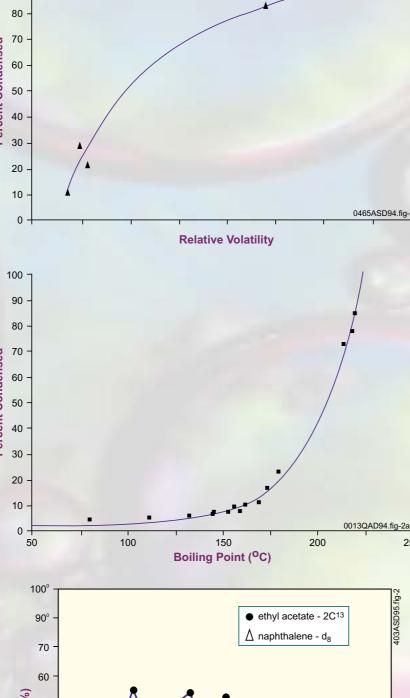
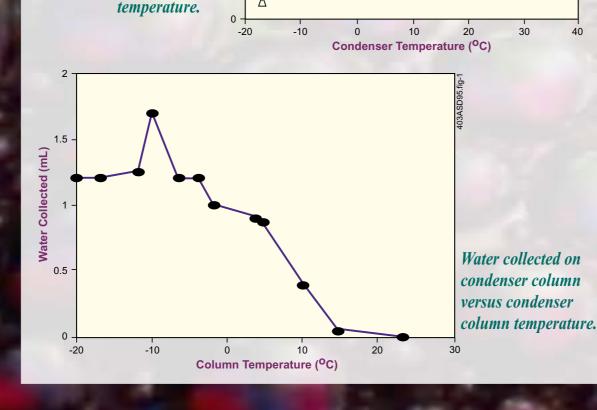
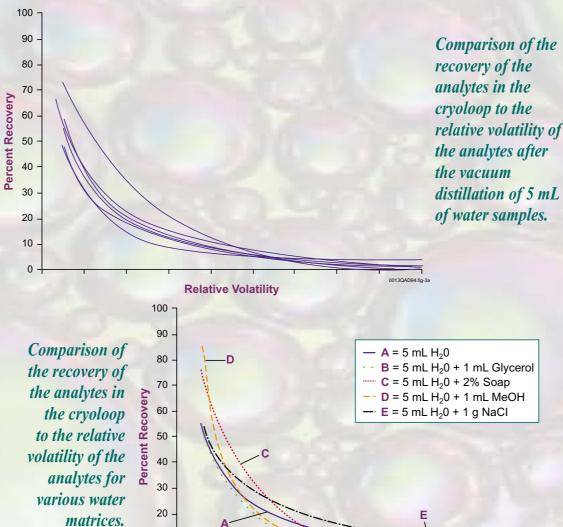

Using Surrogates to Measure Matrix Effects **Michael Hiatt** and Correct Analytical Results **National Exposure Research Laboratory U.S. Environmental Protection Agency**


The material that remains in the sample container after a vacuum distillation corresponds to a compound s partition coefficient between air and water (K_{wa}).



The condenser raps material corresponding a compound's vapor pressure (measured as boiling point, BP) and partition coefficient, K_{wa}. A condenser is calibrated for effects on analyte recoveries by varying its temperature. Too warm and water passes through to the cryotrap which then will interfere with chromatography. Too cold and little of the higher boiling analytes will be collected at the cryotrap.


Analyte recovery versus

condenser column

The recovery of analytes at the cryotrap corresponds to their vapor pressure and K_{wa} despite drastic changes in sample matrix. The ruggedness of these relationships allows a description of analyte recoveries from a wide range of matrices using surrogate compounds (with appropriate BP and K_{wa} values).

- **A** = 5 mL H₂0 *Comparison of the* $- B = 5 \text{ mL H}_{2}^{-0} + 5 \text{ g Soil}$ recovery of the •• **C** = 5 mL H₂0 + 1 g Oil analytes in the cryoloop to the relative volatility of the analytes for *multiphase* water samples. ------**Relative Volatility** 100 --7 C Multiple vacuum -8 C - -10 C distillation - -10 C omparisons of the -- -11 C boiling points -12 C of the analytes to the trapping of the analytes on the ondenser column.

130

150

Boiling Point (^OC)

Relative Volatility

The relation of recovery of an analyte to its boiling point over a range of boiling points is described by Recovery_(B) = $a (BP - BP_0) + b$ and its relationship of recovery to partition coefficient (or relative volatility, αk is described by **Recovery**_(α) = e^(α k + c)

The recovery of an analyte at the cryotrap is a function of both boiling point and $k\alpha$ and is described by Recovery = $\text{Recovery}_{(\alpha)}$ + $\text{Recovery}_{(\beta)}$

Solving these equations constants (a, b, and c) using the recovery of surrogate analytes provides the means to determine the recoveries of other analytes. By adding numerous surrogates to solve these equation constants a precision error can also be determined. Therefore besides having a means to determine analyte recovery, we have a means to provide estimates of analytical precision.

This surrogate information describes the effects of both vacuum distillation and matrix. This information can be presented in a graphical manner that can easily be reviewed.

The graphs pictured at the far right provide examples of such presentation.

Method 8261 is a unique method that provides a means to accurately determine matrix effects. This method also is applicable to a wide range of analytes. This new method has the ollowing advantages:

- no matrix spike/matrix spike duplicates
- a single calibration curve for all matrices
- no dilutions due to unknown matrix effects
- visual review of performance data
- expanded analyte list/analyses every 40 minutes
- log records of each vacuum distillation (time, temperatures, and pressure)

Fluorob 1,2-dic tetrahy

interce error

slope intercept error

compo hexaflu

pentafl Fluorob 1,4-difl o-xylen chlorob 1,2-dic diethyl tetrahy aceton 1,4-dio> pyridin

compo Purgea

Calculation of Recovery Relating to Relative Volatility

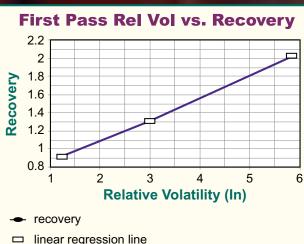
	boiling point	rel vol	meas. rec.	linear predict	linear predict
benzene	85.0	3.5	0.910	0.9101	
chloroethane-d4	84.0	20.0	1.293	1.2927	1.293
/drofuran-d8	66	355	2.038		2.038
			0.246		
ept			0.585		
			0.005		

	boiling point	rel vol	meas. rec.	first pass pred	first pass corr	5		
toluene-d8	111.0	4.3	0.951	0.9543	0.997	0.99		
chlorobenzene-d5	131.0	6.3	0.966	1.0381	0.93	0.943		
bromobenzene-d5	155.0	7.9	0.974	1.0897	0.894	0.888	0.938	
1,2-dichlorobenzene-d4	181.0	8.0	1.050	1.0924	0.961		0.88	
1,2,4-trichlorobenzene-d3	213.0	7.9	0.840	1.0883	0.772		0.809	0.85
naphthalene-d8	217.0	18.0	1.164	1.2696	0.917			0.8282
1-methylnaphthalene-d10	245.0	67.0	1.068	1.606	0.665			0.676
slope				0.001				
				0.000				

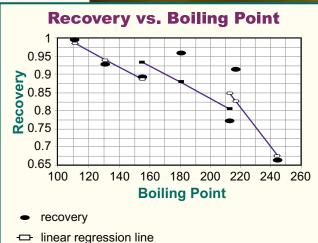
Recovery (bp corrected) vs. Relative Volatility

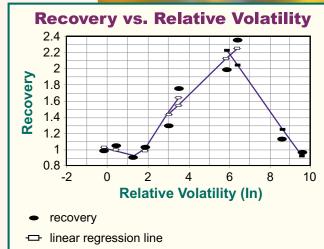
0.105

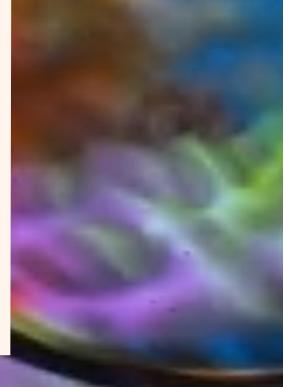
ounds	bp	rel vol	meas. rec.	bp pred	corr rec						errors
uorobenzene	81.5	0.9	0.992	1.00	0.99	1.029					0.0545
fluorobenzene	85.0	1.5	1.054	1.00	1.05	0.993					
obenzene	85.0	3.5	0.910	1.00	0.91	0.94	0.916				0.0066
fluorobenzene	88.5	3.8	0.939	1.00	0.94	0.934	0.933				
ne-d10	143.0	6.1	0.939	0.92	1.03		1.023	0.9972			0.1397
benzene-d5	131.0	6.3	0.966	0.94	1.02		1.027	1.0053			
chloroethane-d4	84.0	20.0	1.293	1.00	1.29			1.4517	1.4383		0.212
l ether-d10	35.0	32.5	1.751	1.00	1.75			1.6385	1.5548		
ydrofuran-d8	66.0	355.0	1.983	1.00	1.98				2.1286	2.221	0.2901
ne-C13	57.0	600.0	2.350	1.00	2.35				2.2545	2.039	
oxane-d4	101.0	5800.0	1.137	1.00	1.14					1.252	
ne-d5	115.0	15000.0	0.946	0.98	0.97					0.923	


Accuracy of Check Surrogates											
			meas.	rec	over	reco	recover pred		report		
compounds	bp	rel vol	recovery	bp	err	rel vol	err	rec	err	recover	sd
Purgeable VOAs											
benzene-d6	79.0	3.9	0.920	1.000	0.000	0.937	0.007	0.937	0.007	98.2%	0.7%
methylene chloride-d6	40.0	11.1	1.205	1.000	0.000	1.225	0.140	1.225	0.140	98.3%	11.2%
1,2-dichloropropane-d6	95.0	11.0	1.049	1.000	0.000	1.222	0.140	1.222	0.140	85.9%	9.8%
1,1,2-trichloroethane-d3	112.0	26.6	1.379	0.988	0.016	1.561	0.140	1.542	0.140	89.4%	8.1%
4-bromofluorobenzene	152.0	8.1	0.996	0.895	0.016	1.101	0.140	0.985	0.126	101.0%	12.9%
SemiVOAs											
decafluorobiphenyl	206.0	3.0	0.788	0.824	0.099	0.949	0.054	0.782	0.104	100.8%	13.4%
nitrobenzene-d5	210.0	87.5	1.575	0.866	0.118	1.793	0.212	1.553	0.281	101.5%	18.3%
acetophenone-d5	202.0	161.0	1.690	1.285	0.099	1.939	0.212	2.491	0.333	67.9%	9.1%
naphthalene-d8	217.0	18.0	1.164	0.828	0.118	1.411	0.140	1.169	0.203	99.6%	17.3%
non-purgeables											
ethyl acetate-C13	77.0	150.0	2.038	1.000	0.000	1.922	0.212	1.922	0.212	106.1%	11.7%
nitromethane-C13	101.0	510.0	2.151	1.000	0.000	2.216	0.212	2.216	0.212	97.1%	9.3%
aniline-C13	184.0	13700.0	0.488	0.873	0.000	0.954	0.290	0.833	0.272	58.5%	19.0%
pyridine-d5	115.0	15000.0	0.946	0.981	0.035	0.934	0.290	0.835	0.270	104.6%	32.9%
pyname-ao	110.0	10000.0	0.040	0.301	0.010	0.323	0.230	0.303	0.200	104.070	52.570

Method 8261 (http://www.epa.gov/epaoswer/hazwaste/test/txnews.htm)


Hiatt, M.; Farr, C. Anal. Chem. 1995, 67, 426-433. Hiatt, M. Anal. Chem. 1997, 69, 1127-1134. Hiatt, M. Anal. Chem. 1995, 67, 4044-4052.


AKOBOOC


Hiatt, M. Anal. Chem. 1998, 70, 851-856.

