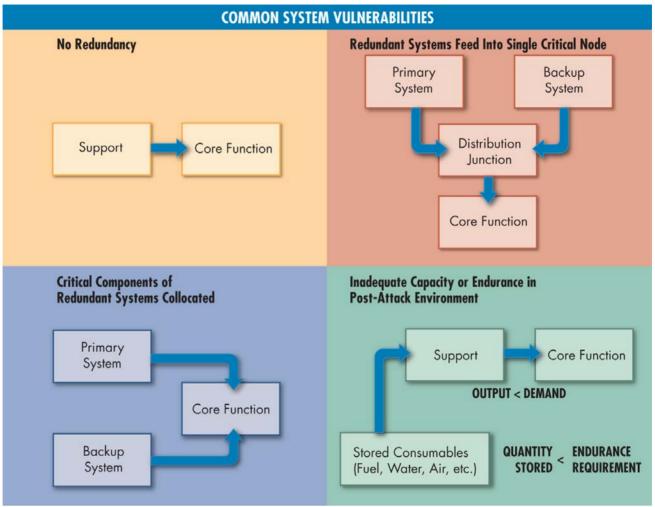
Site Perimeter Imagery




Site Truck Bomb

Site Car Bomb

Options to Reduce Vulnerability


Facility System Interactions

FEMA 426, Figure 1-8: Facility System Interactions, p. 1-23

Single-Point Vulnerabilities

FEMA 426, Figure 1-9: Common System Vulnerabilities, p. 1-35

Functional Analysis SPVs

Standard 11	The loading dock and warehouse provide single point of entry to the interior
Standard 13 and 17	The mailroom is located within the interior and not on exterior wall or separate HVAC system
Standard 1	The telecom switch and computer data center are adjacent to the warehouse
Standard 1	The trash dumpster and emergency generator are located adjacent to the loading dock

FEMA 426, Figure 1-10: Non-Redundant Critical Functions Collocated Near Loading Dock, p. 1-41

Infrastructure SPVs

Air Intakes

Drive Through

Electrical Service

Telecom Service

FEMA 426, Figure 1-11: Vulnerability Examples, p. 1-42

Building Vulnerability Assessment Checklist

Compiles best practices from many sources

Includes questions that determine if critical systems will continue to function during an emergency or threat event

Organized into 13 sections

- Each section should be assigned to a knowledgeable individual
- Results of all sections should be integrated into a master vulnerability assessment
- Compatible with CSI Master Format standard to facilitate cost estimates

Building Vulnerability Assessment Checklist

Site

Architectural

Structural Systems

Building Envelope

Utility Systems

Mechanical Systems (HVAC and CBR)

Plumbing and Gas Systems **Electrical Systems**

Fire Alarm Systems

Communications and IT Systems

Equipment Operations and Maintenance

Security Systems

Security Master Plan

Building Vulnerability Assessment Checklist

Vulnerability Question		Guidance	Observations
6	6 Mechanical Systems (HVAC and CBR)		
6.1	Where are the air intakes and exhaust louvers for the building? (low, high, or midpoint of the building structure) Are the intakes and exhausts accessible to the public?	Air intakes should be located on the roof or as high as possible. Otherwise secure within CPTED-compliant fencing or enclosure. The fencing or enclosure should have a sloped roof to prevent throwing anything into the enclosure near the intakes. Ref: CDC/NIOSH Pub 2002-139	
6.2	Is roof access limited to authorized personnel by means of locking mechanisms? Is access to mechanical areas similarly controlled?	Roofs are like entrances to the building and are like mechanical rooms when HVAC is installed. Adjacent structures or landscaping should not allow access to the roof. Ref: GSA PBS -P100, CDC/NIOSH Pub 2002-139, and LBNL Pub 51959	

FEMA 426, Adapted from Table 1-22: Building Vulnerability Assessment Checklist, p. 1-46 to 1-92

Building Vulnerability Assessment Checklist

1.15	Is there minimum setback distance between the building and parked cars?		
4.1	What is the designed or estimated protection level of the exterior walls against the postulated explosive threat?		
4.2	Is the window system design on the exterior façade balanced to mitigate the hazardous effects of flying glazing following an explosive event? (glazing, frames, anchorage to supporting walls, etc.)?		

Building Vulnerability Assessment Checklist

2.19	Are loading docks and receiving and shipping areas separated in any direction from utility rooms, utility mains, and service entrances, including electrical, telephone/data, fire detection/alarm systems, fire suppression water mains, cooling and heating mains, etc.?
1.16	Does adjacent surface parking on site maintain a minimum stand-off distance? For initial screening consider using 25 meters (82 feet) as a minimum with more distance needed for unreinforced masonry or wooden walls. Reference: GSA PBS-P100

Building Vulnerability Assessment Checklist

6.1 (low, high, or midpoint of the building structure)		Where are the air intakes and exhaust louvers for the building? (low, high, or midpoint of the building structure) Are the intakes and exhausts accessible to the public?
	1.9	Is there any potential access to the site or building through utility paths or water runoff? (Eliminate potential site access through utility tunnels, corridors, manholes, storm water runoff culverts, etc. Ensure covers to these access points are secured.)
	3.1	What type of construction? What type of concrete and reinforcing steel? What type of steel?

What type of foundation?

Building Vulnerability Assessment Checklist

5.19	By what means does the main telephone and data communications interface the site or building?		
5.20	Are there multiple or redundant locations for the telephone and communication service?		
	Does the fire alarm system require communication with external sources?		
5.21	By what method is the alarm signal sent to the responding agency: telephone, radio, etc.?		
	Is there an intermediary alarm monitoring center?		

Vulnerability Rating

Criteria Cri					
Very High	10	Very High — One or more major weaknesses have been identified that make the asset extremely susceptible to an aggressor or hazard. The building lacks redundancies/physical protection and the entire building would be only functional again after a very long period of time after the attack.			
High	8-9	High — One or more major weaknesses have been identified that make the asset highly susceptible to an aggressor or hazard. The building has poor redundancies/physical protection and most parts of the building would be only functional again after a long period of time after the attack.			
Medium High	7	Medium High — An important weakness has been identified that makes the asset very susceptible to an aggressor or hazard. The building has inadequate redundancies/physical protection and most critical functions would be only operational again after a long period of time after the attack.			

Key elements

- Number of weaknesses
- Aggressor potential accessibility
- Level of redundancies /physical protection
- Time frame for building to become operational again

FEMA 452, Table 3-4: Vulnerability Rating, p. 3-16

Vulnerability Rating (continued)

	Criteria Cri				
Medium	5-6	Medium — A weakness has been identified that makes the asset fairly susceptible to an aggressor or hazard. The building has insufficient redundancies/physical protection and most part of the building would be only functional again after a considerable period of time after the attack.			
Medium Low	Medium Low — A weakness has been identified that makes the as somewhat susceptible to an aggressor or hazard. The building has incorporated a fair level of redundancies/physical protection and critical functions would be only operational again after a consider period of time after the attack.				
Low	2-3	Low — A minor weakness has been identified that slightly increases the susceptibility of the asset to an aggressor or hazard. The building has incorporated a good level of redundancies/physical protection and the building would be operational within a short period of time after an attack.			
		Very Low — No weaknesses exist. The building has incorporated excellent redundancies/physical protection and the building would be operational immediately after an attack.			

Key elements

- Number of weaknesses
- Aggressor potential accessibility
- Level of redundancies /physical protection
- Time frame for building to become operational again

FEMA 452, Table 3-4: Vulnerability Rating, p. 3-16

Critical Functions

Function	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Administration				
Asset Value	5	5	5	5
Threat Rating	8	4	3	2
Vulnerability Rating	7	7	9	9
Engineering				
Asset Value	8	8	8	8
Threat Rating	8	5	6	2
Vulnerability Rating	2	4	8	9

Critical Infrastructure

Infrastructure	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Site				
Asset Value	4	4	4	4
Threat Rating	4	4	3	2
Vulnerability Rating	1	7	9	9
Structural Systems				
Asset Value	8	8	8	8
Threat Rating	3	4	3	2
Vulnerability Rating	1	1	8	1

Summary

Step-by-Step Analysis Process:

- Expertly performed by experienced personnel
- Determines critical systems
- Identifies vulnerabilities
- Focuses survivability mitigation measures on critical areas
- Essential component of Critical Infrastructure and Critical Function Matrices

Unit IV Case Study Activity

Vulnerability Rating

Background

Vulnerability: any weakness that can be exploited by an aggressor or, in a non-terrorist threat environment, make an asset susceptible to hazard damage

Requirements: Vulnerability Rating Approach

Use rating scale of 1 (very low or no weakness) to 10 (one or major weaknesses)

Answer selected initial Vulnerability Assessment Checklist questions

Refer to Case Study and rate the vulnerability of asset-threat/hazard pairs:

- Critical Functions
- Critical Infrastructure

Unit V Risk Assessment / Risk Management

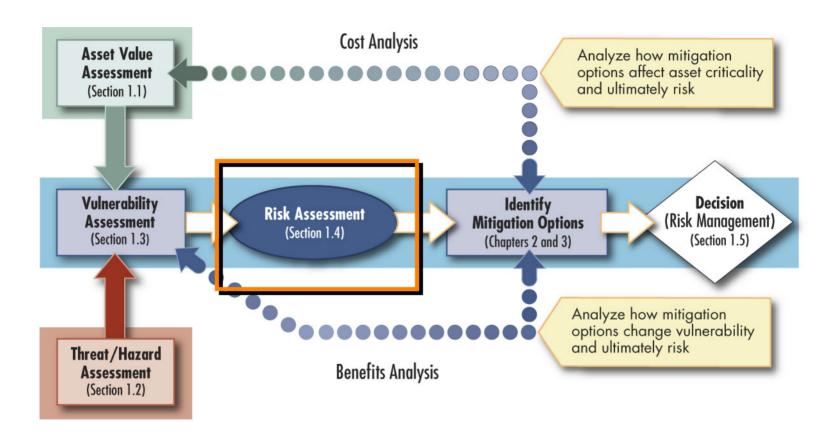
Unit Objectives

Explain what constitutes risk.

Evaluate risk using the Threat-Vulnerability Matrix to capture assessment information.

Provide a numerical rating for risk and justify the basis for the rating.

Identify top risks for asset-threat/hazard pairs that should receive measures to mitigate vulnerabilities and reduce risk.


Risk Management

Risk management is the deliberate process of understanding "risk" – the likelihood that a threat will harm an asset with some severity of consequences – and deciding on and implementing actions to reduce it.

GAO/NSIAD-98-74: Combating Terrorism – Threat and Risk Assessments Can Help Prioritize and Target Program Investments, April 1998

Assessment Flow Chart

FEMA 426, Figure 1-3: The Assessment Process Model, p. 1-5

Definition of Risk

Risk is a combination of:

- The probability that an event will occur, and
- The consequences of its occurrence

	Low Risk	Medium Risk	High Risk
Risk Factors Total	1-60	61-175	≥ 176

Quantifying Risk

Risk Assessment

Determine Asset Value

Determine Threat Rating Value

Determine Vulnerability Rating Value

Determine relative risk for each threat against each asset

Select mitigation measures that have the greatest benefit/cost for reducing risk

An Approach to Quantifying Risk

Table 1-18: Risk Factors Definitions

Risk = Asset Value x
Threat Rating x
Vulnerability Rating

Very High	10
High	8-9
Medium High	7
Medium	5-6
Medium Low	4
Low	2-3
Very Low	1

Table 1-19: Total Risk Color Code

	Low Risk	Medium Risk	High Risk
Risk Factors Total	1-60	61-175	≥ 176

FEMA 426, p. 1-38

Critical Functions

Function	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Administration	280	140	135	90
Asset Value	5	5	5	5
Threat Rating	8	4	3	2
Vulnerability Rating	7	7	9	9
Engineering	128	160	384	144
Asset Value	8	8	8	8
Threat Rating	8	5	6	2
Vulnerability Rating	2	4	8	9

FEMA 426, Adaptation of Table 1-20: Site Functional Pre-Assessment Screening Matrix, p. 1-38

Critical Infrastructure

Infrastructure	Cyber attack	Armed attack (single gunman)	Vehicle bomb	CBR attack
Site	48	80	108	72
Asset Value	4	4	4	4
Threat Rating	4	4	3	2
Vulnerability Rating	3	5	9	9
Structural Systems	48	128	192	144
Asset Value	8	8	8	8
Threat Rating	3	4	3	2
Vulnerability Rating	2	4	8	9

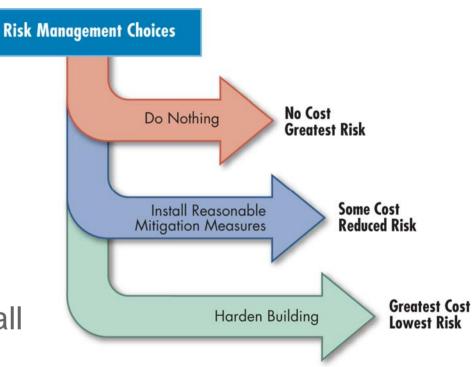
Risk Assessment Results

Function	Cyber Attack	Armed Attack (single gunman)	Vehicle Bomb	CBR Attack
Administration	280	140	135	90
Asset Value	5	5	5	5
Threat Rating	8	4	3	2
Vulnerability Rating	7	7	9	9
Engineering	128	128	192	144
Asset Value	8	8	8	8
Threat Rating	8	4	3	2
Vulnerability Rating	2	4	8	9
Warehousing	96	36	81	54
Asset Value	3	3	3	3
Threat Rating	8	4	3	2
Vulnerability Rating	4	3	9	9
Data Center	360	128	216	144
Asset Value	8	8	8	8
Threat Rating	9	4	3	2
Vulnerability Rating	5	4	9	9
Food Service	2	32	48	36
Asset Value	2	2	2	2
Threat Rating	1	4	3	2
Vulnerability Rating	1	4	8	9
Security	280	140	168	126
Asset Value	7	7	7	7
Threat Rating	8	4	3	2
Vulnerability Rating	5	5	8	9
Housekeeping	16	64	48	36
Asset Value	2	2	2	2
Threat Rating	8	4	3	2
Vulnerability Rating	1	8	8	9
Day Care	54	324	243	162
Asset Value	9	9	9	9
Threat Rating	3	4	3	2
Vulnerability Rating	2	9	9	9

^{*} NOTIONAL DATA INSERTED FOR DEMONSTRATION PURPOSES.

FEMA 426, Table 1-20: Site Functional Pre-Assessment Screening Matrix,

Unit V-10


Selecting Mitigation Measures

Three Options:

Do nothing and accept the risk.

Perform a risk assessment and manage the risk by installing reasonable mitigation measures.

Harden the building against all threats to achieve the least amount of risk.

Mitigation Measures

A mitigation measure is an action, device, or system used to reduce risk by affecting an asset, threat, or vulnerability.

- Regulatory measures
- Rehabilitation of existing structures
- Protective and control structures

Mitigation Measures

 Mitigation measures can be evaluated against the following parameters

- Political Support
- Community Acceptance
- Cost and Benefit
- Financial Resources
- Legal Authority
- Adversely Affected Population
- Adversely Effects on the Built Env.
- Environmental Impact
- Technical Capacity
- Maintenance and Operations
- Ease and Speed of Implementation
- Timeframe and Urgency
- Short-term and Long-Term Solutions
- Estimated Cost

Achieving Building Security: Planning Factors

Building security integrates multiple concepts and practices.

Objective is to achieve a balanced approach that combines aesthetics, enhanced security, and use of non-structural measures.

Process Review

Calculate the relative risk for each threat against each asset

Identify the high risk areas

Identify Mitigation Options to reduce the risk

Summary

Risk Definition

Critical Function and Critical Infrastructure Matrices

Numerical and color-coded risk scale

Identify Mitigation Options

Unit V Case Study Activity

Risk Rating

Background

Formula for determining a numeric value risk for each assetthreat/hazard pair:

Risk = Asset Value x Threat Rating x Vulnerability Rating Requirements: Vulnerability Rating Approach

Use worksheet tables to summarize Case Study asset, threat, and vulnerability ratings conducted in the previous activities

Use the risk formula to determine the risk rating for each assetthreat/hazard pair for:

- Critical Functions
- Critical Infrastructure

BUILDING DESIGN FOR HOMELAND SECURITY

Unit VI FEMA 452 Risk Assessment Database

FEMA 452: Risk Assessment

Risk Management Series

Risk Assessment

A How-To Guide to Mitigate Potential Terrorist Attacks Against Buildings

FEMA 452 / January 2005

Available at: http://www.fema.gov/plan/prevent/rms/rmsp452.shtm

Unit Objectives

Explain the database install process

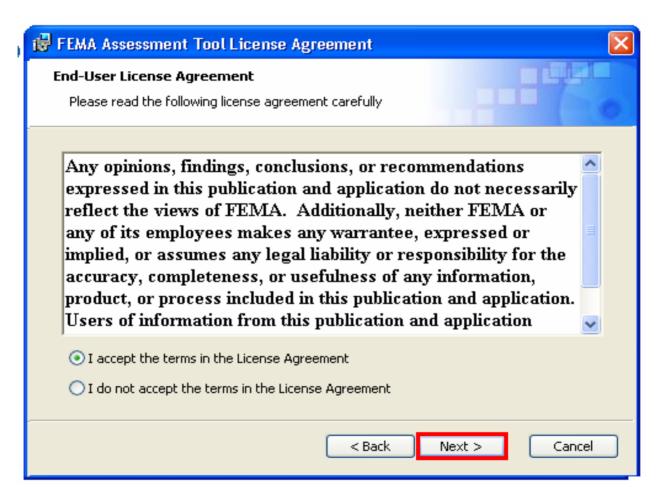
Identify where to save photos, maps, drawings, plans, etc. to interface with the database

Explain the information required for the database to function within each screen, how to move between screens, and switch between the assessor's tool and the master database

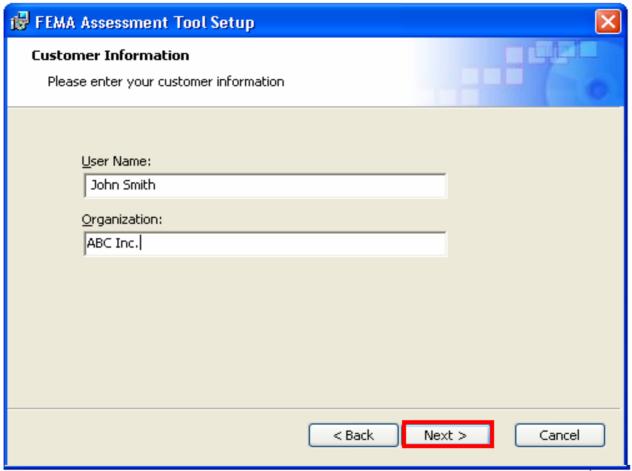
Explain the benefit and approaches to setting priorities on identified vulnerabilities

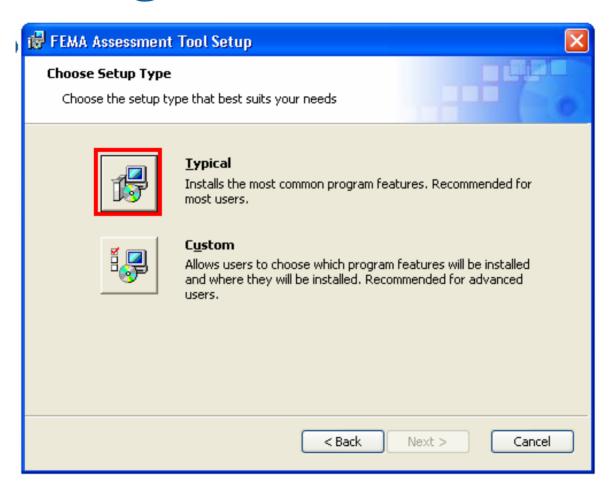
Explain how to use the master database to produce standard reports and search the database for specific information

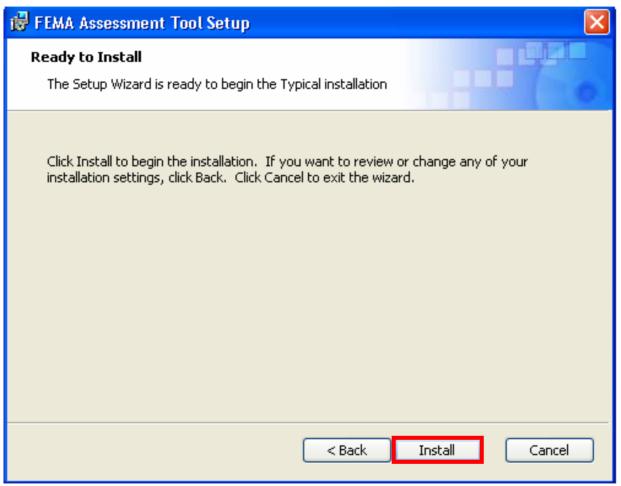
- Download self installing files from FEMA Web site or
- Install from CD provided during course
- Run SETUP.EXE for Assessor Tool

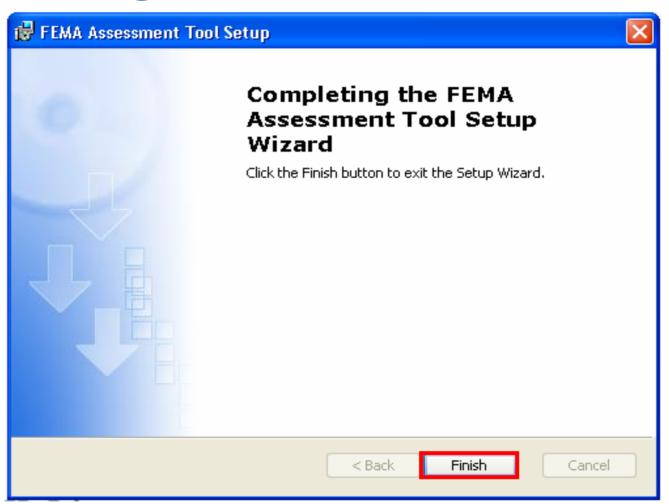


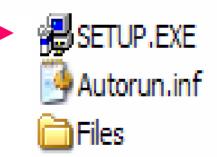
Version 2.0 is soon to be available at: http://www.fema.gov/plan/prevent/rms/rmsp452.shtm



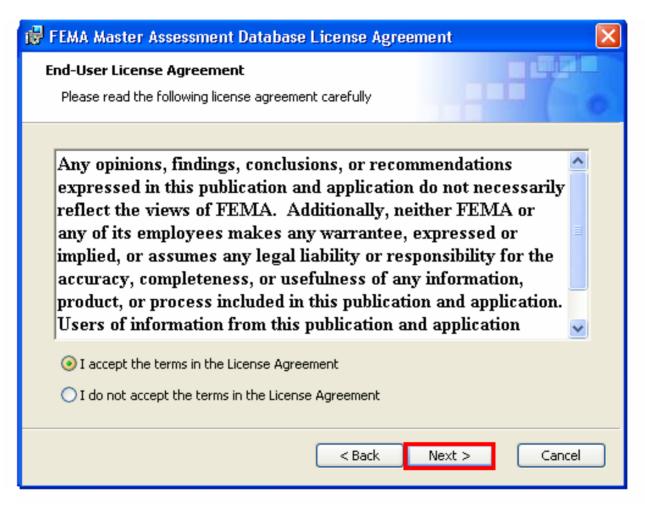




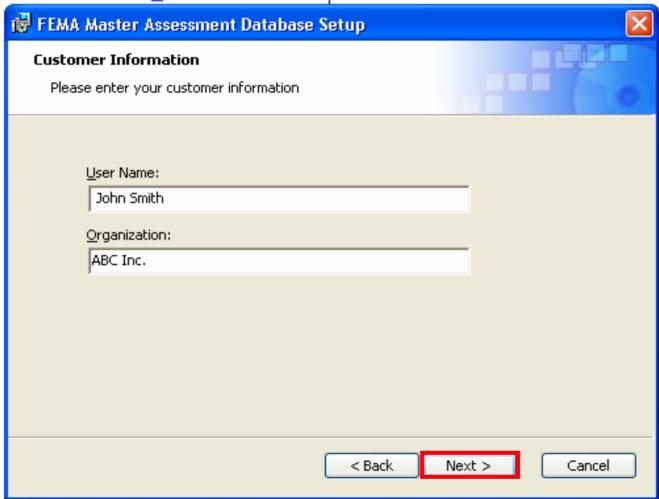


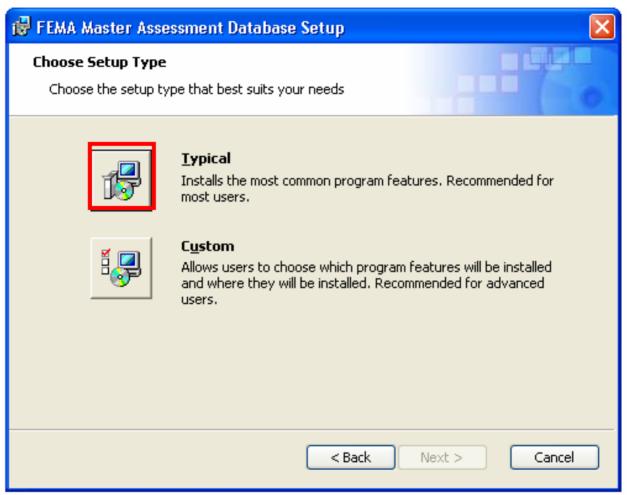


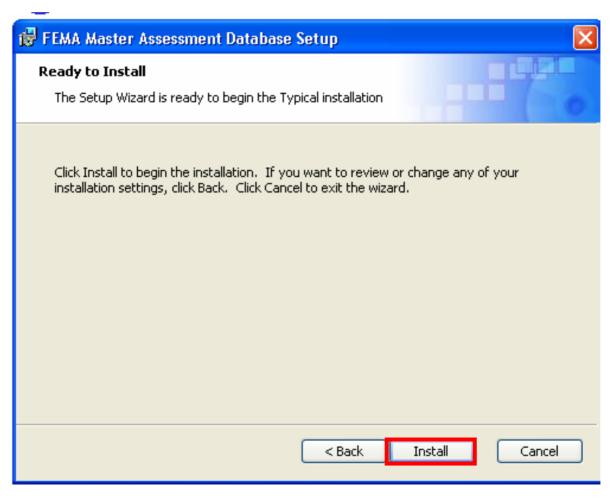
- Download self installing files from FEMA Web site or
- Install from CD provided during course
- Run SETUP.EXE for Master Database

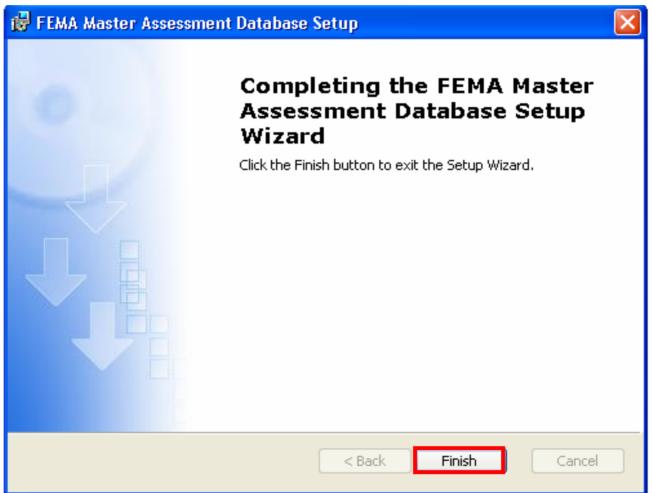


Version 2.0 is soon to be available at: http://www.fema.gov/plan/prevent/rms/rmsp452.shtm

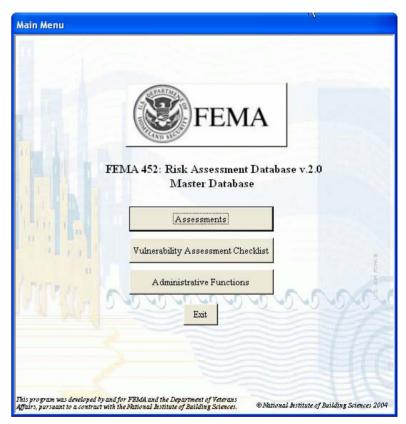






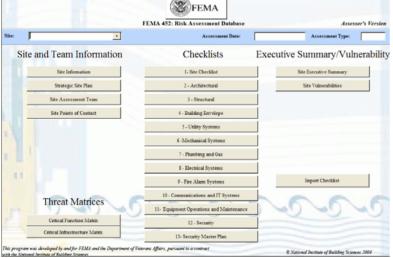






FEMA 452: Risk Assessment

Assessor Tool


Master Database

Database Structure

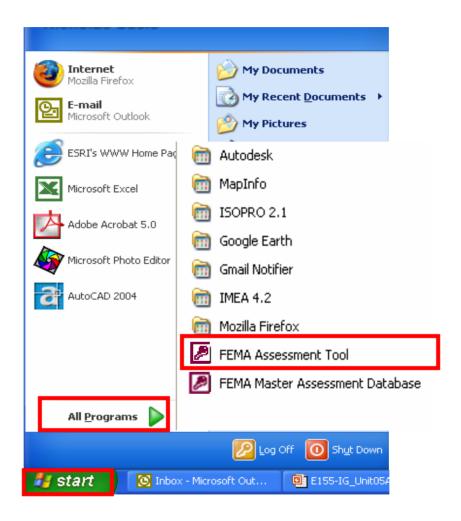
Import Assessment Data

Conduct Assessment

Assessor Tool

Master Database

Return Files, Pictures, Data

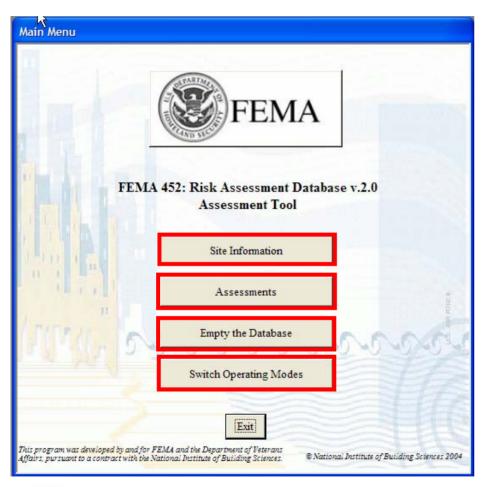

Assessor Tool

Analyze Data Store Data

Master Database

(MS Access)

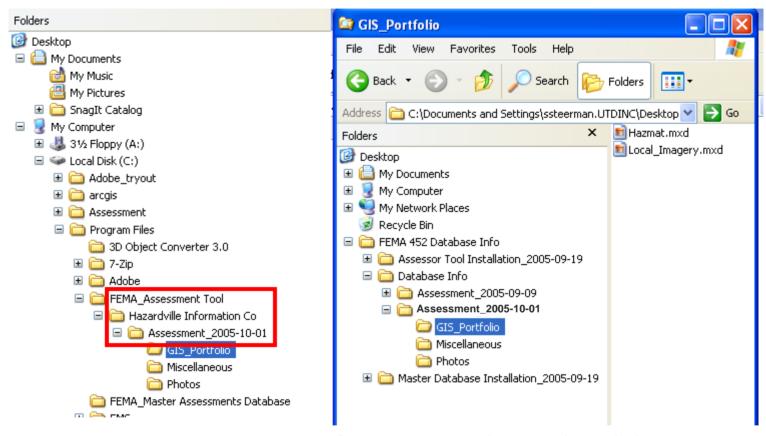
Open Assessor Tool



Login to Assessor Tool

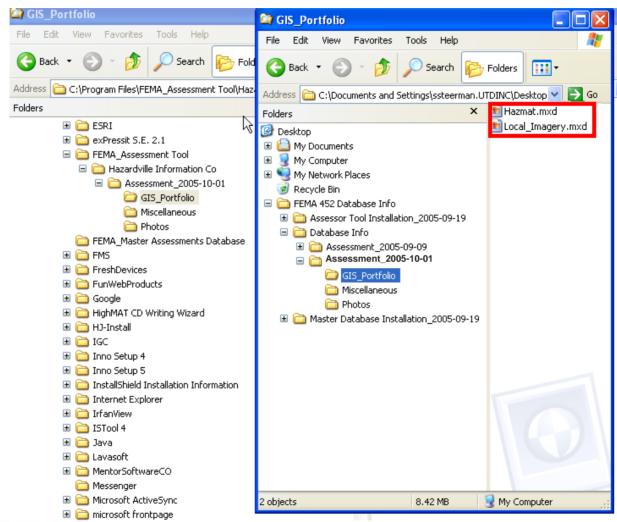
Assessor Tool

- Create and name assessment site
- Enter assessment screen
- Empty database
- Switch to Master Database Mode

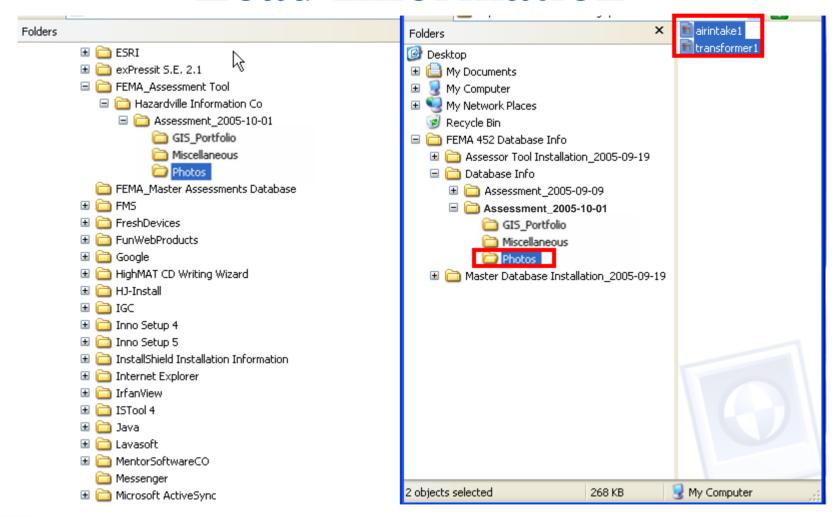


Site Information

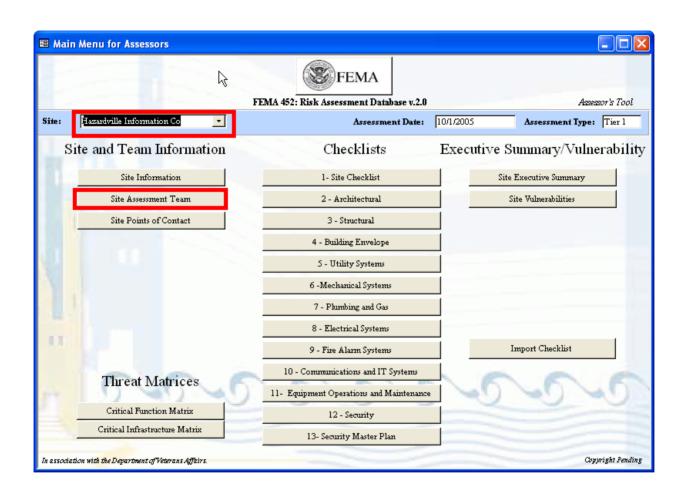
Create Assessme	ent Site				
Site Name*:	Hazardville I	nformation Co		Defaul Site Image:	
Address1:	1234 USA D	rive		Site Descriptive Text:	Nie lees en Asselle
Address2:					No Image Available
City:	Hazardville		St AK 🕶		•
Zip:	12345	Microsoft Acc	ess		
Assessme Asses	nt Locatio sment Dat sment Typ	C:\Pr	ogram Files\FEM os will need to be Portfolio images (will be stored in folder: MA_Assessment Tool\Hazardville Information Co\Assessment_2005-10-01\ e placed in the \Photos subfolder will need to be placed in the \GIS_Portfolio subfolder Ill need to be placed in the \Miscellaneous subfolder OK	
New Site	<previo< th=""><th>us Site Next</th><th></th><th>* Required Field(s)</th><th>Close</th></previo<>	us Site Next		* Required Field(s)	Close


Load Information

Open a second window with existing data



Load Information



Load Information

Assessor Tool

Add Team Members

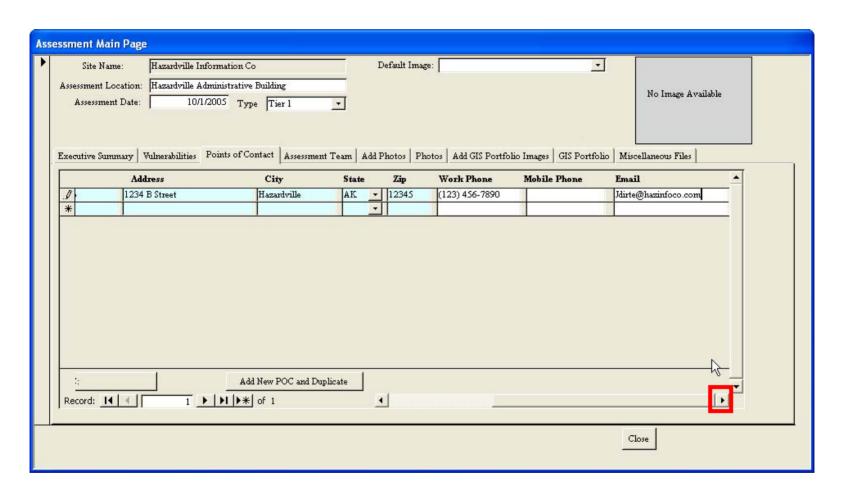
Ass	essment Main Page Site Name:	Hazardville Information Co Hazardville Administrative Building	Default Image:	i	<u> </u>	
	Assessment Date:	10/1/2005 Type Tier 1	J			No Image Available
	Executive Summary 1	Aulnerabilities Points of Contact Assessment	Team Add Photos Photos	Add GIS Portfolio Images	GIS Portfolio Misce	llaneous Files
	Team Member	Title	Organization	Work Phone	Mobile Phone	<u>Email</u>
	CALLE W	1 6 1 1 ANY T 15 1		, 1		
	Select Team Me	Add New Team Member	Undo Team Member Recor	d_		
					Clo	se

Add Team Members

Add a new person t	o this Team
	Add New Person
First Name:	John
Last Name:	Smith
Title:	Senior Assessor
Company:	ABC Inc
Address:	1234
City:	Cleveland
State:	OH _
Zip:	12345
Email:	Jsmith@abcinc.com
Work Phone:	(123) 456-7890
Mobile Phone:	
Entered By:	
Enter Date:	10/6/2005
Modified By:	
Modify Date:	
	[Add] Cancel

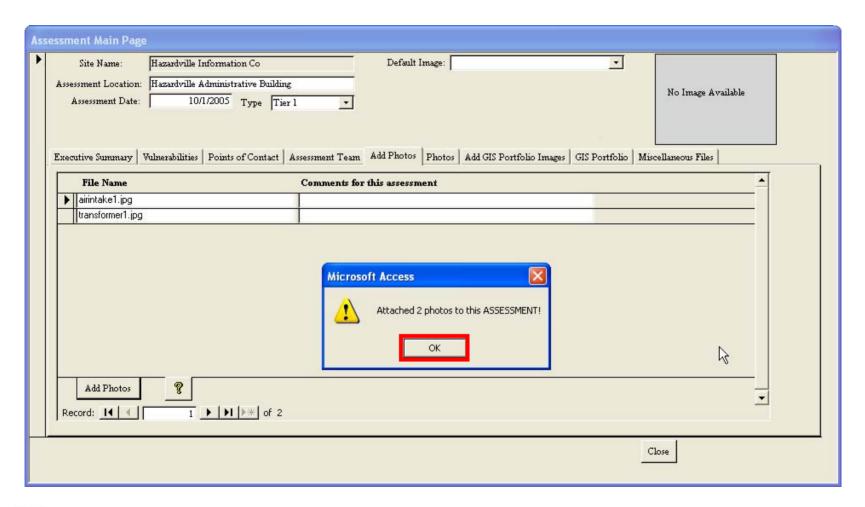
Team Members

As	sessment Main Page						
•		zardville Information Co zardville Administrative Building 10/1/2005 Type Tier 1	Default Imag		•	No Image Available	
	Executive Summary Vuln	erabilities Points of Contact Assessment	Team Add Photos Photos A	ld GIS Portfolio Images	GIS Portfolio Mise	ellaneous Files	
	▶ Smith, John	Senior Assessor	ABC Inc	(123) 456-7890		Jsmith@abcinc.com	
	Select Team Membe	r from List Add New Team Member	Undo Team Member Record ◀				
					CI	ose	

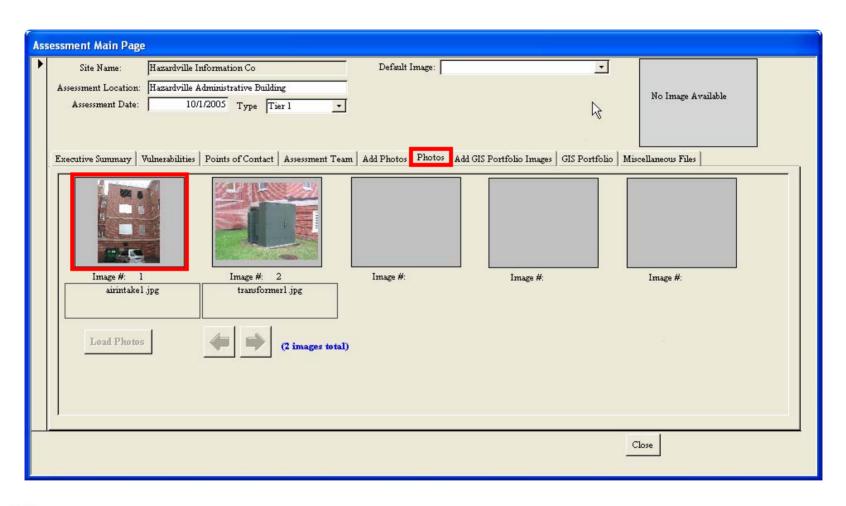


Add Point of Contact

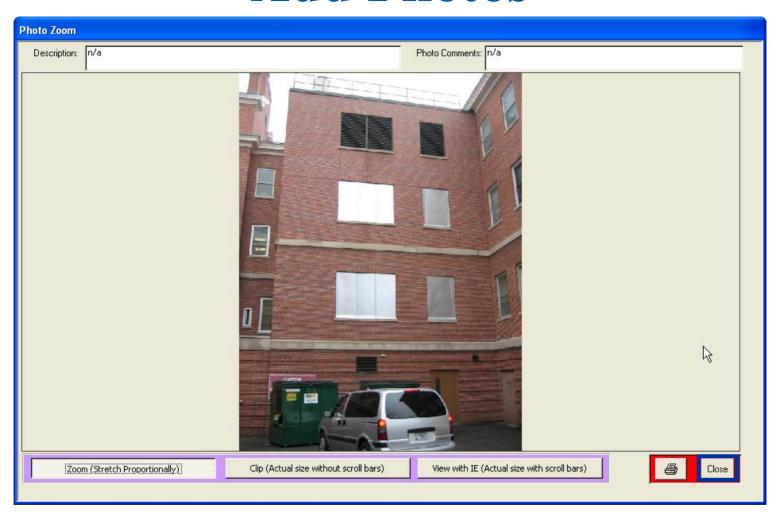
As	sessment Main Page	9							
•	Site Name: Assessment Location: Assessment Date:	Hazardville A	nformation Co Administrative Buildin 1/2005 Type Tie		Default Image:		No Image	e Available	
	-	Vulnerabilities Last Name	Points of Contact	Assessment Team A	Add Photos Photos Add G	IS Portfolio Images GIS Portfolio	Miscellaneous Fi	Zip	1
	Add New POO	:]	 	Delete th	is POC	Add New POC and	Duplicate		
							Close]



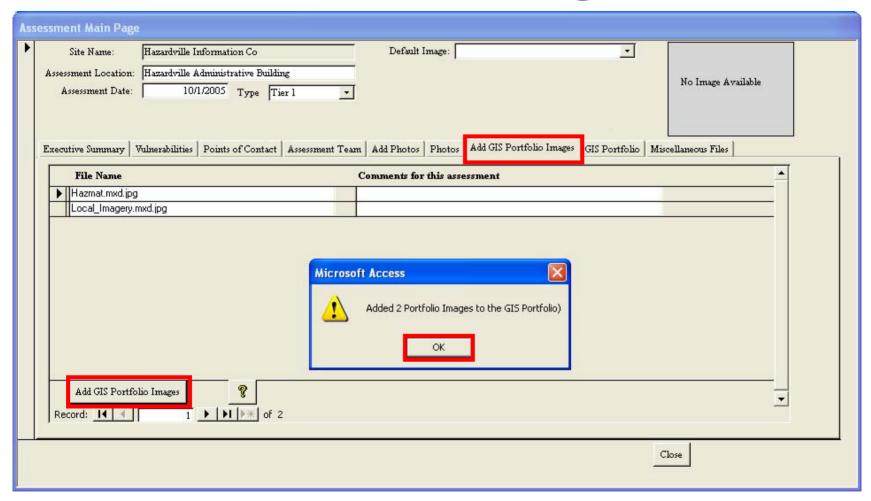
Add Point of Contact



Add Photos

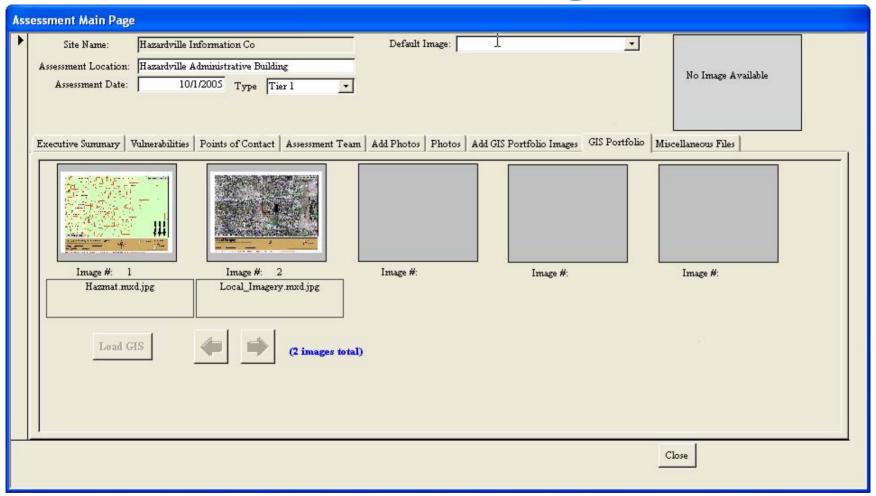


Add Photos



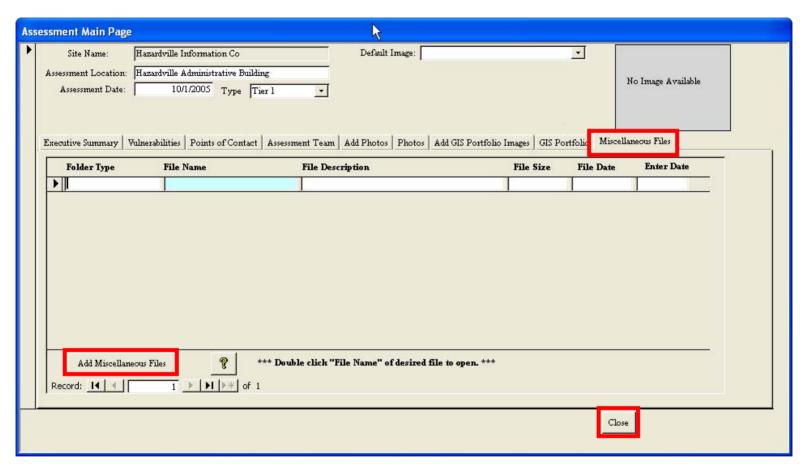
Add Photos

Add GIS Images

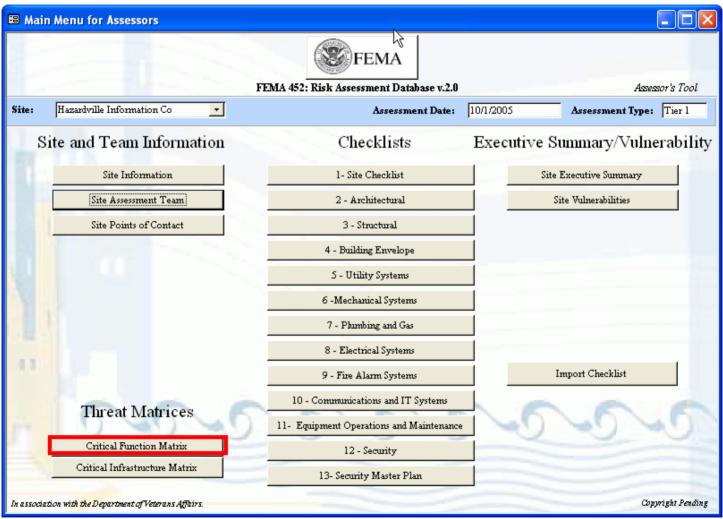


Add GIS Images

As	essment Main Page				3
•	Assessment Date:	Hazardville Information Co Hazardville Administrative Building 10/1/2005 Type Tier 1	-	•	No Image Available
	Executive Summary	Vulnerabilities Points of Contact Assessment Te	Image #:	GIS Portfolio Images GIS Portfolio Mi	Image #:
	Load G	IS (4 images to	tal)		Los Control of the Co
					Close



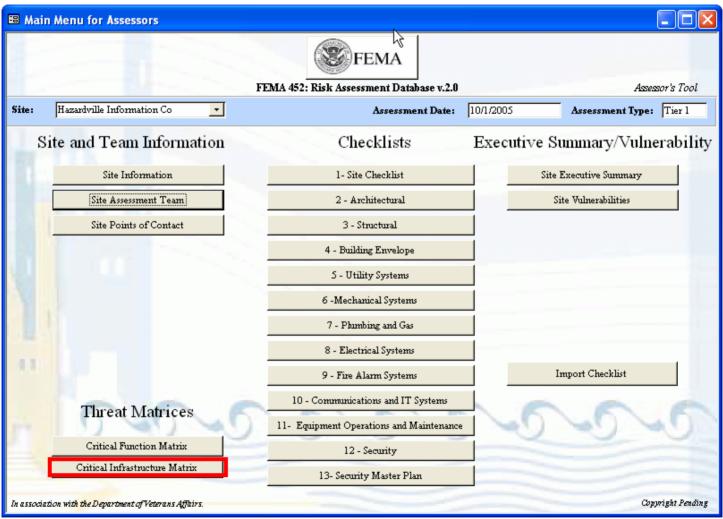
Add GIS Images


Add Miscellaneous Files

* Same as photos and GIS images

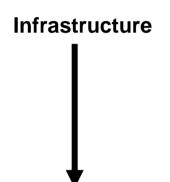
Threat Matrices

Critical Functions Matrix


Threats —

	C	ritica	al Functions Matri	X																															
		:	Site Name: Hazard	lville	Inf	om	nati	on Co.	=				Assessi	men	tDa	te:	10	0/01/200	5	=		Assessn	nent7	ур	e:	Т	ierJ		_				Low I		
F		AV:	Threat Rating Asset Value Vulnerability Rating		1	Exp	losi				hen			I	Arso			ndiary		170	rme			Bio	olo:	gic	al					_	Media High		
Functions		No.						omb) Risk	T		Age AV		Risk	Т	R.		tacl VR	r Risk	TR		ttac VR	k Risk	TF		Age V V		Risk		CONTRACT.			rism Risk			terr V VI
	•	1	Administration		6	4	8	192		4	4	8	128		0	0	0	. 0	3	4	8	96	-	1	4	8	128		6	4	8	192		0	C
		2	Engineering		6	5	8	240	1	4	5	8	160	- 23	0	0	0	0	3	5	8	120	- 4	1	5	8	160	-	5	5	8	200	C	0 0	0
		3	Warehousing		6	5	8	240		4	5	8	160		0	0	0	0	3	5	3	45	-	1	5	8	160		5	5	2	50	0	0	C
		4	Data Center		6	10	8	480		4 1	.0	8	320		0	0	0	0	3	10	3	90	-	1 1	o	8	320		9	10	9	810	C	0	0
		5	Food Service		0	0	0	0			0	0	0		0	0	0	0	0	0	0	0	0	1	0	0	0		0	0	0	0	0	0	0
		6	Security		6	7	8	336		4	7	8	224		0	0	0	0	3	7	3	63	-	1	7	8	224		5	7	3	105	0	0	C
		7	Housekeeping		6	1	8	48		4	1	8	32		0	0	0	0	3	1	1	3	-	1	1	8	32		2	1	1	2		0 0	C
		8	Day Care		0	0	0	0	. 1	7	0	0	0	- 2	0	0	0	0	0	0	0	0	0	1	0	0	0		0	0	0	0		0) C
		9	Other CF-1		6	8	8	384		4	8	8	256		0	0	0	0	3	8	3	72	-	1	8	8	256		5	8	8	320	0	0	0 0
·		10	Other CF-2		0	0	0	0	1	1	0	0	0	- 23	0	0	0	0	0	0	0	0	(1	0	0	0	- 70	0	0	0	0	0	0	C
		11	Other CF-3		0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	(1	0	0	0	-	0	0	0	0	Ç	0	C
		12	Other CF-4		0	0	0	0	1	1	0	0	0		0	0	0	0	0	0	0	0	(1	0	0	0		0	0	0	0	(0) (
		13	Other CF-5		0	0	0	.0		1	0	0	0		0	0	0	0	0	0	0	0	(1	0	0	0		0	0	0	0	(0	C
		14	Other CE-6		n	οl	n	0	100	51	nl.	n l	0		οl	n		0	0	n	n	0	- 0	īT.	nΠ	n	0		n		- 0	0		1 0	1 6

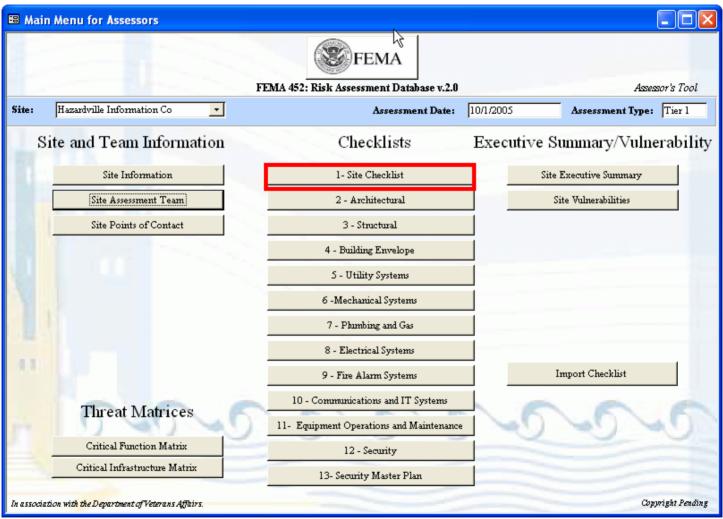
Asset Value	1- 10	Low risk (1-60)
Threat Rating	1- 10	Medium risk (61-175)
Vulnerability Rating	1- 10	High risk (> 175)


Threat Matrices

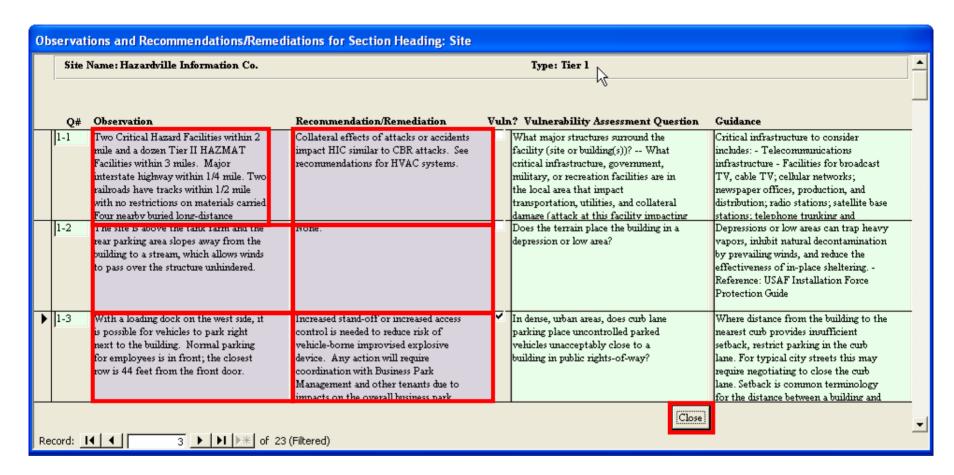
Critical Infrastructure Matrix

Threats —

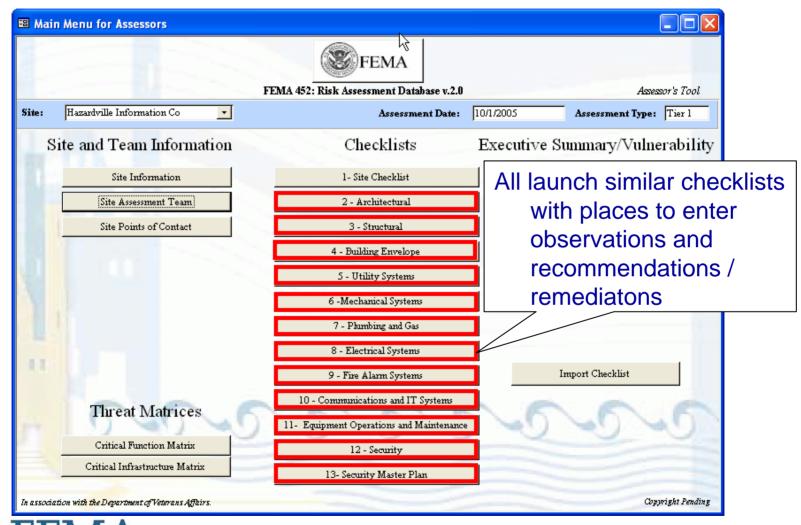
т	Site Name: Hazardville I: R: Threat Rating				2.			A	Lsses	smentDa	te:	10	/01/	2005			A:	sess	mentT	/pe:	T	ier l						m R	isk (61-17.	5)
A V	V: Asset Value R: Vulnerability Rating	D	Exp	03.0	ve omb)			Αę	mic ;ent			A	ttac				At	me tacl	£.		A	logic gent					orism		(>175)	
No			1000	200,000	Risk				-	Risk	-	-	-	Risk	T	10000			Risk	70.70	20000	0.000	Risk	TR	10000	-	Risk		TR AV V	
	1 Site	6			240	3	4	5	8	160	0	_		235.0		3	5	8	120	4	_	5 8	CC 5755		1 -	4	1-000	3	251	0
-	2 Architectural	6	95	-	240		4	5	4	80	0	-		3353		3	5	8	120	4		5 4	80				17500		0.53	0
	3 Structural Systems	6		4	240		4	5	3	60	0		-	5,575		3	5	8	120	4	-	5 3	40000			3				0 0
.3	4 Envelope Systems	6	_		240		4	5	3	60	0	_	-	77.53		3	5	8	120	4		5 3	100000			1			2001 - 01 - 01	0 0
3	5 Utility Systems	6		_	180		4	- 5	3	60	0	_	-			5	5	7	175	4		5 3	-	_	_					0 0
33	6 Mechanical Systems	4	-	_	224		4	7	7		0	_	_		6	5	7	7	245	4	-	7 7	200		1	1	105			0
. 3	7 Plumbing and Gas Systems	4	-		160		4	5	5	100	0	_	1	1000	32	3	5	8	120	4		5 5	100	_		5	2019			0
	8 Electrical Systems	4		-	224	8	4	7	5		0	_	-		170	3	7	7	147	4	4	7 5		_	1	1			335 5 33	0
- 87	9 Fire Alarm Systems	4			160		4	5	3	60	0	-		200.00		3	5	3	45	4	_	5 3	10000			1		3 3	255 5 5	0
1		4	10	8	320		4	10	6	240	0	0	0	0		3	10	8	240	4	11) 6	240	1	10	10	1000		0.73	0 0
1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	-		0		0	0	0	0	0	_	-	5,57.0		0	0	0	0	0		0 0			_					0 0
1		0	-	-	0		0	0	0	0	0	-	-	0.50		0	0	0	0	0		0				1			2001	0 0
1	3 Other CI-3	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	1	0 0	0			1	0		0 0 0	0 0
1		0	_	_	0		0	0	0	0	0	_	_		0	0	0	0	0	0	_	0) (1		2		0 0
1	5 Other CI-5	0	0	0	0		0	0	0	0	0	0	0	0	52	0	0	0	0	0		0	0		0		0		0 0 0	0 0
1	6 Other CI-6	0	0	1	0	9.	0	0	0	0	0	0	0	0	80	0	0	0	0	0		0	0		0		0	9. 1	0 0 0	0 0
1	7 Other CI-7	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0)	0	0		0	1	0		0 0 0	0 0
1	8 Other CI-8	0	0	0	0		0	0	0	0	0	0	0	0	1	0	0	0	0	(0	0		0		0		0 0 0	0 0
1	9 Other CI-9	0	0	0	0		0	0	0	0	0	0	0	0	12	0	0	0	0	0	1	0	0		0	1	0		0 0 0	0 0


Asset Value 1- 10
Threat Rating 1- 10
Vulnerability Rating 1- 10

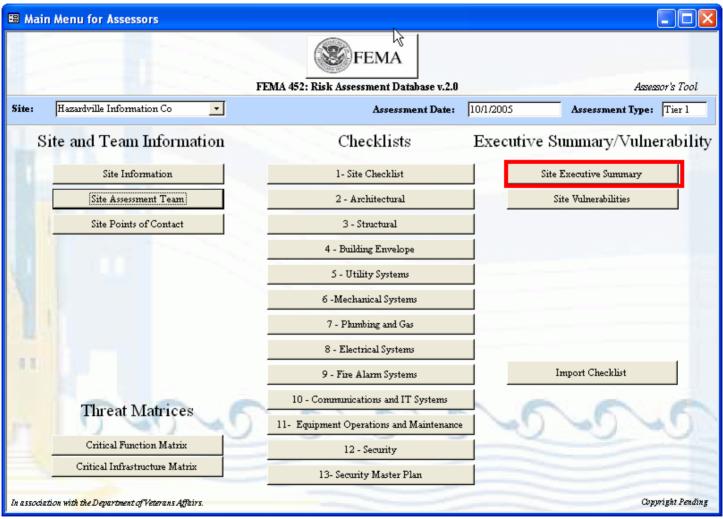
Low risk (1-60) Medium risk (61-175) High risk (> 175)



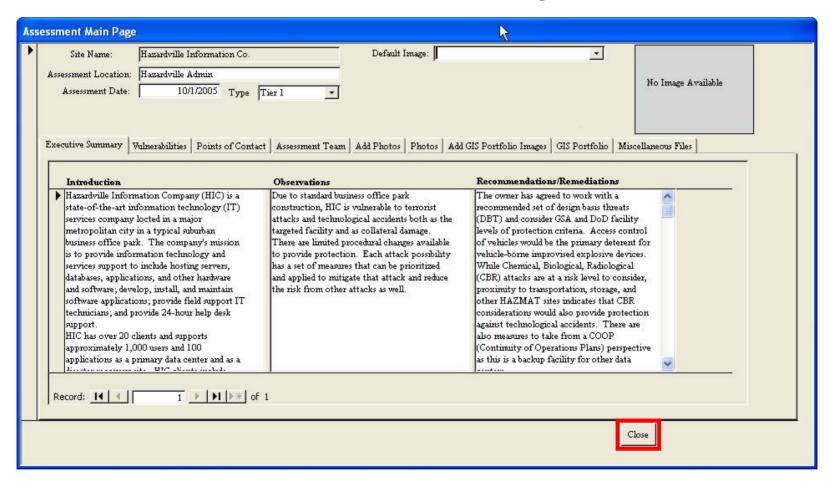
Checklists



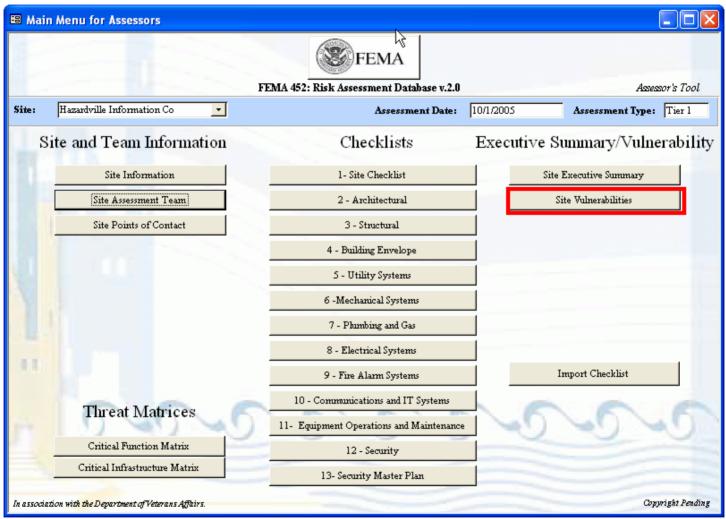
Site Checklist



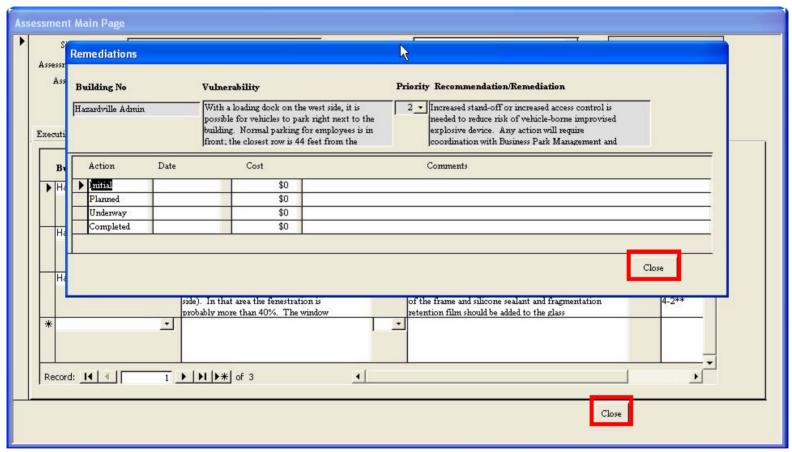
Checklists



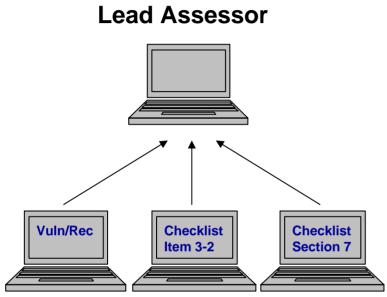
Executive Summary



Executive Summary Tab

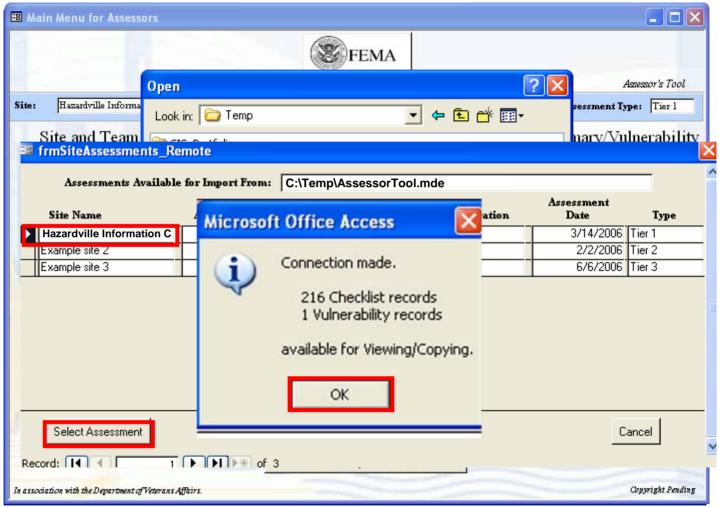


Vulnerabilities



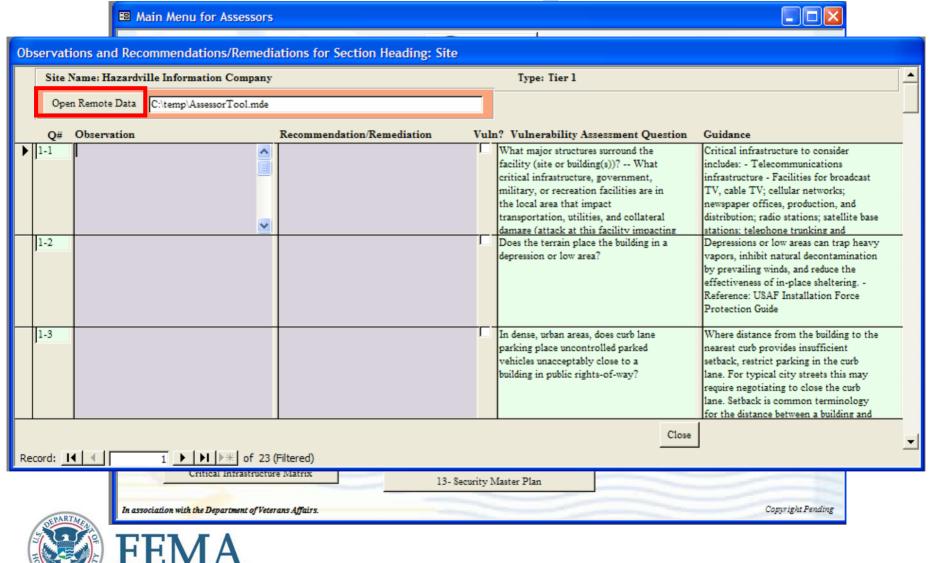
Vulnerabilities and Recommendations

Assessment Team Import Function

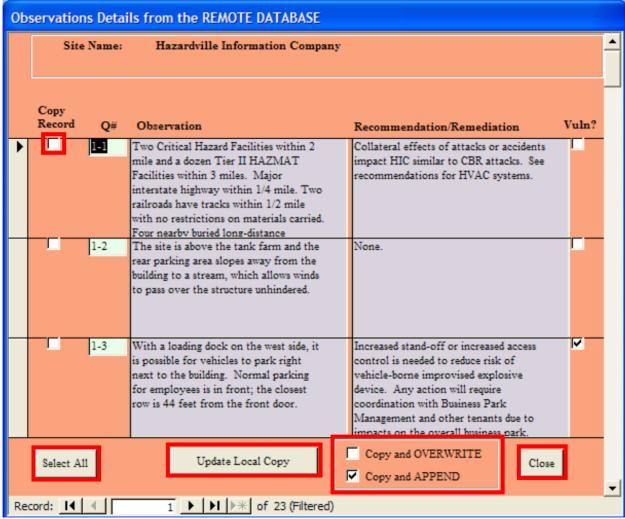

- Establish a link to a team member's database
- Open the remote database
- Import Observation, Recommendation/Remediation, or Vulnerability entries

Assessment Team

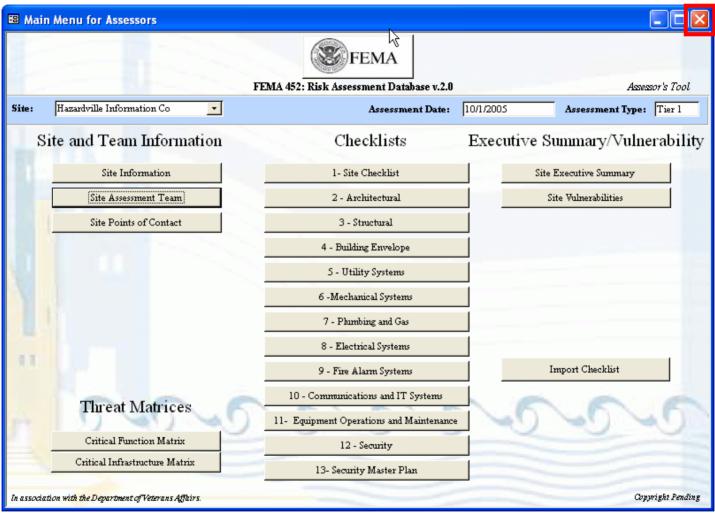
The assessment team members to combine their data into one database file on one computer at the end of the assessment.



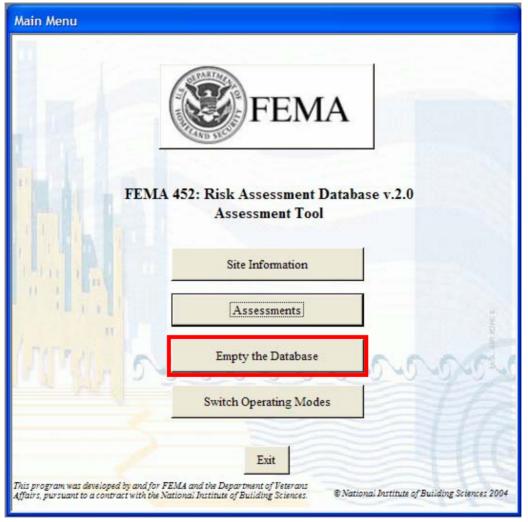
Import Assessments



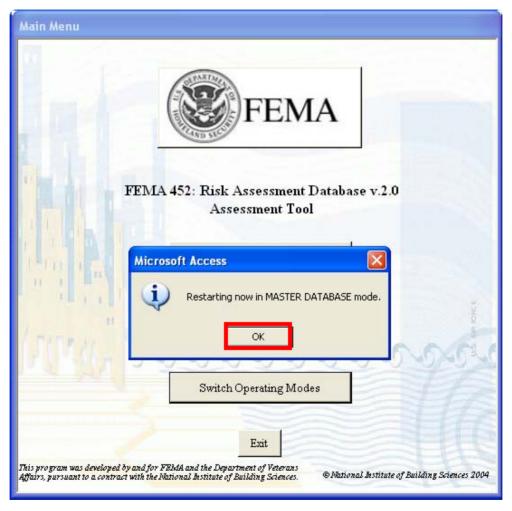
Assessment Team Import Function



Assessment Team Import Function

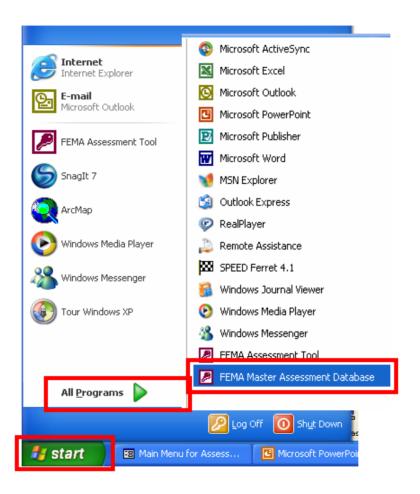


Close Assessor Tool

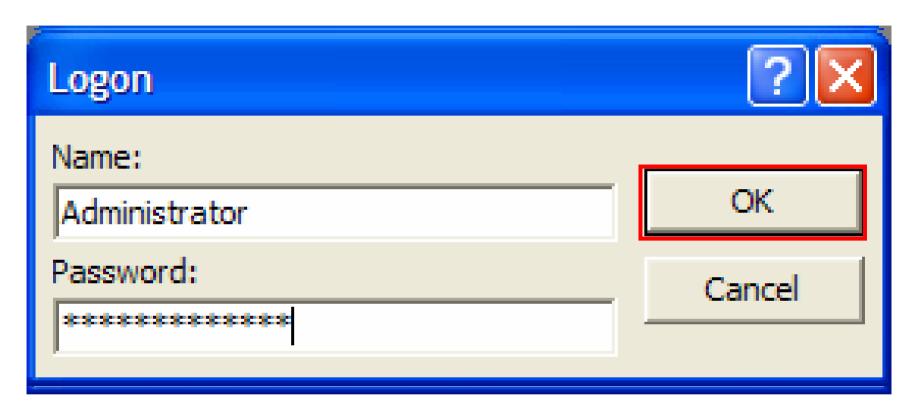


Empty Database

Switch to Master Database

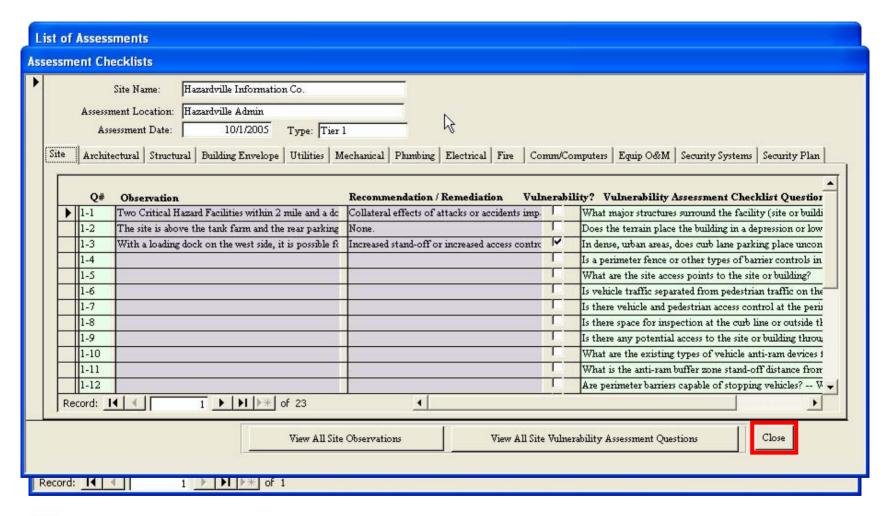


Master Database

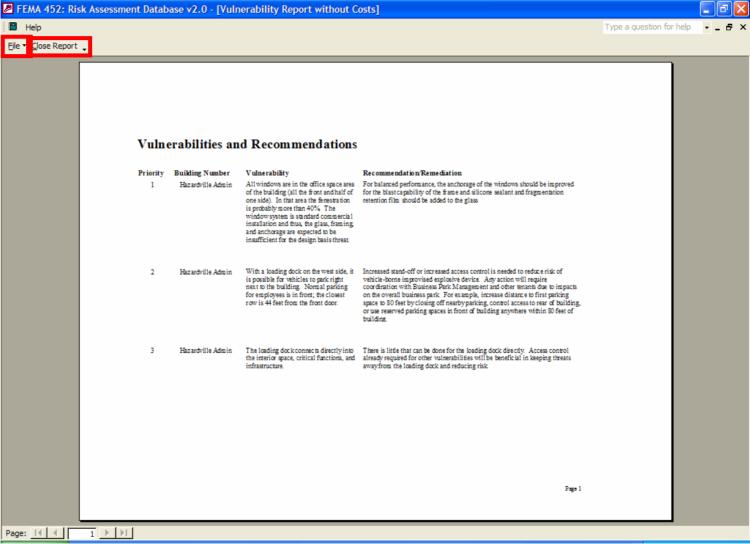


Open Master Database

Login to Master Database



Master Database



View Checklists

Reports

Reports

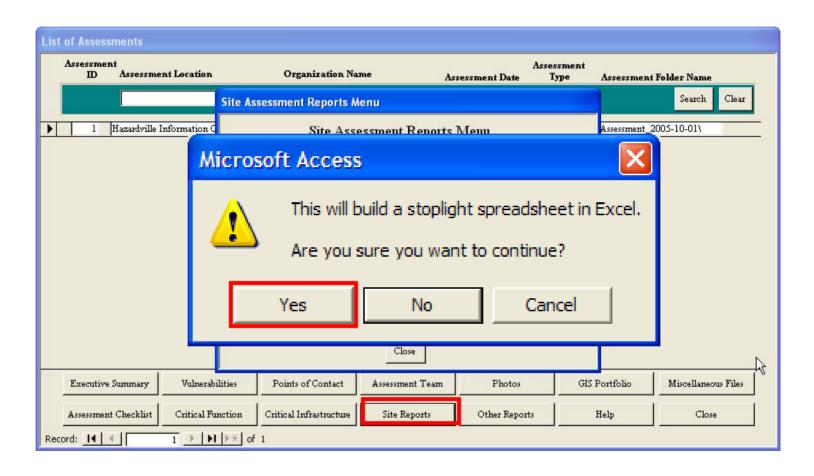
Executive Summary

Introduction

Hazard ville Information Company (HIC) is a state-of-the-art information technology (IT) services company locted in a major metropolitan city in a typical suburb an business office park. The company's mission is to provide information technology and services support to include hosting servers, databases, applications, and other hardware and software; develop, install, and maintain software applications; provide field support IT technicians; and provide 24-hour help desk support.

HIC has over 20 clients and supports approximately 1,000 users and 100 applications as a primary data center and as a disaster recovery site. HIC clients include local and regional government offices and commercial entities along with large prime defense contractors and Federal government agencies. HIC handles unclassified and classified information.

Observations

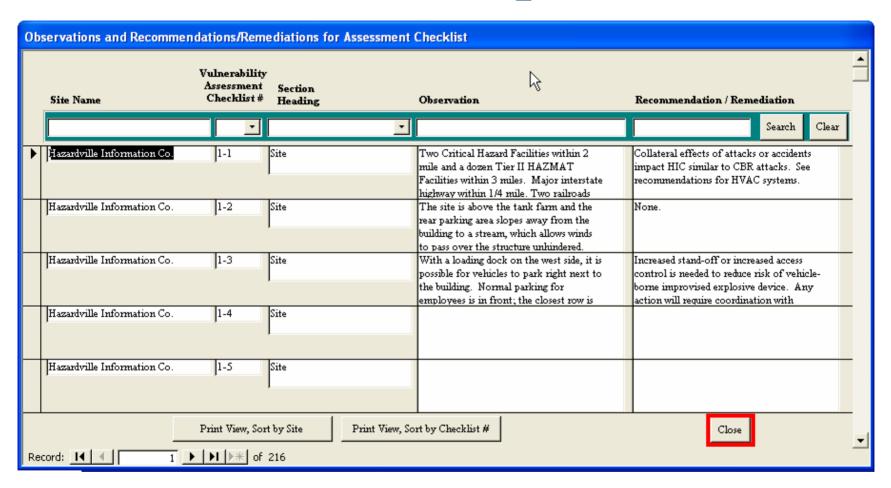

Due to standard business office park construction, HIC is vulnerable to terrorist attacks and technological accidents both as the targeted facility and as collateral damage. These are limited procedural changes available to provide protection. Each attack possibility has a set of measures that can be prioritized and applied to mitigate that attack and reduce the risk from other attacks as well.

Recommendations / Remediations

The owner has agreed to work with a recommended set of design basis threats (DBT) and consider GSA and DoD facility levels of protection criteria. Access control of vehicles would be the primary deterent for vehicle-borne improvised explosive devices. While Chemical, Biological, Radiological (CBR) attacks are at a risk level to consider, proximity to transportation, storage, and other HAZMAT sites indicates that CBR considerations would also provide protection against technological accidents. There are also measures to take from a COOP (Continuity of Operations Plans) perspective as this is a backup facility for other data centers.

Reports

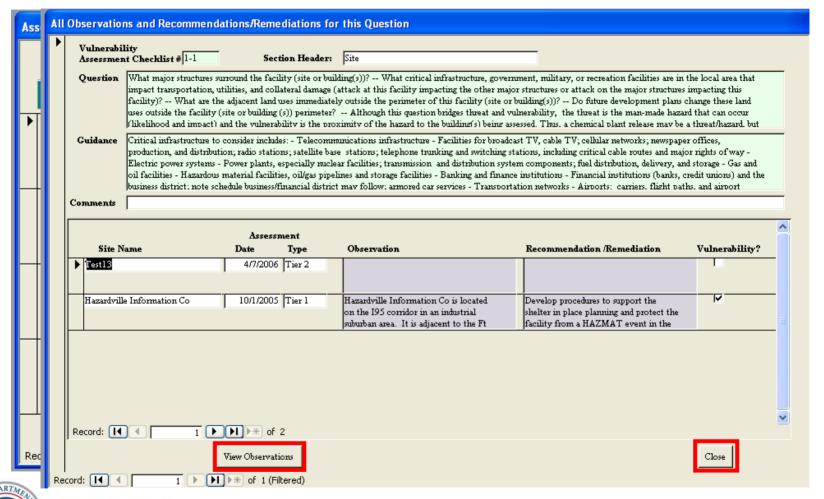
Threat Matrix


	A	В	d D	Е	F	G	Н	I	J	K
0		1 5 10								
1	Facility									
2			Improvised	Chemical	Arson / Incendiary	Armed	Biological	Cyberterrorism	Agriterrorism	
3	Core Process/F	unction	Explosive Device	Agent	Attack	Attack	Agent			Agnet
4										
5	Administration		192	128	0	96	128	192	0	12
6		Threat Rating	6	4	0	3	4	6	0	
7		Asset Value	4	4	0	4	4	4	0	
8		Vulnerability Rating	8	8	0	8	8	8	0	
9	Engineering		240	160	0	120	160	200	0	16
0		Threat Rating	6	4	0	3	4	5	0	
1		Asset Value	5	5	0	5	5	5	0	
2		Vulnerability Rating	8	8	0	8	8	8	0	
3	Warehousing		240	160	0	45	160	50	0	16
4		Threat Rating	6	4	0	3	4			
5		Asset Value	5	5	. 0	5	5	5	0	
6		Vulnerability Rating	8	8		3	8	2	0	
7	Data Center		480	320		90	320		Ö	
8		Threat Rating	6			3			-	
9		Asset Value	10	10	-	10	10			
ŏ		Vulnerability Rating	8			3	8	9		
ĭ	Food Service	Tamerability Having	0	Č		0	ŏ			
2	1 000 0011100	Threat Rating	0	č		0	ŏ	-		
3		Asset Value	0	č	-	0	ő	-		
4		Vulnerability Rating	0	č	-	0	ő	-		
5	Security	valiterability riating	336	224	-	63	224	-		
<u>.</u>	Security	Threat Rating	6			3	4			
7		Asset Value	7	7		7	7		0	
8		Vulnerability Rating	8			3			-	
	11	vulnerability hating	48	32		3	32		0	
9	Housekeeping	Theres Desire	6	32	-	3	32		-	_
0 1		Threat Rating	1		1 0	1	1			
2		Asset Value		8		1			-	
	5 0	Vulnerability Rating	8			0	8	1		
	Day Care	Theres Devises	-		-	0	0	-		
4		Threat Rating	0		-				-	
5		Asset Value	0	9	-	0	0	-		
١		ulnerability Rating	0	0	-	0	0		-	
ı	Communications	ļ 	384	256		72	256		0	
•		hreat Rating	6			3	4			
9		Asset Value	8	8		8	8			
0		Vulnerability Rating	8	8		3	8			
1	Other 2		0		-	0	0			
2		Threat Rating	0	(0	0	-		
3		Asset Value	0	(-	0	0	0		
ŀ		Vulnerabilitu Rating			0	0	. 0	0	0	

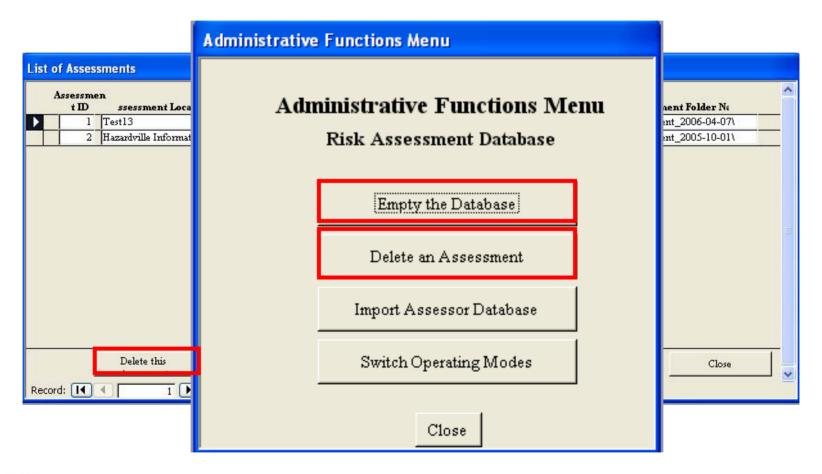
Threat Matrix

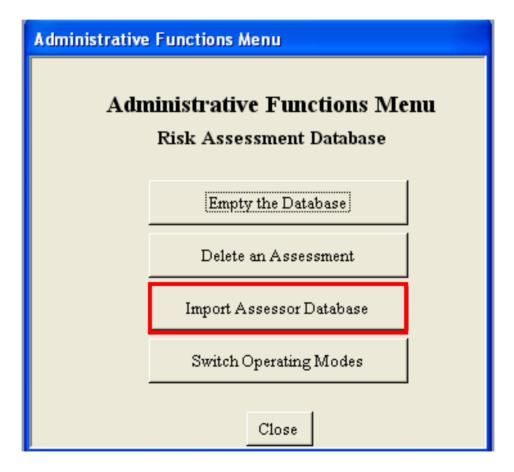
A	ВС	D	E	F	G	Н	I	J	K
Facility									
2		Improvised		Arson / Incendiary		Biological	Cyberterrorism	Agriterrorism	Radiological
Critical Infrastructure		Explosive Device	Agent	Attack	Attack	Agent			Agnet
1									
5 Site		240			120	160	15	0	
3	Threat Rating	6			3		1	0	
7	Asset Value	5	5	0	5	5	5	0	
3	Vulnerability Rating	8	8		8	8	3		
Architectural		240	80	0	120	80	15	0	8
0	Threat Rating	6	4	0	3	4	1	0	
1	Asset Value	5	5	0	5	5	5	0	
2	Vulnerability Rating	8	4	0	8	4	3	0	
3 Structural Systems		240	60	0	120	60	15	0	6
4	Threat Rating	6	4	0	3	4	1	0	
5	Asset Value	5	5	0	5	5	5	0	
6	Vulnerability Rating	8	3	0	8	3	3	0	
7 Envelope Systems		240	60	0	120	60	15	0	6
8	Threat Rating	6	4	0	3	4	1	0	
9	Asset Value	5	5	0	5	5	5	0	
0	Vulnerability Rating	8		0	8	3	3		
1 Utility Systems		180	60	0	175	60	75	0	6
2	Threat Rating	6			5		3		
3	Asset Value	5		0	5		5		
4	Vulnerability Rating	6			7				
5 Mechanical Systems	T direct de lining T testing	224			245		105	Ö	
6	Threat Rating	4			5				
7	Asset Value	7		-	7			0	
8	Vulnerability Rating	. 8		-	7				
9 Plumbing and Gas Systems	Yamerability Fracing	160			120		30	0	
0	Threat Rating	4			3		2	-	
1	Asset Value	5		-	5		5		
2	Vulnerability Rating	8			8		3		
3 Electrical Systems	Yumerability mating	224			147	140	105	0	
4	Threat Rating	4			3		3		
5	Asset Value	7		-	7		7	0	
6	Vulnerability Rating	8		-	7			-	
7 Fire Alarm Systems	vulnerability matting	160		-	45			0	
r Fire Alarm Systems	Threat Rating	160			3				
				-	5				
9	Asset Value	5					5		
) IT and Communication Control	Vulnerability Rating	8			240			0	
IT and Communication Syster		320		-				-	
2	Threat Rating	4			3				
3	Asset Value	10			10		10		
4	Vulnerability Rating	8	6	0	8	6	10	0	

Other Reports

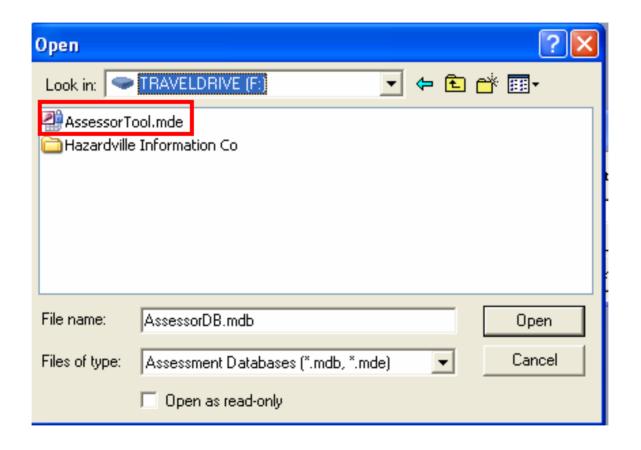


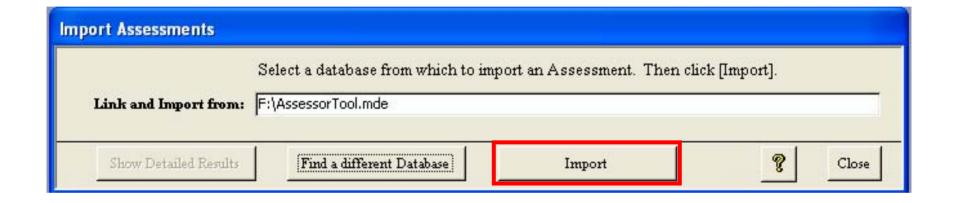
Master Database


Vulnerability Assessment Checklist Search

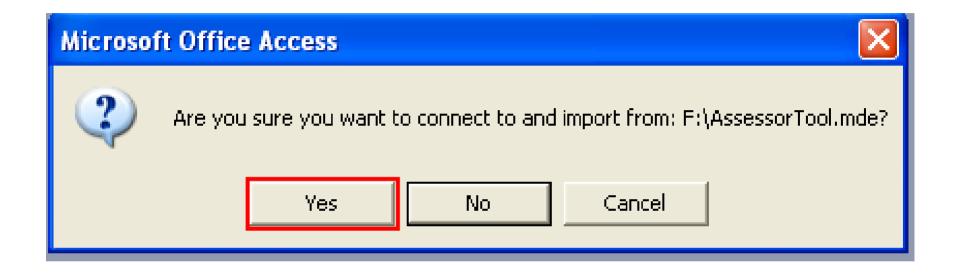

Master Database

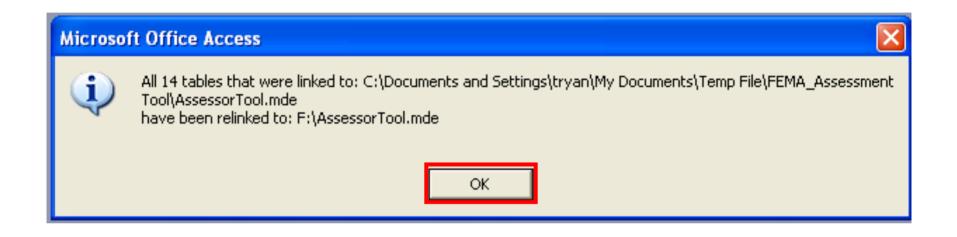
Master Database: Erasing One or All Assessments

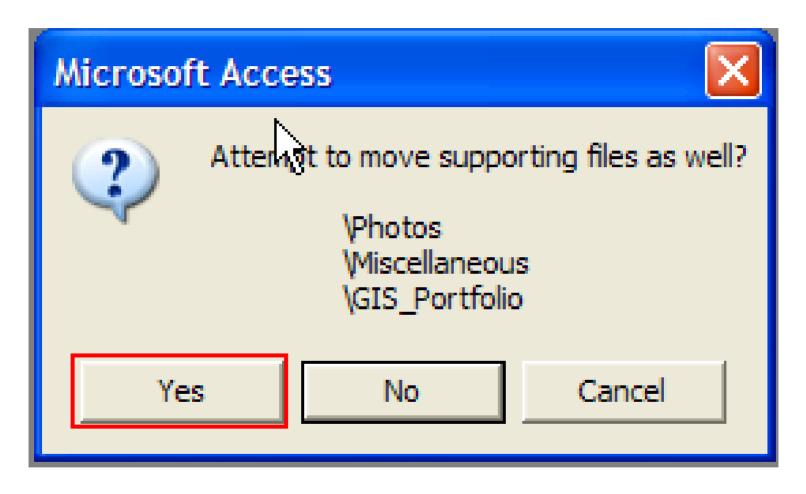


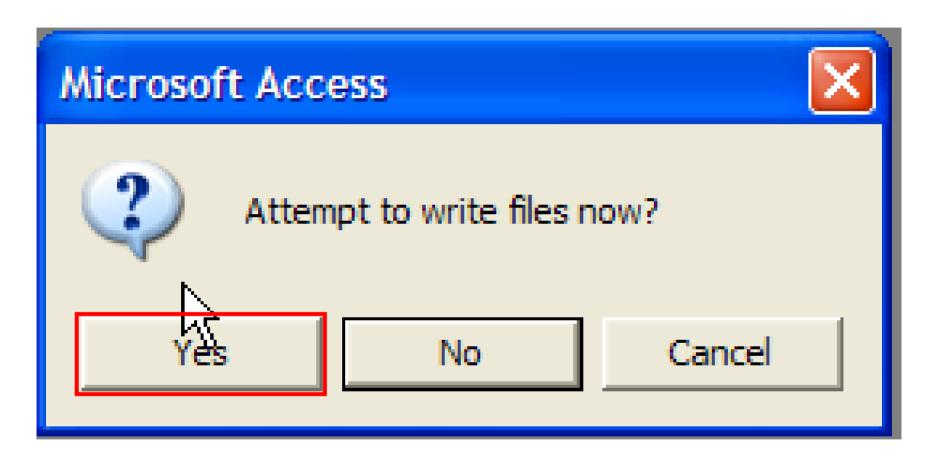


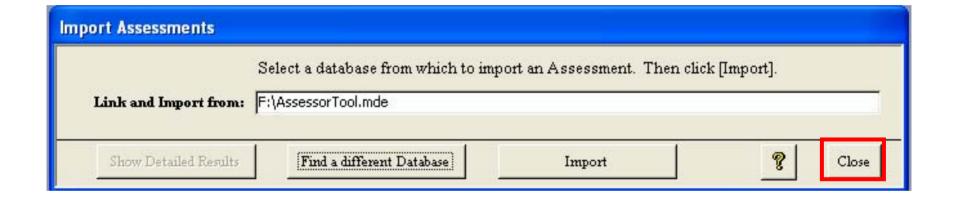
Import Assessments									
No.	Select a database from which to import an Assessment. Then click [Import].								
	Currently Linked to:	C:\Program Files\FEMA Assessments\AssessorTool.mde							
	Show Detailed Results	Find a different Database	Import	© Close					











Import Assessments			
٤	Select a database from which to imp	ort an Assessment. Then c	lick [Import].
Currently Linked to:	:\AssessorTool.mde		
Show Detailed Results	Find a different Database	Import	

Import Order	Importing	NumberOf RecordsBefore	NumberOf RecordsAttempted	NumberOf RecordsAfter	Successful
· 1	Sites	4	1	5	<u> </u>
1 2	Buildings (*handled differently)	0	19	19	<u> </u>
3	People	0	2	2	<u> </u>
4	Assessments	4	1	5	<u> </u>
	Observations	216	216	432	<u> </u>
6	Vulnerabilities	0	1	1	<u> </u>
7	Executive Summary	1	1	2	<u> </u>
1	Critical Infrastructure	20	20	40	V
9	Critical Functions	18	18	36	V
10	Assessment Personnel	0	2	2	V
11	GIS images this assessment	0	1	1	V
12	Photos	0	1	1	V
13	Assessment Photos	0	1	1	V
14	Miscellaneous files	0	1	1	V
13	Assessment Photos	0	1	1	Î

Summary

Installation and opening of databases

Filing of GIS Portfolio, Miscellaneous, and Photos to link with the databases

Moving about the database software and between the Assessor Tool and the Master Database

Setting priorities on identified vulnerabilities and how the software handles it

Production of standard reports and searching the database for specific information

BUILDING DESIGN FOR HOMELAND SECURITY

Unit VII Explosive Blast

Unit Objectives

Explain the basic physics involved during an explosive blast event, whether by terrorism or technological accident.

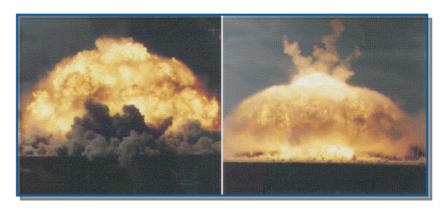
Explain building damage and personnel injury resulting from the blast effects upon a building.

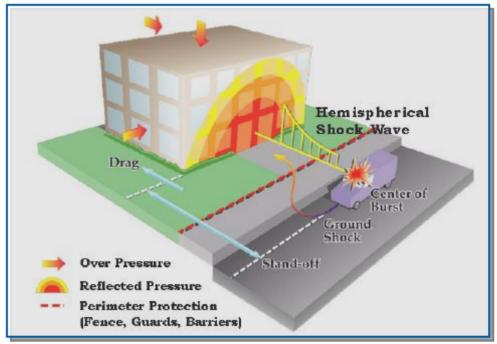
Perform an initial prediction of blast loading and effects based upon incident pressure.

Unit VII: Explosive Blast

Units I-VI covered the Risk Assessment Process

Units VII and VIII explain Explosive Blast, CBR Agents, and their effects


Units IX and X demonstrate techniques for site layout and building design to counter or mitigate manmade threats and similar technological hazards



Blast Loading Factors

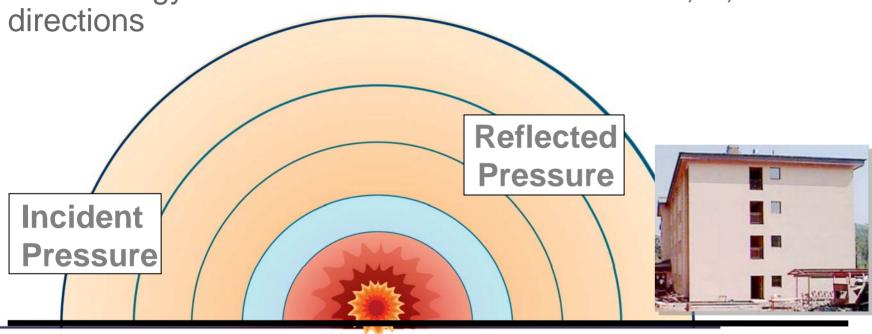
Explosive properties

- Type
- Energy output (TNT equivalency)
- Quantity



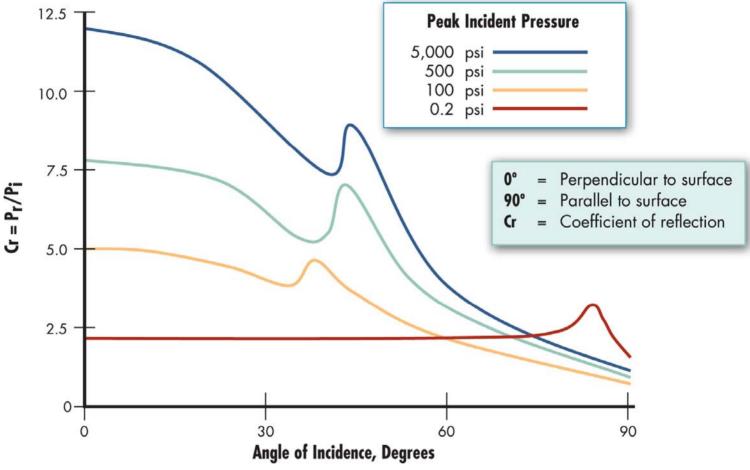
FEMA 427, Figure 2-1: Schematic of Vehicle Weapon Threat Parameters and Definitions, p. 2-2

Typical Incident Pressure Waveform

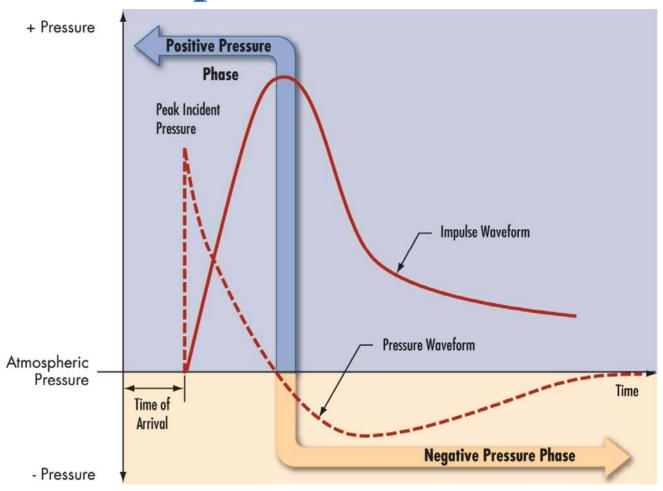


FEMA 426, Figure 4-1: Typical Pressure-Time History, p. 4-2

Incident and Reflected Pressure


Blast energy lost at rate of volume increase in X, Y, and Z

Equivalent pressure occurs at Scaled Distance = Distance / (Net Explosive Weight, TNT equivalent) 1/3


Reflected Pressure/Angle of Incidence

FEMA 426, Figure 4-2: Reflected Pressure Coefficient vs.
Angle of Incidence, p. 4-3

Typical Blast Impulse Waveform

FEMA 426, Figure 4-3: Typical Impulse Waveform, p. 4-4

Blast Loading Factors

Location of explosive relative to structure

- Stand-off distance
- Reflections and reflection angle
 - Ground
 - Buildings
- Identify worst case

Blast Compared to Natural Hazards

Higher incident pressures and relatively low impulse

- High explosive (C-4)
- Medium explosive (black powder)
- Low explosive (gasoline)
- Aircraft or vehicle crash combines kinetic energy (velocity, mass), explosive loads, and fuel/fire

 200 mph hurricane generates only 0.8 psi, but with very large impulse

Blast Compared to Natural Hazards

Direct airblast causes more localized damage

- Component breakage
- Penetration and shear
- Building's other side farther away
- Reflections can increase damage on any side

Greater mass historically used for blast protection

 Greater mass usually detrimental during earthquake due to resonance

Factors Contributing to Building Damage

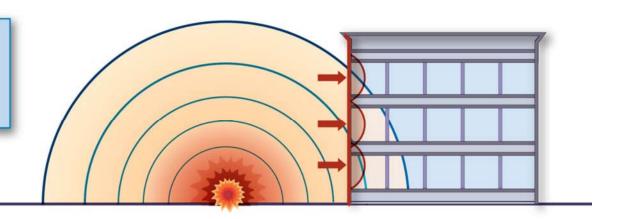
First approximations based upon:

- Quantity of explosive
- Stand-off distance between building and explosive
- Assumptions about building characteristics

Types of Building Damage

Direct Air Blast

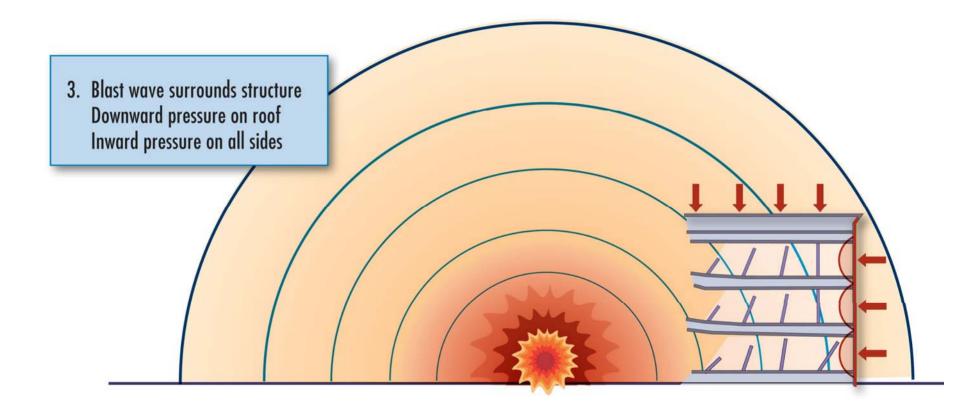
- Component failure
- Additional damage after breaching


Collapse

- Localized
- Progressive

Blast Pressure Effects

1. Blast wave breaks windows Exterior walls blown in Columns may be damaged



Blast Pressure Effects

2. Blast wave forces floors upward

Blast Pressure Effects

Causes of Blast Injuries

Overpressure

- Eardrum rupture
- Lung collapse/failure

Blast Wave

Blunt trauma, lacerations, and impalement

Causes of Blast Injuries

Fragmentation

Bomb or vehicle

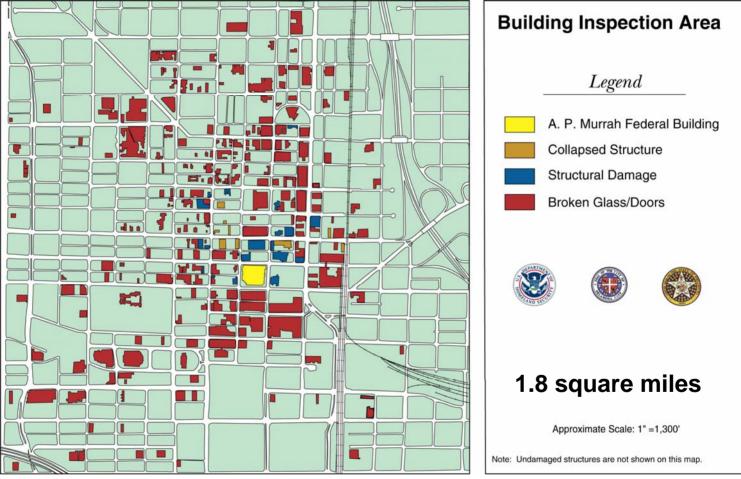
Street furniture or jersey barriers

Building component failure

- Glass predominant
- Walls
- Floors

Murrah Federal Building, Oklahoma City

Murrah Federal Building, Oklahoma City


The majority of deaths were due to the collapsing structure

From Journal of American Medical Association, August 7, 1996

Murrah Federal Building, Oklahoma City

From FEMA Oklahoma City Bombing Report 9-0300 / FEMA 277, August 1996

Levels of Protection

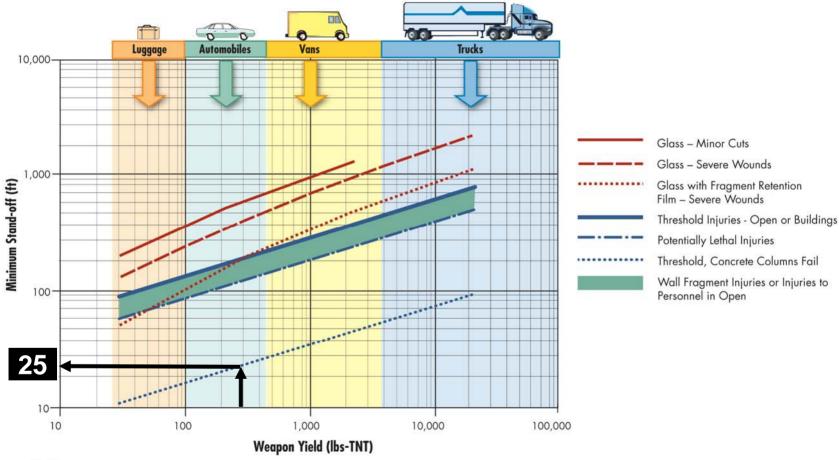
CONVENTIONAL CONSTRUCTION

INCIDENT OVERPRESSURE

Level of Protection	Potential Structural Damage	Potential Door and Glazing Hazards	Potential Injury
Below AT standards	Severely damaged. Frame collapse/massive destruction. Little left standing.	Doors and windows fail and result in lethal hazards. GSA 5	Majority of personnel suffer fatalities.
Very Low psi = 3.5	Heavily damaged - onset of structural collapse. Major deformation of primary and secondary structural members, but progressive collapse is unlikely. Collapse of non-structural elements.	Glazing will break and is likely to be propelled into the building, resulting in serious glazing fragment injuries, but fragments will be reduced. Doors may be propelled into rooms, presenting serious hazards. GSA 4	Majority of personnel suffer serious injuries. There are likely to be a limited number (10 percent to 25 percent) of fatalities.
Low psi = 2.3	Damage – unrepairable. Major deformation of non- structural elements and secondary structural members and minor deformation of primary structural members, but progressive collapse is unlikely.	Glazing will break, but fall within 1 meter of the wall or otherwise not present a significant fragment hazard. Doors may fail, but they will rebound out of their frames, presenting minimal hazards. GSA 3a	Majority of personnel suffer significant injuries. There may be a few (<10 percent) fatalities.

FEMA 426, Adapted from Table 4-1: DoD Minimum Antiterrorism Standards for New Buildings, p. 4-9

Levels of Protection


CONVENTIONAL CONSTRUCTION

INCIDENT OVERPRESSURE

Level of Protection	Potential Structural Damage	Potential Door and Glazing Hazards	Potential Injury
Medium psi = 1.8	Damaged – repairable. Minor deformations of non-structural elements and secondary structural members and no permanent deformation in primary structural members.	Glazing will break, but will remain in the window frame. Doors will stay in frames, but will not be reusable. GSA 2	Some minor injuries, but fatalities are unlikely.
High psi = 1.1	Superficially damaged. No permanent deformation of primary and secondary structural members or non-structural elements.	Glazing will not break. Doors will be reusable. GSA 1	Only superficial injuries are likely.

Nominal Range-to-Effect Chart

FEMA 426, Figure 4-5: Explosive Environments – Blast Range to Effects, p. 4-11

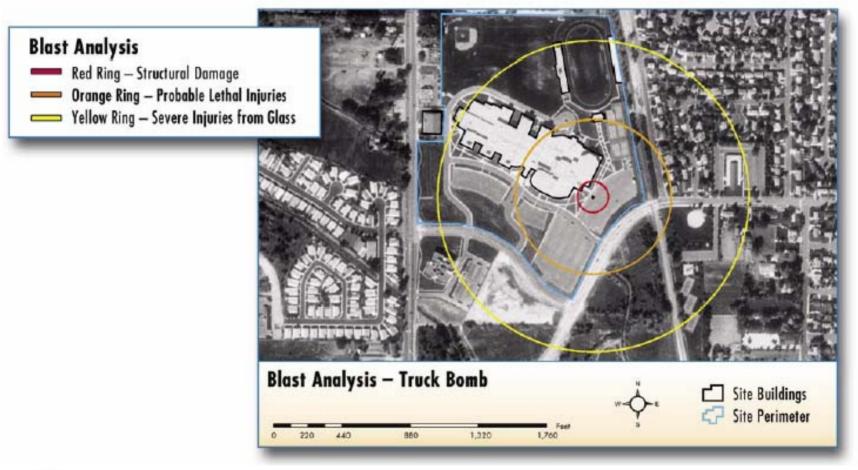
Comparison of Stand-off

Murrah Federal Building

YIELD (≈TNT Equiv.) Reflected PRESSURE Stand-off 4,000 lb. 9,600 psi. 15 feet

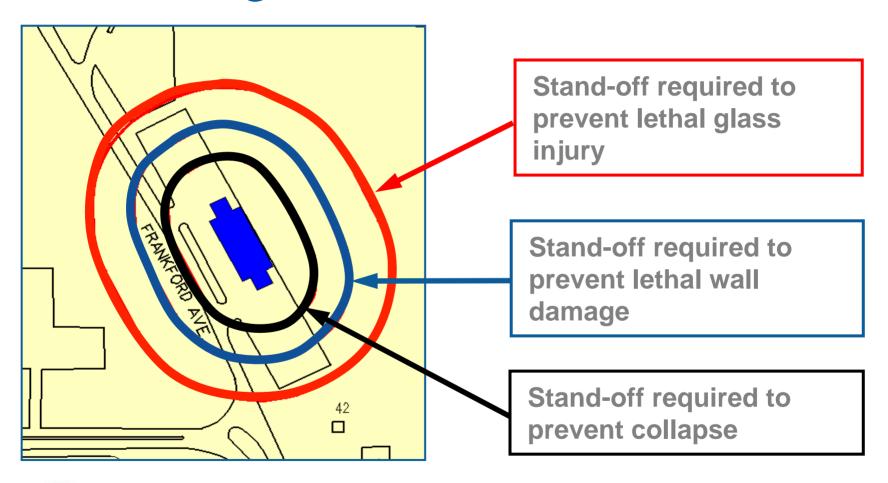
166 killed

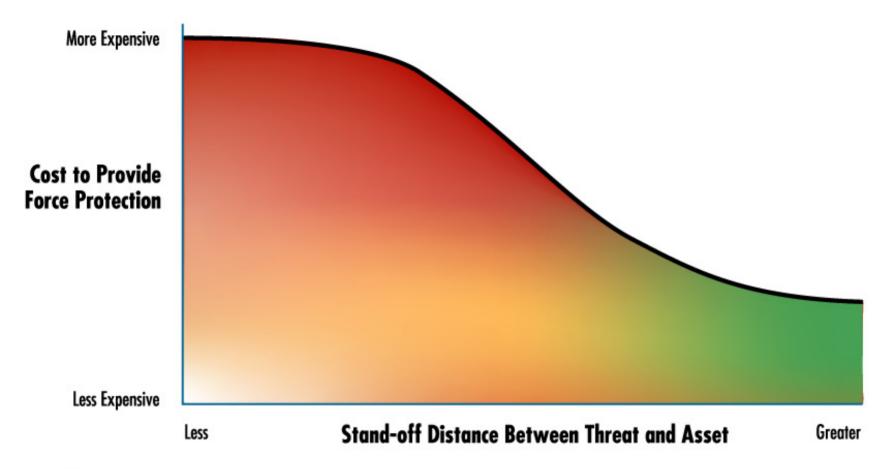
Khobar Towers


YIELD (≈TNT Equiv.)
Reflected PRESSURE
Stand-off

20,000 lb. 800 psi. 80 feet

19 killed


Vulnerability Radii

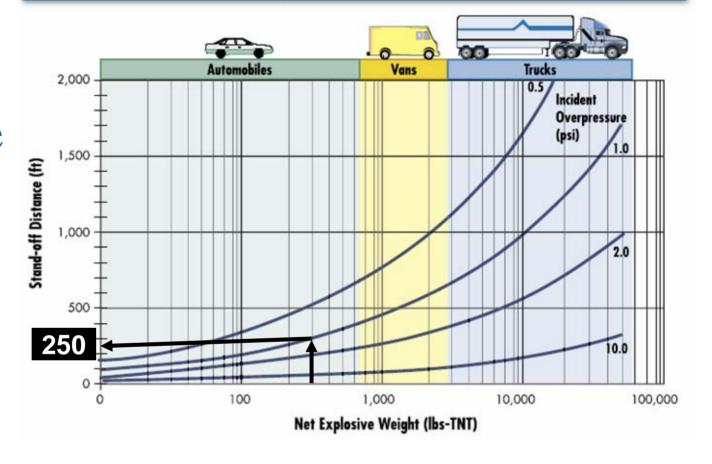

FEMA 426, Figure 4-7: Blast Analysis of Building for Typical Large Truck Bomb Detonated in Building's Parking Log, p. 4-12

Iso-Damage Contours

Cost Versus Stand-off

FEMA 426, Figure 4-8: Relationship of Cost to Stand-off Distance, p. 4-13

Blast Load Predictions


Incident and reflected pressure and impulse

- Software
 - Computational Fluid Dynamics
 - ATBLAST (GSA)
 - CONWEP (US Army)
- Tables and charts of predetermined values

Pressure versus Distance

Explosives Environment

FEMA 426, Figure 4-10: Incident Overpressure Measured in Pounds Per Sq. Inch, as a Function of Stand-Off Distance and Net Explosive Weight, p. 4-17

Blast Damage Estimates

Assumptions - pressure and material

- Software SDOF
 - AT Planner (U.S. Army)
 - BEEM (TSWG)
 - BlastFX (FAA)
- Software FEM
- Tables and charts of predetermined values

Blast Damage Estimates

Damage	Incident Pressure (psi)
Typical window glass breakage (1)	0.15 - 0.22
Minor damage to some buildings (1)	0.5 – 1.1
Panels of sheet metal buckled (1)	1.1 – 1.8
Failure of unreinforced concrete blocks walls (1)	1.8 – 2.9
Collapse of wood frame buildings (2)	Over 5.0
Serious damage to steel framed buildings (1)	4 – 7
Severe damage to reinforced concrete structures (1)	6 – 9
Probable total destruction of most buildings (1)	10 – 12

FEMA 426, Table 4-3: Damage Approximations, p. 4-19

Level of Protection	Incident Pressure (psi)
High	1.2
Medium	1.9
Low	2.3
Very Low	3.5
Below AT Standards	> 3.5

Manchester Bombing

Summary

Explosive blast physics

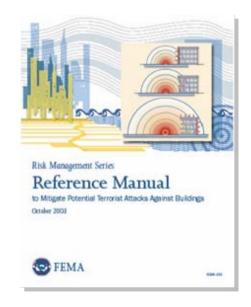
Blast damage to buildings

Injury to personnel

Prediction of loading, damage, and injury

- Range-to-effect chart
- Incident pressure chart

Unit VII Case Study Activity


Explosives Environment, Stand-off Distance, and the Effects of Blast

Background

Purpose of activity: check on learning about explosive blast

Requirements

Refer to Case Study and FEMA 426 Answer worksheet questions

Unit VIII Chemical, Biological, and Radiological (CBR) Measures

Unit Objectives

Explain the five possible protective actions for a building and its occupants.

Compare filtration system efficacy relative to the particles present in CBR agents.

Explain the key issues with CBR detection.

Identify the indications of CBR contamination.

Unit VIII: CBR Measures

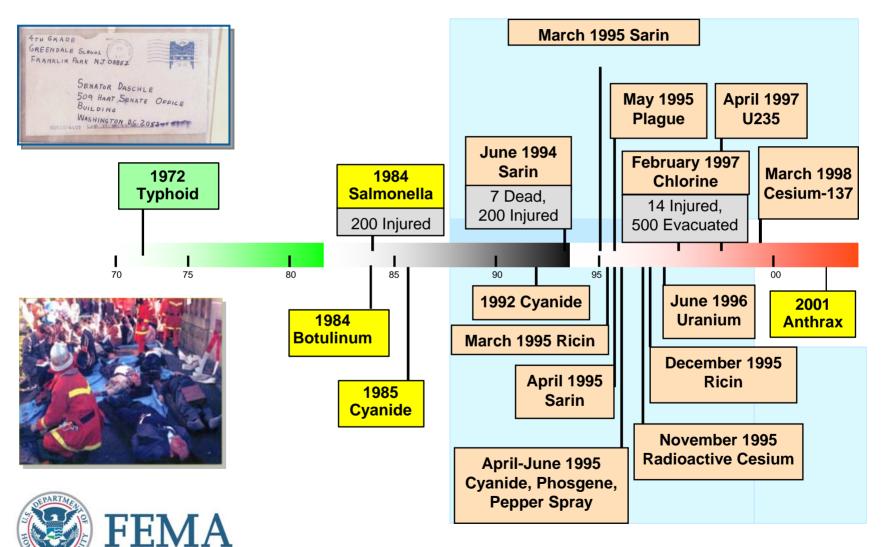
Units I-VI covered the Risk Assessment Process

Units VII and VIII explain Explosive Blast, CBR Agents, and their effects

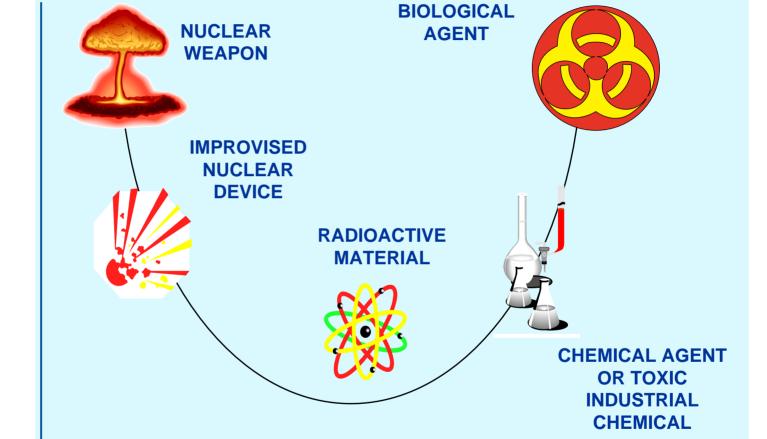
Units IX and X demonstrate techniques for site layout and building design to counter or mitigate manmade threats and similar technological hazards

CBR Measures: An Overview

FEMA 426, Chapter 5 is based on best practices for safeguarding building occupants from CBR threats. This module is organized into four sections:


- Protective Actions for Buildings and Occupants
- Air Filtration and Cleaning Principles and Technology
- CBR Detection and Current Technology
- Non-Technology CBR
 Contamination Indications

FEMA

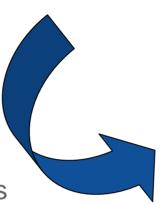


SOURCE: SENSIR TECHNOLOGIES

CBR Terrorist Incidents Since 1970

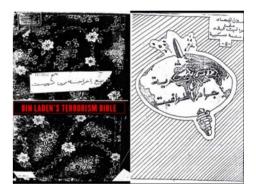
What is the CBR Threat Today?

Why Would Terrorists Use CBR?


- Available and relatively easy to manufacture
- Large amounts not needed in an enclosed space
- Easily spread over large areas
- Potential for mass casualties
 - Strong psychological impact
 - Overwhelms resources
 - Difficult to recognize (contagious or spread by victims)

CBR Sources

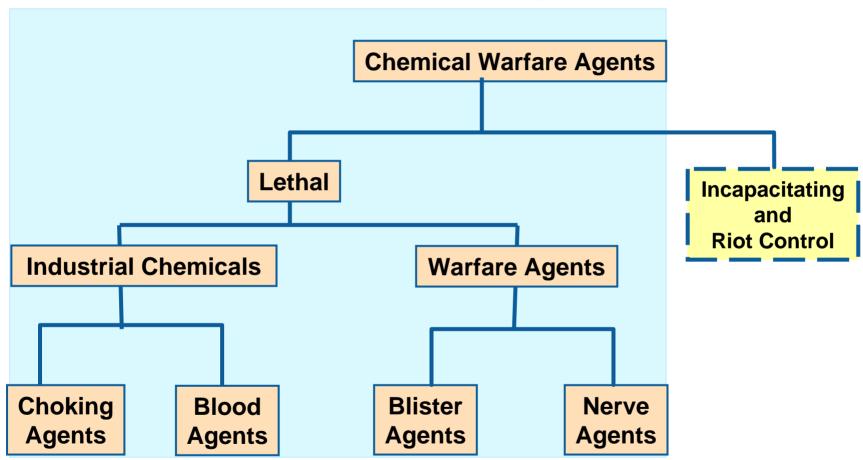
- Laboratory/commercial
- Industrial facilities
- Foreign military sources
 - At least 26 countries possess chemical agents or weapons
 - 10 countries are suspected to possess biological agents or weapons
- Medical/university research facilities
- Nuclear facilities
- Home production



Limitations of CBR Materials

- Targeted dissemination is difficult
- Delayed effects can detract from impact
- Counterproductive to terrorists' support
- Potentially hazardous to the terrorist
- Development and use require time and expertise

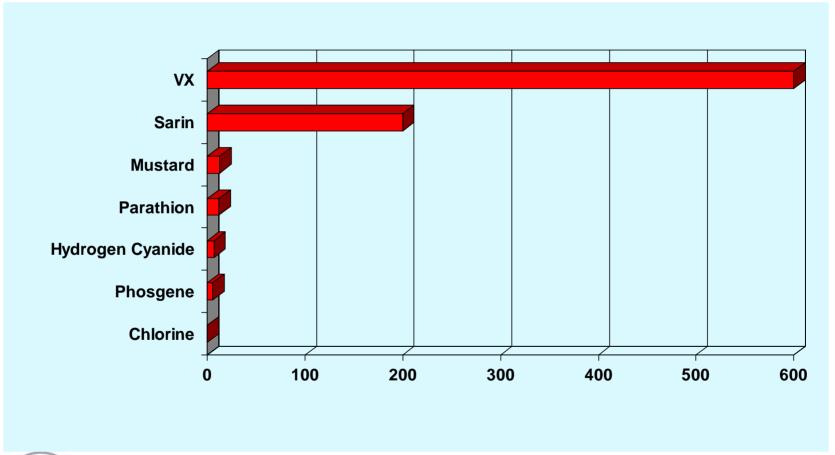
Chemical Agents: Characteristics and Behavior


- Generally liquid (when containerized)
- Normally disseminated as aerosol or gas
- Present both a respiratory and skin contact hazard
- May be detectable by the senses (especially smell)
- Influenced by weather conditions

Subway riders injured in Aum Shinrikyo sarin gas attack, Tokyo, March 20, 1995. (AP Photo/Chikumo Chiaki)

Classes of Chemical Agents

Industrial Chemicals


Industrial chemicals previously used as chemical warfare agents	Choking Agents Chlorine/Phosgene	Hydrogen Cyanide/ Cyanogen Chloride
Physical Appearance	Greenish-yellow vapor/ colorless vapor	Colorless vapor
Odor	Bleach/mown hay	Bitter almonds
Signs and Symptoms	Coughing, choking, tightness in chest	Gasping for air Red eyes, lips, skin
Protection	Respiratory	Respiratory
Treatment	Aeration	Aeration, cyanide kit

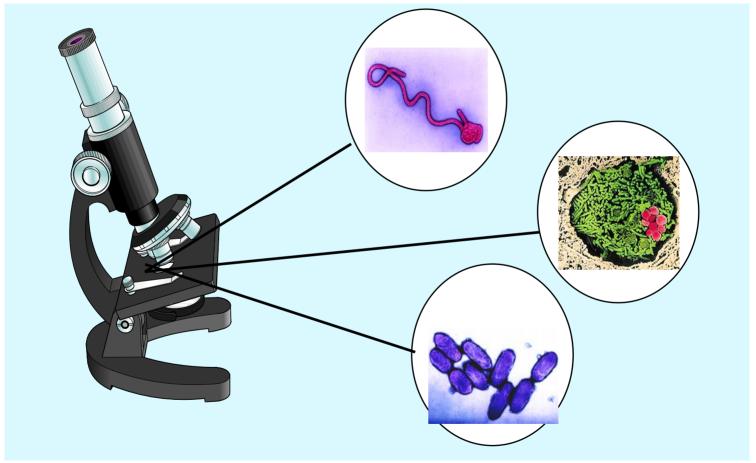
Four industrial chemicals previously used as chemical warfare agents

Blood Agents

Comparative Toxicity

How Much Sarin Does it Take?

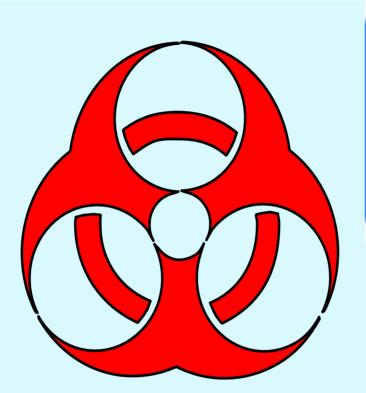
Structure	Lethal Amount
Domed Stadium	107 kg (26 gals)
Movie Theater	1.2 kg (5 cups)
Auditorium	52 g (1/4 cup)
Conference Room (50-100 seating)	33 g (1 shot glass)


*LD*₅₀ amounts for 1 minute exposure to Sarin aerosol

Chemical Agents Key Points

- Chemical agents are super toxic
- Relative toxicity: industrial chemicals < mustard < nerve
- Normal states are as a liquid or a vapor
- Inhalation hazard is of greatest concern

Biological Warfare Agents



Classes of Biological Agents

Bacteria

Viruses

Toxins

FEMA 426 - Appendix C contains a CBR glossary and characteristics of biological agents

Bacteria

	Anthrax	Plague
Incubation Period	1 to 6 days	2 to 3 days for pneumonic 2 to 10 days for bubonic
Contagious	NO	YES (pneumonic) NO (bubonic)
Signs and Symptoms	Chills, fever, nausea, swollen lymph nodes	Chills, high fever, headache spitting up blood, shortness of breath
Protection	Standard Precautions	Standard Precautions and Droplet Precautions
Treatment	Antibiotics and vaccines	Antibiotics and vaccines

Viruses

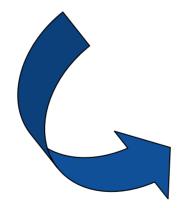
	Smallpox	Viral Hemorrhagic Fevers
Contagious	YES	YES
Signs and Symptoms	Fever, rigors, vomiting, headache, pustules	Fever, vomiting, diarrhea, mottled/blotchy skin
Protection	Standard Precautions + Droplet + Airborne + Contact Precautions	Standard Precautions + Droplet + Airborne + Contact Precautions
Treatment	Vaccine, supportive therapy	Vaccines available for some

Toxins

	Neurotoxin (Botulinum)	Cytotoxin (Ricin)
Onset of Symptoms	1 to 3 days	4-8 hours after ingestion 12-24 hours after inhalation
Contagious	NO	NO
Signs and Symptoms	Weakness, dizziness, dry mouth and throat, blurred vision, paralysis	Chills, high fever, headache spitting up blood, shortness of breath
Protection	Standard Precautions	Standard Precautions
Treatment	Supportive care, antitoxins, and vaccines	Supportive oxygenation and hydration

Note: There are numerous naturally-occurring toxins. For our purposes, we will group them into two categories.

Biological Agents Key Points


Onset of symptoms

Potentially contagious

Signs and symptoms

Protection

Treatment

Biological Agent Categories

Some Biological agent(s)

Category A

- Variola major
- Bacillus anthracis
- Yersinia pestis
- Clostridium botulinum
- Ebola, Marburg

Category B

- Coxiella burnetii
- Brucella spp.
- Burkholderia mallei
- Burkholderia pseudomallei
- Toxins
- Food/Water safety threats

Category C

Emerging threat agents

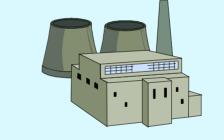
Disease

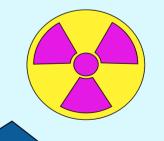
Category A

- Smallpox
- Anthrax
- Plague
- Botulism
- Tularemia
- Viral hemorrhagic fevers

Category B

- Q Fever
- Brucellosis
- Glanders
- Melioidosis
- Psittacosis
- Ricin toxin
- Typhus
- Cholera
- Shigellosis

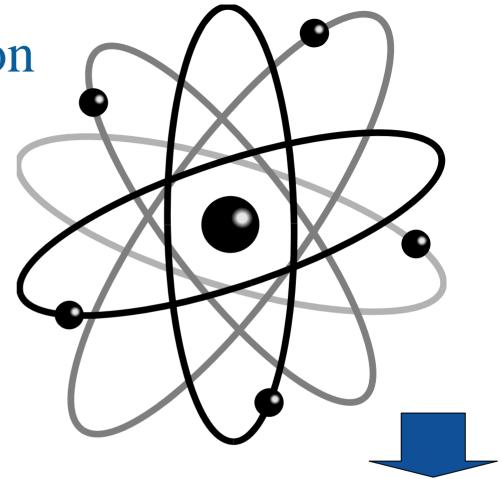



Nuclear/Radiological Materials

Improvised Nuclear Devices

Nuclear Plants

Radiological Dispersal Device


Ionizing Radiation

Alpha particles

Beta particles

Gamma rays

Neutrons

There are also non-ionizing types of radiation – fluorescent lights, lasers, and microwaves. In these examples, the radiation can cause burns, but it does not cause molecular change or ionization

Common Radiation Exposures

Average annual exposure

Chest x-ray

Flight

Smoking 1.5 packs per day

360 mrem per year

10 to 30 mrem

0.5 mrem every hour

16,000 mrem per year

Chronic

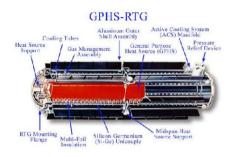
Mild radiation sickness*

Lethal dose*

* single acute exposure

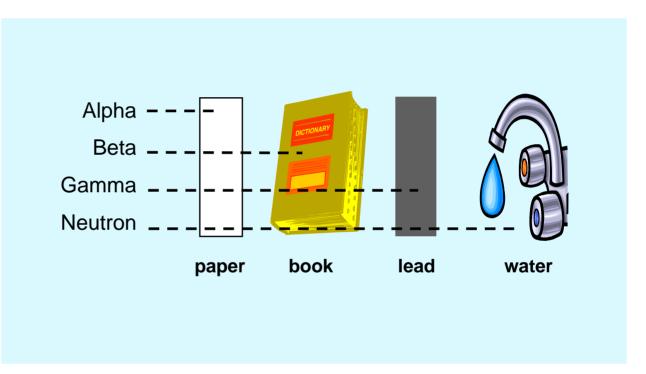
200,000 mrem

450,000 mrem


Acute

Health Hazards in an Incident

- Exposure to radiation source (external)
- Contamination (possible internal and/or external)


Protection from Radiation Exposure

Time

Distance

Shielding

CBR Detection

Radiological	
Chemical	
Biological	?

SOURCE: BAE SYSTEMS

SOURCE: BRUKER DALTRONICS

CBR Incident Indicators

Indicator	Chemical	Biological	Radiological
Dead Animals			
Lack of Insect life	•		
Physical Symptoms	•	•	•
Mass Casualties			
Unusual Liquids			
Unexplained Odors	•		
Unusual Metal Debris/Canisters		•	
Heat Emitting or Glowing			
Spray Mechanisms	•	•	

Chemical Incident Indicators (1)

Dead animals, birds, fish	Not just an occasional roadkill, but numerous animals (wild and domestic, small and large), birds, and fish in the same area.
Lack of insect life	If normal insect activity (ground, air, and/or water) is missing, check the ground/water surface/shore line for dead insects. If near water, check for dead fish/aquatic birds.
Physical symptoms	Numerous individuals experiencing unexplained water-like blisters, wheals (like bee stings), pinpointed pupils, choking, respiratory ailments, and/or rashes.
Mass casualties	Numerous individuals exhibiting unexplained serious health problems ranging from nausea to disorientation to difficulty in breathing to convulsions to death.
Definite pattern of casualties	Casualties distributed in a pattern that may be associated with possible agent dissemination methods.

Chemical agents have a rapid onset of symptoms

FEMA 426, Table 5-2: Indicators of a Possible Chemical Incident, p. 5-34

Chemical Incident Indicators (2)

Illness associated with confined geographic area	Lower attack rates for people working indoors than those working outdoors, and vice versa.
Unusual liquid droplets	Numerous surfaces exhibit oily droplets film; numerous water surfaces have an oily film (No recent rain.)
Areas that look different in appearance	Not just a patch of dead weeds, but trees, shrubs, brushes, food crops, and/or lawns that are dead, discolored, or withered. (Not current drought.)
Unexplained odors	Smells may range from fruity to flowery to sharp/pungent to garlic/horseradish like to bitter almond/peach kernels to new mown hay. It is important to note that the particular odor is completely out of character with its surroundings.
Low-lying clouds	Low-lying clouds/fog-like condition that is not explained by its surroundings
Unusual metal debris	Unexplained bomb/munitions-like material, especially if it contains a liquid. (No recent rain.)

FEMA 426, Table 5-2: Indicators of a Possible Chemical Incident, p. 5-34

Biological Incident Indicators

Unusual numbers of sick or dying people or animals	Any number of symptoms may occur. As a first responder, strong consideration should be given to calling local hospitals to see if additional casualities with similar symptoms have been observed. Casualties may occur hours to days or weeks after an incident has occurred. The time required before symptoms are observed is dependent on the biological agent used and the dose received. Additional symptoms likely to occur include unexplained gastrointestinal illnesses and upper respiratory problems similar to flu/colds.
Unscheduled and unusual spray being disseminated	Especially if outdoors during periods of darkness.
Abandoned spray devices	Devices will have no distinct odors.

Biological agents will typically have a more delayed effect

FEMA 426, Table 5-3: Indicators of Possible Biological Incident, p. 5-35

Radiological Incident Indicators

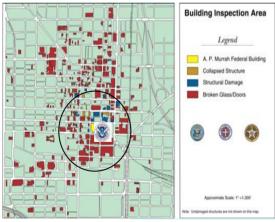
Unusual numbers of sick or dying people or animals	As a first responder, strong consideration should be given to calling local hospitals to see if additional casualties with similar symptoms have been observed. Casualties may occur hours to days or weeks after an incident has occurred. The time required before symptoms are observed is dependent on the radioactive material used and the dose received. Additional symptoms likely to occur include skin reddening and, in severe cases, vomiting.
Unusual metal debris	Unexplained bomb/munitions-like material.
Radiation symbols	Containers may display a radiation symbol.
Heat emitting material	Material that seems to emit heat without any sign of an external heating source.
Glowing material/particles	If the material is strongly radioactive, it may emit a radioluminescence.

Radiological agents will typically have a more delayed effect

FEMA 426, Table 5-4: Indicators of a Possible Radiological Incident, p. 5-36

CBR Protection Strategies

Protective Actions:


- Evacuation
- Sheltering in Place
- Personal Protective Equipment
- Air Filtration, Pressurization, and Ultraviolet Light
- Exhausting and Purging

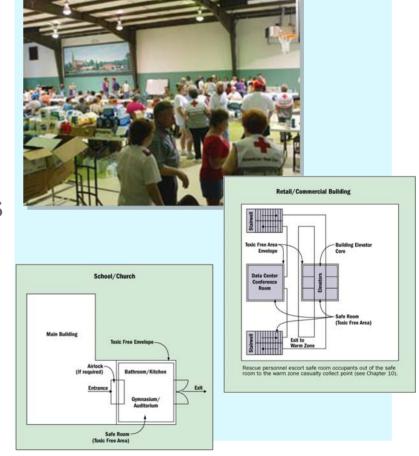
Evacuation

- Determine airborne hazard source -- internal or external
- Determine if evacuation will make things better or worse
- Assembly should be upwind, at least 1,000 feet away, and three different locations (A, B, C plan)
- In most cases, existing plans for fire evacuation apply follow through - exercise

Sheltering in Place

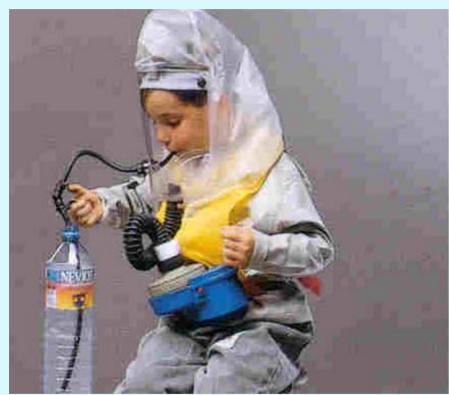
A building can provide substantial protection against agents released outside if uptake of contaminated air can be halted or reduced and/or if uptake of fresh/filtered air can be increased.

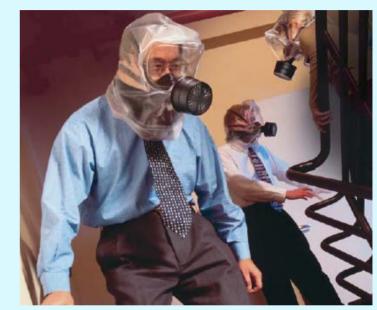
The amount of protection varies with:


- How tight the building is
- Level of exposure (dose x time)
- Purging or period of occupancy
- Natural filtering

Sheltering in Place

Sheltering Plan should:


- Identify all air handling equipment to deactivate
- Identify cracks, seams, joints, and doors to seal (with method)
- Preposition needed supplies
- Identify safe rooms/safe havens
- Identify procedures for purging or airing out building
- Identify procedures for voluntary occupant participation
- Maintain comms TV or radio



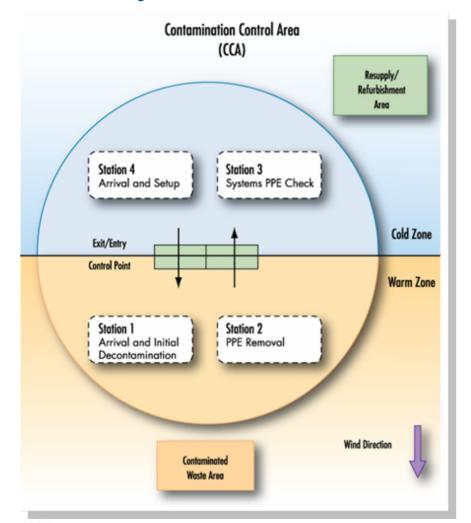
FEMA 453, Multihazard Shelter (Safe Havens) Design

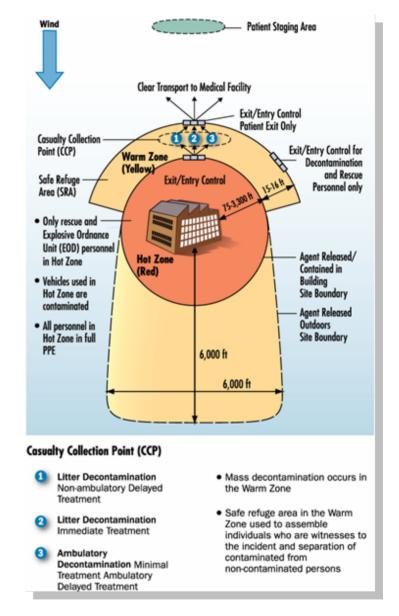
Personal Protective Equipment

SOURCE: MINE SAFETY APPLIANCES COMPANY (USA)

SOURCE: BROOKDALE INTERNATIONAL SYSTEMS INC (CANADA)

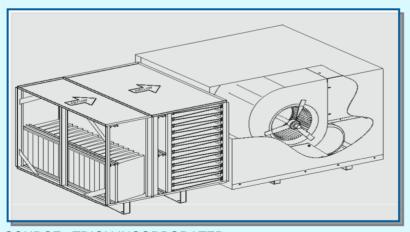
Aftermath of Tragic Events





Assembly should be to the upwind side of the building at least 1,000 feet away since any airborne hazard escaping the building during an internal release will be carried downwind.

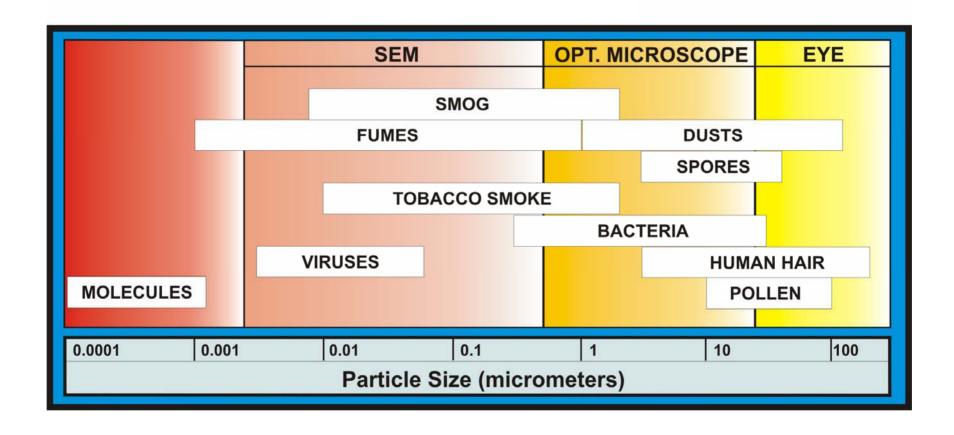
Casualty Collection Point



FEMA 453, Figure 1-18, p. 1-57, and Figure 1-13, p. 1-52

Air Filtration and Pressurization

- Requires modifications to HVAC and electrical systems – significant initial and life-cycle costs
- Introduces filtered air at a rate sufficient to produce an overpressure and create an outward flow through leaks and cracks


Air Filtration and Cleaning

Two Types of Collection Systems:

- Particulate air filtration
 - Principles of collection
 - Types of particulate filters
 - Filter testing and efficiency ratings
- Gas-phase air filtration
 - Principles of collection
 - Types of gas-phase filters

Air Contaminant Sizes

Various Filter Types

Pleated Panel Filters

HEPA Filters

SOURCE: FLANDERS CORPORATION

SOURCE: AMERICAN FILTER

Carbon Filters

FEMA

SOURCE: FLANDERS CORPORATION FEMA 426, Figure 5-9: Charcoal Filter Beds (center), p. 5-17 BUILDING DESIGN FOR HOMELAND SECURITY Unit VIII-44

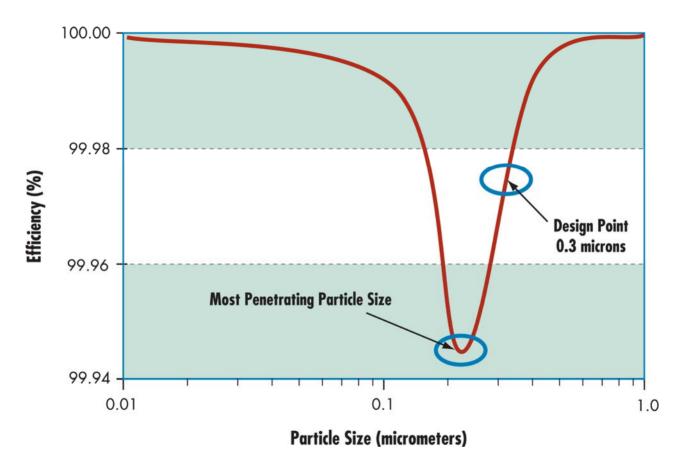
ASHRAE Standards

ASHRAE 52.2				ASHRAE 52.1				
.4501/	Particle Size Range			Te	est	Particle Size Range, µm	Applications	
MERV	3 to 10 μm 1 to 3 μm .3 to 1 μm			Arrestance	Dust Spot			
1	< 20%	ı	-	< 65%	< 20%			
2	< 20%	ı	-	65 - 70%	65 - 70% < 20%		Residential, light, pollen, dust mites	
3	< 20%			70 - 75%	< 20%	> 10		
4	< 20%	-	-	- > 75% < 20%				
5	20 - 35%	-	-	80 - 85%	< 20%	-		
6	35 - 50%	-	-	> 90%	< 20%		Industrial,	
7	50 - 70%	-	-	> 90%	20 - 25%	3.0 - 10	Dust, Molds, Spores	
8	> 70%	ı	-	> 95%	25 - 30%			

FEMA 426, Table 5-1: Comparison of ASHRAE Standards 52.1 and 52.2,

p. 5-12

ASHRAE Standards


9	> 85%	< 50%	-	> 95%	40 - 45%		
10	> 85%	50 - 65%	-	> 95%	50 - 55%	10 20	Industrial,
11	> 85%	65 - 80%	-	> 98%	60 - 65%	1.0 – 3.0	Legionella, dust
12	> 90%	> 80%	-	> 98%	70 - 75%		
13	> 90%	> 90%	< 75%	> 98%	80 - 90%		Hospitals,
14	> 90%	> 90%	75 - 85%	> 98%	90 - 95%	0.2 1.0	
15	> 90%	> 90%	85 - 95%	> 98%	~95%	0.3 – 1.0	Smoke removal, Bacteria
16	> 95%	> 95%	> 95%	> 98%	> 95%		
17	-	-	≥ 99.97%	-	-		
18	-	-	≥ 99.99%	-	-	0.0	Clean rooms,
19	-			-	-	< 0.3	Surgery, Chembio,
20	-	-	≥ 99.9999%	-	-		Viruses

FEMA 426, Table 5-1: Comparison of ASHRAE Standards 52.1 and 52.2,

p. 5-12

Typical Performance of a HEPA Filter

FEMA 426, Figure 5-7: Typical HEPA Filter Performance p. 5-14

Inside Versus Outside Releases

Outside Release

- Keep people inside building
- Reduce indoor/outdoor air exchange close dampers
- Shut off air handling systems and equipment that moves air
 - HVAC, exhausts, combustion, computers, elevators
- Close all windows and doors
- Once the outdoor hazard has dissipated
 - Open all doors and windows
 - Turn on all fans, including purging systems

Inside Versus Outside Releases

Inside Release

- Turn off all air handling equipment if no special standalone systems installed
- If special systems installed, i.e. mailroom
 - Place air handling system on full (or 100% outside air) to pressurize the space around release room
 - Turn off all air handling supplying release room
- Consider activating fire sprinklers in release room if toxic chemicals involved
- Evaluate evacuation routes for contamination
- Evacuate building in accordance with emergency plan

Exhausting and Purging

Basic Principles:

- Use ventilation and smoke/purge fans to remove airborne hazards
 - Use primarily after an external release plume has passed
 - Selectively use for internal release may spread contamination further
- Purging should be carefully applied
 - Primarily when agent has spread throughout building

HVAC System Upgrade Issues

- What is the threat? Toxic Industrial Chemicals, particulate, gaseous, chemical, biological?
- How clean does the air need to be and what is the associated cost?
- What is the current system capacity?
- Is there filter bypass and how significant is air infiltration into the building envelope?
- Will improved indoor air quality offset upgrade costs?
- Is system maintenance addressed?

Economic Issues to Consider

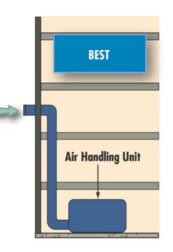
Initial Costs

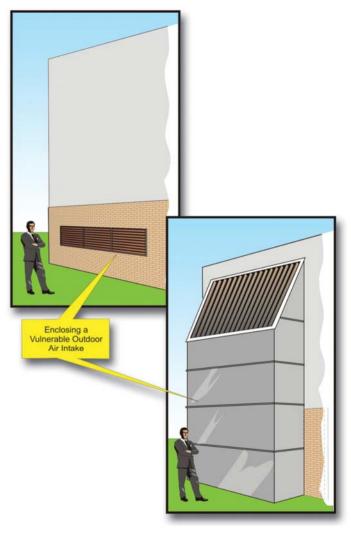
- Filters, housing, blowers
- Factors including flow rate, contaminant concentration

Operating Costs

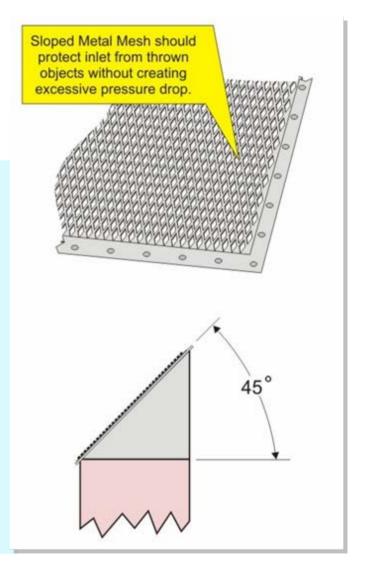

Maintenance, replacement filters, utilities, waste disposal

Replacement Costs


 Filter life (factors include continued concentration and particle size distribution, flow rates, etc.)



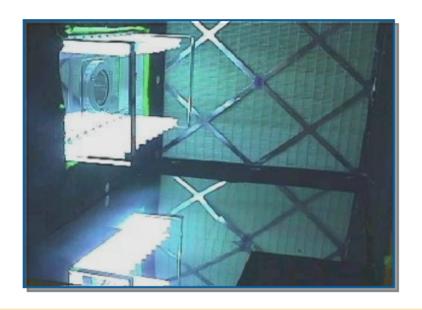
Access to Outdoor Intakes

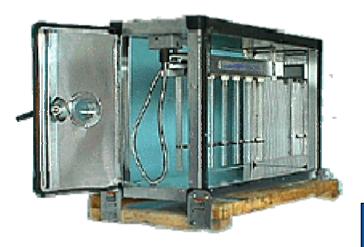


Extension Design Recommendations

Lowest edge as high as possible (> 12ft)

Sloped intake (min. 45° recommended)


Metal mesh protecting intake



Ultraviolet Germicidal Irradiation

All viruses and almost all bacteria (excluding spores) are vulnerable to moderate levels of UVGI exposure

UV lamps resemble ordinary fluorescent lamps, but are designed to emit germicidal UV

FEMA 426, Figure 5-10: UVGI Array with Reflective Surfaces, p. 5-19

URV AND UVGI INFORMATION

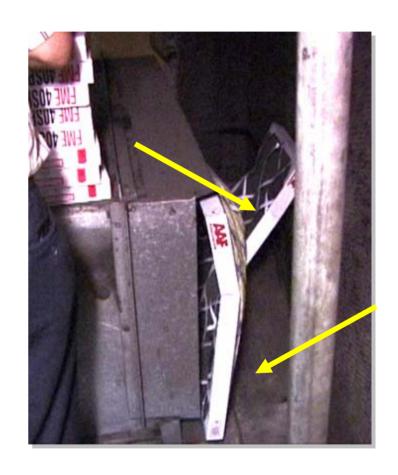
	URV Average Intensities and Doses										
URV (UVGI Rating Value)	Average Intensity µW/cm²	Dose at t (time) = 0.5 sec µW/s/cm²	TB (Tuberculosis) Kill Rate %								
9	250	125	23.4								
10	500	250	41.3								
11	1,000	500	65.5								
12	1,500	750	79.8								
13	2,000	1,000	88.1								
14	3,000	1,500	95.9								

URV = UVGI Rating Value

UVGI = Ultraviolet
Germicidal
Irradiation

Simulation Results for Air Intake Release										
Predicted Performance	Anthrax	Smallpox	TB Bacilli							
URV 11 - UVGI Removal Rate%	8.0	53.4	65.6							
MERV 11 Filter Removal %	56.7	32.3	14.1							
Combined Removal Rate %	60.2	68.5	70.4							
Baseline Casualties (release over 8 hour period) %	99.0	99.0	99.0							
Casualties with Filters and UVGI $\%$	1.0	1.5	1.5							

From "Immune Building Systems Technology", Kowalski 2003


Infiltration and Bypass

Infiltration

 Building envelope tightness and ventilation control are critical

Bypass

- Filters should be airtight
- Check gaskets and seals
- Periodically check

Things Not to Do

- Outdoor air intakes should not be permanently sealed.
- HVAC systems (includes filter upgrades) should not be modified without understanding the effects on building systems or occupants.
- Fire protection and life safety systems should only be modified after careful analysis and review.

Things to Do

- Have a current emergency plan that addresses
 CBR concerns
 - Exercise plan
 - Revise plan based upon lessons learned
- Understand your HVAC building vulnerabilities
- Conduct periodic walk-through of the system for evidence of irregularities or tampering
- Recognize that there are fundamental differences among various CBR events

Summary

- CBR threats are real and growing.
- Industrial chemicals are readily available.
- Military chemicals require specialty expertise.
- Most buildings provide a reasonable level of protection.
- Inside versus outside building release determines evacuation and other reaction decisions.
- Develop an emergency plan and ensure it works.

Unit VIII Case Study Activity

Chemical, Biological, and Radiological (CBR) Measures

Background

Purpose of activity: check on learning about the nature of chemical, biological, and radiological agents

Requirements

Refer to Case Study and FEMA 426

Answer worksheet questions

Unit IX-B Site and Layout Design Guidance

Unit Objectives

Identify site planning concerns that can create, reduce, or eliminate vulnerabilities and understand the concept of "Layers of Defense."

Recognize protective issues for urban site planning.

Compare the pros and cons of barrier mitigation measures that increase stand-off or promote the need for hardening of buildings at risks.

Unit Objectives

Understand the following critical issues:

- Need for keeping up with the growing demand for security design
- Benefits that can be derived from appropriate security design

References

FEMA Building Vulnerability Assessment Checklist, Chapter 1, page 1-46, FEMA 426

Site and Layout Design Guidance, Chapter 2, FEMA 426

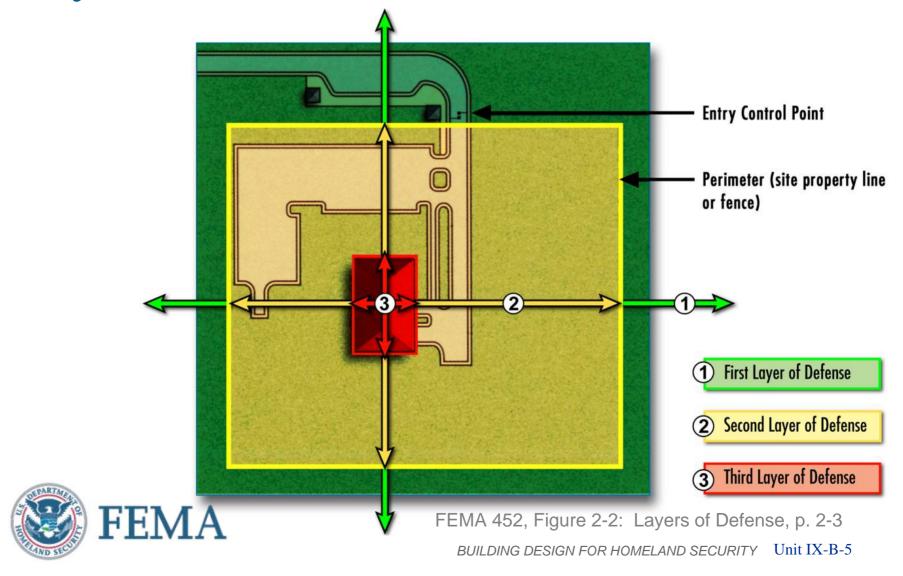
FEMA 430, Primer for Incorporating Building Security Components in Architectural Design

Unit Objectives

Understand the following critical issues (continued):

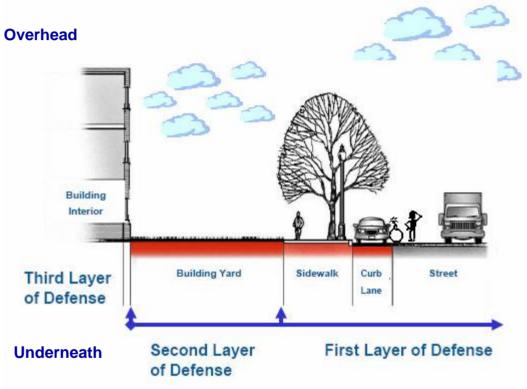
- Benefits of adopting a creative process to face current design challenges
- Benefits of including aesthetic elements compatible with security and architectural characteristics of building and surrounding environment

References


FEMA Building Vulnerability Assessment Checklist, Chapter 1, page 1-46, FEMA 426

Site and Layout Design Guidance, Chapter 2, FEMA 426

FEMA 430, Primer for Incorporating Building Security Components in Architectural Design



Layers of Defense

Layers of Defense

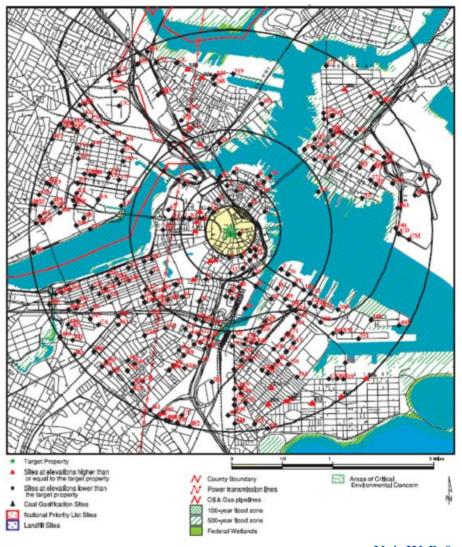
Building yards many not exist in urban areas

Layers of Defense

Layers of Defense	Survey Surroundings	Access Points	Sidewalks and Curbs	Street Furniture	Barriers and Bollards	Yards and Plazas	Gatehouses / Screening	Parking	Signage	Security Lighting	Sensors / CCTV	Site Utilities
First Layer												
Second Layer												
Third Layer												

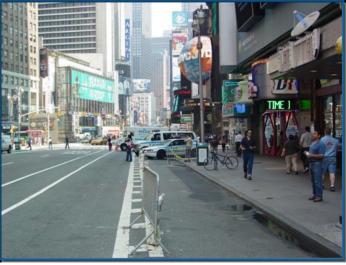
Survey Surroundings / Data Collection:

- 360 degrees all directions
- Overhead structures that can collapse and strike building of interest
- Underneath subways, roadway tunnels, and utilities



Data Collection -- use GIS to help determine:

- Approaches to site/building
 - Personnel
 - Vehicles
- Potential collateral damage near facility
- Buildings and infrastructure of concern nearby
- Important geographic and topographic elements



Access Points

- Ring of steel
- Temporary stand-off
 - Road closure
 - Temporary barriers / parked vehicles
- Work with local authorities

First Layer of Defense Access Points

- Interruption of traffic pattern or street closure can impact a wide area
- Interruption or closure only justified when stand-off absolutely required

Access Points

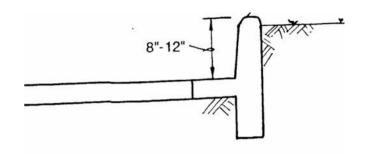
- Control angle of approach
 - Turns
 - Curves
- Slow down approaching vehicles

BUILDING DESIGN FOR HOMELAND SECURITY Unit IX-B-12

Sidewalks and Curbs

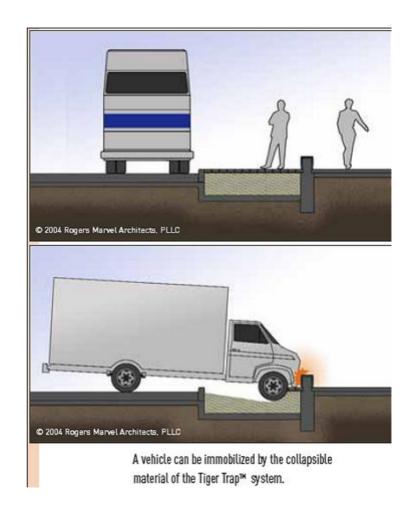
- Most central business district buildings have exterior wall on the property line
- Stand-off distance is generally impossible to achieve; sidewalks provide less than 10 feet
- Low curbs do not keep vehicles away from buildings
- Hardening in lieu of stand-off can be very expensive, especially for existing buildings

Sidewalks and Curbs


- Interruption of a sidewalk is only justified when standoff is absolutely required
- Closure can be temporary or permanent

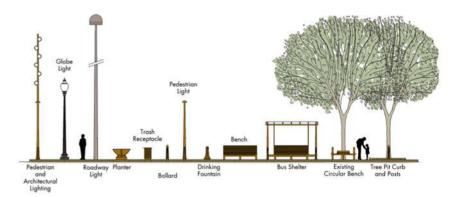
Sidewalks and Curbs

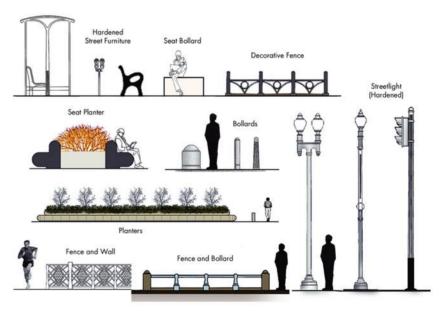
- High curbs can keep vehicles from departing roadway
- Do not remove curbside parking unless additional stand-off absolutely required



Sidewalks and Curbs

An alternate to visible barriers or bollards is collapsible sidewalks using low-strength concrete

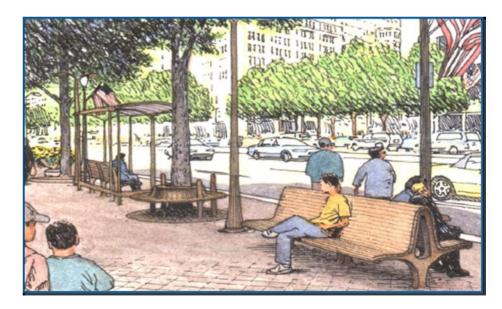



Street Furniture

Streetscape can be used to increase security. Hardened elements that become security elements

- Parking meters
- Streetlights
- Benches
- Planters
- Trash receptacles

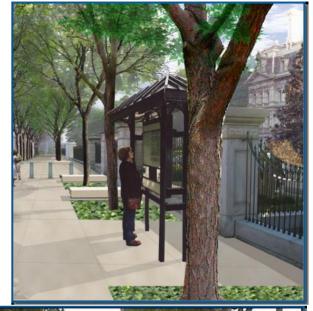
NCPC Streetscape Catalogue


BUILDING DESIGN FOR HOMELAND SECURITY Unit IX-B-17

Street Furniture

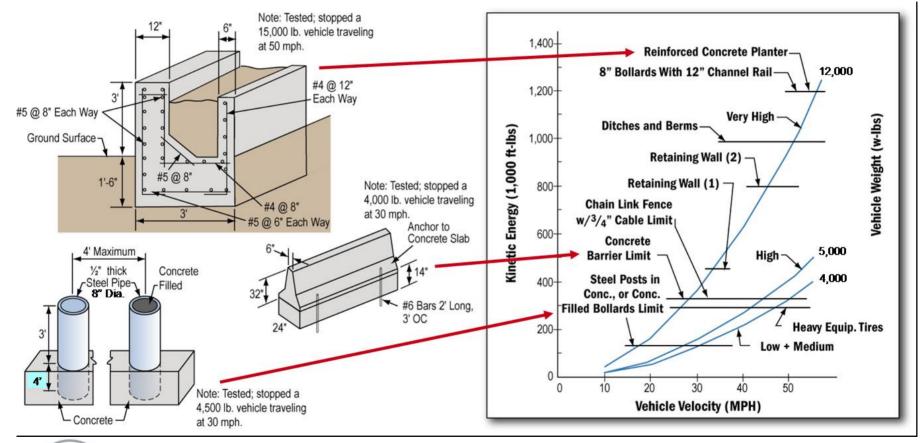
Place streetscape security components at least <u>24</u> inches from edge of curb

- Allow for opening car doors
- Allow for pedestrian movement from car to sidewalk



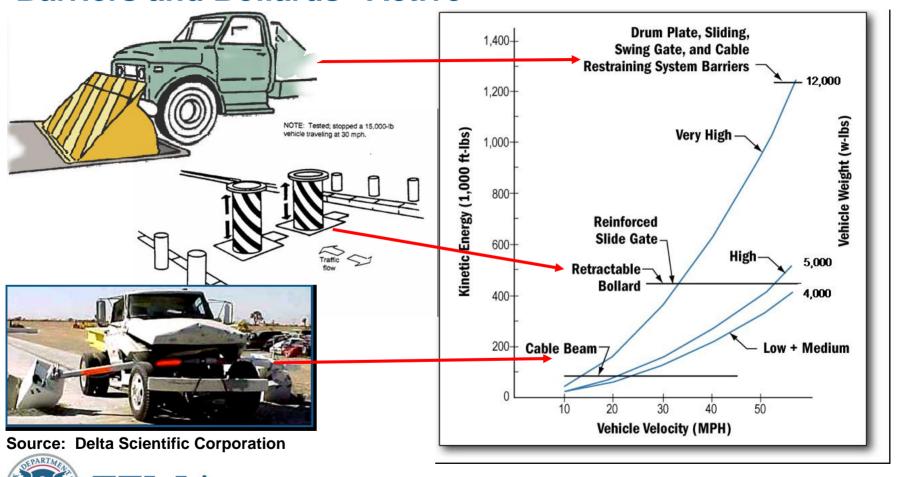
Street Furniture

- Treatment of security elements should be compatible with existing elements
- Perimeter barriers can go hand-in-hand with streetscape improvements and plantings
- Appropriate design can blend security into existing streetscape; serving as amenities for tenants and neighbors

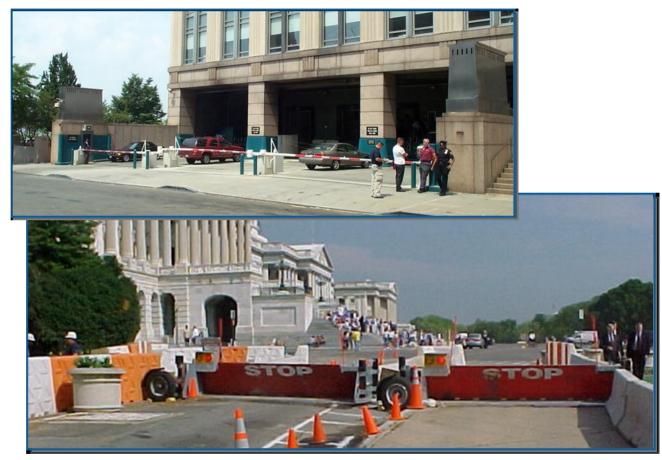


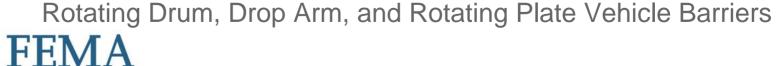
BUILDING DESIGN FOR HOMELAND SECURITY Unit IX-B-19

First Layer of Defense Barriers and Bollards - Passive


Barriers and Bollards - Passive

Source: Yodock Wall Company


Barriers and Bollards - Active



FEMA

Barriers and Bollards - Active

First Layer of Defense Barriers and Bollards

Department of State periodically issues list of manufacturers and model numbers certified in meeting prescribed testing criteria (March 2003)

Rating	Vehicle Weight (lbs.)	Vehicle Speed (mph)	Distance Past Barrier (ft)
K4	15,000	30	<= 3.3
K8	15,000	40	<= 3.3
K12	15,000	50	<= 3.3

Check site utilities, water runoff, and other subterranean Conditions when installing bollards and barriers

First Layer of Defense Barriers and Bollards

Department of Defense periodically issues list of manufacturers and model numbers certified in meeting prescribed testing criteria (August 2003)

Vehicle Weight (lbs.)	Vehicle Speed (mph)	Distance Past Barrier (ft)
15,000	30	<=3(L3)/20(L2)/50(L1)
15,000	40	<=3(L3)/20(L2)/50(L1)
15,000	50	<=3(L3)/20(L2)/50(L1)
10,000	50	0 to 50
10,000	15	50 to 100

Barriers and Bollards

- Fixed bollards
- Retractable bollards
- Planters

Fixed bollards

Barriers and Bollards

Retractable

First/Second Layer of Defense

Barriers and Bollards

Planters

- If well designed, planters can be an element of beautification
- Ensure barriers are properly anchored to stop vehicles and configured to reduce fragmentation

Barriers and Bollards

Avoid designing barriers that impair access by first responders:

- Intersection with driveways and gates
- Crossing of pedestrian paths and handicapped ramps
- Fire hydrants

Barriers and Bollards

Ensure barriers are properly anchored to stop vehicles

Barriers and Bollards

Properly anchored barriers stop vehicles and reduce fragmentation during blast

Barriers and Bollards

Long expanses of bollards should be carefully designed and sited to avoid monotony

Bollard spacing should ensure no vehicles can get through

Buildings with front yards

Buildings with plazas

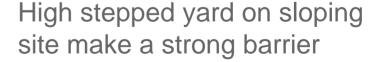
YARD

PLAZA

Building Yard

Narrow yard incorporating low stone wall and metal fence

- Generally small
- Usually provided for governmental & institutional buildings


Small yard with wide pavement that provide some useful stand-off

Building Yard

Low planting makes a moderate barrier

Building Yard

Monumental yards make excellent barriers and elements of beautification

Plaza

- An expanded building yard
- Moved out from the controlled building access
- A developer provided public space
- A well designed plaza can provide visual interest at same time providing good stand-off

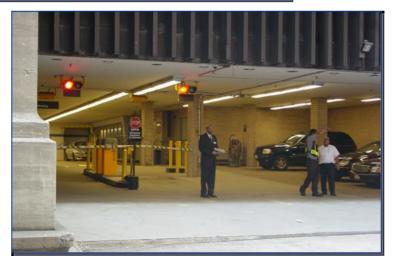
Plaza

Plaza with sculptured barrier forms

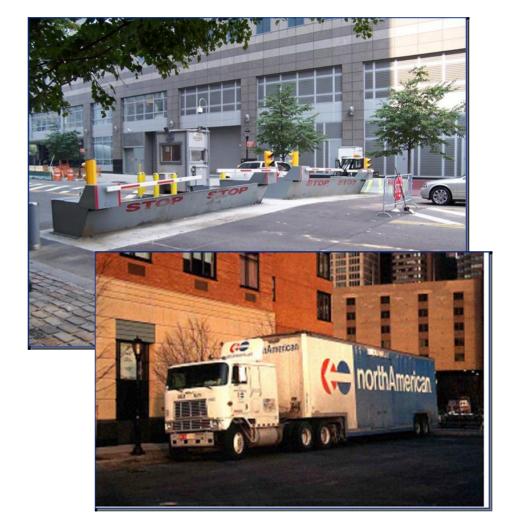
Gatehouses

- Access control with human intervention
 - Hardened as determined by threat
 - Protection from elements

All Layers of Defense


Parking

 Parking can be applicable to all layers of defense



BUILDING DESIGN FOR HOMELAND SECURITY Unit IX-B-41

All Layers of Defense

Parking – Delivery / Loading Dock

- Develop plan for delivery and queuing
 - Coordinate with civic authorities as necessary
- Place barriers, guardhouse, if possible
- Avoid parking too close to building even after screening

All Layers of Defense

Parking

- Restrict parking and access between buildings
- Consider one-way circulation in parking lots
- Well-lit, with security presence, emergency communications, and/or CCTV
- Open, observable, no hiding places
- Restrict parking underneath buildings
- Apply progressive collapse hardening to columns when parking garage is in building

All Layers of Defense

Signage

- Unless required, do not identify sensitive areas
- Minimize signs identifying critical utilities
- Warnings signs limiting access to control areas should be posted at all entrances
- Signpost may be hardened and included as part of the perimeter barrier
- The lighting of signage should enhance nighttime safety
- Warning signs should be posted in languages commonly spoken

Second Layer of Defense Security Lighting

Continuous lighting

- Glare projection
- Controlled lighting (avoid glare)
- Compatible with closed circuit television (CCTV)

Emergency lighting

First Layer of Defense

Sensors / CCTV

- When stand-off and hardening are not possible, security must rely upon sensors and CCTV
- Look for suspicious vehicles and people, especially those that seem to be profiling your building
- Monitor access to utilities serving the building
- Currently high tech monitoring systems need to be selected and placed by experts

Second Layer of Defense

Site Utilities

- Concealed versus exposed
- Underground versus overhead
- Protect/secure versus accessible
- Surveillance if possible

The following considerations can impact the site and layout design:

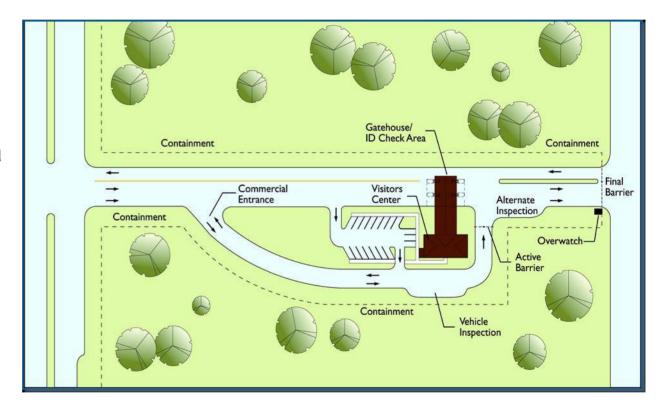
- Overall size and number of structures placed on site
- Massing and placement of structures
- Access/egress points, such as visitor entries, staff entries, and loading docks

First Layer of Defense (Uncontrolled)

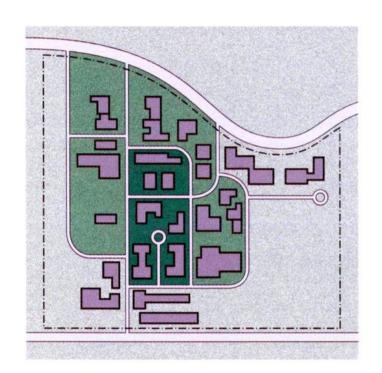
- Personnel Access Control
- Vehicle Access Control & Inspection
- Vehicle Stand-off

Second Layer of Defense (Controlled)

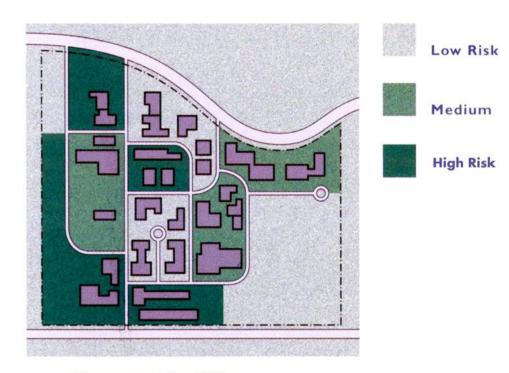
- Personnel Access Control
- Vehicle Access Control
- Vehicle Stand-off


High Security Building Third, Second, and First Layers of Defense (Controlled)

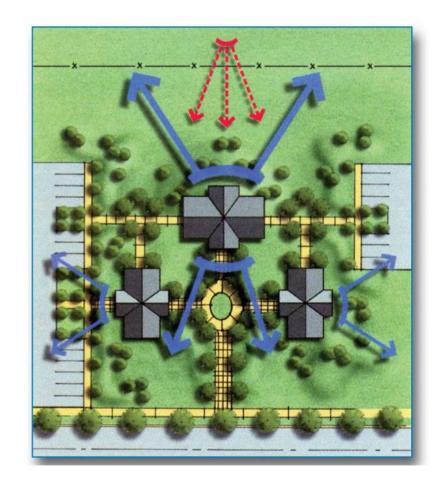
- Personnel Access Control
- Vehicle Access Control
- Hardening



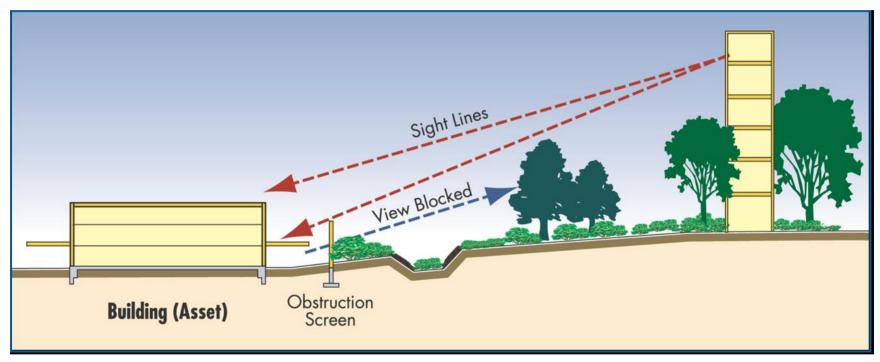
Access Points


- Reject vehicles before final barrier
- Inspection area blast effects
 - Pressure
 - Fragments
- Reaction time to activate barriers

Clustered facilities



Dispersed facilities


Campus/University Orientation

- Significant impact on making building visible or hidden to aggressors
- Enhance surveillance opportunities of approaches and parking
- Minimize views into building
- Reduce blast effects

Campus/University Siting and View Relationships

Blocking Sight Lines

Parking

 Restrict parking from the interior of a group of buildings and away from restricted area

- Locate parking within view of occupied buildings
- If possible, design the parking lot with one way circulation

Best Practices

Eliminate potential hiding places near facility, provide an unobstructed view around facility

Eliminate parking beneath facilities

e trash bins

Minimize exterior signage or other indications of asset locations

as possible

Locate trash bins as far from facility

Locate parking to obtain stand-off from facility

Illuminate building exteriors or sites where exposed assets are located

Minimize vehicle access points

Eliminate lines of approach perpendicular to the building

Secure access to power/heat plants, gas mains, water supplies, and electrical service

Locate facility

made vantage

away from natural or man-

points

Figure 2-16, Summary of Site Mitigation Measures, p. 2-53

BUILDING DESIGN FOR HOMELAND SECURITY Unit IX-B-55

Unit IX Case Study Activity

Site and Layout Design Guidance

Background

FEMA 426, Building Vulnerability Assessment Checklist: screening tool for preliminary design vulnerability assessment

Requirements: Vulnerability Rating Approach
Assign sections of the checklist to qualified group members

Refer to Case Study and answer worksheet questions

Review results to identify site and layout vulnerabilities and possible mitigation measures

BUILDING DESIGN FOR HOMELAND SECURITY

Unit X Building Design Guidance

Unit Objectives

Explain architectural considerations to mitigate impacts from blast effects and transmission of chemical, biological, and radiological agents from exterior and interior incidents.

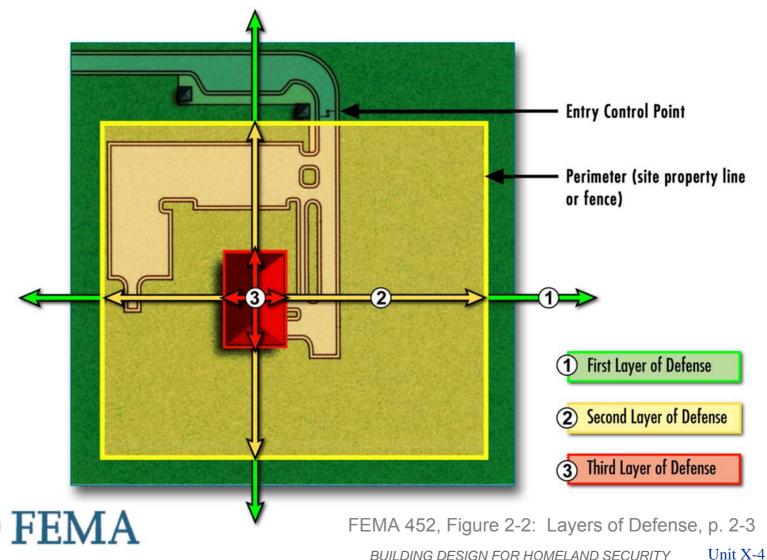
Identify key elements of building structural and non-structural systems for mitigation of blast effects.

References

FEMA Building Vulnerability Assessment Checklist, Chapter 1, page 1-46, FEMA 426

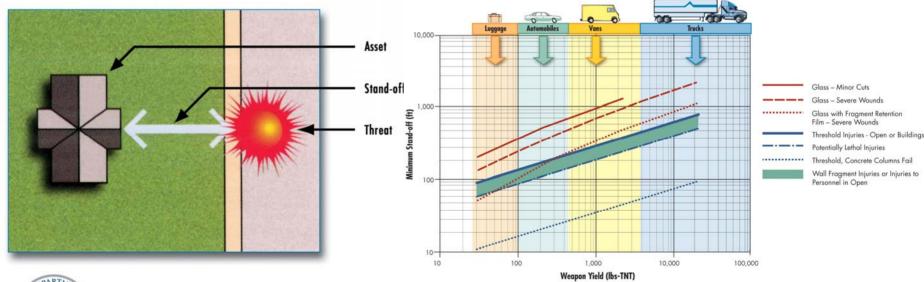
Building Design Guidance, Chapter 3, FEMA 426

FEMA 430, Primer for Incorporating Building Security Components in Architectural Design


Unit Objectives (cont.)

Compare and contrast the benefit of building envelope, mechanical system, electrical system, fire protection system, and communication system mitigation measures, including synergies and conflicts.

Apply these concepts to an existing building or building conceptual design and identify mitigation measures needed to reduce vulnerabilities.



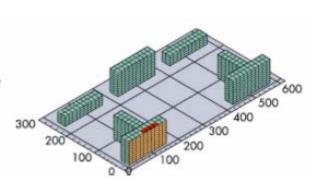
Layers of Defense

Stand-off Distance – primary impact on design and construction of building envelope and structure against design basis threat (explosives)

To protect against unauthorized vehicles approaching target buildings

FEMA 426, Figure 2-8: Concept of stand-off distance, p. 2-22 (left)
FEMA 426, Figure 4-5: Explosive blast range to effects, p. 4-11 (right)

BUILDING DESIGN FOR HOMELAND SECURITY Unit X-5


Stand-off versus Given Hardening

Detonation at 80 feet

 Red – Very severe damage, possible collapse

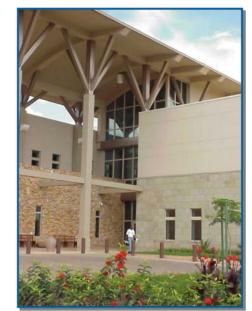
 Yellow – Very unrepairable structural damage

 Green – Moderate repairable structural damage

Detonation at 400 feet

Detonation at

171 feet

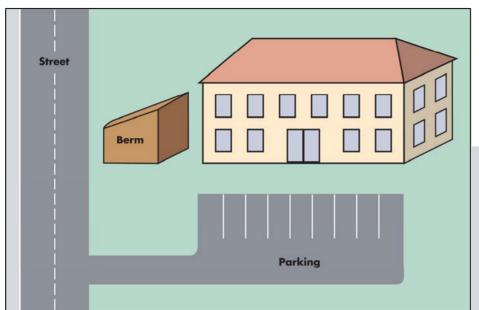

FEMA 426, Figure 4-9: Stand-off distance versus blast impact

– Khobar Towers, p. 4-15

Hardening

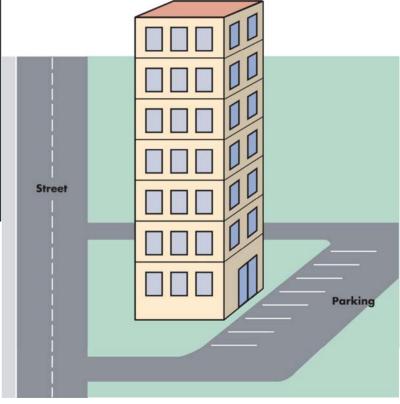
Less stand-off requires

- More mass
- More steel
- Thicker and stronger glass
- Better door and window frame connection to building/wall

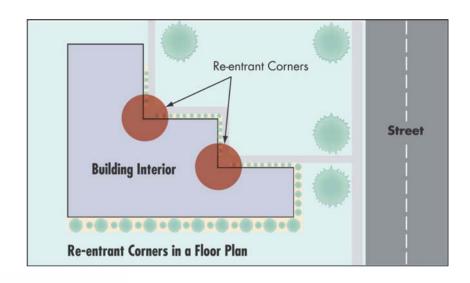

Layers of Defense	Architecture	Structural Systems	Building Envelope	Utility Systems	Mechanical & Electrical Sys	Plumbing & Gas Systems	Fire Alarm Systems	Comm - Info Technology Sys	Equipment Ops & Maint	Security Systems
First Layer										
Second Layer										
Third Layer										

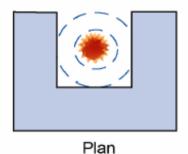
When hardening a building, the following should be considered:

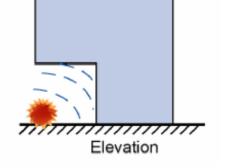
- Progressive collapse
- Appropriate security systems
- Hardening the building envelope
- Appropriate HVAC systems to mitigate CBR
- Hardening the remaining structure
- Hardening and location of utilities



Low, Large Footprint


Tall, Small Footprint

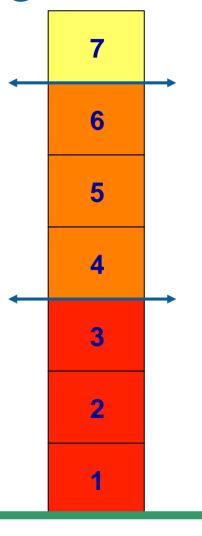



Rectangular versus "U", "L" or "E"

Avoid re-entrant corners

Flush face versus eaves and overhangs

Shapes That Accentuate Blast

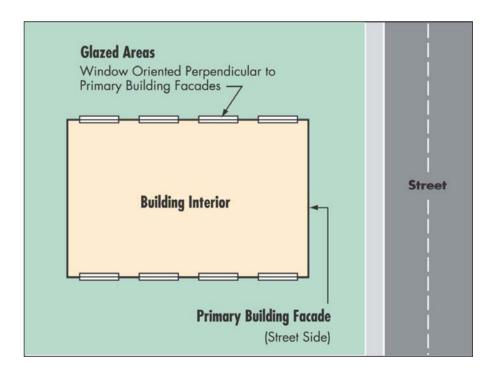


FEMA 426, Figure 3-2: Re-entrant corners in a floor plan, p. 3-6 FEMA 427, Figure 6-3: Effects of building shape vs. air blast, p. 6-9

Hardening – Story height vs Stand-off

 Hardening of first three floors is critical as these take brunt of blast

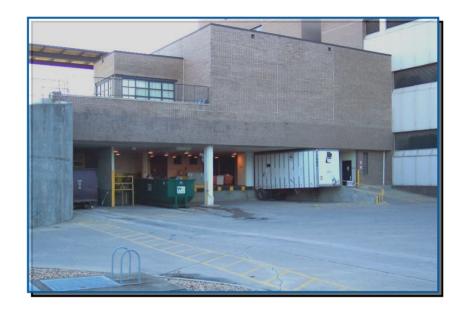
- At third through sixth floor, hardening can be reduced due to reflection angle
- Above the sixth floor, conventional construction may be sufficient depending upon design threat and reflections off adjacent buildings



Ground floor elevation 4 feet above grade

Orient glazing perpendicular to principal threat direction

Avoid exposed structural elements

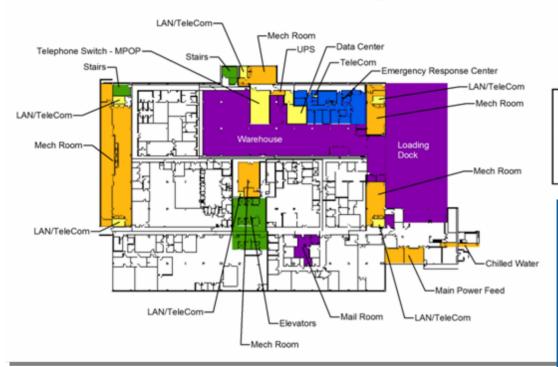

Pitched roofs and pitched window sills

Loading Docks

- Avoid trucks parking in or underneath buildings
- Design to prevent progressive collapse
- Ensure separation from critical systems, functions, and utility service entrances
- Separate loading docks from building critical functions

- Provide sufficient area for screening vehicles and packages
- Keep dumpsters away from buildings

Parking Considerations


 Garage elevators service garage only to unsecured zone of lobby

- Restrict parking underneath buildings
- Well-lit, security presence, emergency communications, and/or CCTV
- Apply progressive collapse hardening to columns when parking garage is in building

Architecture – Space Design

The loading dock and warehouse provide single point of entry to the interior

Emergency Response

Receiving/Storage

TeleCom/Data

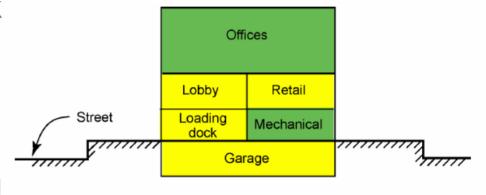
Evac Route Mech/Utilities

The mailroom is located within the interior and not on exterior wall or separate HVAC system.

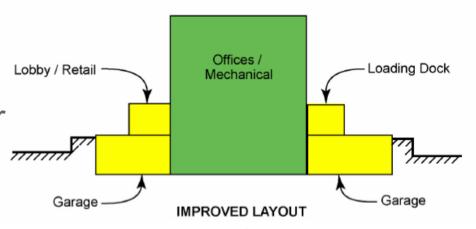
The telecom switch and computer data center are adjacent to the warehouse.

The trash dumpster and emergency generator are located adjacent to the loading dock.

FEMA 426, Figure 1-10: Non-redundant critical functions collocated near loading dock, p. 1-41


Architecture – Space Design

Place unsecured or high risk areas outside building footprint


Do not mix high risk and low risk tenants in same building

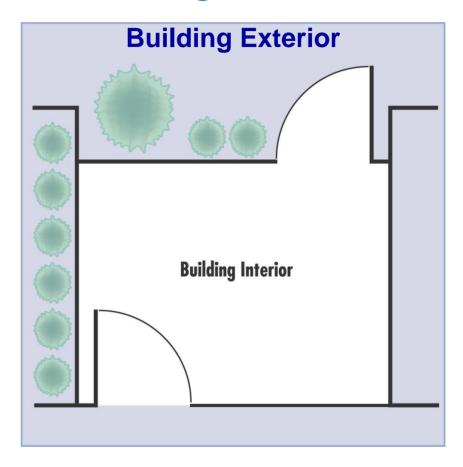
Locate critical assets into interior of building

Separate areas of high visitor activity (unsecured) from critical assets

ORIGINAL LAYOUT

FEMA 427, Figure 6-4: Improving layout of adjacent unsecured and secured areas, p. 6-10

Architecture – Space Design


Eliminate hiding places

Interior barriers

Offset doorways

Minimize glazing, particularly interior glazing near high-risk areas

Lobby with security procedures configured to contain incidents (blast, CBR, armed attack)

Architecture – Other Location Concerns

- Safe havens / shelters
- Office locations
- Public toilets and service areas
- Retail spaces
- Stairwells
- Mailroom

Structural Systems

Progressive Collapse Design

GSA Progressive Collapse Analysis and Design Guidance for New Federal Office Buildings and Major Modernization Projects

DoD Unified Facilities Criteria - Minimum Antiterrorism Standards for Buildings

Structural Systems

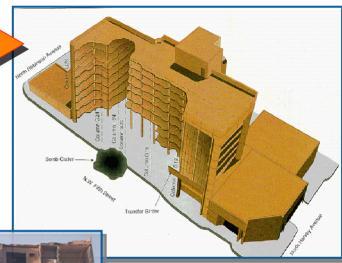
Progressive Collapse Concept

BUILDING PLAN

Structural Systems -- Collapse

GSA and DoD criteria do not provide specific guidance for an engineering structural response model

These organizations are working toward Interagency Security Committee consolidated guidance


Owner and design team should decide how much progressive collapse analysis and mitigation to incorporate into design.

Structural Systems -- Loads and Stresses

Murrah Federal Building, Oklahoma City

Ronan Point, London

Khobar Towers, Dhahran

Structural Systems – Best Practices

Consider incorporating active or passive internal damping into structural system (sway reduction in high-rise)

Use symmetric reinforcement, recognizing components might act in directions opposite to original or standard design – flooring especially

Column spacing should be minimized (<=30 feet)

Structural Systems – Best Practices (cont.)

Stagger lap splices and other discontinuities and ensure full development of reinforcement capacity or replace with more flexible connections – floors to columns especially

Protect primary load carrying members with architectural features that provide 6 inches minimum of stand-off

Use ductile detailing requirements for seismic design when possible

Building Envelope

During actual blast or CBR event, building envelope provides some level of protection for people inside:

- Walls
- Windows
- Doors
- Roofs

Soil can be highly effective in reducing damage during an explosive event

Minimize "ornamentation" that may become flying debris in an explosion.

Building Envelope – Walls

Design should ensure a flexible failure mode

Resist actual pressures and impulses acting on exterior wall surfaces from design basis threats

Withstand dynamic reactions from windows and windows stay connected to walls

Use multiple barrier materials and construction techniques – composites can add ductility and strength at savings

As desired Level of Protection increases, additional mass and reinforcement may be required

Building Envelope – Best Wall Practices

Use symmetric reinforcement, recognizing that components might act in directions opposite to original or standard design

Lobbies and mailrooms

Use wire mesh in plaster – reduces spalling / fragmentation

Floor to floor heights should be minimized (<=16 feet)

Building Envelope – Best Wall Practices (cont.)

Connect façade from floor slab to floor slab to avoid attachments to columns (one-way wall elements)

 Limits forces transferred to vertical structural elements

No unreinforced CMU – use fully grouted and reinforced construction

Building Envelope – Windows

Balanced Window Design

Glass strength

Glass connection to window frame (bite)

Frame strength

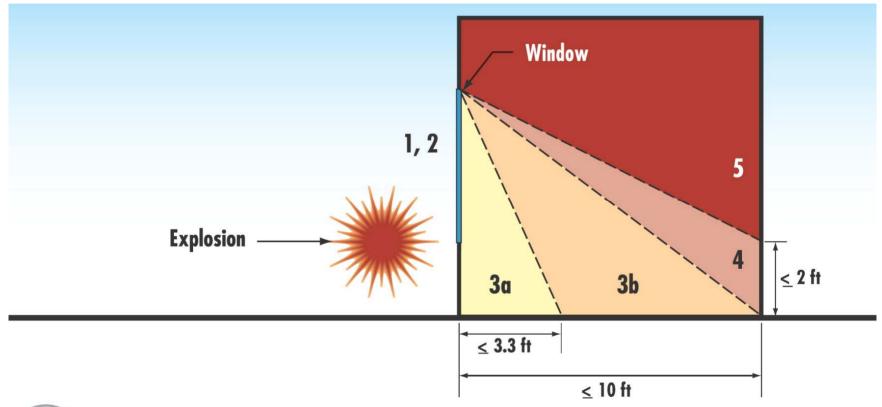
Frame anchoring to building

Frame and building interaction

Building Envelope – Windows

Glass (weakest to strongest)

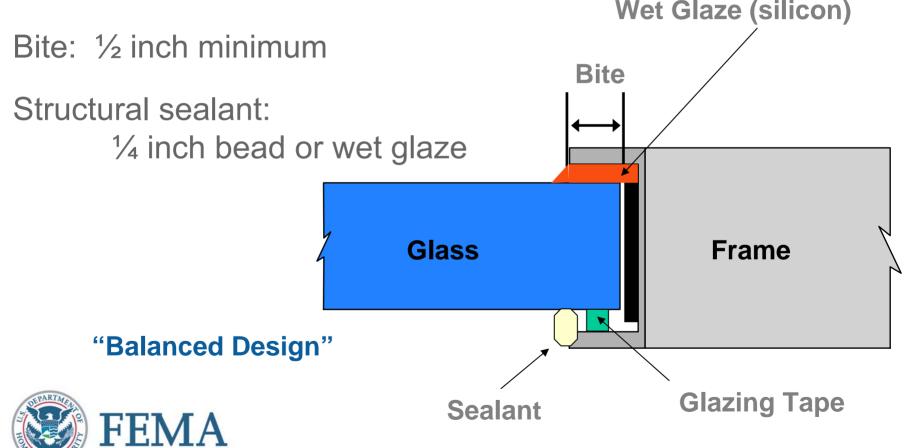
- Annealed (shards)
- Heat Strengthened (shards)
- Fully Thermally Tempered (pellets)
- Laminated (large pieces)
- Polycarbonate (bullet-resistant)



"Balanced Design"

Building Envelope – Windows

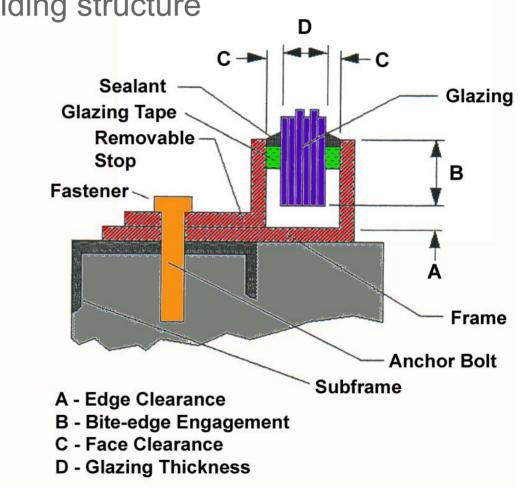
GSA Glazing Performance Conditions



FEMA 426, Figure 3-4: Side view of a test structure illustrating performance conditions of Table 3-2, p. 3-22

Building Envelope - Window Frames

Goal: transfer load from glass to frame and retain glass in frame


Building Envelope - Window Frames

Goal: transfer load to building structure

Balanced strength: glass, frame, and connection of frame to wall

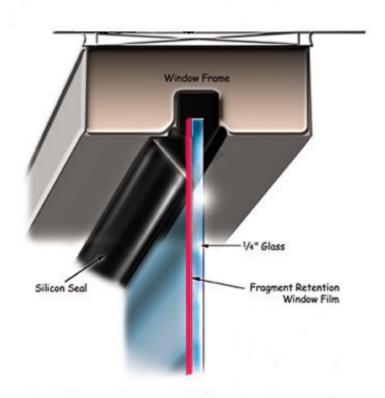
"Balanced Design"

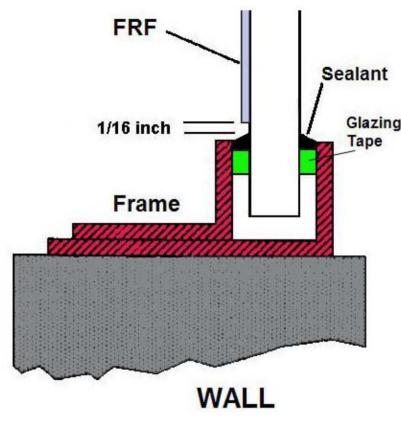
Building Envelope - Fragment Retention Film

Clear tough polyester film attached to inside of glass surface with strong pressure-sensitive adhesive

Also known as shatter-resistant film, safety film, or protective film

Relatively low installation costs


Level of protection varies with thickness of film and method of installation


Limited life for FRF

Building Envelope - Fragment Retention Film

"Daylight Application"

"Wet Glazing" (edge to edge)

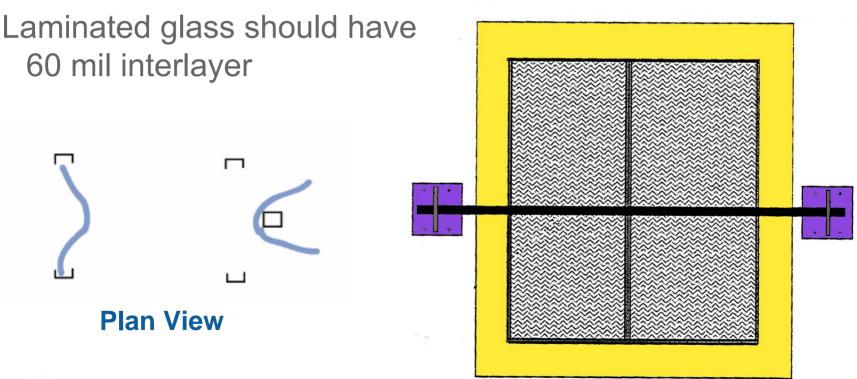
Building Envelope - Blast Curtains

Invented by British during WW II

Kevlar curtains

Allow venting of blast wave while "catching" fragments

May be augmented with FRF



Building Envelope - Catch Bar

Must be centered on window and window panes

FRF must be thick enough to hold the fragments (≥ 7 mil)

FEMA 427, Figure 6-7: Safe laminated glass systems and failure modes, p. 6-29

Building Envelope – Best Window Practices

No windows adjacent to doors

Minimize number and size of windows - watch building code requirements

Laminated glass for high-occupancy buildings

Stationary, non-operating windows, but operable window may be needed by building code

Steel versus aluminum window framing

Building Envelope – Doors

Balanced strength

- Door
- Frame
- Anchorage to building

Hollow steel doors or steel-clad doors

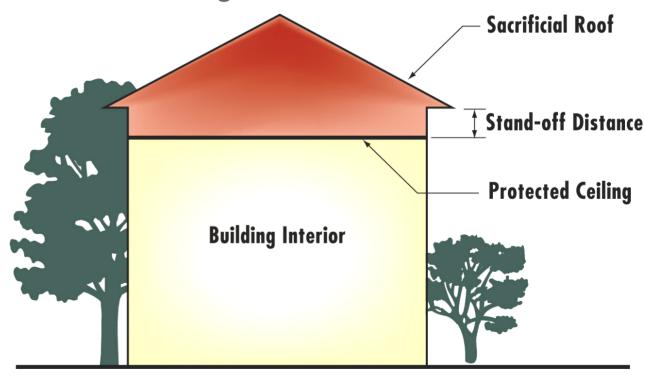
Steel door frames

Blast-resistant doors available

- Generally heavy
- Generally expensive

Building Envelope – Roofs

Preferred – poured in place reinforced concrete


Lower protection – steel framing with concrete and metal

deck slab

Sloped sacrificial roof over protected roof/ceiling

Sandbags or dirt layer

Restrict access to roof

Utility Systems

Building Service

- Electric commercial and backup
- Domestic water
- Fire protection water
- Fuel coal, oil, natural gas, or other
- Steam heat with or without condensate return
- Hot water heat

Utility Systems

Building Service (cont)

- Sewer piping and sewage lift stations
- Storm drainage
- Information
- Communications
- Fire alarm
- Security systems and alarms

Utility Systems

Entrances

- Proximity to each other
- Aboveground or underground
- Accessible or secure

Delivery capacity

- Separate
- Aggregate

Storage capacity

- Outage duration
- Planned or historical

Functional layout – physical separation or hardening

Structural layout – systems installation

Do not mount utility equipment or fixtures on exterior walls or mailrooms

Avoid hanging utility equipment and fixtures from roof slab or ceiling

Overhead components, architectural features, and other fixtures > 14 kilograms (31 pounds), especially in occupied spaces

- Mount to resist forces
 0.5 x W in any direction
 and 1.5 x W in downward
 direction (DoD Unified
 Facilities Criteria)
- Plus any seismic requirements

Distribution within building

- Looped or multiple radial versus single radial
- Pipe chases horizontal and vertical cross impacts

Normal and emergency equipment locations

- Generators versus commercial switchboard or transfer switch
- Electric fire pumps versus diesel fire pumps

Restrict access - locks / alarms / surveillance

- Utility floors / levels
- Rooms
- Closets
- Roofs
- Security locks/interlocks comply with building code
- Building information
- Also consider for other systems

Building lighting and CCTV compatibility

- Intensity
- Resolution
- Angle
- Color

Exit lighting – consider floor level, like airplanes Emergency lighting – battery packs have their place

Mechanical & Electrical Systems Ventilation and Filtration – HVAC Control Options

- Building specific
- System shutdown configuration and access
 - HVAC fans and dampers
 - Include 24/7 exhausts, i.e. restrooms
- Zone pressurization
 - Doors and elevator use
 - Shelter-in-place

Mechanical & Electrical Systems Ventilation and Filtration – HVAC Control Options

- Specialized exhaust for some areas i.e., lobbies and mailrooms
 - Air purge (e.g., 100 percent outside air if internal release)
 - CBR filters to trap and prevent spread elsewhere
- Pressurized egress routes (may already exist)
 - Filtered air supply or shutdown if release external

Plumbing and Gas Systems

Same considerations as electrical and mechanical systems

Added concern is fuel distribution

- Heating sources / open flames / fuel load
 Interaction with other systems during an incident
 - Fuel versus alarms / electric / fire protection water / structure
 - Water versus electronic / electric

Fire Alarm Systems

Considerations similar to information and communications systems, but tighter building codes

- Centralized or localized
- Fire alarm panel access for responding fire fighters or fire control center
- Interaction with other building systems
 - Telephone / IT
 - Energy management
 - HVAC controls
- Off-premises reporting and when

Communications - Information Technology Systems

Looped versus radial distribution Redundancy

- Landline, security, fire watch
 - Copper
 - Fiber optics
- Cell phones (voice, walkietalkie, text)
- Handheld radios / repeaters
- Radio telemetry / microwave links
- Satellite

Mass notification

- Loud speakers
- Telephone hands-off speaker
- Computer pop-up
- Pager

Communications - Information Technology Systems (cont.)

Empty conduits

- Future growth
- Speed repair

Battery and backup power for IT

- Hubs, switches, servers, switchboards, MW links, etc.
- VOIP, building ops, alarms, etc.

Fire stopping in conduits between floors

Secure dedicated lines between critical security functions

Backup control center with same capability as primary

Equipment Operations and Maintenance

Preventive Maintenance and Procedures

- Drawings indicating locations and capacities are current?
- Maintenance critical to keep systems operational
 - Critical systems air balanced and pressurization monitored regularly?
 - Periodic recommissioning of major systems?
- Regularly test strategic equipment
 - Sensors, backup equipment and lighting, alarms, and procedures tested regularly to ensure operation when needed?
 - Backup systems periodically tested under worst case loadings?

Equipment Operations and Maintenance

Maintenance Staff Training

- System upgrades will require new training
- Specific instructions for CBR event (internal vs external release)
- Systems accessible for adjustment, maintenance, and testing

Security Systems

Electronic Security Systems

Purpose is to improve the reliability and effectiveness of life safety systems, security systems, and building functions.

- Detection
- Access control
- Duress alarms
- Primary and backup control centers same procedures

Security Systems

Entry Control Stations

Channel visitors entering building to access control in lobby

Signs should assist in controlling authorized entry

Have sufficient lobby space for security measures (current or future)

Avoid extensive queuing, especially outside building

Proper lighting, especially if manned 24 hours/ day

Hardened against attack based upon security needs

Security Systems

Emergency Plans

All buildings should have current plans

- Building evacuation with signage & emergency lighting
- Accountability rally points, call-in
- Incorporate CBR scenarios into plans
 - General occupant actions
 - Response staff actions HVAC and control centers

Exercise the plans to ensure they work

- Coordinate with local emergency response personnel
- Test all aspects

Practical Applications

What can be done with a reasonable level of effort?

End of Chapter 3, FEMA 426 listing of mitigation measures

- Less protection, less cost, with less effort
- Greater protection, greater cost, at greater effort

Building Materials: General Guidance

All building materials and types acceptable under building codes are allowed.

Special consideration should be given to materials having inherent flexibility and ability to respond to load reversals.

Careful detailing is required for materials (such as pre-stressed concrete, pre-cast concrete, and masonry) to adequately respond to design loads.

Construction type selected must meet all performance criteria of specified protection level.

Desired Building Protection Level

Component design based on:

Design Basis Threat

Threat Independent approach

Level of Protection sought

Leverage natural hazards design/retrofit

Incorporate security design as part of normal capital or O&M program

Use existing tools/techniques, but augment with new standards/guidelines/codes

Summary

Building Design Guidance and Mitigation Options

Using the FEMA 426 Checklist will help identify vulnerabilities and provide recommended mitigation options.

There are many methods to mitigate each vulnerability.

Relatively low cost mitigations significantly reduce risk.

Unit X Case Study Activity

Building Design Guidance and Mitigation Measures Background

Emphasis:

- Providing a balanced building envelope that is a defensive layer against the terrorist tactic of interest
- Avoiding situations where one incident affects more than one building system

FEMA 426, Building Vulnerability Assessment Checklist

Requirements

Assign sections of the checklist to qualified group members Refer to Case Study, and answer worksheet questions Review results to identify vulnerabilities and possible mitigation measures

Unit XI Electronic Security Systems

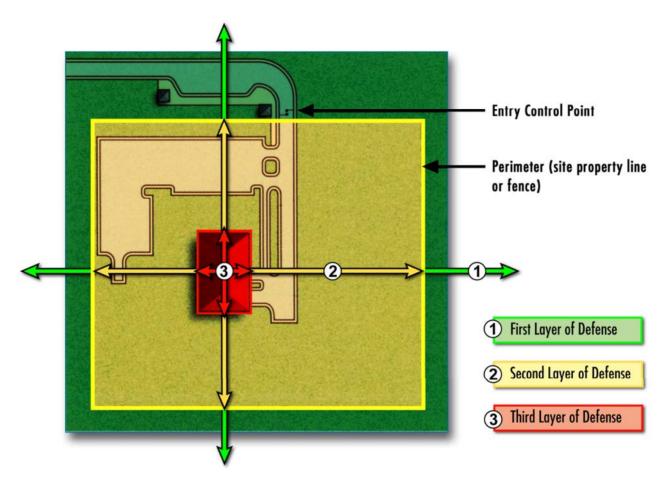
Unit Objectives

Explain the basis concepts of electronic security system components, their capabilities, and their interaction with other systems.

Describe the electronic security system concepts and practices that warrant special attention to enhance public safety.

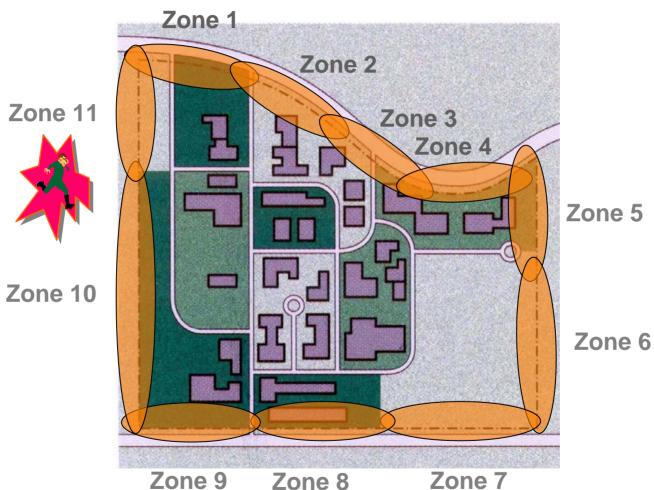
Use the Building Vulnerability Assessment Checklist to identify electronic security system requirements that can mitigate vulnerabilities.

Justify selection of electronic security systems to mitigate vulnerabilities.



Electronic Security System (ESS) Concepts

- Basic concepts of site security systems
- Use of ESS
- General ESS Description
- ESS Design Considerations



Perimeter Zone

Perimeter Zone

Adapted from FEMA 426, Figure 2-2: Dispersed Facilities, p. 2-8

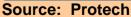
Intrusion Detection Systems

RTO POWERHOUSE

Old Generation

CCTV

Motion Sensors


New Generation

PIRAMIC

Source: Protech

Boundary Penetration Sensors

- 1. Structural Vibration Sensors
- 2. Glass Break (GB) both acoustical and contact mount
- 3. Balanced Magnetic Switches (BMS) doors, windows, and hatches
- 4. Passive Ultrasonic Sensors
- 5. Grid Wire Sensors

Volumetric Motion Sensors

Designed to detect intruder motion within the interior of the protected volume

- Microwave Motion Sensors
- Passive Infrared (PIR) Motion Sensors
- Dual Technology Sensors
- Video Motion Sensors
- Point Sensors
- Capacitance Sensors
- Pressure Mats
- Pressure Switches


Exterior Intrusion Detection

Strain Sensitive Cable

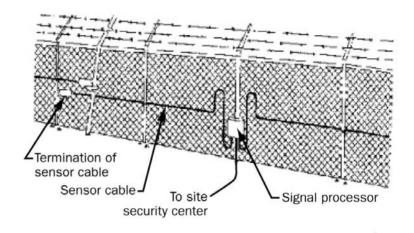
Fiber Optic Cable, Bistatic/Monostatic Microwave, Active Infrared, and Ported Coax

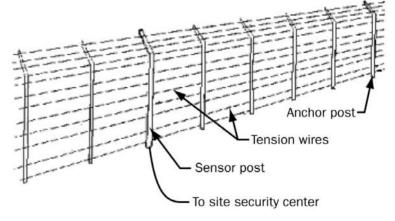
Dual Technology (PIR/MW)

Video Motion

Source: Protech

First Layer of Defense

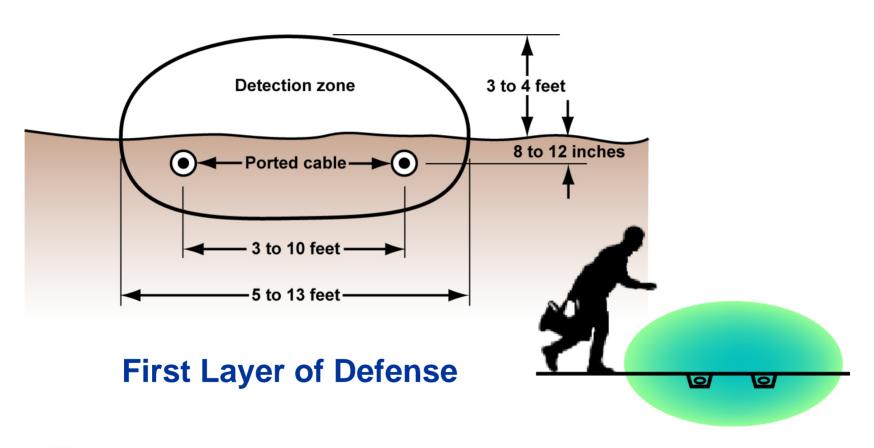

Fence Sensors


Strain sensitive cables

Taut wire sensors

Fiber optic sensors

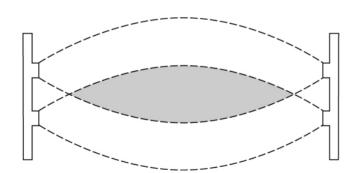
Capacitance proximity sensors

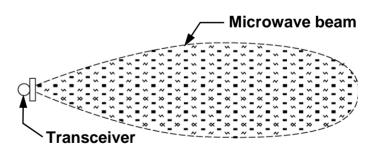


First Layer of Defense

Army TM 5-853-4, Electronic Security Systems, pgs. 5-3 and 5-4

Buried Line Sensors


Microwave Sensors



Bistatic System

Monostatic System

First Layer of Defense

Army TM 5-853-4, Electronic Security Systems, pgs. 5-15 and 5-7

Infrared Sensors

Active

Passive

First or Second Layer of Defense

Video Motion Sensors

First or Second Layer of Defense

Electronic Entry Control

Coded Devices

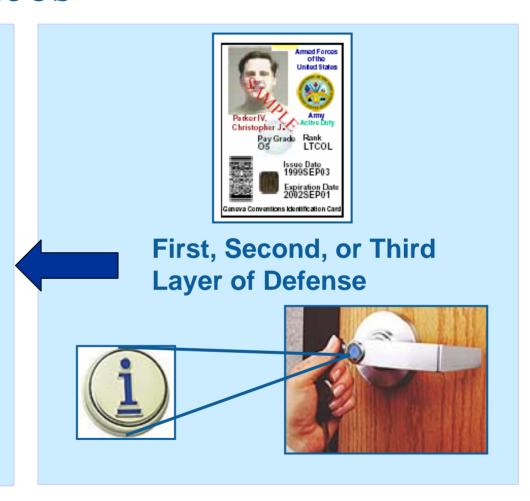
Credential Devices

Biometric Devices

First or Second Layer of Defense

Coded Devices

Electronic Keypad Devices
Computer Controlled Keypad
Devices



First, Second, or Third Layer of Defense

Credential Devices

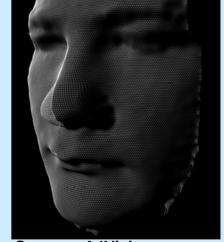
- Magnetic Stripe Card
- Wiegand-effect Card
- Proximity Card
- Smart Card
- Bar Code
- "i" Button
- Radio Frequency ID (RFID)

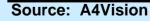
Biometric Devices

Fingerprints

Hand Geometry

Retinal Patterns


Facial Patterns



Source: Veridt

First, Second, or Third Layer of Defense

Closed Circuit Television

Interior CCTV

Alarm assessment, card reader door assessment, emergency exit door assessment, and surveillance of lobbies, corridors, and open areas

Exterior CCTV

Alarm assessment, individual zones and portal assessment, specific paths and areas, exclusion areas, and surveillance of waterside activities

Source: Protech Protection Technologies. Inc.

First, Second, or Third Layer of Defense

Security Operations Center

Enhancements to Overcome Operator/System Limitations

- Workspace / Hardening
- Alarm Recognition / Alerts
- CCTV Image Alarm Motion Detection
- Smart CCTV Auto Pan/Tilt/Zoom on Tripped Sensor Location
- Forwarding Alarms to Pagers, PDAs, Radios
- Data Recording DVR
- Line Supervision / Backup Feeds
- Emergency Power to System

Summary

Use the Building Vulnerability Assessment Checklist to identify electronic security system requirements.

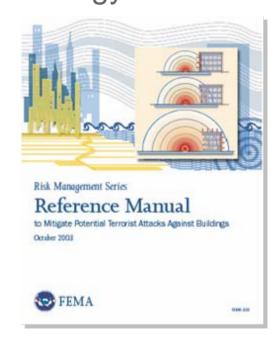
Public safety is enhanced by electronic security systems (deter, detect, deny, devalue).

Electronic security systems components and capabilities interact with other systems (LAN, doors, windows, lighting, etc.).

Electronic security systems can be used to mitigate vulnerabilities.

Unit XI Case Study Activity

Electronic Security Systems


Background

Emphasis: Various components and technology available

for use in electronic security systems

FEMA 426, Building Vulnerability Assessment Checklist

Assess Electronic Security Systems in Case Study for vulnerabilities and recommended mitigation measures

BUILDING DESIGN FOR HOMELAND SECURITY

Unit XII-B Case Study

Unit Objectives

Explain building security design issues to a building owner for consideration prior to a renovation or new construction.

Explain the identification process to arrive at the high risk asset-threat/hazard pairs of interest.

Justify the recommended mitigation measures, explaining the benefits in reducing the risk for the high risk situations of interest.

HAZARDCORP BUILDING

Building

- Functions
- Infrastructure

Threats/Hazards

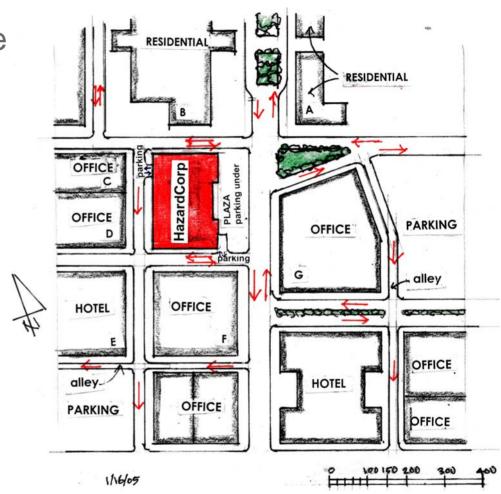
- Design Basis Threat
- Levels of Protection

Vulnerabilities

- Impact
- Mitigation

Report

BUILDING DESIGN FOR HOMELAND SECURITY Unit XII-B-3


HAZARDCORP

50-story mixed use high-rise office building

- 8,000 occupants
- 1,000 visitors
- Over 2,000,0000 square feet of rentable space

"Neighbors" include:

- Offices
- Residential

5-Mile Building Radius

Local Imagery

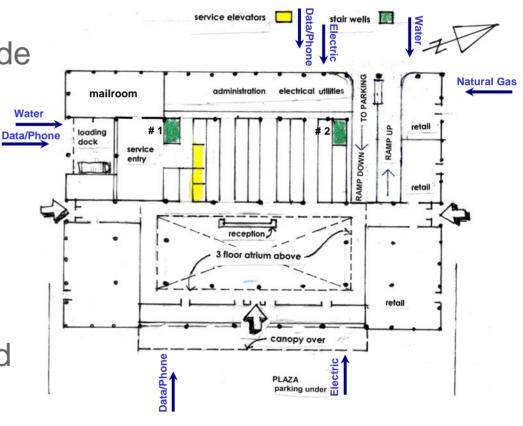
HazMat Sites

Emergency Response

Building Data

50-story building completed in 1987

Loading dock on SW side

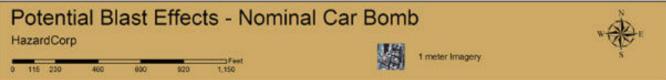

Retail on lower level

• 8,000 occupants

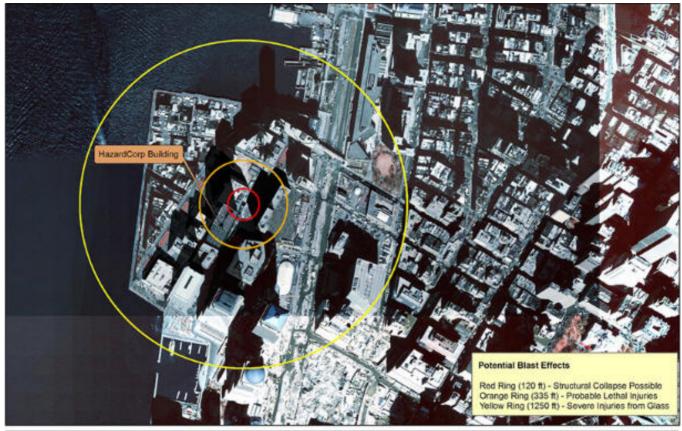
• 1,000 visitors

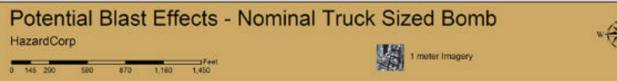
 3 levels of underground parking

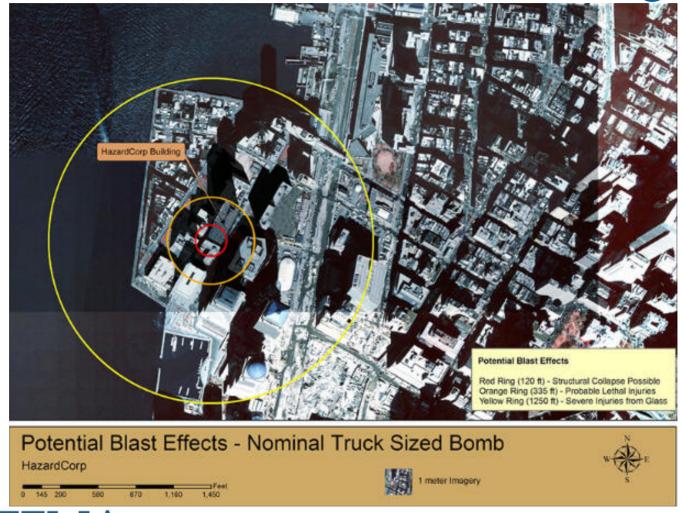



HAZARDCORP Occupancy

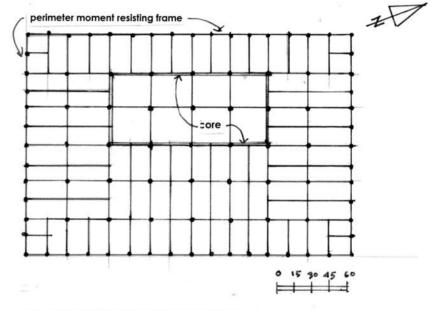
FLOOR	TENANT OCCUPANCY
49-50	Mechanical Floors
31-48	National financial services company
29-30	Bank offices
27-28	Federal government offices (IRS, DOD, CIA)
26	Mechanical room
25	Office of Emergency Management
23-24	Financial service company
20-22	Insurance company
19	State Employment Commission
15-18	Vacant
14	Financial management company
8-13	Federal government offices (SEC, Secret Service)
6-7	Bank offices
4-5	Storage, switch gear, generators, transformers
3	Open to first floor lobby, rentable meeting space, building management
2	Open to first floor lobby, rentable meeting space
1	Lobby, retail, fuel storage, switchgear, building administration, loading dock
UG1	Parking
UG2	Parking
UG3	Parking


Car Bomb Blast Effects




Truck Bomb Blast Effects-Collateral

Truck Bomb Blast Effects-Loading Dock



Building Data

Structural / Envelope

- 4 perimeter moment frames
- Gravity framing composite steel beams
- Variety of framing connections
- Aluminum / Glass curtain wall exterior cladding
 - First three floors 3/8 inch thermally tempered glass
 - Other glazing ¼ inch or 3/8 inch annealed single pane glass
- Discontinuous columns through the lobby area

Typical floor framing plan, 4th through 49th floor.

Fire Suppression

- Sprinklers on every floor of building
- Standpipes in every stairway, including building and plaza parking
- Yard main loops all around building
- Fire department connections west and north side of building

Electric Power

- 13,800 volt looped service feeds substation in building
- 4th floor transformers 480/277 volt distribution

Generators/Fuel Systems

- Building management and tenant systems
- Located in various parts of building

HVAC

- All air using heat pumps and supplemental electric heat (including lighting)
- Tied to fire suppression whereby floors above and below fire are overpressurized and fire floor is exhausted

Water

- Two feeds, one under loading dock
- Storage tanks on mechanical floors

Natural Gas

4-inch main to first floor restaurants

Communications

- Three T-3 lines from three providers
- Empty conduits for expansion installed
- Tenants have additional services
- VOIP, satellite, and landline phones in building for outside communication
- Fire Watch phone in stairwells

Physical Security

Security personnel

- 1 person -- Central Security
- 2 rovers

Reception staff

- 2 persons 0600-1800 on business days
- 1 person 1800-0600 on business days or all day on non-business days

Lobby – access to atrium, mailroom, meeting rooms and retail space

Threats/Hazards

Threats include:

Terrorism

- Government, military, finance, and banking tenants in building could be targeted if perceived as soft target
- Collateral damage potential due to nearby potential targets in the area

Intelligence Collection, especially by cyber attack

- Government classified information
- Commercial information

Threats/Hazards

Threats (continued):

Crime

 City has much higher crime rate than national averages in most categories

Natural Hazards

- Hurricanes and tornadoes Almost 100 per year
- Evacuation zone for storm surges
- Earthquakes Infrequent and low intensity -- old seismic zone 2A
- Lightning 25 strikes/year on average

Threats/Hazards

Threats (continued):

HazMat

- Chemical and fuel tank farms across river
- Rail lines across river
- Shipping on river
- 2,000 trucks each day within city
- 100 spills and releases each year in city

Other Technological Hazards

600 water main breaks per year in city

Design Basis Threat

Explosive Blast: Car Bomb 500 lb TNT equivalent. Truck Bomb 5,000 lb TNT equivalent (Murrah Federal Building class weapon)

Chemical: Large quantity petroleum fire toxic plume from tank farm. Large and small quantity HazMat release (chlorine) from tank farm, tanker truck, and rail car.

Biological: Anthrax delivered by mail or in packages, smallpox distributed by spray mechanism mounted on truck or aircraft in metropolitan area

Radiological: Small "dirty" bomb detonation within the 10-mile radius of the HAZARDCORP building

GSA Interagency Security Criteria

Level IV Building – over 450+ employees –- over 150,000 sq ft

- Perimeter Security
- Entry Security
- Interior Security
- Administrative Procedures
- Blast/Setback Standards

DoD Antiterrorism Standards

Level of Protection	Potential	Potential Door and	Potential
	Structural Damage	Glazing Hazards	Injury
Low	Damage – unrepairable. Major deformation of non- structural elements and secondary structural members and minor deformation of primary structural members, but progressive collapse is unlikely.	Glazing will break, but fall within 1 meter of the wall or otherwise not present a significant fragment hazard. Doors may fail, but they will rebound out of their frames, presenting minimal hazards.	Majority of personnel suffer significant injuries. There may be a few (<10 percent) fatalities.

DoD Antiterrorism Standards

Location	Building Category	Stand-off Distance or Separation Requirements			
Controlled Perimeter or Parking and Roadways without a Controlled Perimeter		Applicable Level of Protection	Conventional Construction Stand-off Distance	Effective Stand-off Distance	Applicable Explosives Weight
	Primary Gathering Building	Low	45 m 148 ft	25 m 82 ft	Car Bomb

UFC 4-010-01 APPENDIX B DoD MINIMUM ANTITERRORISM STANDARDS FOR NEW AND EXISTING BUILDINGS			
Standard 1	Minimum Stand-off Distances		
Standard 2	Unobstructed Space		
Standard 3	Drive-Up/Drop-Off Areas		
Standard 4	Access Roads		
Standard 5	Parking Beneath Buildings or on Rooftops		
Standard 6	Progressive Collapse Avoidance		
Standard 7	Structural Isolation		
Standard 8	Building Overhangs		
Standard 9	Exterior Masonry Walls		
Standard 10	Windows, Skylights, and Glazed Doors		
Standard 11	Building Entrance Layout		
Standard 12	Exterior Doors		

Levels of Protection (continued)

UFC 4-010-01 APPENDIX B DoD MINIMUM ANTITERRORISM STANDARDS FOR NEW AND EXISTING BUILDINGS			
Standard 13	Mailrooms		
Standard 14	Roof Access		
Standard 15	Overhead Mounted Architectural Features		
Standard 16	Air Intakes		
Standard 17	Mailroom Ventilation		
Standard 18	Emergency Air Distribution Shutoff		
Standard 19	Utility Distribution and Installation		
Standard 20	Equipment Bracing		
Standard 21	Under Building Access		
Standard 22	Mass Notification		

Unit XII Case Study Activity

Finalization and Presentation of Group Results Purpose

- Groups finalize their assessments
- Decide on high priority risk concerns
- Determine appropriate mitigation measures
- Present findings to class

Requirements

Based on findings from previous activities, complete the worksheet table

Prepare to present conclusions and justify decisions to class in a 5- to 7-minute presentation

Basis of Mitigation Measures

Recommendations ultimately require an understanding of benefit (capability) versus cost to implement

Blast Modeling

- Various scenarios run at Tier III level for comparison using Design Basis Threats
 - Truck bomb is worst case
 - Car bomb also analyzed for comparison
 - Some interesting and unexpected results
- More analysis required for final design

Basis of Mitigation Measures

Plume Modeling (CBR or HazMat)

- Tier II / Tier III performed for selected Design Basis
 Threats external to building, less urban canyon effect
- Additional Tier III analysis required inside building
 - Understand internal pressure changes during building operation
 - Understand on HVAC and other changes implemented in response plans affect the building
 - Supports design of CBR measures

Basis of Mitigation Measures

Cost Estimates are ROM (Rough Order of Magnitude)

- Assumes 10% Overhead and 10% Profit
- Assumes Area Cost Factor of 1.0 (DoD) or 100 (RS Means)
 - DoD Range: 0.84 (Huntsville AL) to 1.67 (Anchorage AK)
 - RS Means Range: 82.5 (Baton Rouge LA) to 131.9 (New York NY)
 - Adjusted for July 2006
- Anti-Terrorism / Force Protection equipment and construction costing information is still immature

Site / Vehicle Bomb

Maximize available stand-off

- Plaza side barriers at property line to prevent direct approach into lobby – K12 rating / 408 LF
 - Planters \$ 92K
 - Plinth walls \$207K
 - Bollards \$104K

Site / Vehicle Bomb

Maximize available stand-off

- Other three sides
 - Continue controlled parking on street
 - Signage \$10K
 - Bollards if no controlled parking
 - K12 rating North and South 340 LF \$90K
 - K8 rating West 248 LF \$65K

Site / Vehicle Bomb

Protect loading dock / building

- Hardened vehicle barriers, K12 rating, 3 each
 - Pop-Up \$405K
 - Drop Arm \$150K

Site / Vehicle Bomb

Reroute Traffic

- Traffic Study \$20K
- MOUs with tenants / neighbors / police
- Variable road closure or area-wide access control based upon intelligence (Ring of Steel)
- Change west side alley to north travel direction to avoid queuing on main roads for entry to UG building parking

Site / Vehicle Bomb

Segregate UG parking for access control

- Controlled under building tenants/vetted only
- Public under plaza (public parking is a premium in urban area)
- Hardened vehicle barriers at under building entrance / exit
 - Drop Arms K8 rating, 2 each \$96K
- Signage to denote public and tenant/staff UG parking entrances - \$2K

Architectural / Vehicle Bomb

Access control for loading dock

- Additional security at loading dock, includes screening at curb
 - 2 personnel, 8 hour shift \$188K/year
- Pre-screening away from building
 - Pre-engineered bldg \$ 36K
 - 2 personnel, 8 hour shift \$188K/year
- Time of day access (2000 to 0400)
 - 4 personnel, 8 hour shift \$376K/year
- Apply individually or collectively

Architectural / Vehicle Bomb

Segregate UG parking for access control

- Electronic or manned access control under building
 - Electronic (Card Scanner & PIN) \$12K
 - Manned
 - Small Shelter \$5K
 - 2 Personnel, 24/7 \$790K/year

Architectural / Vehicle Bomb

Strengthen overhead anchorage elements

- HVAC diffusers, light fixtures, etc.
 - First three floors \$950K
- Canopy at main entrance
 - Requires additional design information
 - **\$950K**

Architectural + Security / Vehicle Bomb

Move Security Control to 4th floor or install backup location on 4th floor

- >> \$1M
- Alarms, communications, CCTV, building operating systems (SCADA, EMCS), and Fire Control

Architectural / Access Control

Lobby redesign

- Channel all entrances to screening location(s) with up to 12 checkpoints for throughput
- **\$2.5M**

Close off retail space access to Lobby

- Convert to crash bar with alarm, 3 doors \$1.5K
- Lobby redesign may overcome need

Armed guards manning screening equipment in lobby

- Up to 36 guards with 3 guards per checkpoint at peak times based upon throughput
- \$8.7M/year

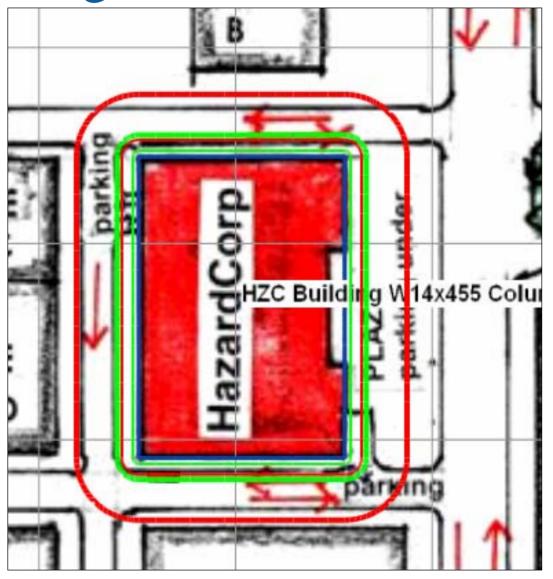
Structural Systems / Vehicle Bomb

Perform blast analysis – perimeter building columns

- Existing W14x455 steel columns, 96 total
- Upgrade on Floors 1 and 2 Encase in 4,000 psi concrete and ¼" steel wrap - \$980K

Harden loading dock to protect rest of building – below achieves low LOP

- 12" R/C, #8-4"O.C. both faces, ½" steel plate on ceiling and floor \$510K
- Adds protection of fuel tanks under loading dock, evaluate need for additional measures


Column Hardening

Original Columns

- Large DBT 52 ft
- Small DBT 14 ft

Hardened Columns

- Large DBT 18 ft
- Small DBT -- 5 ft

BUILDING DESIGN FOR HOMELAND SECURITY Unit XII-B-44

Structural Systems / Vehicle Bomb

Segregate UG parking for access control

- Harden columns on all underground levels along first building line nearest public access
 - 4,000 PSI concrete and 1/4" steel wrap, 21 columns
 - \$635K
 - Consider all columns at all UG parking levels under building based upon progressive collapse
 - Add \$2.6M to above

Structural Systems / Vehicle Bomb

Segregate UG parking for access control

- Hardened wall between vetted and public parking, 248
 LF per level, 3 levels totaled below
 - 12" R/C, #8-4"O.C., both faces \$2.06M
 - One vehicle barrier per level, K8 rating \$145K

Structural Systems / Vehicle Bomb

Perform blast analysis atrium columns – harden against progressive collapse

- Existing W14x455 steel columns, 16 total
- Upgrade on Floor 1 only Encase in 4,000 psi concrete and ¼" steel wrap - \$467K

Provide architectural stand-off around columns

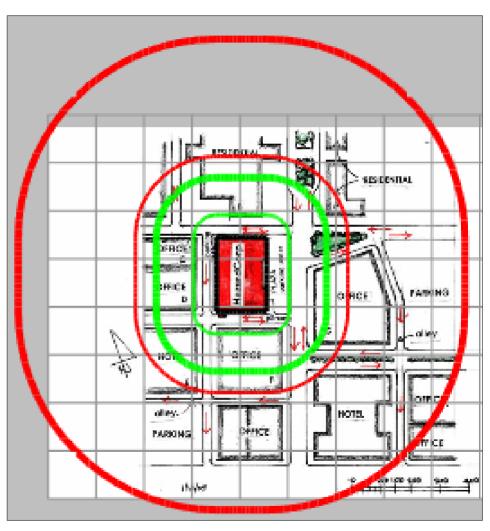
- Gypsum board on metal studs
- 1' off column (GSA 6" required)
- 16 columns, first floor only \$50K

Building Envelope / Vehicle Bomb

Perform blast analysis – glazing and frame upgrades

- Existing 172 windows/floor, nominal 5' x 5'
 - Floors 1-3, 3/8" TTG SP
 - Floors 4-8, 1/4" DS SP
 - Floors 9-50, 3/8" DS SP
- Upgraded Note Federal floors are 8-13 and 27-28
 - Floors 1-7, 1" TTG LAM SP \$12M
 - Floor 8, 3/8" TTG SP from Floors 1-3 with 15 mil FRF \$560K
 - Floors 9-13, 27-28 Existing with 15 mil FRF \$710K

Original glazing meets GSA minimum


Original Glazing

- Large DBT- 678 ft
- Small DBT- 277 ft

Hardened Glazing

- Large DBT- 205 ft
- Small DBT- 77 ft

BUILDING DESIGN FOR HOMELAND SECURITY Unit XII-B-49

Original glazing requires 15-mil

FRF to meet GSA minimum

Original Glazing

Large DBT- 1,707+ ft

Small DBT- 755 ft

Hardened Glazing

Large DBT- 180 ft

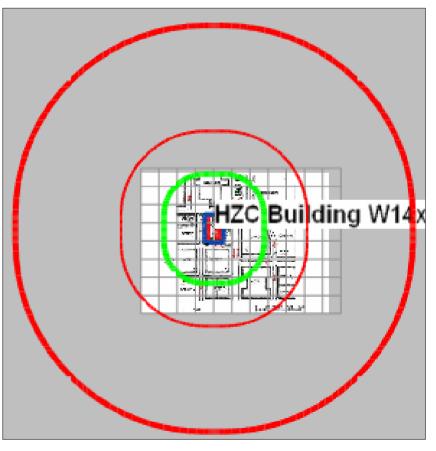
Small DBT- GSA 1 / 2

Original glazing requires 15-mil

FRF w/4-sided attachment to meet GSA minimum

Original Glazing

Large DBT-1,707+ ft


Small DBT- 755 ft

Hardened Glazing

Large DBT- 366 ft

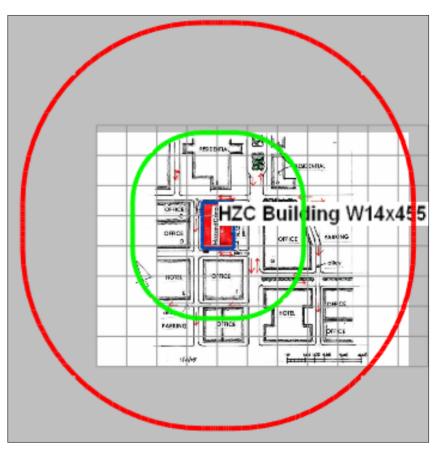
Small DBT- GSA 1 / 2

Original glazing requires 15-mil

FRF w/4-sided attachment to meet GSA minimum

Original Glazing

Large DBT– 977 ft


Small DBT- 380 ft

Hardened Glazing

Large DBT- 379 ft

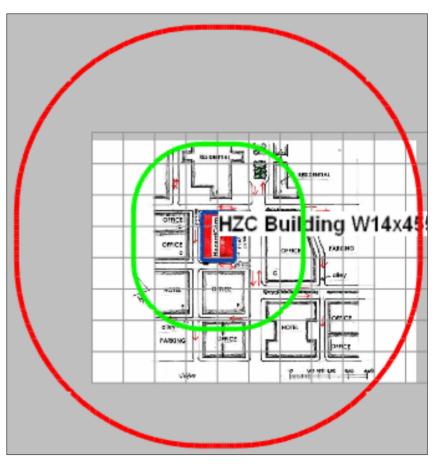
Small DBT— GSA 1 to 3b

Original glazing requires 15-mil

FRF w/4-sided attachment to meet GSA minimum

Original Glazing

Large DBT– 970 ft


Small DBT- 359 ft

Hardened Glazing

Large DBT- 358 ft

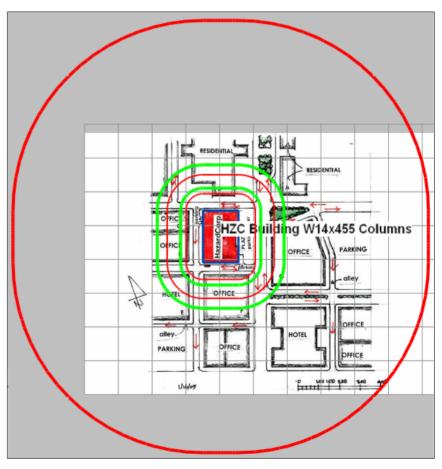
Small DBT- GSA 1 / 2

Original glazing requires 15-mil

FRF w/4-sided attachment to meet GSA minimum

Original Glazing

Large DBT- 923 ft


Small DBT- 82/174 ft

Hardened Glazing

Large DBT- 109/222 ft

Small DBT- GSA 1 / 2

BUILDING DESIGN FOR HOMELAND SECURITY Unit XII-B-54

Utility Systems / Vehicle Bomb

Harden all utilities entering site as transiting UG parking, 1' x 1' cross section

 3/8" steel plate welded with access panels and hangars - \$250/LF

Set up preplanned contingency fuel deliveries for emergency generators with other supplier(s)

Mechanical / CBR Attack

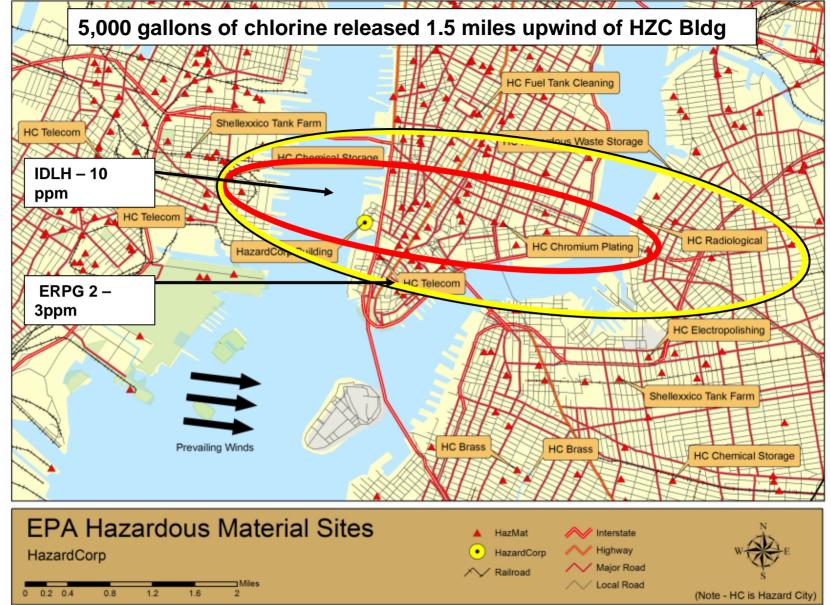
Install emergency shut down switches – all fans

- At each floor accessible to fire wardens \$22K per floor
- Security Control and backup location \$22K per floor in addition to fire warden capability
- Total for building: \$2.2M

Mechanical / CBR Attack

Install elevator controls in Security Control and backup location

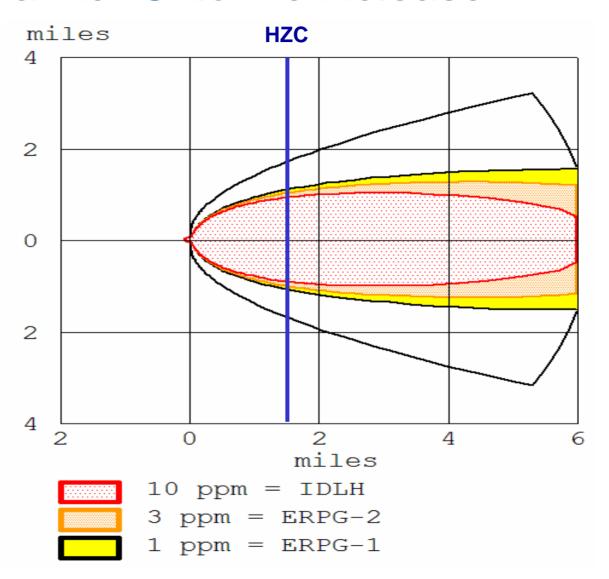
- Evacuation support (up or down)
- Shut down to prevent pumping of contaminants throughout building
- Total for 31 elevators: \$775K



Mechanical / CBR Attack (Chemical and Radiological)

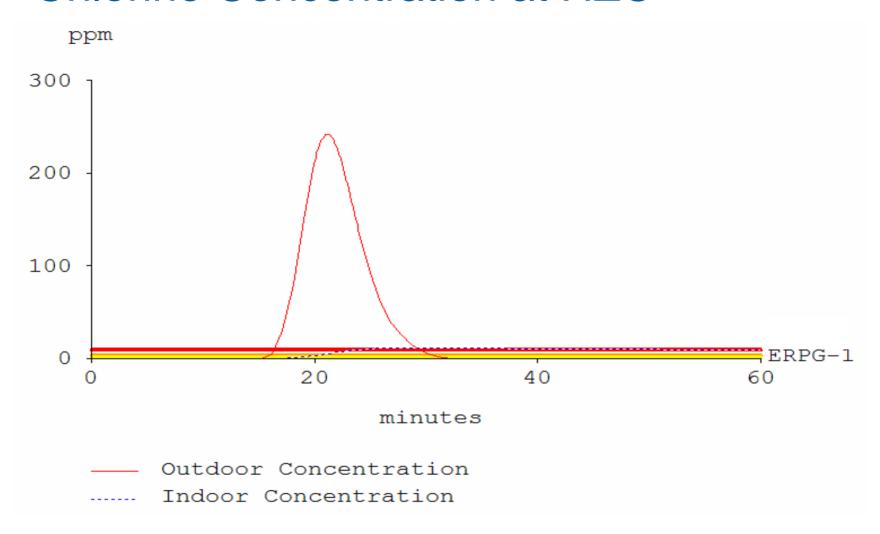
Evaluate carbon filters for chlorine-type spills

- Analysis of heavier or lighter than air contaminants
- \$135K per air handler (two to four air handlers per floor)

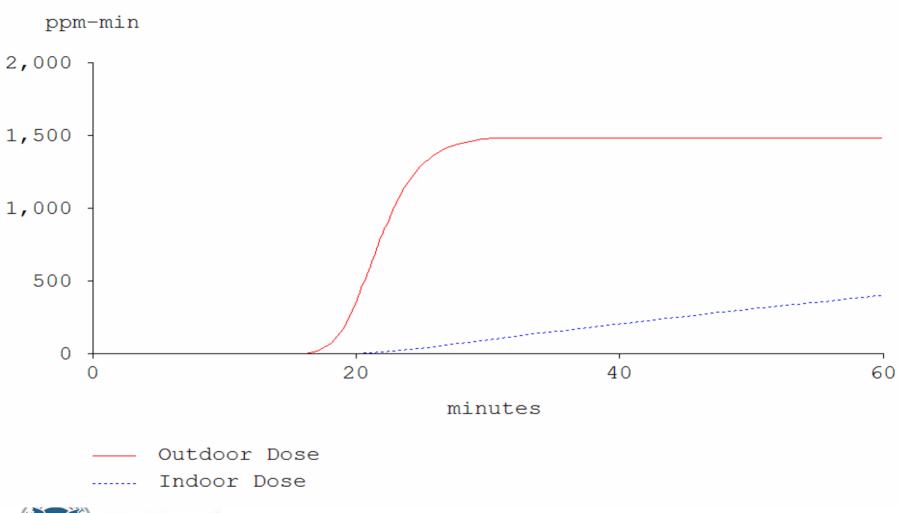


HZC Chlorine Release Parameters

```
SITE DATA INFORMATION:
 Location: JERSEY CITY, NEW JERSEY
 Building Air Exchanges Per Hour: 0.50 (enclosed office)
  Time: June 30, 2005 0937 hours EDT (user specified)
CHEMICAL INFORMATION:
                                         Molecular Weight: 70.91 g/mol
  Chemical Name: CHLORINE
 ERPG-3: 20 ppm
                 ERPG-2: 3 ppm
                                         ERPG-1: 1 ppm
  IDLH: 10 ppm
  Carcinogenic risk - see CAMEO
  Normal Boiling Point: -29.3° F
                                         Ambient Boiling Point: -29.3° F
  Vapor Pressure at Ambient Temperature: greater than 1 atm
  Ambient Saturation Concentration: 1,000,000 ppm or 100.0%
ATMOSPHERIC INFORMATION: (MANUAL INPUT OF DATA)
  Wind: 7 mph from 280° true at 3 meters
 No Inversion Height
  Stability Class: C
                                         Air Temperature: 70° F
  Relative Humidity: 50%
                                         Ground Roughness: open country
  Cloud Cover: 5 tenths
SOURCE STRENGTH INFURINTION:
Leak from hole in horizontal culindrical tank
  lank Diameter: 8 feet
                                         Tank Length: 39.9 feet
  Tank Volume: 15000 gallons
                                         Tank contains liquid
  Internal Temperature: 70° F
  Chemical Mass in Tank: 88.0 tons
                                         Tank is 100% full
  Circular Opening Diameter: 6 inches
  Opening is 6 inches from tank bottom
  Release Duration: 5 minutes
 Max Average Sustained Release Rate: 60,900 pounds/min
     (averaged over a minute or more)
  Total Amount Released: 174,826 pounds
  Note: The chemical escaped as a mixture of qas and aerosol (two phase flow).
```

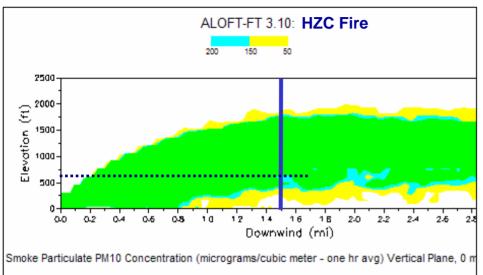


Railroad Tanker Chlorine Release



Chlorine Concentration at HZC

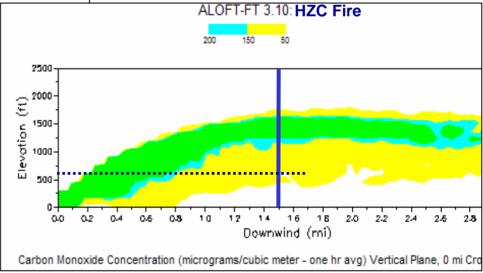
Chlorine Dose at HZC


Mechanical / CBR Attack (Chemical and Radiological)

Upgrade filters to MERV 11, 12 or 13 to remove particulates / CBR

- Confirm pressure drop can be handled or upgrade fan equipment
- \$50K to \$1.2M+ per floor

Fire Plumes – Smoke & CO



Smoke

Carbon Monoxide

IDLH for CO is 1,200 ppm

BUILDING DESIGN FOR HOMELAND SECURITY Unit XII-B-65

Mechanical / CBR Attack (Chemical and Radiological)

Install chemical/radiological detectors

- Activate HVAC shutdown and alarm
- \$15K to \$100K per floor for each type, with radiological less expensive

Mechanical / CBR Attack

Redesign HVAC for lobby

Separate system, like mailroom - \$620K

Design safe rooms / shelter-in-place locations with filtered air units operated when shelter activated

\$200K per floor for 170 people

Mechanical / CBR Attack (Biological)

Evaluate Ultraviolet Germicidal Irradiation (UVGI)

\$4.9M for complete facility

CBR General

Establish Occupant Emergency Plans for CBR external and internal releases

Part of Building Management overhead

Security Systems / Generic Measures

Expanded and upgraded CCTV coverage

- Perimeter \$415K
- Stairwells (not pan/tilt/zoom) \$800K
 - UG Parking, Lobby, Federal Floors
 - Include coverage of access keypads
- UG parking \$555K
- With appropriate sensors (motion, noise, door contact) to aid monitoring

Security Systems / Generic Measures

Panic / duress alarms - for general public

- Place sign at each keypad
- Reprogram system to indicate duress/problem by pressing 911*
- Keypads linked to CCTV monitoring system for alarm
- Keypads added to plaza UG parking levels with CCTV coverage

Equipment Ops and Maintenance / Vehicle Bomb or Armed attack

Confirm sufficient fuel capacity for emergency generators to cover longest historical outage

- Starting estimate: 0.08 gal/KW/hr
- Once per year measure consumption at normal to high load
- Coordinate timely resupply

