Fuel Trends Report: Gasoline 1995 - 2005

Appendices

Compliance and Innovative Strategies Division Office of Transportation and Air Quality U.S. Environmental Protection Agency

Appendix to Sulfur Chapter

RFG Sulfur by Gasoline Volume

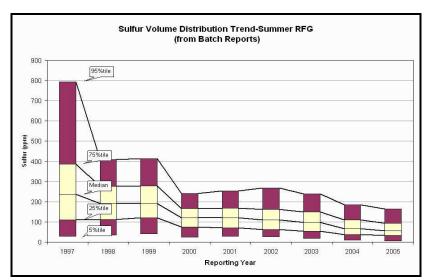


Figure 1

R	eporting Yea	r							
/olume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile	0	1	4	1	4	0	1	0	0
minimum	0	1	4	1	1	0	1	0	0
5%	29	35	42	25	30	26	18	10	6
10%	52	61	64	39	42	37	27	17	16
15%	74	79	82	51	51	45	37	24	22
20%	94	96	103	64	61	54	47	30	28
25%	111	113	121	74	71	62	55	37	33
30%	131	128	139	84	82	72	62	43	39
35%	150	145	153	94	90	80	71	48	44
40%	178	162	167	102	99	90	79	54	49
45%	204	176	180	112	109	99	89	60	52
50%	237	192	192	121	120	110	98	67	57
55%	265	206	207	130	129	119	107	74	62
60%	288	222	220	141	140	130	116	83	68
65%	313	237	237	149	149	140	127	91	75
70%	343	255	257	158	158	151	139	100	84
75%	387	277	278	167	169	163	150	110	93
80%	446	297	300	179	179	178	163	121	105
85%	541	321	328	191	195	197	179	132	120
90%	641	359	360	211	218	224	201	153	136
95%	793	410	413	242	253	268	239	184	164
100%	1204	499	500	479	488	472	469	331	313

RFG Sulfur by Gasoline Volume (continued):

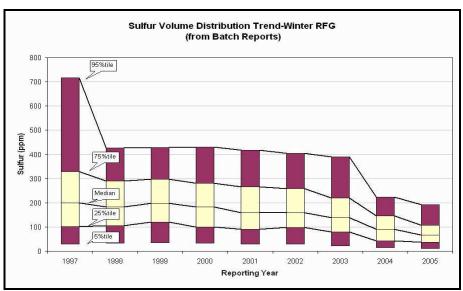


Figure 2

		W	inter RFG Sul	fur Content (ppm) by Volu	me (from Ba	tch Reports)		
	Reporting Y	ear							
Volume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	0	1	1	1	1	0	1	0	0
5%	29	33	36	33	29	29	23	14	11
10%	51	53	58	52	45	44	40	22	19
15%	69	72	81	69	61	59	54	29	25
20%	86	89	104	84	78	77	65	36	31
25%	101	106	121	99	91	97	79	43	37
30%	119	122	139	112	105	111	94	51	43
35%	137	139	155	129	117	123	108	60	49
40%	160	153	169	145	131	133	119	69	54
45%	179	168	183	163	144	145	127	79	60
50%	199	183	197	182	159	159	138	90	66
55%	219	197	214	201	174	174	150	101	72
60%	240	218	232	220	192	187	163	111	79
65%	267	239	249	240	213	209	179	125	88
70%	294	262	273	259	240	233	197	136	96
75%	328	290	297	281	266	259	220	146	107
80%	373	321	328	310	290	290	249	159	119
85%	440	353	358	343	323	321	287	173	134
90%	548	381	395	384	361	359	334	193	155
95%	717	426	429	430	417	404	390	223	192
100%	2912	499	511	496	500	499	500	337	371
Volume (gal):	14,905,356,077	15,062,572,102	15,079,905,134	15,829,077,693	15,727,561,297	16,429,804,256	16,669,506,697	17,188,867,639	18,044,832

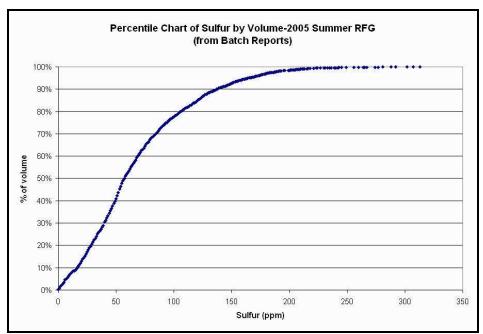


Figure 3

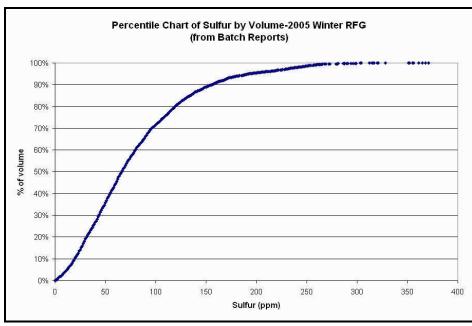


Figure 4

RFG Sulfur by Grade

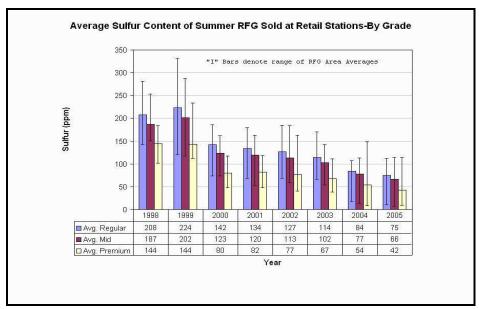


Figure 5

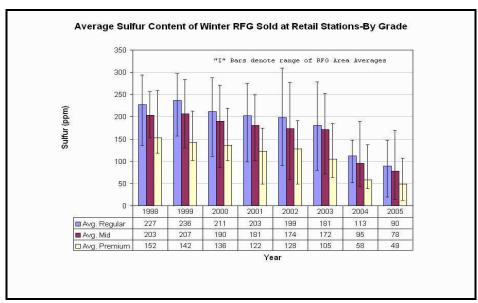
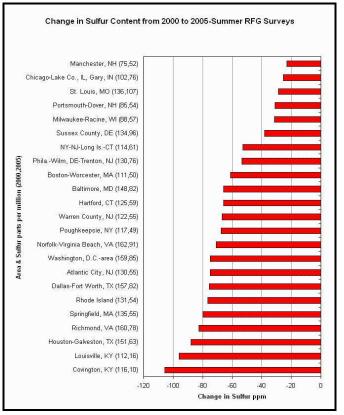


Figure 6


RFG Sulfur By Grade (continued):

			RFG Average	Sulfur Conten	t (ppm) and Vo	olume (gal) by	Year, Grade, a	nd Season-fron	n Reporting Da	ta	
			Reporting Year								
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	196	151	149	78	85	84	66	55	43
		Volume	3,437,323,049	3,651,099,126	3,537,723,033	2,788,523,817	2,765,064,985	2,919,724,883	2,735,295,696	2,385,535,898	2,143,973,091
	W	Average	163	148	150	139	122	114	94	57	44
		Volume	3,875,280,201	4,137,427,813	3,836,358,338	3,419,995,241	3,299,267,883	3,387,457,520	3,103,333,727	2,945,338,123	2,583,694,635
REG	S	Average	323	222	226	140	138	134	121	85	74
		Volume	8,933,744,061	9,007,552,063	9,320,974,363	10,122,448,765	10,373,861,808	10,879,031,865	10,824,904,975	11,783,350,501	11,881,795,879
	W	Average	278	224	237	217	202	219	180	110	86
		Volume	10,810,119,364	10,661,459,665	10,902,774,956	12,246,078,983	12,361,561,882	13,031,122,001	13,476,711,626	14,159,160,294	15,422,172,055

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Midgrade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

RFG Sulfur-Geographic

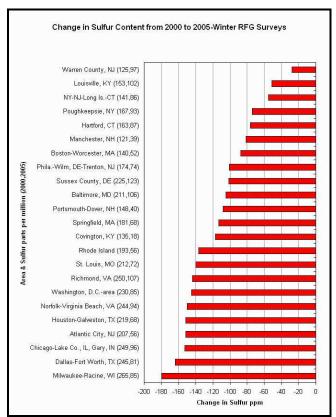


Figure 7 Figure 8

Conventional Gasoline

CG Sulfur by Gasoline Volume

Figure 9

R	eporting Yea	r							
/olume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile minimum	0	0	0	0	0	0	0	0	0
5%	19	27	23	30	27	21	15	8	8
10%	41	49	44	54	47	43	30	15	17
15%	64	72	66	75	69	64	47	21	22
20%	89	100	92	97	92	85	63	27	26
25%	118	122	116	124	113	105	85	36	32
30%	150	145	146	149	135	130	117	46	38
35%	178	172	179	177	156	156	150	57	48
40%	203	204	211	203	178	182	179	68	57
45%	233	231	237	232	204	207	210	80	66
50%	264	254	264	261	232	232	240	94	76
55%	290	279	289	284	260	261	276	113	88
60%	318	308	319	311	289	294	306	129	100
65%	349	335	358	341	318	326	344	146	113
70%	385	368	393	379	353	367	379	161	132
75%	423	402	433	422	405	408	427	178	153
80%	487	449	476	490	463	466	484	198	176
85%	590	527	552	604	545	529	565	219	204
90%	725	631	669	724	680	637	678	239	233
95%	849	791	836	859	840	810	832	269	269
100%	1081	1084	1060	1081	1045	1089	1096	449	478

CG Sulfur by Gasoline Volume (continued):

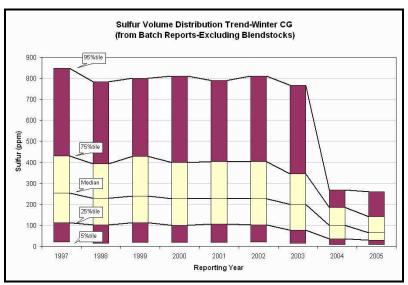


Figure 10

F	Reporting Yea	ır							
olume 6tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
ninimum	0	0	0	0	0	0	0	0	0
5%	20	14	19	19	18	20	15	9	8
10%	42	38	43	40	39	40	26	17	15
15%	65	60	66	60	59	60	40	24	20
20%	89	80	87	80	80	79	57	30	25
25%	112	102	113	100	105	101	77	36	29
30%	136	123	138	123	134	128	98	46	34
35%	164	148	163	149	158	156	123	58	41
40%	194	172	187	176	178	182	146	72	49
45%	222	200	214	202	202	205	172	86	56
50%	253	229	238	226	227	227	199	100	64
55%	281	258	270	253	254	255	221	115	75
60%	311	289	302	284	286	279	246	133	87
65%	349	316	339	311	323	313	275	150	101
70%	388	353	381	353	364	350	309	168	118
75%	431	392	429	399	404	403	345	185	141
80%	489	438	485	449	457	458	395	204	168
85%	579	511	565	515	524	537	465	222	199
90%	704	617	660	644	617	650	586	244	232
95%	849	784	800	811	789	811	767	269	259
100%	1071	1083	1057	1086	1083	1079	1010	449	478

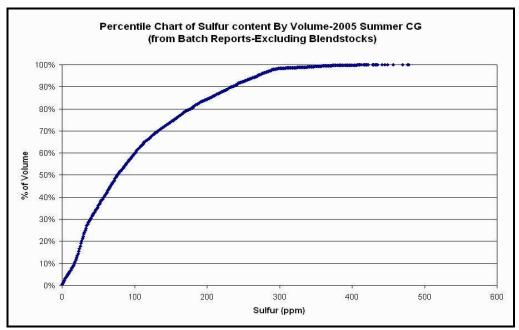


Figure 11

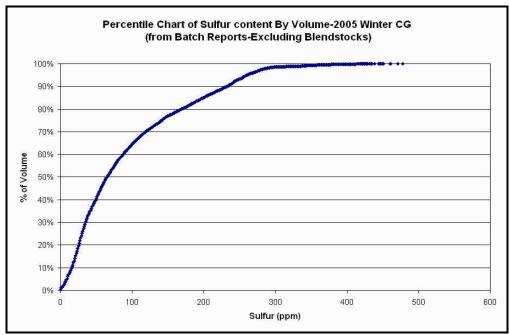


Figure 12

CG Sulfur-by Grade

			CG Average	Sulfur Conten	t (ppm) and Vo	olume (gal)by \	ear, Grade and	l Season-From	Reporting Data	a	
			Reporti	ng Year							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	134	120	118	114	100	85	97	51	51
		Volume	6,908,485,473	6,600,159,963	6,231,165,137	4,955,635,124	4,996,778,324	5,177,600,571	5,143,196,797	4,635,507,910	4,138,979,931
	W	Average	117	103	110	108	101	98	81	50	44
		Volume	8,304,496,529	8,193,379,471	7,668,490,252	6,627,924,003	6,554,918,975	6,568,341,755	5,507,050,392	5,077,869,493	4,508,926,779
REG	S	Average	368	345	361	357	337	332	334	119	107
		Volume	28,005,415,849	28,380,712,680	26,617,451,271	27,335,453,049	28,964,605,205	30,992,801,780	33,051,938,207	34,605,072,844	33,851,903,439
	W	Average	367	330	346	329	330	330	283	123	100
		Volume	32,127,505,321	32,117,523,489	33,273,916,900	35,151,238,087	35,939,854,456	36,931,713,041	35,948,070,047	37,501,622,970	39,121,167,000

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Midgrade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

Appendix to RVP Chapter

RFG RVP by Gasoline Volume

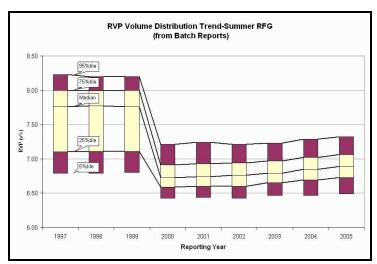


Figure 1

Re	eporting Yea	r							
olume 6tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
ninimum	6.03	5.95	6.18	6.34	6.19	6.19	6.35	6.34	6.33
5%	6.79	6.79	6.80	6.43	6.44	6.43	6.47	6.47	6.49
10%	6.90	6.90	6.94	6.48	6.49	6.49	6.53	6.53	6.57
15%	6.99	6.99	7.00	6.53	6.53	6.53	6.57	6.59	6.63
20%	7.05	7.05	7.05	6.56	6.57	6.57	6.62	6.65	6.69
25%	7.10	7.11	7.11	6.59	6.60	6.60	6.65	6.69	6.73
30%	7.18	7.19	7.18	6.63	6.64	6.65	6.68	6.72	6.76
35%	7.31	7.31	7.26	6.66	6.66	6.68	6.71	6.75	6.79
40%	7.49	7.57	7.45	6.69	6.70	6.72	6.73	6.78	6.83
45%	7.68	7.69	7.66	6.72	6.72	6.73	6.76	6.82	6.86
50%	7.76	7.77	7.76	6.73	6.74	6.76	6.79	6.85	6.89
55%	7.82	7.82	7.84	6.76	6.77	6.79	6.84	6.88	6.92
60%	7.88	7.87	7.89	6.79	6.81	6.82	6.86	6.91	6.96
65%	7.92	7.91	7.94	6.83	6.84	6.85	6.89	6.94	6.99
70%	7.96	7.95	7.98	6.86	6.88	6.89	6.92	6.98	7.02
75%	8.00	7.99	8.00	6.91	6.93	6.94	6.97	7.02	7.06
80%	8.04	8.03	8.04	6.94	6.98	6.99	7.02	7.06	7.11
85%	8.10	8.08	8.08	7.00	7.05	7.05	7.07	7.11	7.17
90%	8.16	8.13	8.14	7.07	7.11	7.11	7.13	7.18	7.24
95%	8.23	8.20	8.20	7.21	7.24	7.21	7.23	7.29	7.32
100%	9.22	8.41	8.65	7.75	7.75	7.76	7.69	8.96	9.95

RFG RVP by Gasoline Volume (continued): (Cumulative Distribution for Latest Year Data)

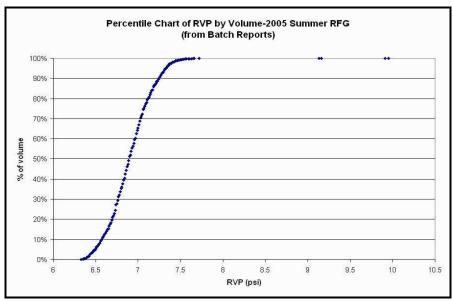


Figure 2

RFG RVP by Grade

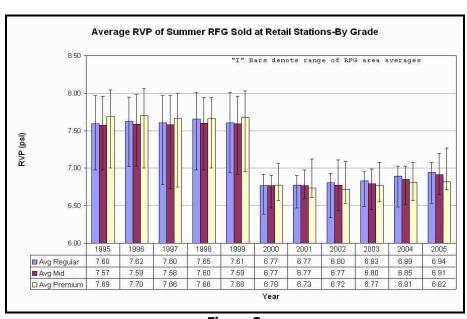


Figure 3

RFG RVP by Grade

			RFG Ave	rage RVP (psi) and Volume	(gal) by Year, (Grade – Summe	er only-From Re	eporting Data		
			Reporting Yea	r							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average Volume	7.59 3,416,852,331	7.56 3,651,258,096	7.60 3,537,723,033	6.73 2,788,564,977	6.73 2,772,816,841	6.71 2,931,886,907	6.74 2,736,973,386	6.77 2,385,535,898	6.77 2,144,095,101
REG	S	Average	7.61	7.61	7.59	6.79	6.81	6.82	6.85	6.88	6.94
		Volume	8,915,975,289	9,007,552,063	9,320,974,363	10,122,448,765	10,392,283,260	10,879,031,865	10,824,904,975	11,783,350,501	11,881,795,879

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

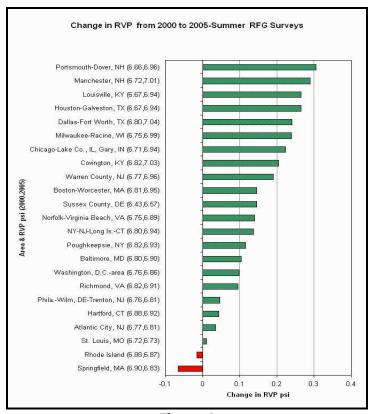


Figure 4

Conventional Gasoline

CG RVP by Gasoline Volume

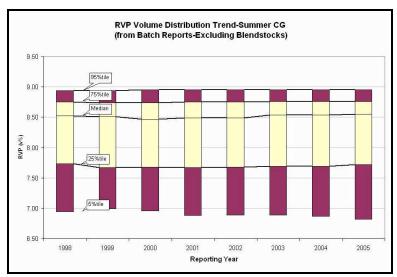


Figure 5

	Reporting Year	r						
olume/	1998	1999	2000	2001	2002	2003	2004	2005
6tile	F 00	F 02	F 0F	F 00	F 0/	F 02	F 00	F 00
minimum	5.89	5.83	5.85	5.80	5.96	5.83	5.80	5.80
5%	6.94	6.99	6.96	6.88	6.89	6.89	6.87	6.82
10%	7.39	7.39	7.39	7.36	7.37	7.39	7.36	7.37
15%	7.52	7.50	7.52	7.51	7.52	7.52	7.51	7.53
20%	7.62	7.59	7.60	7.59	7.60	7.62	7.61	7.63
25%	7.73	7.67	7.68	7.67	7.68	7.69	7.69	7.72
30%	8.04	7.76	7.76	7.76	7.79	7.83	7.87	7.92
35%	8.27	8.12	8.05	8.05	8.07	8.17	8.19	8.21
40%	8.38	8.34	8.25	8.24	8.29	8.37	8.36	8.36
45%	8.46	8.44	8.39	8.37	8.40	8.47	8.46	8.46
50%	8.52	8.51	8.47	8.49	8.49	8.54	8.54	8.55
55%	8.58	8.58	8.54	8.55	8.57	8.61	8.60	8.59
60%	8.62	8.62	8.61	8.61	8.62	8.64	8.64	8.63
65%	8.66	8.66	8.65	8.65	8.67	8.69	8.68	8.68
70%	8.71	8.71	8.69	8.70	8.71	8.73	8.72	8.72
75%	8.75	8.74	8.74	8.75	8.75	8.76	8.76	8.76
80%	8.79	8.79	8.79	8.79	8.79	8.81	8.80	8.81
85%	8.84	8.83	8.82	8.84	8.85	8.85	8.85	8.85
90%	8.89	8.88	8.88	8.89	8.90	8.90	8.89	8.90
95%	8.94	8.94	8.95	8.95	8.95	8.95	8.95	8.95
100%	12.10	11.95	12.09	12.06	12.10	12.08	12.07	12.10

CG RVP by Gasoline Volume (continued):

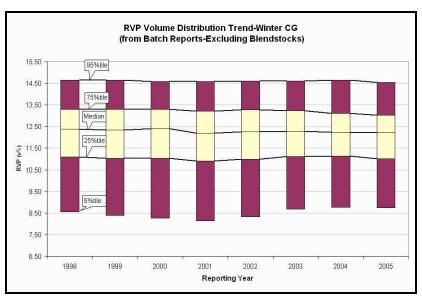


Figure 6

	Reporting Yea	r						
/olume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	5.54	5.57	5.40	5.48	5.39	5.35	5.32	5.40
5%	8.56	8.39	8.26	8.14	8.33	8.69	8.76	8.75
10%	9.49	8.89	8.81	8.74	8.82	9.81	10.07	9.81
15%	10.30	10.13	9.91	9.86	9.97	10.51	10.63	10.43
20%	10.82	10.71	10.71	10.52	10.66	10.88	10.93	10.79
25%	11.10	11.04	11.04	10.90	11.00	11.12	11.14	11.01
30%	11.32	11.26	11.23	11.14	11.21	11.29	11.31	11.23
35%	11.59	11.46	11.45	11.35	11.42	11.49	11.53	11.47
40%	11.96	11.87	11.89	11.61	11.76	11.87	11.88	11.79
45%	12.20	12.14	12.19	11.94	12.05	12.09	12.08	12.04
50%	12.39	12.35	12.40	12.20	12.26	12.27	12.23	12.21
55%	12.55	12.51	12.55	12.41	12.44	12.41	12.39	12.36
60%	12.71	12.69	12.71	12.58	12.62	12.58	12.53	12.50
65%	12.89	12.87	12.89	12.77	12.83	12.76	12.69	12.66
70%	13.10	13.07	13.09	12.99	13.04	12.99	12.89	12.83
75%	13.29	13.29	13.29	13.22	13.28	13.23	13.10	13.02
80%	13.46	13.44	13.45	13.41	13.44	13.40	13.30	13.24
85%	13.94	13.93	13.79	13.70	13.76	13.78	13.62	13.48
90%	14.29	14.31	14.25	14.24	14.26	14.26	14.25	14.07
95%	14.64	14.65	14.59	14.59	14.61	14.61	14.64	14.55
100%	16.30	16.00	15.94	16.20	15.78	16.00	15.50	15.35
/olume (gal): 4	46,061,502,458	45,842,624,362	41,249,911,572	48,563,137,130	48.898.338.201	41.635.803.399	39.996.766.942	38.557.421.

CG RVP by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

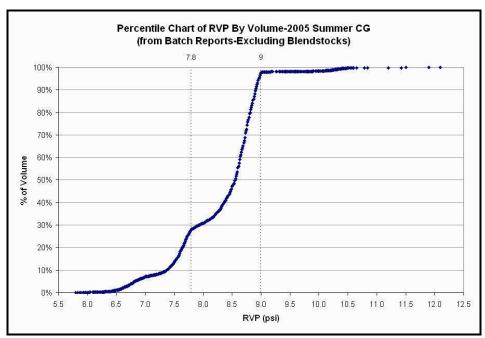


Figure 7

Figure 8

CG RVP by Grade

			_		(0)	Year, Grade an				
			Reporting Year							
Grade	Season	Data	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	8.17	8.16	8.07	8.08	8.10	8.17	8.15	8.14
		Volume	6,635,803,305	6,252,416,423	4,957,386,104	4,996,778,324	5,181,939,065	5,149,486,549	4,635,507,910	4,138,979,931
	W	Average	12.11	11.98	11.94	11.82	11.93	12.01	11.94	12.00
		Volume	8,209,902,634	7,399,170,984	5,413,808,077	6,555,892,276	6,542,422,368	5,021,592,048	4,297,707,397	3,716,904,849
REG	S	Average	8.33	8.29	8.25	8.25	8.27	8.30	8.30	8.30
		Volume	28,418,412,132	26,656,367,421	27,360,707,607	28,965,019,123	30,995,888,528	33,053,399,345	34,601,650,558	33,851,903,439
	W	Average	12.06	11.97	11.89	11.80	11.87	11.97	12.02	11.94
		Volume	31,980,799,123	31,791,685,337	29,648,094,807	35,690,792,290	36,194,877,059	31,768,671,300	31,555,556,718	32,128,135,107

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Midgrade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

Appendix to Oxygenates and Oxygen Chapter

RFG Oxygen Weight Percent by Gasoline Volume (Excluding California)

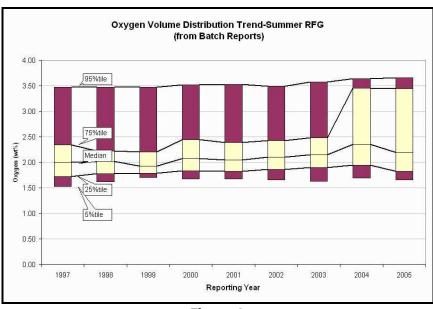


Figure 1

		Summ	er RFG Oxyg	en Content (w	t%) by Volu	me (from Bat	ch Reports)		
	Reporting	Year							
Volume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile									
minimum	1.20	1.50	1.50	1.50	1.51	1.43	1.44	1.45	1.44
5%	1.53	1.62	1.70	1.68	1.68	1.66	1.63	1.69	1.66
10%	1.58	1.67	1.72	1.73	1.72	1.74	1.71	1.76	1.72
15%	1.62	1.70	1.75	1.76	1.76	1.78	1.78	1.82	1.75
20%	1.68	1.74	1.77	1.80	1.79	1.82	1.84	1.88	1.78
25%	1.72	1.78	1.79	1.83	1.82	1.86	1.90	1.94	1.82
30%	1.78	1.82	1.81	1.88	1.85	1.89	1.94	2.00	1.87
35%	1.83	1.87	1.84	1.91	1.88	1.94	1.99	2.08	1.91
40%	1.90	1.91	1.87	1.95	1.93	2.00	2.05	2.17	1.98
45%	1.96	1.98	1.90	2.01	1.99	2.05	2.10	2.25	2.07
50%	2.00	2.02	1.93	2.07	2.05	2.10	2.15	2.35	2.19
55%	2.06	2.06	1.97	2.13	2.11	2.16	2.23	2.43	2.33
60%	2.10	2.09	2.01	2.20	2.17	2.21	2.29	2.50	2.43
65%	2.16	2.13	2.07	2.29	2.23	2.27	2.36	2.58	2.51
70%	2.25	2.17	2.13	2.37	2.31	2.35	2.42	3.31	2.67
75%	2.34	2.22	2.20	2.44	2.39	2.43	2.48	3.45	3.44
80%	2.44	2.32	2.30	2.52	2.47	2.51	2.54	3.49	3.51
85%	2.52	2.46	2.45	2.60	2.55	2.58	2.65	3.53	3.54
90%	2.65	2.64	2.62	3.42	3.31	3.40	3.48	3.57	3.59
95%	3.47	3.47	3.47	3.52	3.53	3.49	3.57	3.64	3.66
100%	3.91	3.96	3.82	3.78	4.10	4.00	4.02	3.91	3.95
Volume (gal):	12,212,323,923	12,566,698,539	12,660,919,964	12,569,342,940	12,783,848,128	13,409,581,178	13,185,376,501	13,746,792,069	13,464,126,85

RFG Oxygen Weight Percent by Gasoline Volume (Continued):

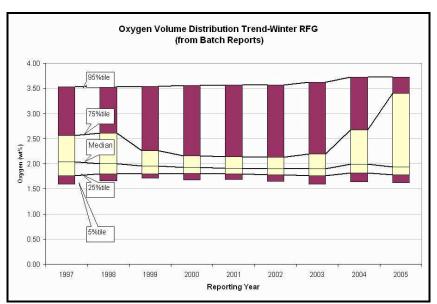


Figure 2

		Winter	RFG Oxygen	Content (wt	%) by Volum	e (from Batc	h Reports)		
	Reporting \	Year							
/olume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	1.44	1.36	1.50	1.50	1.43	1.45	1.25	1.37	1.46
5%	1.59	1.66	1.71	1.68	1.69	1.65	1.59	1.64	1.62
10%	1.64	1.70	1.74	1.73	1.72	1.70	1.64	1.70	1.68
15%	1.68	1.74	1.76	1.76	1.75	1.73	1.69	1.75	1.72
20%	1.72	1.77	1.78	1.79	1.78	1.76	1.73	1.78	1.75
25%	1.76	1.80	1.80	1.81	1.80	1.78	1.76	1.82	1.78
30%	1.80	1.83	1.82	1.83	1.82	1.80	1.79	1.85	1.81
35%	1.86	1.86	1.85	1.85	1.85	1.83	1.81	1.88	1.84
40%	1.93	1.90	1.88	1.88	1.87	1.85	1.84	1.91	1.88
45%	1.99	1.94	1.91	1.90	1.89	1.87	1.86	1.94	1.90
50%	2.04	2.00	1.95	1.93	1.91	1.90	1.90	1.99	1.94
55%	2.09	2.05	1.99	1.97	1.94	1.93	1.93	2.07	1.98
60%	2.14	2.13	2.03	2.00	1.98	1.97	1.97	2.16	2.06
65%	2.21	2.21	2.09	2.05	2.02	2.01	2.02	2.29	2.21
70%	2.31	2.32	2.16	2.10	2.08	2.07	2.09	2.44	2.39
75%	2.56	2.61	2.26	2.16	2.14	2.13	2.19	2.67	3.40
80%	2.70	2.72	2.40	2.26	2.23	2.21	2.35	3.53	3.53
85%	2.77	2.78	2.62	2.43	2.39	2.36	2.57	3.58	3.58
90%	2.87	2.89	2.82	2.64	2.58	2.66	3.53	3.64	3.65
95%	3.53	3.53	3.54	3.56	3.57	3.57	3.62	3.72	3.72
100%	3.99	4.02	3.85	3.81	4.02	3.94	4.00	4.04	3.97
Volume (gal):	14,520,852,742	14,621,530,037	14,604,242,854	15,291,171,680	15,116,796,877	15,826,024,638	15,771,471,139	15,875,951,167	16,565,687,

RFG Oxygen Weight Percent by Gasoline Volume (Continued): Cumulative Distributions for Latest Year Data

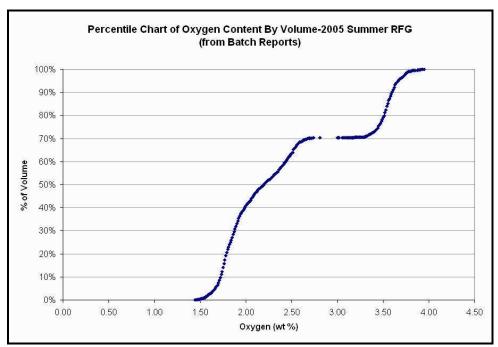


Figure 3

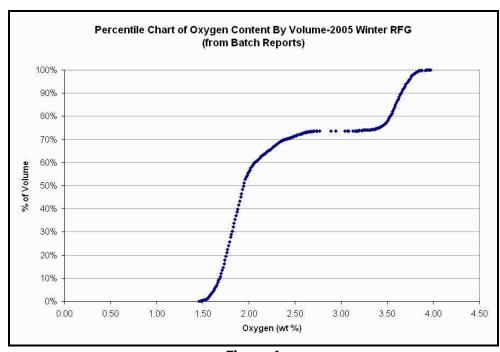


Figure 4

RFG MTBE Content (Volume Percent) by Gasoline Volume

			Summer RF	G MTBE Conte	ent (Vol%) b	y Volume (fro	om Batch Rep	oorts)	
	Reporting Yea	r							
Volume %tile 5% 10%	1997	1998	1999	2000	2001	2002	2003	2004	2005
15% 20% 25%	4.95 6.78 8.21	5.11 6.23 8.05	4.42 5.86 7.30	5.66 6.72 8.17	5.18 7.36 8.41	0.20 6.55 8.34	0.06 5.97 7.91	0.05	0.04
30%	8.52	8.95	8.87	8.73	8.80	8.88	8.69	0.10	0.19
35%	8.72	9.13	9.36	9.05	9.11	9.17	9.01	6.30	7.68
40%	8.99	9.39	9.57	9.36	9.34	9.51	9.37	8.52	8.65
45%	9.27	9.67	9.70	9.60	9.58	9.77	9.79	9.13	9.03
50%	9.58	9.99	9.83	9.82	9.80	10.04	10.16	9.53	9.40
55%	9.94	10.35	9.99	10.10	10.09	10.34	10.55	9.92	9.62
60%	10.44	10.78	10.17	10.40	10.35	10.65	10.95	10.26	9.78
65%	10.90	11.11	10.39	10.68	10.74	11.08	11.39	10.77	10.03
70%	11.30	11.35	10.59	11.11	11.20	11.47	11.74	11.25	10.30
75%	11.59	11.57	10.89	11.56	11.64	11.83	12.19	11.81	10.65
80%	11.95	11.83	11.29	12.08	12.11	12.24	12.64	12.45	11.35
85%	12.57	12.08	11.75	12.92	12.68	12.76	13.04	13.05	12.20
90%	13.18	12.64	12.36	13.44	13.25	13.35	13.52	13.55	13.07
95%	13.81	13.75	13.52	14.02	13.74	13.91	13.98	14.00	13.72
100%	15.71	16.00	16.21	15.17	15.86	15.79	15.62	15.12	15.24
Volume (gal):									13,464,757,064

R	Reporting Yea	r							
Volume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile									
5%									
10%									
15%	0.21	0.18	0.47	0.42	0.65	0.07			
20%	5.06	5.24	5.42	5.55	5.59	5.23	0.14		
25%	7.18	6.94	6.89	7.22	7.99	7.67	7.36	0.05	0.04
30%	8.34	8.68	8.72	8.40	8.59	8.56	8.36	0.28	0.20
35%	8.64	9.04	9.18	8.88	8.98	8.84	8.66	7.95	7.85
40%	8.89	9.30	9.38	9.20	9.24	9.10	8.89	8.56	8.45
45%	9.09	9.52	9.53	9.40	9.44	9.26	9.15	8.87	8.78
50%	9.33	9.74	9.67	9.60	9.60	9.41	9.37	9.15	9.03
55%	9.63	9.98	9.80	9.77	9.76	9.61	9.53	9.39	9.23
60%	10.14	10.24	9.97	9.91	9.92	9.77	9.70	9.62	9.44
65%	10.73	10.58	10.18	10.07	10.06	9.95	9.87	9.84	9.63
70%	11.21	11.09	10.42	10.24	10.24	10.15	10.04	10.06	9.85
75%	11.63	11.70	10.75	10.49	10.44	10.36	10.28	10.29	10.09
80%	12.22	12.16	11.16	10.83	10.74	10.67	10.56	10.79	10.29
85%	13.71	13.49	11.69	11.31	11.18	11.09	11.00	11.39	10.55
90%	14.52	14.58	12.66	11.89	11.63	11.55	11.52	12.12	11.09
95%	14.94	14.98	14.34	12.92	12.44	12.30	12.41	13.01	12.19
100%	16.93	16.86	16.10	15.63	15.30	15.62	15.02	15.13	15.79

RFG MTBE Content (Volume Percent) by Gasoline Volume (Continued): Cumulative Distribution for Latest Year Data

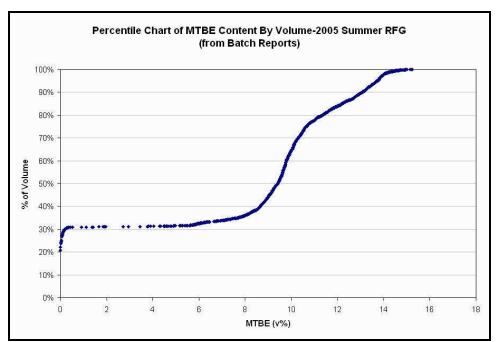


Figure 5

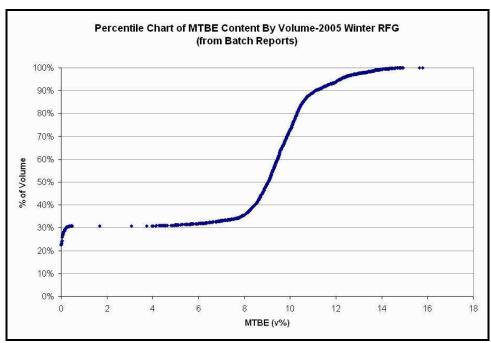


Figure 6

RFG Ethanol Content (Volume Percent) by Gasoline Volume

		Summe	er RFG Ethan	ol Content (v	ol%) by Volu	me (from Bat	ch Reports)		
	Reporting	Year							
Volume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile									
67%									
68%								5.28	
69%								5.56	= 00
70%								9.03	5.38
75%								9.34	9.32
80%								9.44	9.48
81%								9.45	9.50
82%								9.48	9.54
83%							0.01	9.49	9.56
84%						0.03	4.70	9.51	9.58
85%						5.09	5.23	9.54	9.60
86%						5.33	5.35	9.56	9.61
87%			4.81			5.50	9.10	9.59	9.63
88%		4.66	4.96	7.44	0.09	5.76	9.31	9.62	9.67
89%	5.18	4.87	5.15	8.95	8.59	9.07	9.37	9.64	9.70
90%	5.36	5.15	5.26	9.23	9.11	9.23	9.42	9.67	9.72
95%	9.40	9.45	9.47	9.51	9.56	9.45	9.65	9.88	9.92
100%	10.51	10.69	10.42	10.10	10.85	10.31	10.40	11.00	10.60
Volume (gal):	11,977,238,567	12,553,324,899	12,608,377,199	12,574,035,936	12,783,848,128	13,409,581,178	13,168,085,773	13,749,448,485	13,464,757,0

		Winte	r RFG Ethano	l Content (vo	l%) by Volum	ne (from Bato	th Reports)		
	Rep	orting Year							
Volume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile									0.00
66%								0.00	0.02
67%								0.02	0.02
68%								0.02	0.02
69%								0.02	0.08
70%								4.85	4.80
75%								5.65	9.13
76%								9.15	9.23
77%								9.26	9.31
78%								9.34	9.36
79%							0.08	9.40	9.40
80%							4.82	9.43	9.44
81%							4.90	9.46	9.47
82%							4.98	9.49	9.50
83%						4.52	5.03	9.51	9.53
84%	5.02	4.69		0.02		4.81	5.11	9.54	9.56
85%	5.21	4.86	4.60	4.92	4.53	4.90	5.29	9.56	9.59
90%	5.57	5.74	5.47	5.55	5.39	5.75	9.44	9.70	9.73
95%	9.38	9.42	9.45	9.48	9.53	9.50	9.67	9.90	9.93
100%	10.49	10.71	10.39	10.24	10.52	10.46	10.70	10.82	10.73
Volume (gal):	14,400,124,642	14,621,530,037	14,594,054,317	15,275,786,534	15,122,255,995	15,825,705,992	15,771,471,139	15,875,951,167	16,559,495,884

RFG Ethanol Content (Volume Percent) by Gasoline Volume (Continued): Cumulative Distribution for Latest Year Data

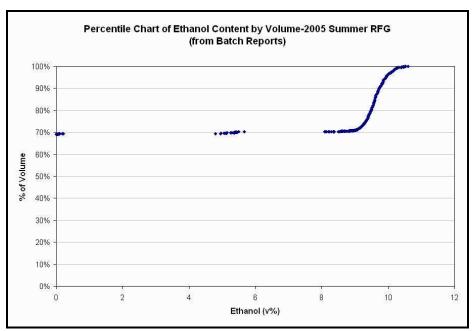


Figure 7

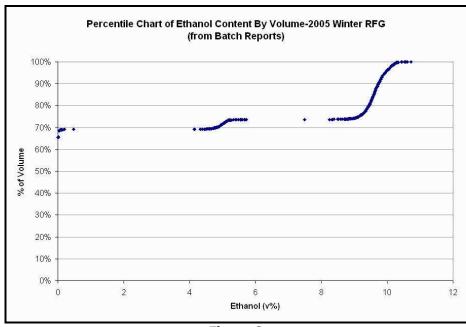


Figure 8

RFG Oxygen Content by Grade

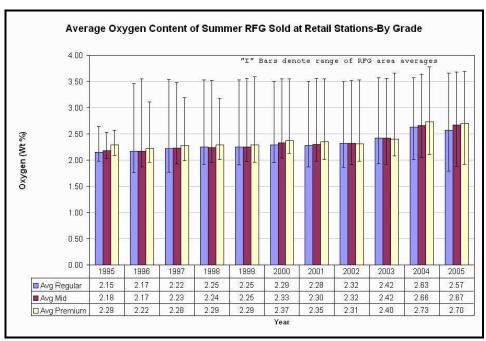


Figure 9

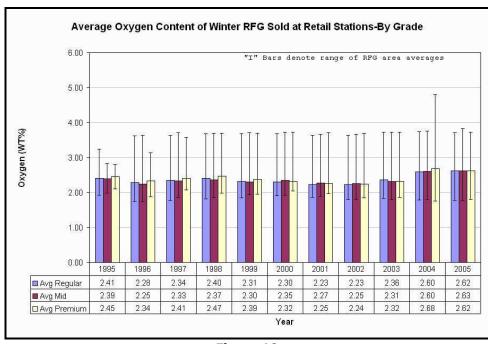


Figure 10

RFG MTBE Content by Grade

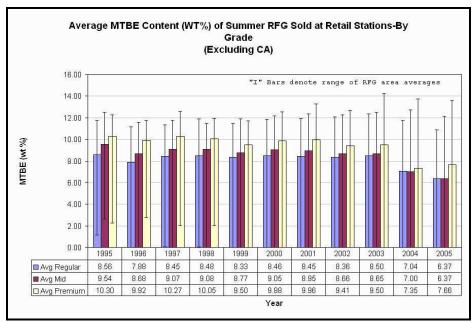


Figure 11

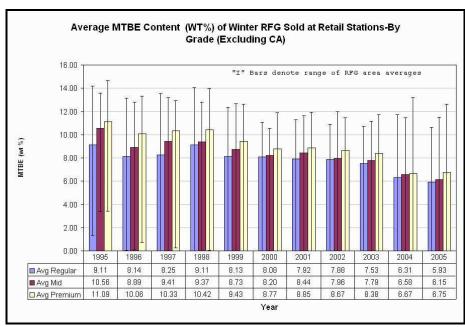


Figure 12

These averages include RFG which did not contain MTBE.

RFG Ethanol Content by Grade

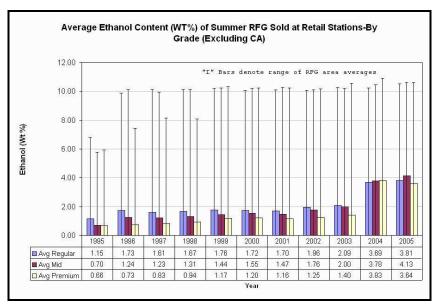


Figure 13

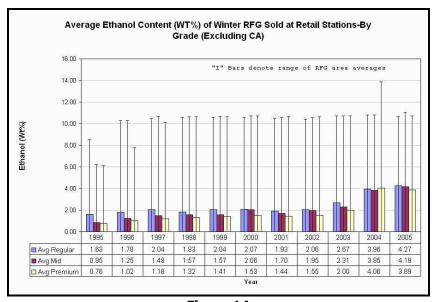


Figure 14

These averages include RFG which did not contain ethanol.

RFG Oxygen Content by Season and Survey Area (Except CA)

Average o	f oxygen (weight %)	Year										
Season	Area	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Summer	Atlantic City, NJ (1)	2.17	1.98	2.16		2.14	2.23	2.32	2.29	2.31	2.20	2.02
Julilillei	Baltimore, MD	2.17	1.87	1.94	1.96	1.99	2.23	2.01	2.06	2.07	2.12	2.02
	Boston-Worcester, MA	2.07	2.12	2.15	2.08	2.01	2.00	2.10	2.00	2.07	2.12	2.03
	Chicago-Lake Co., IL, Gary, IN	2.59	3.36	3.44	3.46	3.54	3.51	3.52	3.50	3.51	3.53	3.61
	Covington, KY (3)	1.98	3.30	5.77	2.70	3.05	3.06	2.99	2.91	3.57	3.59	3.64
	CT - remainder (3)	1.70	2.02		2.70	3.03	3.00	2.77	2.10	2.08	3.53	3.57
	Dallas-Fort Worth, TX	2.09	1.91	2.01	2.07	2.01	2.03	2.07	2.10	2.00	2.21	2.01
	Hartford, CT	2.13	2.03	2.02	2.04	2.02	2.13	2.10	2.12	2.13	3.54	3.59
	Houston-Galveston, TX	2.13	1.87	1.95	2.04	2.00	2.13	2.08	2.15	2.20	2.13	2.05
	Knox Co. and Lincoln Co., ME (2,3)	2.17	1.07	1.75	2.04	2.00	2.11	2.00	2.15	2.20	2.13	2.00
	Lewiston-Auburn, ME (2,3)				2.22							
	Louisville, KY	2.05	1.98	2.30	2.36	2.27	2.27	2.25	2.05	3.50	3.56	3.60
	Manchester, NH	2.08	1.70	2.08	2.11	1.96	2.18	2.17	2.18	2.13	2.06	1.96
	Milwaukee-Racine, WI	2.61	3.42	3.42	3.45	3.51	3.49	3.44	3.49	3.50	3.51	3.58
	Norfolk-Virginia Beach, VA	2.10	1.88	1.92	1.97	2.03	2.07	1.98	2.04	2.12	2.24	2.07
	NY-NJ-Long IsCT	2.08	1.99	2.11	2.03	2.02	2.03	2.06	1.99	2.11	2.91	2.8
	PhilaWilm, DE-Trenton, NJ	2.09	2.00	2.09	2.13	2.12	2.20	2.29	2.26	2.31	2.21	2.0
	Phoenix, AZ (1,2)			1.89								
	Portland, ME (2)	2.23	2.07	2.10	2.18							
	Portsmouth-Dover, NH (3)	2.11	2.08		2.15	1.98	2.21	2.27	2.18	2.12	2.15	1.98
	Poughkeepsie, NY (3)	2.10	2.00	2.08	2.02	2.03	2.04	2.06	1.99	2.01	3.56	3.5
	Queen Anne CoKent Co., MD (3)	2.06						2.10	2.20		2.10	1.9
	Rhode Island	2.26	2.06	1.95	2.08	2.07	2.07	1.99	1.93	2.02	2.09	2.1
	Richmond, VA	2.08	1.85	1.95	1.95	2.00	2.13	1.96	1.98	2.12	2.12	2.0
	Springfield, MA	2.17	2.12	2.12	2.08	2.08	2.12	2.07	2.01	2.11	2.16	2.4
	St. Louis, MO (1)					2.22	2.20	2.26	3.05	3.54	3.56	3.6
	Sussex County, DE (1)	2.09				1.98	2.01	2.14	2.29	2.25	2.09	1.8
	Warren County, NJ (1)	2.07				2.04	2.17		,	2.18	2.15	1.9
	Washington, DC area	2.13	1.92	1.97	1.99	2.03	2.11	1.96	1.99	2.09	2.08	2.0
Winter	Atlantic City, NJ	2.65	1.81	2.04		2.14	2.08	1.94	1.96	2.05	1.94	1.8
	Baltimore, MD	2.30	1.83	1.93	1.90	1.95	1.98	1.98	1.92	1.96	1.98	1.8
	Boston-Worcester, MA	2.10	1.98	1.96	2.06	2.10	2.14	2.11	2.05	2.05	2.04	2.0
	Chicago-Lake Co., IL, Gary, IN	3.13	3.53	3.56	3.68	3.69	3.70	3.65	3.64	3.66	3.67	3.6
	Covington, KY	2.03			3.32	3.14	3.02	2.99	3.34	3.72	3.90	3.7
	CT - remainder		2.04		2.03				2.05	2.76	3.59	3.6
	Dallas-Fort Worth, TX	1.97	1.87	1.91	1.97	1.94	1.99	1.99	1.93	1.97	1.95	1.9
	Hartford, CT	2.20	2.06	2.17	2.06	2.10	2.12	2.06	2.01	2.37	3.60	3.6
	Houston-Galveston, TX	2.00	1.83	1.92	1.97	1.99	2.04	2.06	2.04	2.08	2.03	2.0
	Knox Co. and Lincoln Co., ME	2.25										
	Lewiston-Auburn, ME	2.20			2.26							
	Louisville, KY	1.98	2.04	2.19	2.16	2.40	2.24	2.25	2.90	3.71	3.72	3.68
	Manchester, NH	2.11		1.95	2.10	2.10	2.04	2.15	2.06	2.08	2.01	1.9
	Milwaukee-Racine, WI	2.95	2.91	2.52	3.53	3.55	3.65	3.51	3.61	3.69	3.65	3.6
	Norfolk-Virginia Beach, VA	2.01	1.85	1.91	1.87	1.96	2.00	1.98	1.98	2.01	2.08	1.9
	NY-NJ-Long IsCT	2.61	2.53	2.64	2.70	2.19	1.99	1.91	1.87	2.08	2.96	3.0
	PhilaWilm, DE-Trenton, NJ	2.26	1.85	2.01	2.04	1.95	2.06	1.94	1.90	1.94	1.93	1.8
	Phoenix, AZ			3.56								
	Portland, ME	2.20	2.12	2.11	2.26							
	Portsmouth-Dover, NH	2.11	1.91		2.15	2.12	2.24	2.12	2.05	2.04	2.15	1.9
	Poughkeepsie, NY	2.45		2.41	2.52	2.25	2.12	1.91	1.90	2.74	3.68	3.6
	Queen Anne CoKent Co., MD	2.28						2.00	1.83		1.87	1.8
	Rhode Island	2.25	1.95	1.96	2.05	2.08	2.20	2.04	1.86	1.93	2.03	1.8
	Richmond, VA	2.20	1.86	1.88	1.91	1.98	1.94	1.94	1.95	1.95	1.99	1.8
	Springfield, MA	2.13	1.94	2.00	2.09	2.18	2.22	2.03	2.11	1.97	2.20	2.3
	St. Louis, MO					2.69	2.71	2.54	2.84	3.46	3.61	3.5
	Sussex County, DE	2.11				1.89	2.00	1.98	1.96	1.87	1.80	1.7
	Warren County, NJ					2.36	1.98			1.90	1.91	2.0
	Washington, DC area	2.71	1.87	1.96	1.91	2.01	1.98	1.94	1.98	2.01	2.05	1.9
	Reasons for no data in certain											
	years:											
	1 No data prior to opt-in to RFG											
	2 No data subsequent to opt-out of F	RFG										
	data sabsoquent to opt out of t	•										
	3 Not sampled in certain years (smal	lor										

	RFG Oxygen Cont	tent by	Seasoi	n and A	Area (F	ederal	RFG A	reas in	Califor	nia)	
Average	e of Oxygen (Wt%)	Year									
Season	Area	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Summer	Los Angeles, CA	2.05	2.05	2.04	2.20	2.01	2.07	2.11	2.02	2.08	2.12
	Sacramento Metro, CA	2.12	2.04	2.11	2.13	2.18	1.99	2.13	2.05	2.05	2.14
	San Diego, CA	2.03	2.09	2.06	2.19	2.09	2.17	2.07	2.09	2.08	2.11
	San Joaquin, CA								2.11	2.13	2.19
Winter	Los Angeles, CA		2.03	2.15	2.16	2.23	2.12	2.05	2.01	2.13	2.01
	Sacramento Metro, CA		2.03	2.13	2.09	2.14	2.13	2.05	2.03	2.17	2.13
	San Diego, CA		2.09	2.14	2.17	2.20	2.21	2.12	2.02	2.09	2.08
	San Joaquin, CA								2.08	2.23	2.13

Season	Area	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	200
Summer	Atlantic City, NJ	11.12	10.67	11.49	1990	11.44	11.47	12.31	12.27	12.31	11.77	10.8
Julilinei	Baltimore, MD	10.43	9.02	9.31	9.55	9.51	10.12	9.73	10.30	10.33	10.76	10.4
	Boston-Worcester, MA	10.14	10.37	10.70	10.23	9.52	10.59	9.96	10.36	10.12	10.78	10.0
	Chicago-Lake Co., IL, Gary,	1.89	0.60	0.65	0.43	0.00	0.01	0.00	0.01	0.02	0.03	0.0
	IN	,	0.00	0.00	00	0.00	0.0.	0.00	0.0.	0.02	0.00	0.0
	Covington, KY	7.67			5.63	2.52	3.49	3.44	3.29	0.00	0.00	0.0
	CT - remainder		10.14		10.14				9.22	9.78	0.06	0.0
	Dallas-Fort Worth, TX	9.23	8.93	9.93	9.87	10.31	10.16	10.38	10.48	11.26	11.12	9.8
	Hartford, CT	10.40	10.29	10.39	10.38	9.08	9.21	9.60	9.27	9.24	0.06	0.0
	Houston-Galveston, TX	10.79	8.84	9.27	10.45	10.26	11.01	10.42	10.95	11.39	11.13	10.5
	Knox Co. and Lincoln Co.,	11.42										
	ME											
	Lewiston-Auburn, ME				11.70							
	Louisville, KY	4.80	7.87	8.12	7.19	7.81	8.16	7.40	7.65	0.00	0.00	0.0
	Manchester, NH	10.37		10.52	11.03	10.24	11.11	11.11	11.23	11.17	10.47	10.
	Milwaukee-Racine, WI	1.49	0.38	0.45	0.34	0.00	0.00	0.00	0.00	0.01	0.01	0.0
	Norfolk-Virginia Beach, VA	10.07	8.99	9.51	9.68	9.96	10.33	9.62	10.33	10.47	11.74	10.
	NY-NJ-Long IsCT	10.70	10.43	11.19	10.65	10.67	10.26	10.54	10.26	10.46	4.89	4.
	PhilaWilm, DE-Trenton, NJ	10.68	10.42	10.78	11.15	11.28	11.50	12.03	12.06	12.34	11.85	11.
	Phoenix, AZ			9.99								
	Portland, ME	11.84	11.28	11.23	11.58							
	Portsmouth-Dover, NH	11.06	11.21		11.27	10.57	11.82	11.75	11.40	11.14	11.36	10.
	Poughkeepsie, NY	10.90		10.98	10.76	10.43	10.21	10.54	10.13	9.59	0.20	0.
	Queen Anne CoKent Co.,	10.04						9.51	10.54		11.19	10.
	MD											
	Rhode Island	11.37	10.22	10.04	10.32	9.96	9.53	9.65	9.93	9.99	11.44	10.
	Richmond, VA	10.25	8.94	9.21	9.68	9.72	10.53	9.93	10.12	10.74	10.99	10.
	Springfield, MA	10.61	10.82	11.03	10.62	9.68	9.90	9.80	9.34	9.74	11.07	7.
	St. Louis, MO					7.91	9.07	8.85	0.22	0.27	0.08	0.
	Sussex County, DE	9.63				8.05	9.11	9.74	10.19	11.51	11.46	9.
	Warren County, NJ					10.67	10.94			10.73	11.61	10.
	Washington, DC area	10.47	9.17	9.67	9.85	9.59	10.43	9.84	10.13	10.35	10.43	10.
Vinter	Atlantic City, NJ	14.06	8.99	10.56		10.87	9.87	10.07	10.23	10.88	10.48	10.
	Baltimore, MD	11.72	8.21	9.51	9.71	9.50	9.58	9.39	9.61	9.84	10.15	9.
	Boston-Worcester, MA	9.60	9.13	9.20	9.57	8.96	9.80	9.54	9.98	10.40	10.07	9.
	Chicago-Lake Co., IL, Gary,	2.22	0.60	0.48	0.07	0.00	0.00	0.00	0.01	0.01	0.00	0.0
	IN											
	Covington, KY	7.45			3.29	2.91	3.67	3.63	1.81	0.01	0.00	0.0
	CT - remainder		9.98		9.68				8.85	5.21	0.11	0.
	Dallas-Fort Worth, TX	9.10	8.89	9.89	9.61	9.43	9.89	9.89	9.83	10.11	9.60	9.
	Hartford, CT	10.58	9.82	10.20	9.79	8.85	9.01	9.36	8.85	7.33	0.09	0.
	Houston-Galveston, TX	9.94	8.56	9.37	10.02	10.33	10.52	10.21	10.39	10.62	10.20	10.
	Knox Co. and Lincoln Co.,	12.13										
	ME											
	Lewiston-Auburn, ME				11.76							
	Louisville, KY	6.34	7.69	7.55	7.93	7.83	7.26	7.29	4.10	0.01	0.00	0.0
	Manchester, NH	10.24		10.22	10.07	10.28	10.05	11.17	10.68	10.77	10.62	10.
	Milwaukee-Racine, WI	2.46	0.23	0.49	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.
	Norfolk-Virginia Beach, VA	9.78	8.69	9.42	9.47	9.92	9.91	9.91	9.97	10.19	10.88	9.
	NY-NJ-Long IsCT	12.88	12.95	13.32	13.93	11.23	9.87	9.85	9.68	8.55	3.99	3.
	PhilaWilm, DE-Trenton, NJ	11.16	9.01	9.99	10.68	10.24	10.34	9.87	9.87	10.18	10.57	10.
	Phoenix, AZ			0.17								
	Portland, ME	12.00	11.07	11.51	11.73	0.00	40.07	44.04	40.00	40 (7	44.70	40
	Portsmouth-Dover, NH	10.79	9.54	40.5=	11.29	9.98	10.96	11.21	10.98	10.67	11.79	10.
	Poughkeepsie, NY	12.89		12.05	12.50	11.01	9.78	9.54	9.20	5.14	0.11	0.
	Queen Anne Co. Kent Co.,	11.49						9.48	8.91		9.93	9.
	MD											_
	Rhode Island	10.30	9.09	9.39	10.12	9.25	9.81	9.62	9.31	9.53	10.59	9.
	Richmond, VA	10.74	8.42	9.12	9.81	9.53	9.43	9.61	9.83	9.70	10.29	9.
	Springfield, MA	9.52	9.08	9.77	9.95	9.02	9.39	9.59	9.27	8.93	8.91	7.
	St. Louis, MO					5.46	5.59	4.90	2.91	0.46	0.16	0.
	Sussex County, DE	9.78				8.90	8.12	8.04	8.80	10.05	9.87	9.
	Warren County, NJ					12.48	10.32			9.95	10.25	8.

RFG MTBE Content (WT%) by Season and Area (Federal RFG Areas in California)

Average o	of MTBE (wt%)	Year									
Season	Area	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Summer	Los Angeles, CA	10.85	10.96	11.14	11.94	10.94	9.76	9.56	0.42	0.00	0.00
	Sacramento Metro, CA	11.56	10.85	10.99	11.54	11.47	9.37	9.86	4.83	0.00	0.00
	San Diego, CA	10.55	10.98	11.00	11.89	11.32	10.92	10.39	2.50	0.01	0.01
	San Joaquin, CA								6.08	0.00	0.00
Winter	Los Angeles, CA		10.63	11.37	11.82	12.12	9.66	9.86	0.79	0.00	0.00
	Sacramento Metro, CA		10.85	11.25	11.12	11.34	10.04	9.59	2.73	0.00	0.00
	San Diego, CA		10.78	11.51	11.71	11.96	11.21	10.54	1.68	0.00	0.00
	San Joaquin, CA								5.28	0.00	0.00

RFG Ethanol Content (WT%) by Season and Survey Area (Except CA)

Average o	f Ethanol (wt%)	Year										
Season	Area	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Summer	Atlantic City, NJ	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Baltimore, MD	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	Boston-Worcester, MA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.33
	Chicago-Lake Co., IL, Gary, IN	6.33	9.29	9.57	9.74	10.21	10.12	10.14	10.09	10.10	10.15	10.39
	Covington, KY	1.45			4.83	7.46	6.95	6.78	6.64	10.29	10.34	10.49
	CT - remainder		0.00		0.00				0.00	0.00	10.13	10.27
	Dallas-Fort Worth, TX	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Hartford, CT	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	10.16	10.33
	Houston-Galveston, TX	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Knox Co. and Lincoln Co., ME	0.00										
	Lewiston-Auburn, ME				0.00							
	Louisville, KY	1.36	1.45	2.32	3.01	2.40	2.21	2.54	1.78	10.05	10.25	10.36
	Manchester, NH	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	Milwaukee-Racine, WI	6.56	9.58	9.61	9.76	10.10	10.05	9.91	10.05	10.07	10.12	10.29
	Norfolk-Virginia Beach, VA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	NY-NJ-Long IsCT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.78	5.76
	PhilaWilm, DE-Trenton, NJ	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	Phoenix, AZ			0.00								
	Portland, ME	0.00	0.00	0.00	0.00							
	Portsmouth-Dover, NH	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Poughkeepsie, NY	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.14	10.29
	Queen Anne CoKent Co., MD	0.00						0.00	0.00		0.00	0.00
	Rhode Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32
	Richmond, VA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Springfield, MA	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.36	2.47
	St. Louis, MO					2.00	1.35	1.52	8.65	10.04	10.20	10.53
	Sussex County, DE	0.00				0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Warren County, NJ					0.00	0.00			0.01	0.00	0.01
	Washington, DC area	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Winter	Atlantic City, NJ	0.15	0.00	0.15		0.16	0.54	0.07	0.17	0.00	0.00	0.00
	Baltimore, MD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Boston-Worcester, MA	0.07	0.22	0.10	0.18	0.33	0.30	0.36	0.18	0.30	0.22	0.38
	Chicago-Lake Co., IL, Gary, IN	7.69	9.75	10.00	10.56	10.61	10.66	10.50	10.48	10.55	10.57	10.64
	Covington, KY	1.72			7.85	7.49	6.76	6.69	8.65	10.71	11.22	10.63
	CT - remainder		0.17		0.23				0.41	5.15	10.28	10.45
	Dallas-Fort Worth, TX	0.02	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00

Hartford, CT	0.22	0.35	0.51	0.35	0.41	0.43	0.27	0.45	2.72	10.33	10.48
Houston-Galveston, TX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Knox Co. and Lincoln Co.,	0.00										
ME											
Lewiston-Auburn, ME				0.00							
Louisville, KY	1.61	1.64	2.34	2.01	2.69	2.55	2.58	6.13	10.69	10.72	10.61
Manchester, NH	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00
Milwaukee-Racine, WI	6.72	8.13	6.99	10.16	10.23	10.51	10.10	10.40	10.63	10.49	10.62
Norfolk-Virginia Beach, VA	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
NY-NJ-Long IsCT	0.41	0.11	0.35	0.30	0.18	0.36	0.16	0.13	1.33	6.37	7.20
PhilaWilm, DE-Trenton, NJ	0.44	0.09	0.14	0.05	0.16	0.18	0.10	0.12	0.14	0.00	0.04
Phoenix, AZ			10.17								
Portland, ME	0.00	0.00	0.00	0.00							
Portsmouth-Dover, NH	0.00	0.16		0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Poughkeepsie, NY	0.13		0.33	0.32	0.38	0.71	0.30	0.32	5.05	10.51	10.45
Queen Anne CoKent Co.,	0.00						0.00	0.00		0.00	0.01
MD											
Rhode Island	0.24	0.30	0.14	0.25	0.25	0.48	0.34	0.35	0.38	0.26	0.44
Richmond, VA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Springfield, MA	0.37	0.35	0.21	0.22	0.36	0.72	0.27	0.50	0.59	1.44	2.99
St. Louis, MO					4.74	4.73	4.52	6.54	9.72	10.32	10.30
Sussex County, DE	0.00				0.00	0.00	0.00	0.00	0.00	0.00	0.00
Warren County, NJ					0.00	0.01			0.00	0.00	1.67
Washington, DC area	0.09	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00

RFG Ethanol Content (WT%) by Season and Area (Federal RFG Areas in California)

Average of	Ethanol (wt%)	Year									
Season	Area	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Summer	Los Angeles, CA	0.01	0.00	0.00	0.00	0.00	0.77	1.00	5.59	5.96	6.09
	Sacramento Metro, CA	0.00	0.00	0.00	0.00	0.00	0.61	0.77	3.38	5.90	6.12
	San Diego, CA	0.00	0.00	0.00	0.00	0.00	0.49	0.52	4.71	5.94	6.02
	San Joaquin, CA								2.90	6.10	6.25
Winter	Los Angeles, CA		0.00	0.00	0.00	0.00	1.00	0.75	5.36	6.08	5.77
	Sacramento Metro, CA		0.00	0.00	0.00	0.00	0.63	0.65	4.24	6.08	5.97
	San Diego, CA		0.00	0.00	0.00	0.00	0.48	0.57	4.94	5.99	5.92
	San Joaquin, CA								3.21	6.25	6.07

Appendix to Benzene Chapter

RFG Benzene by Gasoline Volume

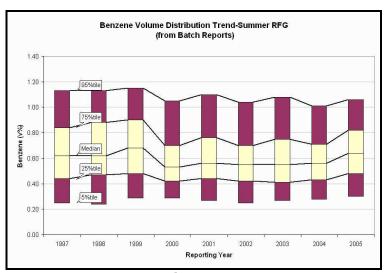


Figure 1

R	eporting Yea	r							
/olume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile minimum	0.07	0.05	0.06	0.00	0.01	0.00	0.06	0.00	0.01
5%	0.07	0.05	0.08	0.00	0.01	0.00	0.08	0.00	0.01
10%	0.32	0.32	0.36	0.34	0.34	0.32	0.33	0.33	0.37
15%	0.37	0.38	0.40	0.37	0.38	0.36	0.36	0.37	0.41
20%	0.41	0.42	0.43	0.39	0.41	0.39	0.38	0.40	0.45
25%	0.44	0.47	0.48	0.42	0.44	0.42	0.41	0.43	0.48
30%	0.48	0.50	0.52	0.44	0.46	0.44	0.43	0.45	0.51
35%	0.40	0.53	0.57	0.47	0.48	0.47	0.46	0.48	0.51
40%	0.55	0.55	0.61	0.49	0.51	0.50	0.49	0.51	0.57
45%	0.58	0.59	0.65	0.51	0.53	0.52	0.52	0.54	0.60
50%	0.62	0.62	0.68	0.53	0.56	0.55	0.55	0.56	0.64
55%	0.67	0.65	0.08	0.55	0.59	0.57	0.59	0.59	0.67
60%	0.71	0.70	0.75	0.58	0.62	0.60	0.63	0.61	0.71
65%	0.75	0.76	0.80	0.61	0.66	0.63	0.66	0.64	0.74
70%	0.73	0.82	0.85	0.66	0.70	0.66	0.00	0.67	0.74
75%	0.84	0.88	0.90	0.70	0.76	0.70	0.71	0.71	0.70
80%	0.89	0.88	0.97	0.76	0.70	0.75	0.80	0.75	0.86
85%	0.95	1.01	1.02	0.70	0.89	0.73	0.86	0.75	0.90
90%	1.02	1.06	1.02	0.83	0.89	0.81	0.86	0.88	0.96
95% 100%	1.13 1.30	1.13 1.33	1.15 1.42	1.05 1.28	1.10 1.30	1.04 1.29	1.08 1.30	1.01 1.51	1.06 1.34

RFG Benzene by Gasoline Volume (continued):

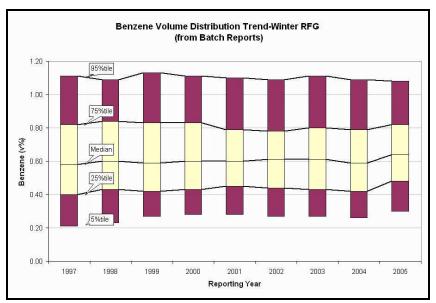


Figure 2

Winter RFG Benzene Content by Volume (from Batch Reports)											
Reporting Year											
/olume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005		
minimum	0.00	0.02	0.01	0.03	0.01	0.01	0.00	0.01	0.01		
5%	0.21	0.23	0.27	0.28	0.28	0.27	0.27	0.26	0.30		
10%	0.28	0.31	0.32	0.33	0.34	0.33	0.33	0.31	0.36		
15%	0.33	0.36	0.36	0.37	0.38	0.37	0.36	0.35	0.40		
20%	0.36	0.40	0.39	0.40	0.42	0.40	0.39	0.38	0.45		
25%	0.40	0.43	0.42	0.43	0.45	0.44	0.43	0.42	0.48		
30%	0.44	0.47	0.45	0.47	0.48	0.48	0.46	0.45	0.51		
35%	0.47	0.50	0.48	0.50	0.51	0.51	0.50	0.49	0.55		
40%	0.50	0.53	0.52	0.53	0.54	0.55	0.53	0.52	0.58		
45%	0.54	0.56	0.56	0.56	0.57	0.58	0.57	0.56	0.61		
50%	0.58	0.60	0.59	0.60	0.60	0.61	0.61	0.59	0.64		
55%	0.63	0.65	0.63	0.64	0.63	0.65	0.64	0.62	0.67		
60%	0.67	0.69	0.67	0.68	0.66	0.68	0.68	0.66	0.70		
65%	0.72	0.74	0.72	0.72	0.70	0.71	0.72	0.71	0.74		
70%	0.77	0.79	0.78	0.78	0.74	0.74	0.76	0.75	0.78		
75%	0.82	0.84	0.83	0.83	0.79	0.78	0.80	0.79	0.82		
80%	0.87	0.89	0.89	0.89	0.85	0.83	0.87	0.85	0.87		
85%	0.93	0.95	0.96	0.95	0.93	0.89	0.93	0.91	0.92		
90%	1.01	1.01	1.04	1.02	1.01	0.98	1.01	0.99	0.98		
95%	1.11	1.09	1.13	1.11	1.10	1.09	1.11	1.09	1.08		
100%	2.65	1.32	1.30	1.33	1.30	1.30	1.30	1.31	1.68		
Volume (gal):	4,914,492,944	15,066,250,612	15,082,593,974	15,826,525,899	15,733,483,045	16,429,447,508	16,675,657,569	17,189,415,193	18,049,752		

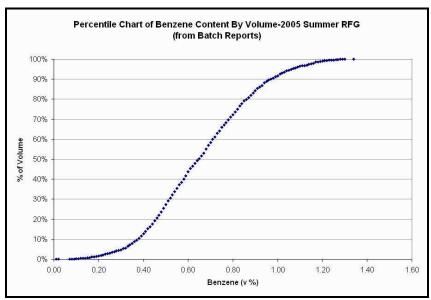


Figure 3

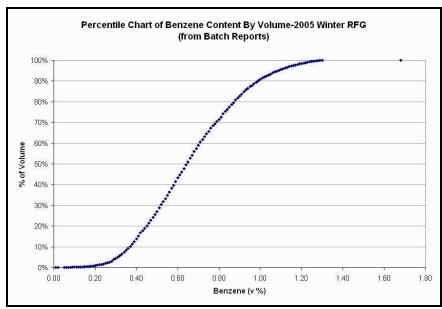


Figure 4

RFG Benzene by Grade

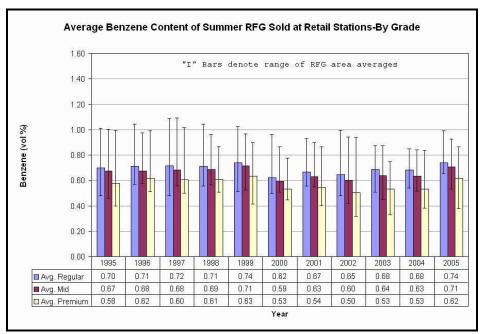
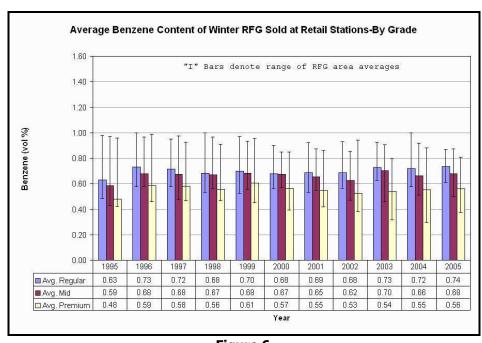
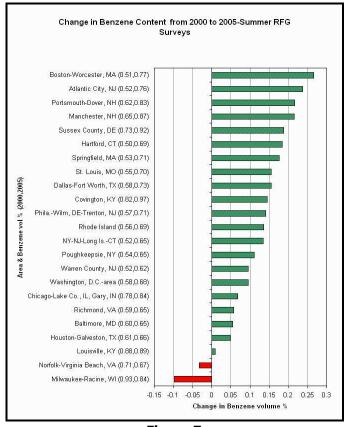


Figure 5




Figure 6

RFG Benzene by Grade (continued):

			R	FG Average Be	nzene Content	(v%) and Volu	ıme (gal) by Ye	ear, Grade and	Season – From	Reporting Dat	a
			Reporting Yea	ar							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	0.60	0.60	0.63	0.53	0.52	0.48	0.50	0.50	0.58
		Volume	3,433,830,960	3,649,323,954	3,537,270,189	2,788,061,943	2,772,653,293	2,931,154,091	2,736,350,778	2,384,807,492	2,143,381,101
	W	Average	0.57	0.59	0.61	0.54	0.55	0.52	0.50	0.52	0.56
		Volume	3,876,199,245	4,139,145,511	3,839,047,178	3,419,795,153	3,305,189,631	3,387,100,772	3,102,938,885	2,944,118,191	2,583,362,289
REG	S	Average	0.68	0.70	0.73	0.61	0.65	0.62	0.63	0.62	0.68
		Volume	8,933,744,061	9,007,552,063	9,318,697,543	10,122,448,765	10,392,283,260	10,879,031,865	10,824,904,975	11,779,211,527	11,881,795,879
	W	Average	0.64	0.67	0.66	0.68	0.67	0.67	0.68	0.65	0.69
1		Volume	10,818,337,187	10,663,420,477	10,902,774,956	12,243,727,277	12,361,561,882	13,031,122,001	13,483,257,340	14,160,927,780	15,427,424,995

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

RFG Benzene-Geographic

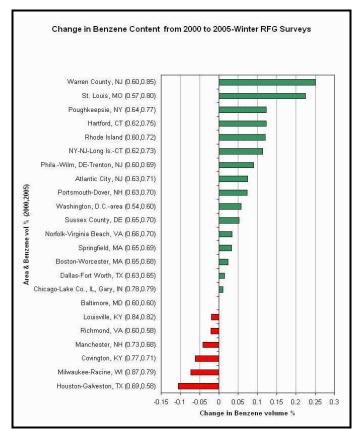


Figure 7 Figure 8

Conventional Gasoline

CG Benzene by Gasoline Volume

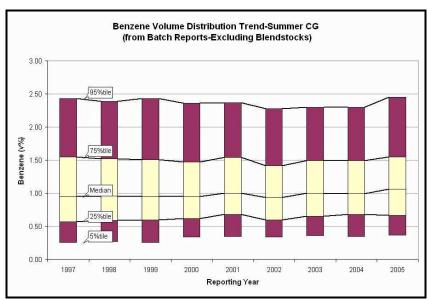


Figure 9

R	Reporting Yea	r							
olume	1997	1998	1999	2000	2001	2002	2003	2004	2005
6tile	1997	1990	1999	2000	2001	2002	2003	2004	2005
minimum	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00
5%	0.26	0.00	0.26	0.00	0.03	0.34	0.36	0.35	0.00
10%	0.20	0.27	0.28	0.44	0.47	0.45	0.46	0.33	0.37
15%	0.44	0.46	0.38	0.51	0.55	0.50	0.53	0.55	0.47
20%	0.50	0.48	0.54	0.57	0.62	0.54	0.59	0.62	0.60
25%	0.57	0.53	0.60	0.62	0.68	0.60	0.65	0.62	0.60
30%	0.65	0.66	0.66	0.67	0.73	0.69	0.03	0.73	0.07
35%	0.73	0.00	0.73	0.74	0.79	0.76	0.78	0.79	0.74
40%	0.73	0.80	0.73	0.74	0.79	0.83	0.78	0.86	0.88
45%	0.87	0.88	0.87	0.87	0.92	0.88	0.92	0.93	0.00
50%	0.95	0.86	0.95	0.95	1.00	0.94	1.00	0.99	1.06
55%	1.05	1.06	1.03	1.03	1.08	1.01	1.08	1.08	1.00
60%	1.17	1.15	1.13	1.12	1.17	1.10	1.18	1.15	1.15
65%	1.29	1.19	1.13	1.22	1.27	1.19	1.10	1.24	1.37
70%	1.42	1.38	1.37	1.34	1.40	1.30	1.37	1.35	1.45
75%	1.55	1.52	1.51	1.47	1.54	1.42	1.49	1.49	1.55
80%	1.69	1.67	1.65	1.58	1.68	1.57	1.61	1.62	1.66
85%	1.85	1.85	1.84	1.74	1.83	1.76	1.77	1.72	1.85
90%	2.06	2.09	2.09	1.98	2.07	1.95	1.95	1.94	2.09
95%	2.43	2.39	2.43	2.36	2.37	2.28	2.30	2.30	2.45
100%	5.33	5.29	5.00	5.25	5.00	5.00	5.00	5.14	5.08

CG Benzene by Gasoline Volume (continued):

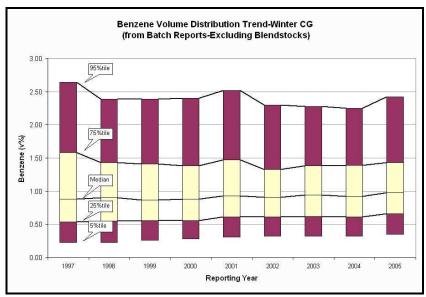


Figure 10

Re	eporting Yea	r							
olume 6tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
ninimum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5%	0.23	0.23	0.26	0.28	0.31	0.32	0.32	0.32	0.35
10%	0.34	0.35	0.39	0.39	0.42	0.43	0.44	0.42	0.46
15%	0.43	0.43	0.46	0.46	0.50	0.49	0.51	0.49	0.53
20%	0.49	0.48	0.52	0.52	0.56	0.55	0.57	0.55	0.60
25%	0.54	0.55	0.56	0.56	0.61	0.61	0.62	0.61	0.66
30%	0.60	0.60	0.61	0.61	0.67	0.66	0.68	0.67	0.72
35%	0.66	0.67	0.67	0.66	0.72	0.72	0.74	0.73	0.79
40%	0.74	0.72	0.73	0.73	0.79	0.78	0.81	0.79	0.85
45%	0.81	0.79	0.79	0.80	0.86	0.84	0.87	0.85	0.92
50%	0.88	0.90	0.87	0.88	0.93	0.91	0.94	0.92	0.98
55%	0.99	1.00	0.97	0.96	1.01	0.98	1.02	0.99	1.06
60%	1.10	1.10	1.07	1.05	1.10	1.06	1.10	1.08	1.15
65%	1.25	1.21	1.18	1.15	1.22	1.15	1.19	1.17	1.25
70%	1.40	1.33	1.30	1.25	1.34	1.23	1.28	1.27	1.34
75%	1.58	1.43	1.41	1.38	1.47	1.33	1.38	1.39	1.43
80%	1.74	1.56	1.56	1.53	1.60	1.45	1.52	1.51	1.54
85%	1.93	1.77	1.74	1.72	1.78	1.64	1.67	1.67	1.69
90%	2.19	2.01	2.02	1.98	2.09	1.91	1.89	1.92	1.94
95%	2.64	2.39	2.39	2.40	2.52	2.30	2.28	2.25	2.42
100%	5.23	5.00	5.34	5.28	5.00	4.88	5.22	5.00	5.20

CG Benzene by Gasoline Volume

(Cumulative Distributions for Latest Year Data)

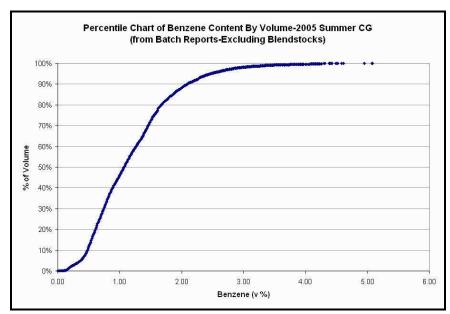


Figure 11

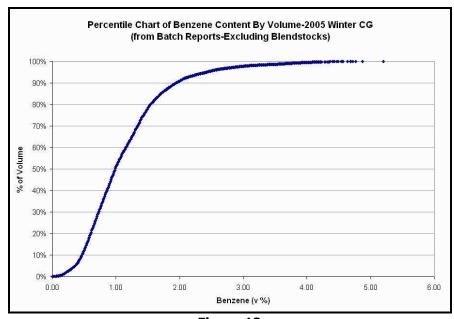


Figure 12

CG Benzene by Grade

				CG Average Be	nzene Content	(v%) and Volu	ıme (gal) by Ye	ear, Grade and	Season-From I	Reporting Data	
			Reporting Yea	ar							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	0.95	0.95	0.92	0.83	0.94	0.85	0.87	0.85	0.89
		Volume	6,847,436,919	6,631,452,976	6,252,416,423	4,957,386,104	4,996,778,324	5,181,939,065	5,144,650,585	4,629,542,860	4,132,713,279
	W	Average	0.83	0.86	0.89	0.86	0.96	0.86	0.87	0.84	0.94
		Volume	8,297,352,383	8,231,582,167	7,674,529,390	6,623,696,787	6,552,510,604	6,571,003,043	5,505,637,848	5,063,677,945	4,498,577,769
REG	S	Average	1.12	1.13	1.14	1.10	1.15	1.08	1.13	1.11	1.18
		Volume	28,060,742,477	28,406,715,846	26,654,202,116	27,358,010,027	28,964,788,056	30,995,888,528	33,050,308,019	34,601,650,558	33,850,837,227
	W	Average	1.15	1.09	1.09	1.05	1.11	1.06	1.08	1.05	1.12
1		Volume	32,178,466,105	32,165,391,015	33,356,627,836	35,197,390,669	35,933,948,416	36,930,102,215	35,937,081,377	37,501,139,752	39,113,050,332

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

Appendix to Aromatics Chapter

RFG Aromatics by Gasoline Volume

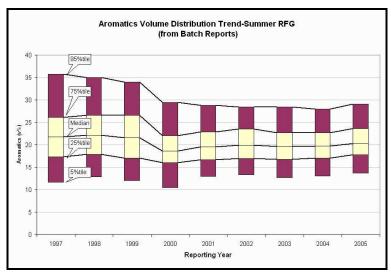


Figure 1

R	eporting Yea	r							
olume 6tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	0.2	2.6	0.4	1.9	3.1	0.0	1.9	0.4	2.0
5%	11.7	12.9	12.0	10.5	13.0	13.3	12.7	13.1	13.7
10%	13.9	14.7	13.8	13.2	14.4	14.6	14.1	14.5	15.0
15%	15.3	15.8	15.2	14.6	15.2	15.5	15.2	15.5	16.0
20%	16.4	16.9	16.1	15.3	16.0	16.2	16.1	16.3	17.0
25%	17.3	17.9	17.0	16.0	16.7	16.9	16.8	17.0	17.8
30%	18.1	19.2	18.0	16.5	17.4	17.6	17.4	17.7	18.6
35%	19.0	20.0	18.8	17.0	17.9	18.2	18.0	18.2	19.1
40%	20.0	20.8	19.9	17.5	18.5	18.7	18.5	18.7	19.5
45%	20.9	21.4	20.8	18.0	19.0	19.3	19.0	19.2	19.9
50%	21.8	22.1	21.6	18.6	19.5	19.9	19.6	19.7	20.3
55%	22.6	22.8	22.5	19.2	20.1	20.5	20.1	20.2	20.7
60%	23.5	23.5	23.4	19.8	20.7	21.2	20.7	20.8	21.3
65%	24.3	24.3	24.2	20.5	21.4	21.9	21.3	21.3	21.9
70%	25.1	25.3	25.3	21.2	22.1	22.6	21.9	21.9	22.7
75%	26.1	26.6	26.6	22.0	22.9	23.5	22.7	22.7	23.6
80%	27.3	28.1	27.8	23.0	23.8	24.3	23.7	23.5	24.7
85%	29.1	30.0	29.5	24.5	24.8	25.3	24.9	24.7	25.7
90%	32.1	32.4	31.3	26.5	26.3	26.4	26.3	25.9	27.0
95%	35.7	35.0	34.0	29.4	28.8	28.4	28.4	28.0	29.1
100%	52.4	50.6	48.4	47.8	42.3	48.9	46.4	40.1	41.8

RFG Aromatics by Gasoline Volume (continued):

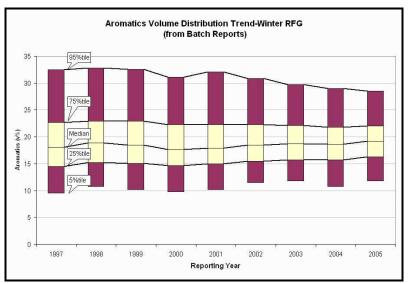


Figure 2

	Reporting Ye	ear							
/olume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	0.0	1.0	0.6	0.9	0.9	1.4	0.6	0.7	0.2
5%	9.6	10.8	10.2	9.8	10.2	11.5	11.8	10.8	11.8
10%	11.6	12.5	12.1	12.0	12.2	13.1	13.3	12.7	13.7
15%	12.7	13.7	13.4	13.2	13.3	14.0	14.3	13.9	14.8
20%	13.7	14.5	14.3	13.9	14.2	14.8	15.0	15.0	15.6
25%	14.5	15.2	15.1	14.7	15.0	15.5	15.7	15.7	16.3
30%	15.3	16.1	15.8	15.3	15.6	16.1	16.4	16.4	16.9
35%	16.0	16.8	16.4	15.9	16.2	16.7	17.0	17.0	17.5
40%	16.7	17.6	17.1	16.5	16.9	17.2	17.6	17.5	18.1
45%	17.4	18.3	17.7	17.1	17.4	17.8	18.2	18.1	18.7
50%	18.1	18.9	18.5	17.7	17.9	18.5	18.7	18.6	19.2
55%	18.9	19.6	19.2	18.5	18.7	19.1	19.3	19.2	19.7
60%	19.7	20.4	19.9	19.3	19.4	19.9	19.9	19.7	20.2
65%	20.5	21.1	20.8	20.2	20.2	20.6	20.5	20.3	20.7
70%	21.5	22.0	21.8	21.2	21.1	21.3	21.2	21.1	21.3
75%	22.7	22.9	22.9	22.3	22.3	22.3	22.1	21.8	22.0
80%	24.0	24.5	24.3	23.7	23.6	23.3	23.1	22.8	22.9
85%	26.0	26.3	25.9	25.3	25.1	24.7	24.5	24.0	24.2
90%	28.8	29.1	28.5	27.5	27.8	26.7	26.3	25.7	25.8
95%	32.5	32.8	32.6	31.1	32.1	30.9	29.7	29.0	28.5
100%	50.0	50.0	48.7	46.9	49.1	45.8	46.6	47.6	49.1

RFG Aromatics by Gasoline Volume (continued) (Cumulative Distributions for Latest Year Data)

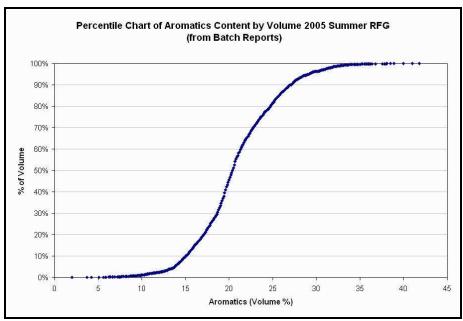


Figure 3

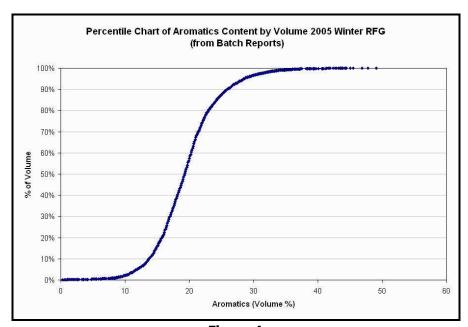


Figure 4

RFG Aromatics by Grade

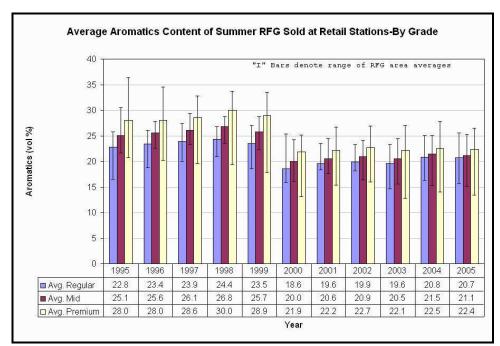
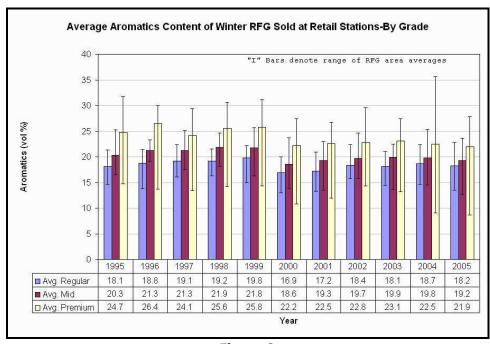
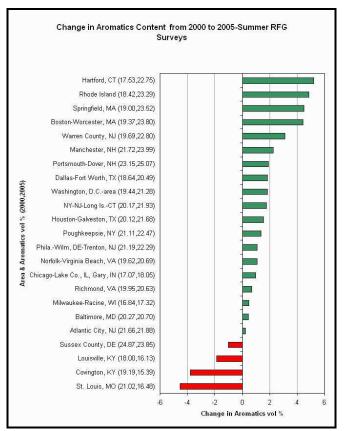


Figure 5




Figure 6

RFG Aromatics By Grade (continued):

			RI	FG Average Arc	matics Conten	t (v%) and Vo	lume (gal) by \	ear, Grade, an	d Season-Fron	n Reporting Da	ta
			Reporting Yea	ar							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	27.0	27.4	26.5	22.5	23.2	22.4	22.6	22.4	22.8
		Volume	3,449,496,834	3,651,258,096	3,537,723,033	2,788,564,977	2,773,110,841	2,931,886,907	2,736,973,386	2,385,535,898	2,144,095,101
	W	Average	23.3	25.0	24.4	23.5	24.6	23.3	23.1	22.7	23.3
		Volume	3,889,379,685	4,139,316,745	3,839,207,618	3,420,180,881	3,305,514,921	3,387,457,520	3,103,333,727	2,945,338,123	2,583,694,635
REG	S	Average	20.6	20.9	20.5	18.4	19.3	19.8	19.4	19.7	20.6
		Volume	8,931,922,101	9,007,552,063	9,320,974,363	10,122,448,765	10,392,283,260	10,879,031,865	10,824,904,975	11,783,350,501	11,881,795,879
	W	Average	17.8	17.9	17.9	17.7	17.7	18.4	18.6	18.4	19.0
		Volume	10,816,109,633	10,663,420,477	10,900,737,704	12,246,078,983	12,361,561,882	13,031,122,001	13,486,978,064	14,160,927,780	15,422,172,055

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

RFG Aromatics-Geographic

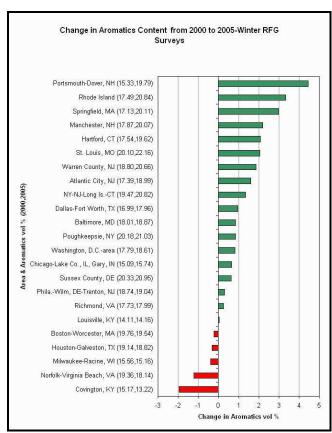


Figure 7 Figure 8

Conventional Gasoline

CG Aromatics by Gasoline Volume

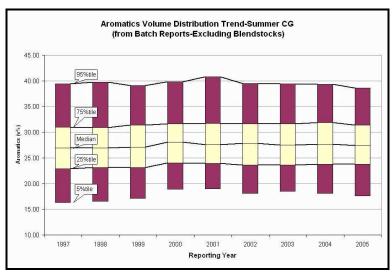


Figure 9

	Summer	CG Aromatics	Content (Vol	%) by Volum	e (from Batcl	n Reports ex	cluding Blend	dstocks)	
	Reporting Year								
Volume	1997	1998	1999	2000	2001	2002	2003	2004	2005
%tile minimum	0.0	0.0	0.9	0.0	0.0	0.0	1.0	0.0	0.0
5%	16.30	16.60	17.10	18.90	19.00	18.10	18.50	18.10	17.60
10%	19.00	19.30	19.40	20.60	20.80	20.40	20.30	20.20	20.00
15%	20.60	20.80	20.80	21.90	22.10	21.70	21.70	21.70	21.70
20%	21.90	22.10	22.00	23.00	23.00	22.70	22.70	22.80	22.90
25%	22.90	23.10	23.10	24.00	23.90	23.60	23.60	23.80	23.80
30%	23.80	24.10	24.00	24.90	24.60	24.40	24.40	24.60	24.70
35%	24.70	24.90	24.90	25.80	25.40	25.30	25.10	25.40	25.40
40%	25.50	25.50	25.80	26.50	26.10	26.10	25.90	26.20	26.10
45%	26.20	26.30	26.40	27.40	26.80	26.90	26.80	26.90	26.70
50%	26.90	26.90	27.10	28.10	27.60	27.80	27.50	27.70	27.40
55%	27.70	27.60	27.90	28.80	28.40	28.70	28.30	28.40	28.10
60%	28.50	28.30	28.80	29.50	29.20	29.40	29.00	29.10	28.80
65%	29.20	29.10	29.50	30.10	30.00	30.20	29.80	30.00	29.60
70%	30.10	29.90	30.40	30.80	30.80	30.90	30.70	30.90	30.50
75%	31.00	30.90	31.40	31.60	31.70	31.60	31.60	31.90	31.40
80%	32.40	32.10	32.20	32.70	32.60	32.50	32.60	32.80	32.40
85%	34.00	33.60	33.50	34.10	34.10	33.80	33.70	34.00	33.50
90%	36.10	35.90	35.60	36.20	36.30	35.60	35.60	35.80	35.30
95%	39.40	39.70	39.10	39.80	40.80	39.50	39.40	39.30	38.60
100%	60.20	59.50	60.50	60.00	59.80	59.30	58.30	60.50	59.90
Volume(gal):	39,380,364,542	39,078,941,326	37,192,967,557	36,387,851,238	38,542,042,404	40,818,795,156	43,243,575,045	43,509,104,037	42,196,228,805

CG Aromatics by Gasoline Volume (continued):

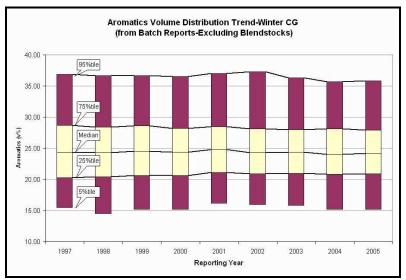


Figure 10

	Winter (CG Aromatics	Content (Vo	l %) by Volu	me (from Bat	tch Reports e	xcluding Ble	ndstocks)	
	Reporting Y	ear ear							
Volume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5%	15.5	14.5	15.2	15.2	16.2	16.0	15.8	15.2	15.2
10%	17.3	16.8	17.1	17.2	18.0	18.0	17.9	17.2	17.8
15%	18.5	18.3	18.6	18.6	19.2	19.2	19.2	18.6	19.1
20%	19.5	19.5	19.7	19.6	20.2	20.1	20.2	19.8	20.1
25%	20.3	20.4	20.6	20.6	21.1	20.9	21.0	20.8	20.9
30%	21.1	21.3	21.4	21.5	21.9	21.7	21.8	21.5	21.6
35%	21.9	22.1	22.1	22.3	22.7	22.2	22.4	22.1	22.3
40%	22.5	22.9	23.0	23.1	23.5	22.9	23.1	22.7	23.0
45%	23.4	23.6	23.7	23.8	24.2	23.6	23.8	23.4	23.6
50%	24.3	24.3	24.5	24.4	24.8	24.3	24.4	24.0	24.2
55%	25.1	24.9	25.2	25.1	25.5	24.9	25.0	24.9	24.8
60%	26.0	25.7	26.0	25.7	26.2	25.7	25.7	25.7	25.6
65%	26.8	26.6	26.8	26.5	26.9	26.4	26.3	26.4	26.3
70%	27.8	27.4	27.7	27.2	27.7	27.2	27.2	27.2	27.1
75%	28.7	28.4	28.6	28.2	28.5	28.1	28.0	28.1	27.9
80%	30.0	29.5	29.7	29.2	29.7	29.2	29.2	29.1	28.8
85%	31.6	31.1	31.2	30.6	31.1	30.7	30.5	30.4	30.1
90%	33.5	33.4	33.2	32.8	33.4	32.7	32.6	32.4	32.3
95%	36.9	36.7	36.7	36.5	37.0	37.3	36.3	35.7	35.8
100%	60.3	60.5	58.0	60.4	58.9	58.8	59.0	58.5	59.2
Volume (gal):	44,627,982,120	46,293,631,981	47,701,715,605	48,024,395,442	48,797,132,426	49,655,135,030	47,469,723,098	47,654,786,710	48,705,329,856

CG Aromatics by Gasoline Volume (Cumulative Distributions for Latest Year Data)

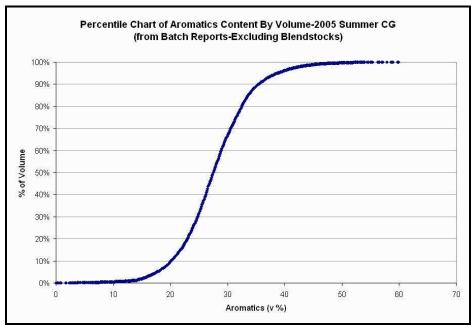


Figure 11

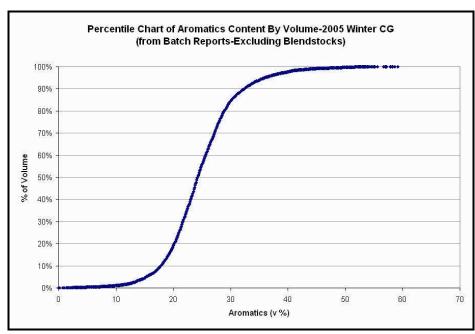


Figure 12

CG Aromatics by Grade

			CG	Average Arom	atics Content (Vol %) and Vo	lume (gal) by Y	ear, Grade, an	d Season – fro	m Reporting Da	ata
			Reporting Yea	r							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	31.8	32.6	31.6	33.1	34.7	32.4	32.2	31.2	31.3
		Volume	6,910,973,553	6,635,803,305	6,252,416,423	4,957,386,104	4,996,778,324	5,181,939,065	5,149,486,549	4,635,507,910	4,138,979,931
	W	Average	28.2	29.7	29.6	29.1	30.3	29.8	29.5	28.3	29.5
		Volume	8,310,678,815	8,233,384,513	7,690,219,372	6,648,441,003	6,548,540,176	6,571,003,043	5,517,761,736	5,077,869,493	4,510,104,837
REG	S	Average	26.3	26.4	26.6	27.6	27.4	27.4	27.4	27.5	27.3
		Volume	28,062,618,693	28,410,709,416	26,656,367,421	27,358,607,481	28,964,604,238	30,995,449,082	33,053,399,345	34,601,650,558	33,851,903,439
	W	Average	24.3	23.8	24.1	24.0	24.6	24.3	24.4	24.1	24.3
		Volume	32,175,385,639	32,177,203,389	33,356,627,836	35,199,495,331	35,935,271,164	36,931,713,041	35,949,009,293	37,504,589,388	39,123,690,864

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

Appendix to Olefins Chapter

RFG Olefins Content by Gasoline Volume

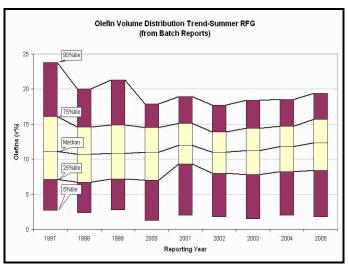


Figure 1

		Cummon	DEC Olofino Co	ntont (Mal 0/) hy Valyma	(from Date)	Domento)		
	Reporting Year		RFG Olefins Co	ontent (Voi %) by volume	(Trom Batter	i Reports)		
Volume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	0.0	0.3	0.3	0.3	0.3	0.0	0.3	0.0	0.0
5%	2.7	2.4	2.8	1.3	2.0	1.8	1.5	2.0	1.8
10%	4.4	3.9	4.4	2.4	3.9	3.5	3.2	4.1	4.1
15%	5.6	4.8	5.3	4.4	6.4	5.4	5.4	6.0	5.9
20%	6.5	5.8	6.2	5.8	8.1	6.8	6.8	7.1	7.1
25%	7.1	6.7	7.2	7.0	9.3	8.0	7.8	8.2	8.4
30%	7. i 7.9	7.4	8.1	7.0 8.1	9.3 10.0	8.9	7.8 8.9	9.1	9.4
35% 40%	8.6 9.5	8.3 9.2	8.9 9.5	9.0 9.9	10.6 11.2	9.5	9.5	9.9	10.1 10.8
						10.0	10.1	10.5	
45%	10.3	9.9	10.1	10.5	11.6	10.5	10.6	11.1	11.6
50%	11.1	10.7	10.8	11.0	12.0	11.0	11.2	11.8	12.3
55%	11.9	11.5	11.4	11.6	12.6	11.6	11.8	12.3	13.0
60%	12.7	12.1	12.1	12.2	13.2	12.1	12.5	12.9	13.7
65%	13.7	12.9	13.0	12.8	13.7	12.6	13.1	13.4	14.4
70%	14.8	13.7	13.9	13.6	14.4	13.2	13.8	14.1	15.1
75%	16.1	14.6	14.9	14.5	15.1	13.9	14.4	14.7	15.7
80%	17.5	15.4	16.1	15.1	15.7	14.6	15.1	15.3	16.5
85%	19.0	16.5	17.5	15.9	16.5	15.5	15.9	16.0	17.2
90%	20.9	18.1	19.2	16.6	17.5	16.3	16.8	16.9	18.1
95%	23.8	20.0	21.3	17.9	18.9	17.7	18.4	18.5	19.4
100%	39.7	28.0	28.6	24.8	24.7	25.0	24.9	24.7	24.4
Volume (gal):	12,424,923,379	12,832,964,637	12,996,111,169	12,983,168,478	13,222,633,468	13,847,178,590	13,584,860,845	14,232,658,149	14,083,382,582

RFG Olefins Content by Gasoline Volume (continued):

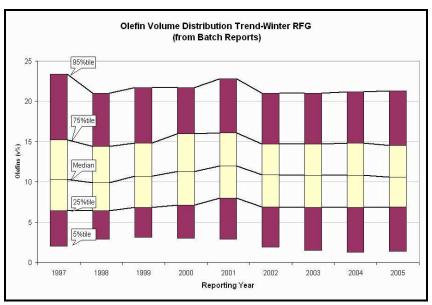


Figure 2

		Winter R	FG Olefins Co	ontent (Vol %	%) by Volume	e (from Batch	Reports)		
	Reporting Year								
Volume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
5%	2.00	2.90	3.10	3.00	2.90	1.90	1.50	1.30	1.40
10%	3.60	3.90	4.30	4.20	4.40	3.60	3.30	3.60	3.40
15%	4.70	4.70	5.10	5.20	5.70	4.90	4.50	4.80	4.70
20%	5.60	5.60	6.10	6.20	6.90	6.00	5.80	5.90	5.90
25%	6.40	6.40	6.80	7.10	8.00	6.90	6.80	6.80	6.90
30%	7.00	7.10	7.60	8.00	8.90	7.80	7.70	7.50	7.80
35%	7.70	7.90	8.40	8.90	9.70	8.60	8.60	8.30	8.60
40%	8.50	8.60	9.30	9.70	10.50	9.50	9.40	9.20	9.40
45%	9.40	9.20	9.90	10.60	11.30	10.20	10.10	10.10	10.00
50%	10.30	9.90	10.70	11.30	12.00	10.90	10.80	10.80	10.60
55%	11.20	10.60	11.40	12.10	12.70	11.60	11.50	11.60	11.30
60%	12.00	11.50	12.10	13.10	13.40	12.30	12.20	12.30	12.00
65%	13.10	12.40	12.90	13.90	14.20	13.20	13.00	13.10	12.70
70%	14.00	13.30	13.90	14.90	15.10	13.90	13.90	14.00	13.60
75%	15.20	14.40	14.80	16.00	16.10	14.70	14.70	14.80	14.50
80%	16.50	15.80	16.10	17.20	17.30	15.60	15.80	15.80	15.50
85%	18.30	17.40	17.40	18.50	18.90	16.70	17.10	17.10	17.10
90%	20.30	18.90	19.50	19.90	20.80	18.30	18.90	18.80	19.10
95%	23.40	21.00	21.70	21.70	22.80	21.00	21.00	21.20	21.30
100%	44.10	25.00	25.40	25.00	26.90	25.00	27.00	24.80	25.00
Volume (gal):	14,918,897,927	15,059,853,293	15,081,898,669	15,829,263,333	15,724,574,173	16,433,999,720	16,679,773,135	17,194,948,147	18,044,832,058

RFG Olefins Content by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

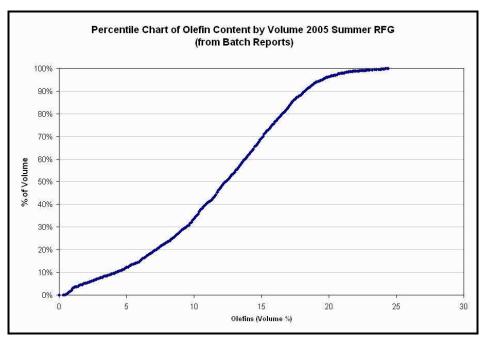


Figure 3

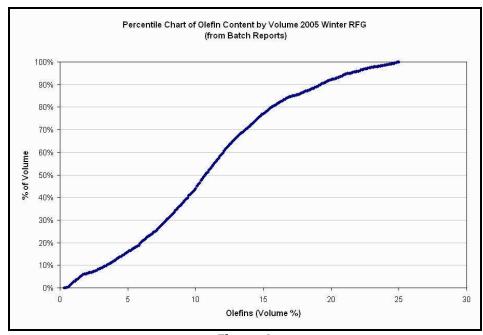


Figure 4

RFG Olefins by Grade

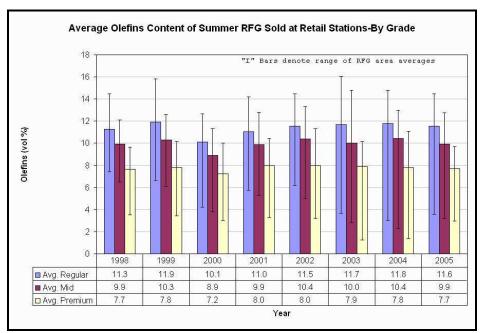
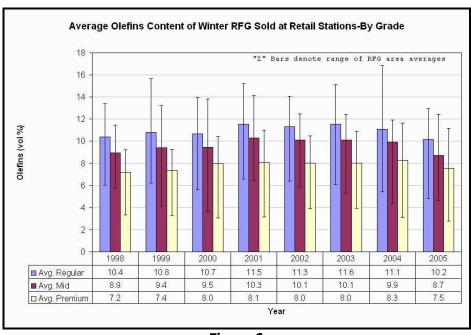
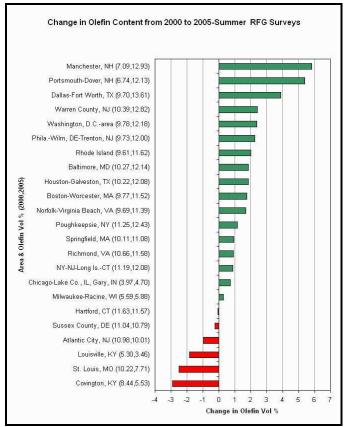


Figure 5




Figure 6

RFG Olefins by Grade

				RFG Average O	lefins Content	(v%) and Volu	ıme (gal) by Ye	ar, Grade, and	Season-From	Reporting Data	1
			Reporting Yea	ar							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	8.4	7.8	8.1	8.1	9.2	7.8	7.6	8.3	8.6
	Ì	Volume	3,449,496,834	3,651,258,096	3,537,723,033	2,788,564,977	2,773,110,841	2,931,886,907	2,736,973,386	2,385,535,898	2,144,095,101
	W	Average	8.7	8.2	8.4	9.0	9.5	8.1	8.0	8.6	8.8
	j	Volume	3,891,638,151	4,139,316,745	3,839,207,618	3,420,180,881	3,305,514,921	3,387,457,520	3,103,333,727	2,945,338,123	2,583,694,635
REG	S	Average	13.4	12.2	12.6	11.3	12.5	11.6	11.8	12.0	12.5
	j	Volume	8,933,744,061	9,007,552,063	9,320,974,363	10,122,448,765	10,392,283,260	10,878,238,821	10,824,904,975	11,783,350,501	11,881,795,879
	W	Average	12.3	11.8	12.4	12.6	13.1	12.0	11.7	11.6	11.4
		Volume	10,818,337,187	10,663,420,477	10,902,774,956	12,246,078,983	12,361,561,882	13,031,122,001	13,486,978,064	14,160,927,780	15,422,172,055

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported, and included in these tables, as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

RFG Olefins-Geographic

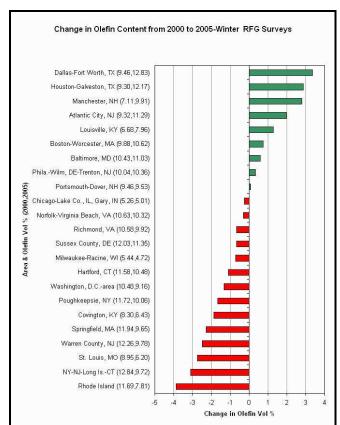


Figure 7

Figure 8

Conventional Gasoline

CG Olefins Content by Gasoline Volume

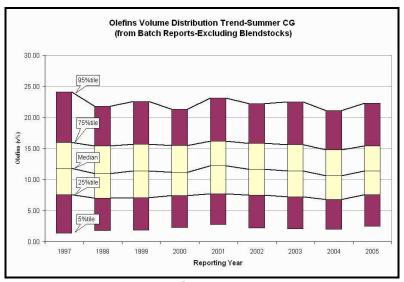


Figure 9

	Reporting Year								
Volume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	0.0	0.0	0.0	0.2	0.0	0.0	0.1	0.1	0.0
5%	1.4	1.8	1.9	2.3	2.8	2.2	2.1	2.0	2.5
10%	3.1	3.6	3.7	4.3	4.5	3.9	3.9	3.8	4.4
15%	5.0	5.2	5.1	5.5	5.9	5.4	5.1	5.0	5.7
20%	6.7	6.4	6.3	6.6	6.8	6.6	6.4	6.0	6.7
25%	7.6	7.0	7.1	7.4	7.7	7.5	7.2	6.8	7.6
30%	8.5	7.9	7.9	8.3	8.7	8.4	8.0	7.6	8.4
35%	9.4	8.7	8.9	9.1	9.5	9.2	8.9	8.4	9.2
40%	10.3	9.5	9.7	9.7	10.5	10.1	9.8	9.1	10.0
45%	11.0	10.3	10.6	10.5	11.3	11.0	10.6	9.8	10.7
50%	11.8	11.0	11.4	11.2	12.2	11.7	11.4	10.6	11.4
55%	12.6	11.7	12.2	12.1	13.0	12.4	12.2	11.4	12.0
60%	13.4	12.5	13.0	12.9	13.8	13.3	12.9	12.1	12.7
65%	14.2	13.3	13.9	13.8	14.6	14.1	13.8	12.9	13.6
70%	15.1	14.3	14.7	14.7	15.4	14.9	14.7	13.7	14.4
75%	16.0	15.4	15.7	15.5	16.2	15.8	15.6	14.8	15.4
80%	17.4	16.4	16.7	16.4	17.2	16.9	16.6	15.8	16.5
85%	18.6	17.7	18.1	17.5	18.4	18.2	17.8	17.2	17.9
90%	20.6	19.3	19.9	19.0	20.0	19.7	19.4	18.7	19.5
95%	24.1	21.8	22.6	21.3	23.1	22.2	22.5	21.1	22.3
100%	32.9	32.8	32.9	33.0	33.0	32.9	33.0	32.8	33.0
Volume (gal):	39,012,171,998	39,086,529,466	37,192,967,557	36,389,951,364	38,541,577,884	40,819,234,602	43,243,575,045	43,497,571,635	42,178,688,

CG Olefins Content by Gasoline Volume (continued):

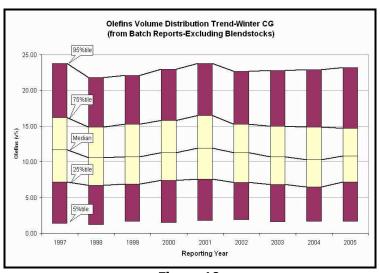


Figure 10

	Reporting Yea	ar							
Volume %tile	1997	1998	1999	2000	2001	2002	2003	2004	2005
minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5%	1.4	1.2	1.7	1.5	1.8	1.9	1.6	1.7	1.7
10%	3.1	2.8	3.4	3.7	3.9	3.5	3.3	3.7	4.1
15%	4.8	4.5	4.7	5.1	5.3	4.8	4.7	4.8	5.3
20%	6.2	5.7	5.9	6.3	6.5	6.1	5.8	5.6	6.3
25%	7.2	6.7	6.9	7.4	7.6	7.1	6.8	6.5	7.2
30%	8.2	7.5	7.7	8.2	8.6	8.2	7.6	7.4	7.9
35%	9.1	8.3	8.6	8.9	9.5	9.0	8.4	8.2	8.7
40%	9.9	9.1	9.3	9.6	10.3	9.8	9.1	8.9	9.4
45%	10.8	9.8	10.0	10.4	11.1	10.6	9.9	9.5	10.0
50%	11.7	10.6	10.7	11.3	11.9	11.3	10.7	10.3	10.8
55%	12.7	11.5	11.5	12.2	12.8	12.0	11.4	11.1	11.4
60%	13.5	12.3	12.4	13.0	13.6	12.7	12.2	11.9	12.2
65%	14.4	13.1	13.3	13.8	14.5	13.5	13.2	12.8	12.9
70%	15.3	14.0	14.2	14.8	15.4	14.3	14.1	13.8	13.7
75%	16.2	14.9	15.3	15.8	16.5	15.3	15.0	14.9	14.7
80%	17.2	16.1	16.3	16.9	17.5	16.4	16.2	16.2	15.9
85%	18.6	17.4	17.7	18.3	18.7	17.8	17.7	17.8	17.3
90%	20.4	19.0	19.4	20.0	20.7	19.8	19.6	19.5	19.4
95%	23.8	21.8	22.1	23.0	23.8	22.7	22.8	22.9	23.2
100%	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
Volume (gal):	44,301,841,176	46,293,525,301	47,701,715,605	48,024,395,442	48,786,984,011	49,644,581,942	47,465,390,042	47,636,716,042	48,69

CG Olefins by Grade

				CG Average O	lefins Content	(v%) and Volu	me (gal) by Ye	ar, Grade, and	Season-from R	eporting Data	
			Reporting Yea	ar							
Grade	Season	Data	1997	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	6.65	5.91	6.33	6.41	6.74	5.80	6.65	6.33	6.86
		Volume	6,846,643,119	6,635,688,729	6,252,416,423	4,957,386,104	4,996,778,324	5,181,939,065	5,149,486,549	4,623,975,508	4,123,526,493
	W	Average	6.97	6.00	6.22	6.99	7.13	6.63	5.86	6.20	6.42
	j	Volume	8,265,699,839	8,233,277,833	7,690,219,372	6,648,441,003	6,551,541,289	6,569,323,421	5,517,761,736	5,069,256,175	4,498,707,927
REG	S	Average	14.03	13.13	13.35	13.10	13.83	13.38	12.95	12.11	12.80
	Ì	Volume	27,758,756,583	28,418,412,132	26,656,367,421	27,360,707,607	28,964,139,718	30,995,888,528	33,053,399,345	34,601,650,558	33,849,816,921
	W	Average	13.85	12.81	12.80	13.39	13.89	12.98	12.65	12.38	12.44
		Volume	31,894,223,671	32,177,203,389	33,356,627,836	35,199,495,331	35,928,338,728	36,922,839,575	35,944,676,237	37,495,132,038	39,120,750,150

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported, and included in these tables, as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

Appendix to Distillation Parameters Chapter

RFG E200 by Gasoline Volume

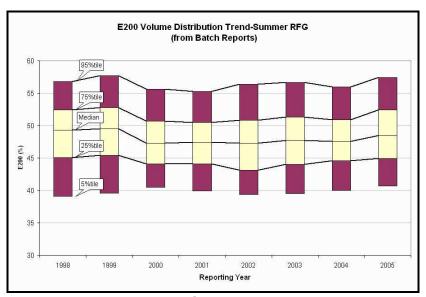


Figure 1

	Donorting Vo							
	Reporting Yea							
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	30.6	29.9	31.3	32.4	29.0	30.1	31.4	30.4
5%	39.1	39.6	40.5	39.9	39.4	39.5	40.0	40.7
10%	41.2	41.9	41.9	41.4	40.9	41.0	41.8	42.1
15%	42.8	43.2	42.7	42.5	41.7	42.1	42.8	43.4
20%	44.0	44.5	43.4	43.4	42.5	43.1	43.7	44.2
25%	45.1	45.4	44.1	44.1	43.1	44.0	44.6	44.9
30%	46.0	46.4	44.7	44.7	44.0	44.8	45.2	45.6
35%	47.1	47.5	45.4	45.3	45.0	45.6	45.8	46.4
40%	47.9	48.3	46.0	46.1	46.0	46.3	46.4	47.2
45%	48.7	48.9	46.6	46.7	46.6	47.0	47.0	47.8
50%	49.3	49.5	47.3	47.4	47.3	47.7	47.6	48.5
55%	49.9	50.1	47.9	48.0	47.9	48.4	48.2	49.2
60%	50.7	50.8	48.5	48.6	48.6	49.2	48.8	50.0
65%	51.2	51.3	49.1	49.2	49.3	49.8	49.4	50.8
70%	51.8	51.9	49.8	49.8	50.0	50.6	50.1	51.7
75%	52.4	52.8	50.7	50.5	50.8	51.3	50.9	52.4
80%	53.2	53.6	51.7	51.2	51.9	52.1	51.8	53.2
85%	54.3	54.7	52.8	52.1	53.2	53.2	52.9	54.3
90%	55.3	56.1	54.1	53.2	54.7	54.8	54.2	55.7
95%	56.8	57.7	55.6	55.3	56.4	56.7	56.0	57.4
100%	64.9	73.7	65.9	63.3	63.1	63.5	63.0	67.9
Volume (gal):	12,832,964,637	12,996,111,169	12,983,168,478	13,222,633,468	13,847,971,634	13,584,860,845	14,232,658,149	14,083,382,58

RFG E200 by Gasoline Volume (continued):

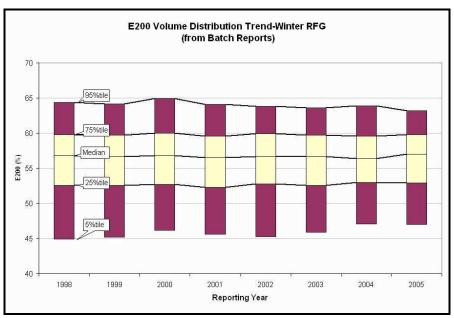


Figure 2

		Wint	er RFG E200 (°	%) by Volume	(from Batch Re	ports)		
	Reporting Yea	ar						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	30.3	31.5	32.1	30.9	31.4	30.4	30.5	31.3
5%	44.9	45.2	46.2	45.6	45.3	45.9	47.1	47.0
10%	47.6	48.0	48.7	47.9	48.5	48.6	49.2	49.3
15%	49.6	49.9	50.4	49.6	50.3	50.4	50.8	50.8
20%	51.2	51.3	51.5	51.1	51.7	51.6	51.9	52.0
25%	52.6	52.6	52.7	52.3	52.8	52.6	53.0	52.9
30%	53.7	53.7	53.7	53.4	53.8	53.6	53.8	53.8
35%	54.6	54.5	54.5	54.2	54.6	54.5	54.5	54.7
40%	55.4	55.3	55.3	55.0	55.3	55.3	55.3	55.5
45%	56.1	56.1	56.0	55.8	56.1	56.0	55.9	56.3
50%	56.8	56.7	56.8	56.5	56.7	56.7	56.4	57.0
55%	57.3	57.4	57.5	57.0	57.3	57.3	57.0	57.6
60%	57.9	58.0	58.0	57.6	57.9	57.9	57.7	58.3
65%	58.5	58.5	58.7	58.2	58.5	58.5	58.4	58.7
70%	59.1	59.1	59.3	58.9	59.1	59.1	59.0	59.2
75%	59.8	59.7	60.0	59.6	59.9	59.7	59.6	59.8
80%	60.4	60.4	60.7	60.3	60.6	60.3	60.4	60.4
85%	61.3	61.2	61.5	61.2	61.2	61.0	61.1	61.1
90%	62.4	62.3	62.7	62.4	62.0	62.0	62.2	62.0
95%	64.4	64.2	64.9	64.1	63.8	63.6	63.9	63.2
100%	70.0	73.6	70.0	71.8	69.5	70.0	69.9	69.1
Volume (gal):	15,059,853,293	15,081,898,669	15,829,263,333	15,724,574,173	16,433,999,720	16,679,773,135	17,190,635,125	18,044,832,058

RFG E200 by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

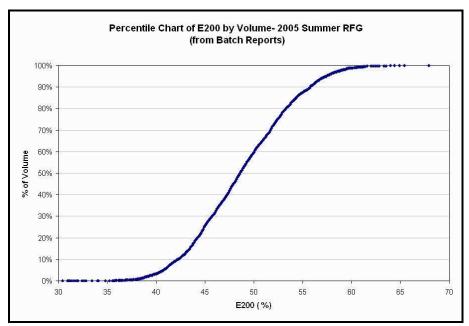


Figure 3

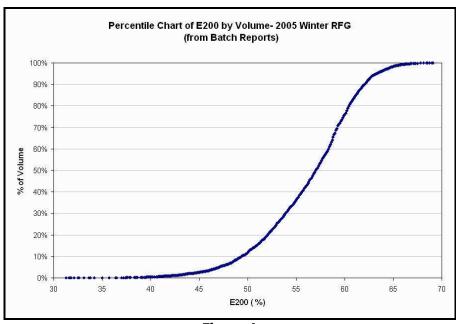


Figure 4

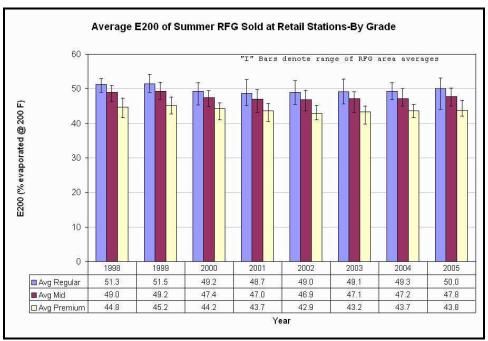


Figure 5

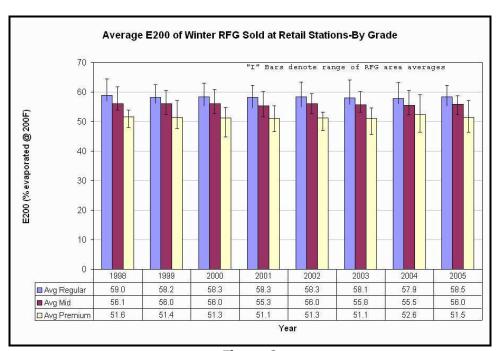
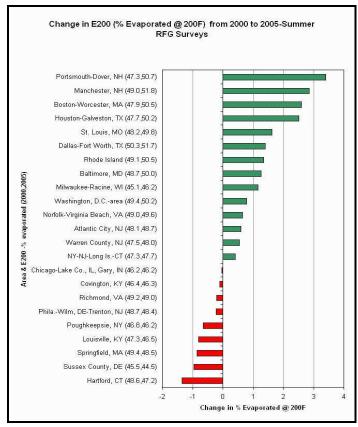



Figure 6

RFG E200 by Grade (continued):

			R	FG Average E2	00 (%) and Vo	lume (gal) by \	rear, Grade, an	d Season-From	Reporting Dat	ta
			Reporting Yea	ar						
Grade	Season	Data	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	43.95	44.24	43.75	43.20	42.44	42.97	43.09	43.08
		Volume	3,649,195,434	3,537,723,033	2,788,564,977	2,773,110,841	2,931,886,907	2,736,973,386	2,385,535,898	2,144,095,101
	W	Average	50.76	50.73	51.14	50.47	50.58	50.64	51.29	50.91
		Volume	4,139,316,745	3,839,207,618	3,418,369,505	3,301,129,239	3,387,457,520	3,103,333,727	2,943,555,811	2,583,694,635
REG	S	Average	50.73	51.09	48.76	48.60	48.88	49.13	48.86	49.90
		Volume	9,007,552,063	9,320,974,363	10,122,448,765	10,389,949,614	10,879,031,865	10,824,904,975	11,783,350,501	11,881,795,879
	W	Average	57.95	57.83	57.72	57.31	57.22	57.27	57.21	57.18
		Volume	10,638,539,349	10,902,774,956	12,246,078,983	12,307,517,794	13,031,122,001	13,486,978,064	14,160,927,780	15,422,172,055

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Midgrade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

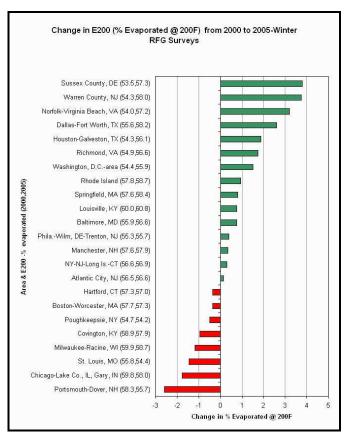


Figure 7 Figure 8

RFG E300 by Gasoline Volume

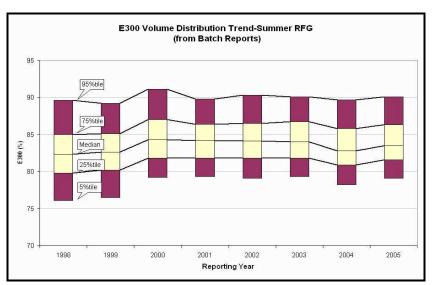


Figure 9

		Sumn	ner RFG E300 (%) by Volume	(from Batch R	eports)		
	Reporting Yea							
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	63.9	70.2	74.5	74.7	72.4	74.8	74.4	73.8
5%	76.1	76.5	79.2	79.3	79.1	79.3	78.2	79.1
10%	77.7	78.1	80.1	80.1	80.2	80.1	79.2	79.9
15%	78.6	79.0	80.8	80.7	80.8	80.7	79.8	80.5
20%	79.3	79.7	81.3	81.2	81.3	81.3	80.4	81.1
25%	79.8	80.2	81.8	81.8	81.8	81.8	80.9	81.6
30%	80.3	80.7	82.3	82.3	82.3	82.1	81.2	82.0
35%	80.8	81.2	82.8	82.8	82.7	82.5	81.6	82.4
40%	81.3	81.7	83.3	83.3	83.1	83.0	82.0	82.7
45%	81.8	82.2	83.8	83.8	83.6	83.5	82.4	83.1
50%	82.3	82.6	84.3	84.2	84.1	84.0	82.8	83.5
55%	82.7	83.1	84.9	84.7	84.6	84.5	83.3	83.9
60%	83.2	83.5	85.3	85.1	85.1	85.0	83.9	84.4
65%	83.8	84.0	85.8	85.5	85.5	85.6	84.5	85.0
70%	84.4	84.6	86.4	86.0	86.0	86.1	85.1	85.6
75%	85.0	85.1	87.0	86.4	86.5	86.7	85.8	86.3
80%	85.9	85.9	87.8	86.9	86.9	87.2	86.4	87.0
85%	86.7	86.7	88.6	87.6	87.7	88.0	87.3	87.9
90%	87.9	87.7	89.7	88.5	88.7	88.9	88.2	88.9
95%	89.6	89.2	91.1	89.8	90.3	90.1	89.7	90.1
100%	100.0	100.0	99.0	99.9	99.7	100.0	100.0	100.0
Volume (gal):	12,832,964,637	12,996,111,169	12,983,168,478	13,222,633,468	13,847,971,634	13,584,860,845	14,232,658,149	14,083,382,582

RFG E300 by Gasoline Volume (continued):

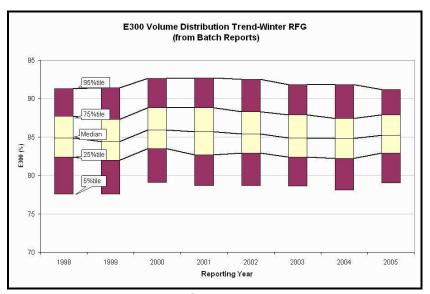


Figure 10

		Wint	er RFG E300 (9	%) by Volume	from Batch Re	ports)		
	Reporting Yea	ar						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	64.4	70.5	71.0	67.5	71.0	64.1	69.6	70.3
5%	77.6	77.6	79.1	78.7	78.7	78.6	78.1	79.0
10%	79.5	79.2	80.8	80.0	80.3	80.0	79.8	80.5
15%	80.8	80.4	81.9	81.2	81.4	81.0	80.8	81.5
20%	81.7	81.2	82.8	82.0	82.2	81.7	81.5	82.2
25%	82.4	82.0	83.5	82.7	82.9	82.4	82.2	82.9
30%	82.9	82.6	84.0	83.5	83.5	82.9	82.8	83.4
35%	83.3	83.1	84.5	84.0	84.0	83.5	83.3	83.8
40%	83.8	83.6	84.9	84.6	84.5	84.0	83.8	84.3
45%	84.3	84.0	85.4	85.1	85.0	84.5	84.3	84.7
50%	84.9	84.4	85.9	85.7	85.4	84.9	84.8	85.2
55%	85.4	84.9	86.5	86.2	85.8	85.4	85.3	85.7
60%	85.9	85.5	87.0	86.8	86.4	85.9	85.7	86.2
65%	86.5	86.0	87.5	87.5	87.0	86.6	86.2	86.7
70%	87.1	86.6	88.1	88.1	87.6	87.2	86.8	87.2
75%	87.7	87.3	88.8	88.8	88.3	87.9	87.4	87.9
80%	88.2	88.0	89.4	89.5	89.0	88.5	88.3	88.4
85%	88.9	88.8	90.2	90.3	90.1	89.3	89.1	89.2
90%	89.9	89.9	91.2	91.2	91.1	90.3	90.2	90.0
95%	91.3	91.4	92.6	92.7	92.5	91.8	91.8	91.2
100%	99.5	100.0	99.1	99.4	100.0	100.0	100.0	100.0
Volume (gal):	15,059,853,293	15,081,898,669	15,829,263,333	15,724,574,173	16,433,999,720	16,679,773,135	17,190,635,125	18,044,832,0

RFG E300 by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

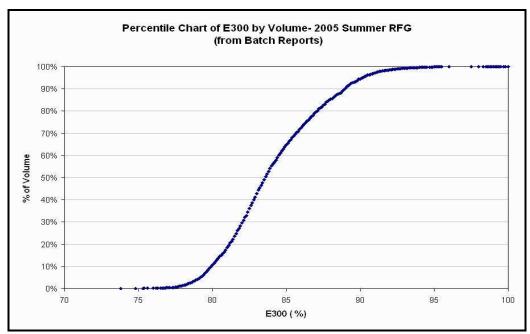


Figure 11

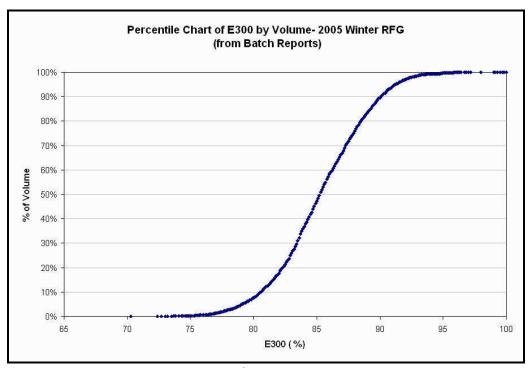


Figure 12

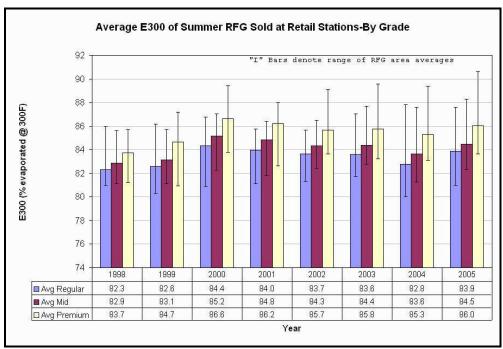
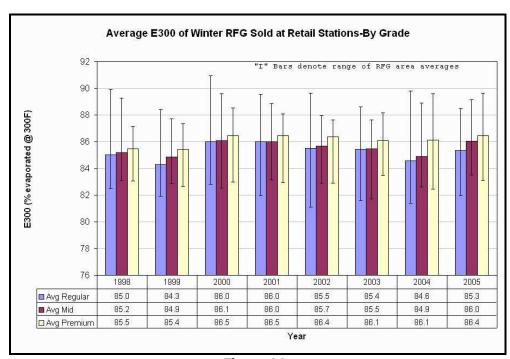
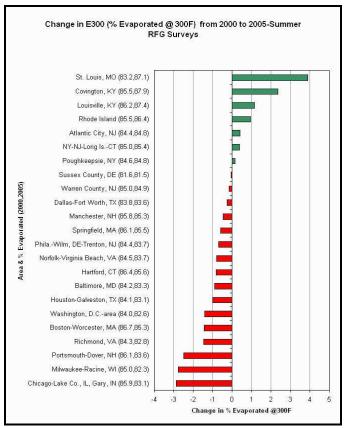


Figure 13




Figure 14

RFG E300 by Grade (continued):

			R	FG Average E3	00 (%) and Vo	lume (gal) by	fear, Grade, an	d Season-From	Reporting Dat	ta
			Reporting Yea	ar						
Grade	Season	Data	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	83.70	84.14	86.85	86.27	85.86	86.42	85.62	86.05
	j	Volume	3,649,195,434	3,537,723,033	2,788,564,977	2,773,110,841	2,931,886,907	2,736,973,386	2,385,535,898	2,144,095,101
	W	Average	85.23	85.72	86.96	86.22	86.99	86.15	86.31	86.68
	İ	Volume	4,139,316,745	3,839,207,618	3,420,180,881	3,301,129,239	3,387,457,520	3,103,333,727	2,943,555,811	2,583,694,635
REG	S	Average	82.16	82.38	84.09	83.85	83.98	83.87	82.97	83.72
	j	Volume	9,007,552,063	9,320,974,363	10,122,448,765	10,389,949,614	10,879,031,865	10,824,904,975	11,783,350,501	11,881,795,879
-	W	Average	84.79	84.24	85.85	85.65	85.11	84.91	84.67	85.12
	j	Volume	10,638,539,349	10,902,774,956	12,246,078,983	12,307,517,794	13,031,122,001	13,486,978,064	14,160,927,780	15,422,172,055

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

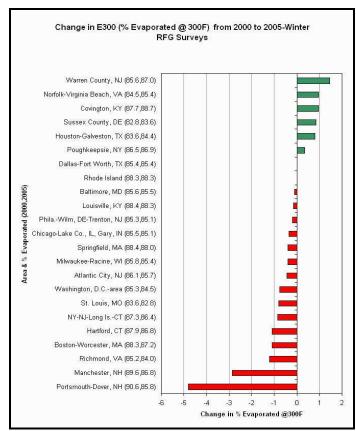
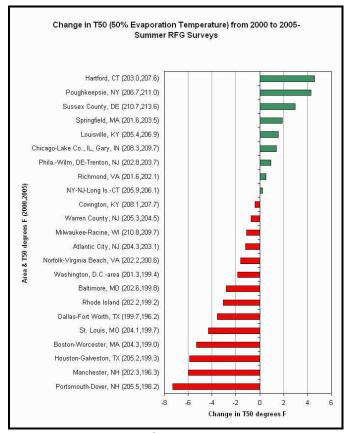



Figure 17 Figure 18

RFG T50 Geographic

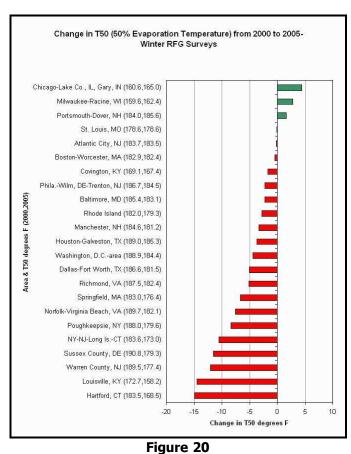
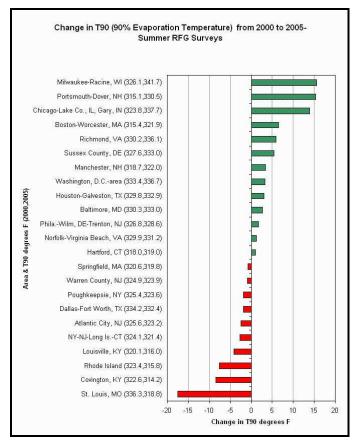



Figure 19 Fig

RFG T90 Geographic

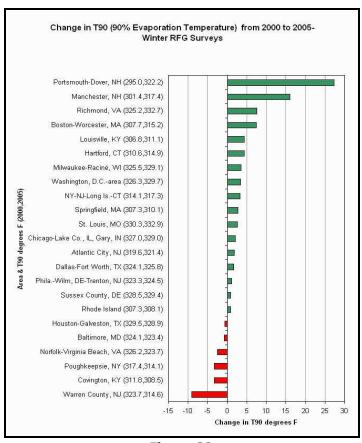


Figure 21

Figure 22

Conventional Gasoline

CG E200 by Gasoline Volume

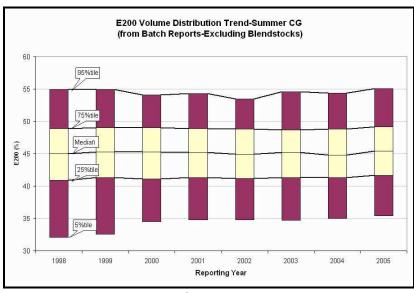


Figure 23

			0 (0/) by Malay	ore (from Betek	Danasta asalu	din - Dian data -	Inc	
	Reporting Year	ummer CG E20	U (%) by Volui	ne (rrom Batch	Reports exclu	aing Bienastoc	KS)	
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0
5%	32.1	32.6	34.5	34.8	34.8	34.7	35.0	35.4
10%	35.4	36.0	37.3	37.7	37.6	37.4	37.7	38.1
15%	37.8	38.5	38.9	39.3	39.1	39.0	39.2	39.6
20%	39.6	40.0	40.0	40.4	40.3	40.3	40.3	40.7
25%	40.9	41.3	41.1	41.3	41.2	41.3	41.3	41.7
30%	41.9	42.2	42.2	42.1	42.1	42.2	42.1	42.5
35%	42.9	43.1	43.1	42.9	42.8	43.0	42.8	43.3
40%	43.5	43.9	43.8	43.7	43.5	43.8	43.5	44.0
45%	44.3	44.6	44.6	44.4	44.2	44.5	44.2	44.7
50%	45.0	45.3	45.3	45.2	44.9	45.2	44.8	45.4
55%	45.8	46.0	45.9	45.9	45.6	45.9	45.5	46.1
60%	46.4	46.6	46.7	46.5	46.2	46.5	46.3	46.9
65%	47.2	47.3	47.4	47.2	47.0	47.2	46.9	47.6
70%	47.9	48.2	48.1	47.9	47.9	47.9	47.8	48.4
75%	48.9	49.0	49.0	48.9	48.8	48.7	48.8	49.2
80%	50.0	50.0	49.8	49.9	49.7	49.6	49.8	50.2
85%	51.3	51.4	50.9	50.9	50.5	50.9	50.9	51.5
90%	52.9	52.7	52.1	52.4	51.6	52.3	52.5	53.1
95%	54.9	54.9	54.1	54.3	53.5	54.6	54.4	55.1
100%	68.9	76.0	64.6	69.8	76.4	76.8	73.5	67.0
Volume (gal):	39,086,644,042	37,192,967,557	36,389,951,364	38,542,457,289	40,819,234,602	43,243,575,045	43,509,104,037	42,196,228,805

CG E200 by Gasoline Volume (continued):

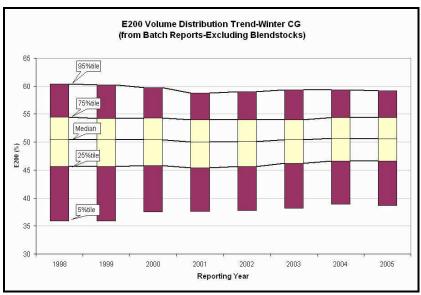


Figure 24

		_		e (from Batch			•	
/olume %tile	Reporting Ye 1998	ar 1999	2000	2001	2002	2003	2004	2005
minimum	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0
5%	27.0 35.90	35.90	27.0 37.50	27.0 37.60	27.0 37.80	38.20	38.90	38.70
10%	39.10	39.40	40.90	40.50	41.30	41.50	42.10	41.90
15%	41.70	42.10	43.10	42.70	43.00	43.60	43.90	43.90
20%	44.00	44.20	44.70	44.20	44.50	45.00	45.40	45.40
25%	45.60	45.60	45.80	45.40	45.60	46.20	46.60	46.60
30%	46.90	46.80	47.00	46.50	46.60	47.10	47.50	47.50
35%	47.90	47.90	48.00	47.50	47.60	48.10	48.40	48.40
40%	48.90	48.80	48.90	48.40	48.50	48.80	49.20	49.10
45%	49.70	49.60	49.70	49.20	49.30	49.70	49.90	49.90
50%	50.50	50.40	50.40	50.00	50.10	50.40	50.70	50.60
55%	51.20	51.30	51.20	50.80	50.90	51.10	51.40	51.40
60%	51.90	51.90	51.90	51.60	51.60	51.80	52.00	52.10
65%	52.60	52.60	52.70	52.30	52.30	52.40	52.70	52.90
70%	53.50	53.40	53.50	53.10	53.20	53.20	53.50	53.60
75%	54.50	54.20	54.30	54.00	54.00	54.00	54.40	54.40
80%	55.60	55.30	55.20	54.80	55.00	55.10	55.30	55.40
85%	56.70	56.50	56.40	55.90	56.00	56.00	56.30	56.30
90%	58.10	57.90	57.80	57.20	57.40	57.30	57.50	57.40
95%	60.40	60.20	59.70	58.80	59.00	59.30	59.30	59.20
100%	75.50	75.50	76.30	76.90	75.90	75.40	76.80	73.60
olume (gal):		47.701.715.605						48,705,329,8

CG E200 by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

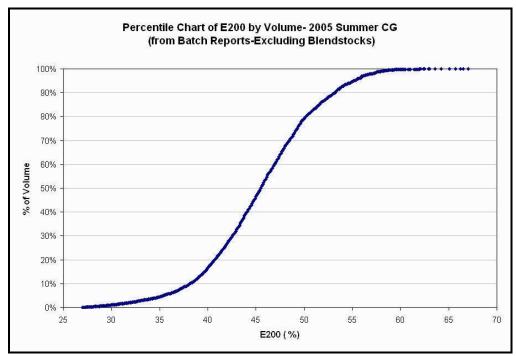


Figure 25

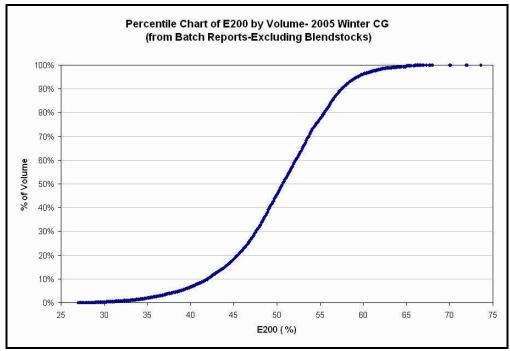


Figure 26

CG E200 (by Grade)

			C	G Average E20	0 (%) and Vol	ume (gal) by Yo	ear, Grade and	Season -From	Reporting Dat	a
			Reporting Yea	ar						
Grade	Season	Data	1998	1999	2000	2001	2002	2003	2004	2005
PRM	s	Average	36.7	37.9	37.8	38.1	37.4	37.8	37.8	37.2
		Volume	6,635,803,305	6,252,416,423	4,957,386,104	4,996,778,324	5,181,939,065	5,149,486,549	4,635,507,910	4,138,979,931
	W	Average	40.5	40.7	41.2	41.2	41.1	41.4	42.1	41.1
		Volume	8,233,390,519	7,690,219,372	6,648,441,003	6,555,892,276	6,571,003,043	5,517,761,736	5,077,869,493	4,510,104,837
REG	S	Average	46.3	46.6	46.0	46.1	45.9	46.1	45.8	46.3
		Volume	28,418,412,132	26,656,367,421	27,360,707,607	28,965,019,123	30,995,888,528	33,053,399,345	34,601,650,558	33,851,903,439
	W	Average	51.9	51.6	51.4	50.7	51.0	51.0	51.1	50.9
		Volume	32,177,203,389	33,356,627,836	35,199,495,331	35,941,182,455	36,931,713,041	35,949,009,293	37,504,775,826	39,123,690,864

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

CG E300 by Gasoline Volume

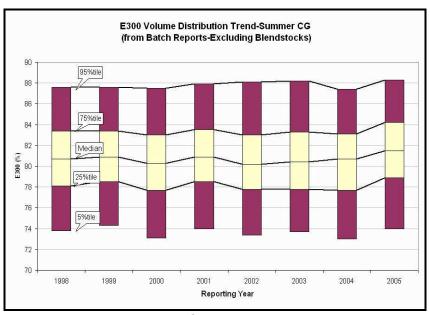


Figure 27

	Suilli	ner CG E300 ((70) by Volum	ile (ITOIII Batt	ii Kepoits Ext	Juding Blend	Stocks)	
	Reporting Ye	ar						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	63.2	63.0	63.1	63.0	63.1	64.4	64.5	63.6
5%	73.8	74.3	73.1	74.0	73.4	73.7	73.0	74.0
10%	75.4	75.9	74.9	75.8	75.0	75.3	74.8	75.7
15%	76.5	77.1	76.1	77.0	76.2	76.3	76.1	77.0
20%	77.4	77.9	77.0	77.9	77.1	77.1	77.0	78.1
25%	78.1	78.5	77.7	78.5	77.8	77.8	77.7	78.9
30%	78.6	78.9	78.4	79.0	78.3	78.4	78.4	79.5
35%	79.2	79.4	78.9	79.5	78.8	78.9	79.0	80.0
40%	79.7	79.9	79.4	79.9	79.3	79.5	79.6	80.5
45%	80.2	80.4	79.8	80.4	79.8	80.0	80.1	81.0
50%	80.7	80.9	80.3	80.9	80.2	80.4	80.7	81.5
55%	81.1	81.4	8.08	81.2	80.8	80.8	81.2	82.0
60%	81.6	81.8	81.3	81.7	81.3	81.4	81.7	82.5
65%	82.1	82.3	81.9	82.3	81.8	82.1	82.1	83.1
70%	82.8	82.8	82.4	82.9	82.3	82.7	82.6	83.6
75%	83.4	83.4	83.0	83.5	83.0	83.3	83.1	84.2
80%	84.0	84.0	83.7	84.2	83.8	84.0	83.8	84.9
85%	84.9	84.8	84.6	84.9	84.8	84.9	84.7	85.6
90%	85.9	85.9	85.7	85.9	85.9	86.1	85.8	86.8
95%	87.6	87.6	87.5	87.9	88.1	88.2	87.4	88.3
100%	100.0	98.6	98.2	100.0	99.4	98.3	98.2	100.0
olume (gal):	39,086,644,042	37,192,967,557	36,389,951,364	38,542,457,289	40,819,234,602	43,243,575,045	43,509,104,037	42,196,228,8

CG E300 by Gasoline Volume (continued):

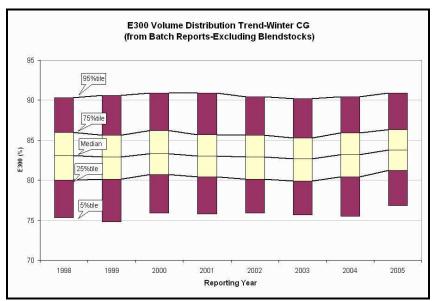


Figure 28

	Reporting Ye	ar						
/olume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	63.4	63.4	63.4	63.4	63.4	63.4	63.4	63.4
5%	75.3	74.8	75.9	75.8	75.9	75.7	75.5	76.8
10%	77.0	77.0	77.8	77.6	77.6	77.3	77.2	78.5
15%	78.3	78.4	79.2	78.9	78.6	78.3	78.6	79.7
20%	79.2	79.3	0.08	79.7	79.4	79.2	79.6	80.5
25%	0.08	80.1	80.7	80.4	80.1	79.9	80.4	81.2
30%	80.7	80.7	81.3	81.0	80.8	80.5	81.1	81.8
35%	81.4	81.3	81.8	81.5	81.4	81.1	81.7	82.4
40%	82.0	81.8	82.4	82.0	81.9	81.7	82.2	82.9
45%	82.6	82.3	82.8	82.5	82.4	82.1	82.8	83.3
50%	83.1	82.9	83.3	83.0	82.9	82.7	83.2	83.8
55%	83.7	83.3	83.8	83.5	83.5	83.2	83.7	84.2
60%	84.2	83.9	84.4	83.9	84.0	83.7	84.2	84.7
65%	84.8	84.4	84.9	84.5	84.5	84.1	84.7	85.2
70%	85.4	85.0	85.5	85.1	85.1	84.7	85.3	85.7
75%	86.0	85.6	86.2	85.7	85.6	85.3	85.9	86.3
80%	86.8	86.4	86.9	86.4	86.4	86.0	86.6	87.1
85%	87.7	87.4	87.9	87.4	87.2	87.0	87.6	88.1
90%	88.7	88.6	89.0	88.7	88.5	88.2	88.8	89.2
95%	90.3	90.6	90.9	90.9	90.4	90.2	90.4	90.9
100%	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
olume (gal):	46,293,637,987	47,701,715,605	48,030,024,114	48,810,395,817	49,655,135,030	47,469,723,098	47,654,973,148	48,705,329,

CG E300 by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

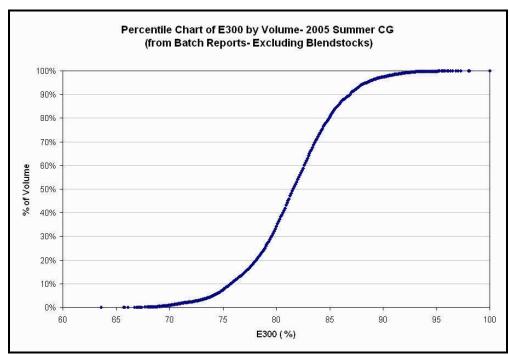


Figure 29

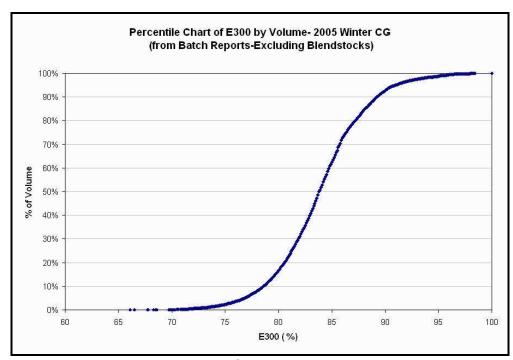


Figure 30

CG E300 by Grade

			C	G Average E30	0 (%) and Vol	ume (gal) by Y	ear, Grade and	Season-From	Reporting Data	1
			Reporting Year							
Grade	Season	Data	1998	1999	2000	2001	2002	2003	2004	2005
PRM	S	Average	81.9	82.4	81.6	83.2	82.1	82.8	82.4	83.2
		Volume	6,635,803,305	6,252,416,423	4,957,386,104	4,996,778,324	5,181,939,065	5,149,486,549	4,635,507,910	4,138,979,931
	W	Average	83.6	83.6	84.2	83.7	84.0	83.7	83.5	85.2
		Volume	8,233,390,519	7,690,219,372	6,648,441,003	6,555,892,276	6,571,003,043	5,517,761,736	5,077,869,493	4,510,104,837
REG	S	Average	80.5	80.7	80.0	80.5	80.1	80.2	80.2	81.2
		Volume	28,418,412,132	26,656,367,421	27,360,707,607	28,965,019,123	30,995,888,528	33,053,399,345	34,601,650,558	33,851,903,439
	W	Average	82.9	82.8	83.2	82.9	82.8	82.5	82.9	83.6
		Volume	32,177,203,389	33,356,627,836	35,199,495,331	35,941,182,455	36,931,713,041	35,949,009,293	37,504,775,826	39,123,690,864

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

Appendix to Emissions and Emissions Performance Chapter

RFG VOC Performance by Gasoline Volume

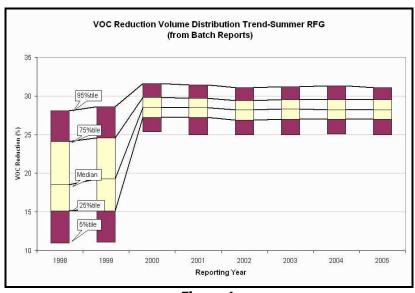


Figure 1

		Summer R	FG VOC Reduc	tion (%) by Vo	lume (from Ba	tch Reports)		
	Reporting Yea	ar						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	-5.7	-2.7	21.9	21.4	20.2	21.7	21.5	22.2
5%	11.0	11.1	25.4	25.0	25.0	25.0	25.1	25.0
10%	12.5	12.6	26.1	25.8	25.7	25.8	25.7	25.7
15%	13.6	13.6	26.6	26.4	26.2	26.2	26.2	26.2
20%	14.4	14.4	27.0	26.8	26.6	26.6	26.6	26.5
25%	15.1	15.1	27.2	27.2	26.9	27.0	27.0	27.0
30%	15.7	16.0	27.5	27.5	27.2	27.3	27.3	27.3
35%	16.4	16.8	27.8	27.8	27.5	27.5	27.5	27.6
40%	17.1	17.5	28.0	28.0	27.7	27.8	27.8	27.8
45%	17.7	18.4	28.2	28.3	28.0	28.1	28.0	28.0
50%	18.5	19.3	28.5	28.5	28.2	28.3	28.2	28.2
55%	19.4	20.4	28.7	28.8	28.5	28.5	28.5	28.5
60%	20.4	21.4	29.0	29.0	28.7	28.8	28.7	28.7
65%	21.5	22.5	29.3	29.2	28.9	29.0	29.0	29.0
70%	22.8	23.4	29.5	29.5	29.1	29.3	29.2	29.2
75%	24.1	24.6	29.8	29.7	29.4	29.5	29.5	29.5
80%	25.0	25.6	30.1	30.0	29.7	29.8	29.8	29.8
85%	26.0	26.5	30.5	30.4	30.1	30.1	30.1	30.1
90%	27.0	27.4	30.9	30.8	30.5	30.5	30.6	30.5
95%	28.1	28.6	31.6	31.4	31.1	31.2	31.3	31.1
100%	35.2	33.3	33.9	33.6	33.6	34.8	34.4	33.6
Volume (gal):	12,551,351,739	12,605,647,535	12,924,625,994	13,215,304,396	13,838,063,327	13,583,809,485	14,230,001,733	14,070,501,006

RFG VOC Performance by Gasoline Volume (continued): (Cumulative Distribution for Latest Year Data)

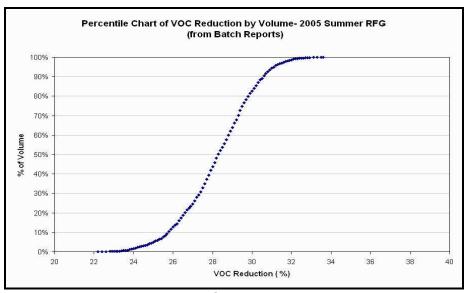


Figure 2

RFG VOC Performance by Gasoline Volume (continued): (Batches separated by VOC control region designation)

	Region 1 Summ	er RFG VOC Re	eduction (%) by	/ Volume (from	Batch Reports)
	Reporting Year					
Volume %tile	2000	2001	2002	2003	2004	2005
minimum	24.3	24.0	24.6	23.6	25.0	25.1
5%	27.0	26.9	27.0	26.9	26.9	27.2
10%	27.5	27.5	27.3	27.4	27.3	27.6
15%	27.9	27.8	27.6	27.8	27.6	27.9
20%	28.1	28.1	27.9	28.1	27.9	28.1
25%	28.4	28.4	28.2	28.4	28.1	28.4
30%	28.7	28.6	28.5	28.6	28.3	28.6
35%	29.0	28.8	28.6	28.8	28.6	28.8
40%	29.1	29.0	28.8	29.0	28.8	29.0
45%	29.3	29.1	29.0	29.2	29.0	29.2
50%	29.5	29.3	29.2	29.4	29.2	29.3
55%	29.7	29.5	29.4	29.5	29.4	29.5
60%	29.9	29.7	29.6	29.7	29.6	29.6
65%	30.1	29.9	29.8	29.9	29.8	29.8
70%	30.3	30.2	30.0	30.1	30.0	30.1
75%	30.6	30.4	30.2	30.3	30.3	30.2
80%	30.8	30.7	30.5	30.5	30.5	30.5
85%	31.1	31.0	30.7	30.8	30.8	30.7
90%	31.5	31.3	31.1	31.1	31.3	31.0
95%	32.1	31.8	31.6	31.6	31.9	31.6
100%	33.9	33.6	33.6	34.8	34.4	33.6
Volume (gal):	5,710,929,463	5,909,480,958	6,017,416,713	6,095,268,147	6,329,701,695	5,983,085,18

Region 2	2 "Unadjusted St	andard" Summer	RFG VOC Reduc	tion (%) by Volu	me (from Batch	Reports)
	Reporting Year					
Volume %tile	2000	2001	2002	2003	2004	2005
minimum	21.9	22.2	23.4	23.4	23.4	23.3
5%	24.8	25.2	25.3	25.5	25.3	25.0
10%	25.6	25.9	25.9	26.0	25.8	25.8
15%	26.0	26.3	26.2	26.3	26.2	26.2
20%	26.4	26.7	26.5	26.5	26.4	26.4
25%	26.6	27.0	26.7	26.8	26.7	26.8
30%	26.9	27.3	26.9	27.0	27.0	27.0
35%	27.1	27.5	27.2	27.2	27.3	27.2
40%	27.3	27.7	27.3	27.4	27.4	27.4
45%	27.5	27.9	27.5	27.6	27.6	27.6
50%	27.7	28.1	27.7	27.8	27.8	27.7
55%	27.9	28.3	27.9	27.9	28.0	27.8
60%	28.1	28.6	28.1	28.1	28.2	28.1
65%	28.3	28.7	28.3	28.3	28.4	28.2
70%	28.5	29.0	28.5	28.5	28.6	28.5
75%	28.7	29.3	28.8	28.7	28.8	28.7
80%	29.0	29.5	29.0	29.0	29.0	29.0
85%	29.4	29.8	29.3	29.2	29.3	29.3
90%	29.9	30.1	29.6	29.6	29.7	29.7
95%	30.7	30.6	30.1	30.0	30.2	30.2
100%	33.9	32.8	32.6	33.6	33.1	32.6
Volume(gal):	7,213,696,531	5,680,076,425	6,070,322,689	5,978,921,094	6,160,483,137	6,247,759,799

Region 2-	"Adjusted \	OC" Summer RF	G VOC Reduction	on (%) by Volu	me (from Batch	Reports)
	Reporting Y	ear				
Volume %tile	2000	2001	2002	2003	2004	2005
minimum	N/A	21.4	20.2	21.7	21.5	22.2
5%	N/A	23.1	23.0	23.5	24.2	23.8
10%	N/A	23.9	23.7	24.1	24.4	24.3
15%	N/A	24.2	24.0	24.4	24.6	24.7
20%	N/A	24.6	24.4	24.6	24.7	24.9
25%	N/A	24.9	24.8	24.8	24.9	25.1
30%	N/A	25.1	25.0	25.0	25.1	25.2
35%	N/A	25.4	25.1	25.1	25.3	25.5
40%	N/A	25.6	25.4	25.3	25.4	25.6
45%	N/A	25.8	25.6	25.4	25.5	25.7
50%	N/A	26.0	25.7	25.6	25.6	25.9
55%	N/A	26.3	25.9	25.7	25.8	26.0
60%	N/A	26.5	26.1	25.9	26.0	26.2
65%	N/A	26.7	26.4	26.1	26.2	26.3
70%	N/A	26.8	26.6	26.2	26.4	26.5
75%	N/A	27.0	26.8	26.5	26.8	26.6
80%	N/A	27.3	27.1	26.7	26.9	26.9
85%	N/A	27.6	27.5	27.0	27.4	27.7
90%	N/A	27.9	27.9	27.2	27.9	28.4
95%	N/A	28.4	28.6	27.7	28.7	29.3
100%	N/A	31.1	29.8	30.7	32.2	30.9
Volume (gal):		1,625,747,013	1,639,100,323	1,509,620,244	1,739,816,901	1,839,656,018

RFG VOC Performance by Grade

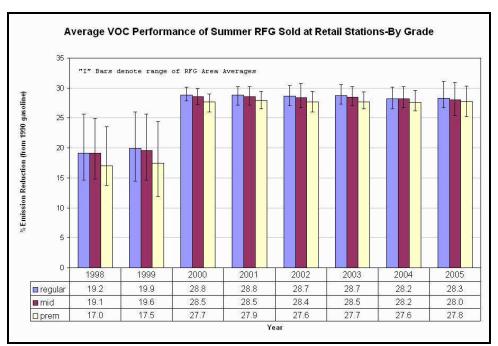


Figure 3

	RFG VOC Emissions Performance (% reduction) by Year and Grade-From Reporting Data										
			Reporting Year								
Grade	Season	Data	2000	2001	2002	2003	2004	2005			
PRM	S	Average	28.0	28.0	27.7	27.7	27.9	27.9			
		Volume	2,775,514,551	2,772,816,841	2,930,007,747	2,735,922,026	2,385,535,898	2,141,224,947			
REG	S	Average	28.8	28.6	28.4	28.5	28.4	28.3			
		Volume	10,076,956,707	10,377,246,679	10,871,002,718	10,822,132,177	11,770,292,617	11,862,678,003			

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

RFG VOC Performance (Geographic)

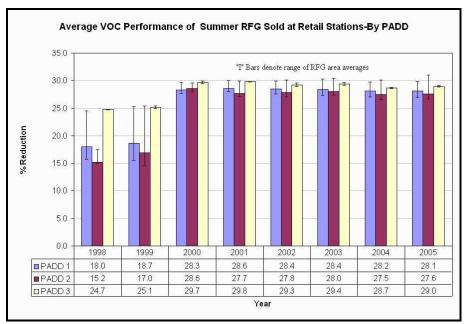


Figure 4

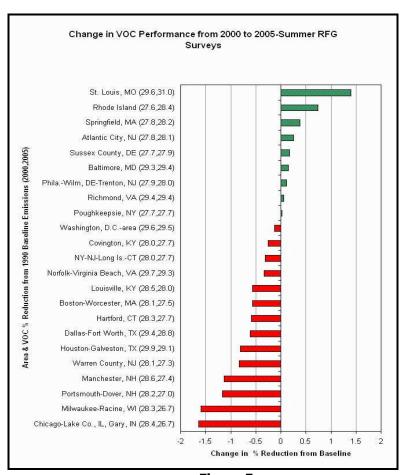


Figure 5

RFG Toxics Performance by Gasoline Volume

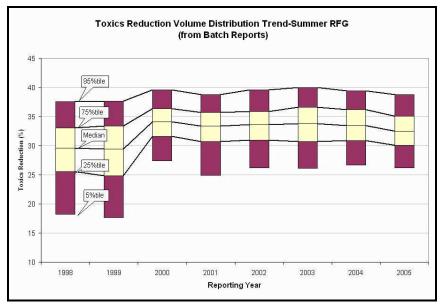


Figure 6

		Summer Ki	rd Toxics Redu	iction (%) by V	olulle (Ilolli B	attii Keports)		
	Reporting Year	•						
Volume	1998	1999	2000	2001	2002	2003	2004	2005
%tile								
minimum	1.3	0.3	20.1	16.8	6.0	19.0	16.9	16.2
5%	18.2	17.7	27.4	24.9	26.2	26.1	26.7	26.2
10%	20.9	20.5	28.9	27.4	28.4	28.0	28.3	27.7
15%	22.8	22.1	30.1	28.8	29.5	29.2	29.5	28.7
20%	24.3	23.6	30.9	29.9	30.5	30.1	30.3	29.4
25%	25.6	24.8	31.6	30.7	31.0	30.7	30.9	30.1
30%	26.6	25.8	32.1	31.4	31.6	31.3	31.6	30.7
35%	27.4	26.7	32.6	32.0	32.1	32.0	32.0	31.1
40%	28.2	27.7	33.2	32.5	32.7	32.6	32.5	31.5
45%	29.0	28.7	33.6	33.0	33.1	33.2	33.1	32.0
50%	29.6	29.4	34.1	33.4	33.6	33.8	33.5	32.5
55%	30.4	30.3	34.6	33.9	34.0	34.4	34.1	32.9
60%	31.2	31.1	35.0	34.4	34.4	34.9	34.6	33.4
65%	31.8	31.8	35.4	34.8	34.8	35.4	35.1	33.9
70%	32.6	32.6	35.8	35.2	35.3	36.0	35.7	34.5
75%	33.1	33.4	36.4	35.7	35.9	36.6	36.2	35.1
80%	33.9	34.2	37.0	36.1	36.6	37.1	36.7	35.8
85%	34.7	34.9	37.6	36.8	37.2	37.8	37.3	36.6
90%	35.8	36.0	38.4	37.5	38.2	38.7	38.1	37.4
95%	37.6	37.7	39.6	38.8	39.6	40.0	39.4	38.8
100%	45.6	45.7	45.0	44.2	43.8	44.9	45.5	45.1
Volume (gal):	12,551,351,739	12,605,647,535	12,924,625,994	13,215,304,396	13,838,063,327	13,583,809,485	14,230,001,733	14,070,501,0

RFG Toxics Performance by Gasoline Volume (continued):

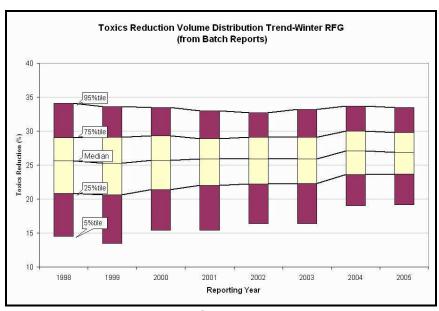


Figure 7

		Winter R	FG Toxics Red	uction (%) Vol	ume (from Bate	ch Reports)		
	Reporting Ye	ear						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	-6.9	-8.7	2.8	-2.3	0.6	-3.2	-5.0	-1.0
5%	14.5	13.5	15.4	15.4	16.4	16.4	19.0	19.2
10%	17.0	15.9	17.6	17.7	18.5	18.9	20.5	20.7
15%	18.3	17.6	19.1	19.4	20.0	20.4	21.7	21.9
20%	19.6	19.1	20.3	20.8	21.1	21.4	22.7	22.9
25%	20.8	20.6	21.4	22.0	22.2	22.3	23.6	23.7
30%	21.9	21.9	22.4	23.0	22.9	23.0	24.4	24.4
35%	22.9	22.8	23.1	23.8	23.7	23.8	25.1	25.1
40%	23.9	23.7	24.0	24.5	24.4	24.5	25.8	25.7
45%	24.8	24.5	24.9	25.3	25.1	25.2	26.5	26.3
50%	25.6	25.3	25.7	25.9	25.9	25.9	27.1	26.9
55%	26.2	26.0	26.5	26.5	26.6	26.5	27.7	27.5
60%	26.8	26.9	27.2	27.0	27.2	27.2	28.2	28.0
65%	27.5	27.6	27.9	27.7	27.8	27.8	28.8	28.6
70%	28.3	28.3	28.6	28.3	28.5	28.5	29.4	29.1
75%	29.0	29.1	29.3	28.9	29.1	29.1	30.0	29.8
80%	29.9	29.9	30.1	29.5	29.7	29.9	30.7	30.5
85%	30.8	30.7	31.0	30.4	30.4	30.6	31.4	31.2
90%	32.1	31.8	32.0	31.4	31.3	31.6	32.3	32.4
95%	34.1	33.6	33.5	33.0	32.7	33.2	33.7	33.5
100%	41.1	39.6	39.3	39.9	38.7	38.5	39.9	39.0
Volume (gal):	14,617,590,035	14,589,007,345	15,829,263,333	15,703,151,227	16,429,670,147	16,679,773,135	17,190,635,125	18,044,155,5

RFG Toxics Performance by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

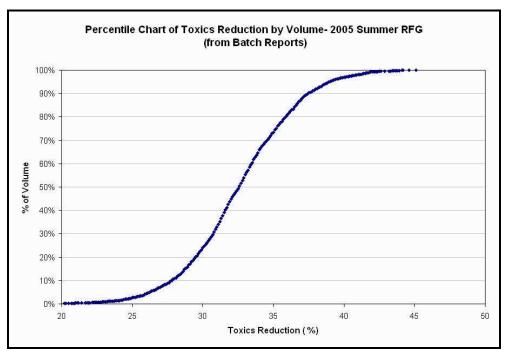


Figure 8

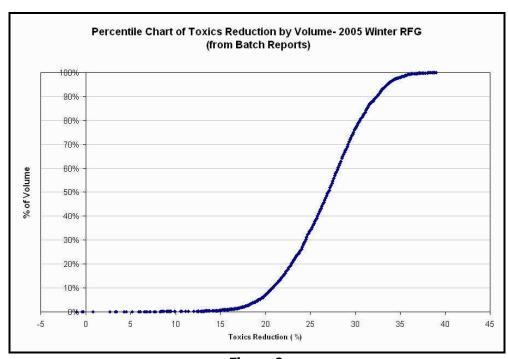


Figure 9

RFG Toxics Performance by Grade

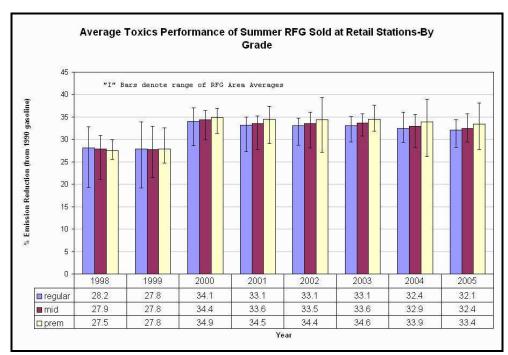


Figure 10

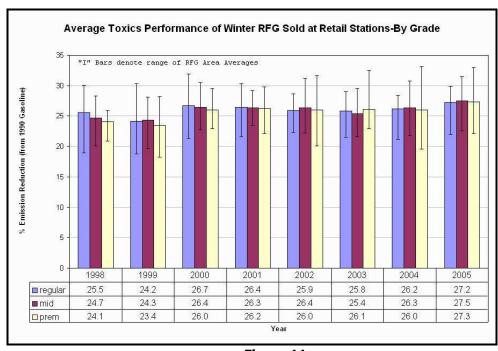


Figure 11

RFG Toxics Performance by Grade (continued):

			Reporting Year					
Grade	Season	Data	2000	2001	2002	2003	2004	2005
PRM	S	Average	34.4	33.8	34.5	34.5	34.1	33.4
		Volume	2,775,514,551	2,772,816,841	2,930,007,747	2,735,922,026	2,385,535,898	2,141,224,947
	W	Average	24.7	24.0	25.3	25.9	26.5	26.0
		Volume	3,418,369,505	3,288,964,179	3,387,457,520	3,103,333,727	2,943,555,811	2,581,178,988
REG	S	Average	33.9	32.8	33.2	33.4	33.4	32.5
		Volume	10,076,956,707	10,377,246,679	10,871,002,718	10,822,132,177	11,770,292,617	11,862,678,003
	W	Average	25.5	25.6	25.5	25.5	26.9	26.9
		Volume	12,246,078,983	12,289,025,746	12,966,338,451	13,486,978,064	14,158,974,318	15,422,172,055

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

RFG Toxics Performance (Geographic)

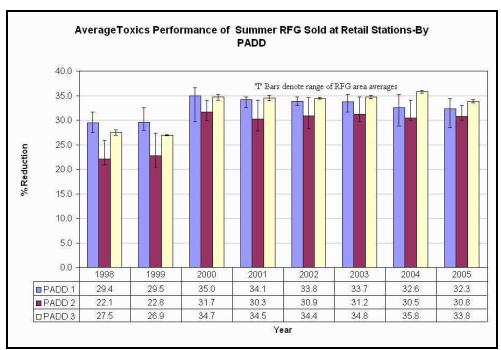


Figure 12

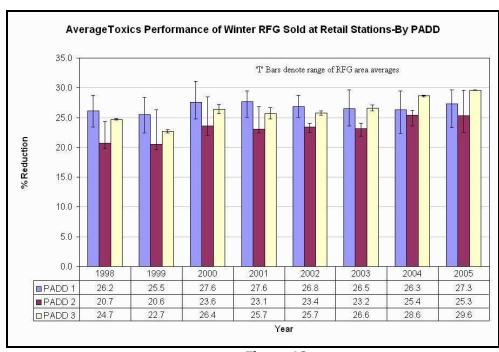
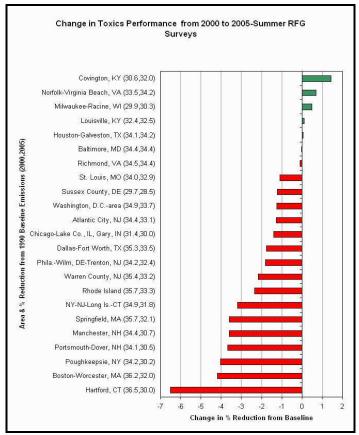



Figure 13

RFG Toxics Performance Geographic (continued):

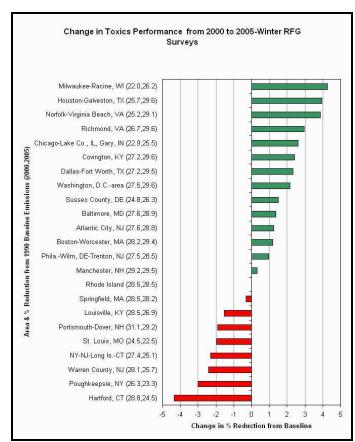


Figure 14

Figure 15

RFG NOx Performance by Gasoline Volume

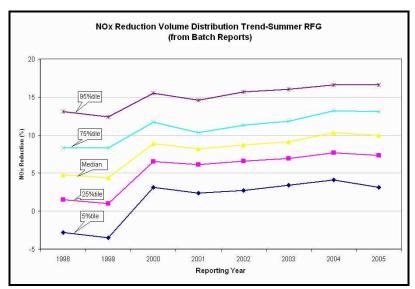


Figure 16

		Summer R	FG NOx Reduc	tion (%) by Vo	lume (from Ba	tch Reports)		
	Reporting Yea	ar						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	-15.2	-16.1	-5.5	-11.1	-5.9	-8.1	-6.2	-4.4
5%	-2.8	-3.5	3.1	2.4	2.7	3.4	4.1	3.1
10%	-1.1	-1.8	4.3	3.9	4.6	4.8	5.5	4.7
15%	0.1	-0.5	5.1	5.0	5.5	5.7	6.3	5.8
20% 25%	0.8 1.5	0.3 1.0	5.8 6.5	5.6 6.1	6.1 6.6	6.3 6.9	7.1 7.7	6.6 7.3
30%	2.2	1.6	7.0	6.6	7.0	7.3	8.3	7.9
35%	2.9	2.3	7.6	7.0	7.5	7.7	8.9	8.4
40%	3.5	3.0	8.0	7.4	7.9	8.2	9.3	9.0
45%	4.1	3.8	8.4	7.8	8.2	8.6	9.8	9.5
50%	4.8	4.4	8.9	8.2	8.7	9.1	10.3	10.0
55%	5.4	5.2	9.4	8.6	9.1	9.5	10.8	10.7
60%	6.1	6.0	9.9	8.9	9.6	10.0	11.4	11.3
65%	6.8	6.8	10.5	9.3	10.1	10.5	12.0	11.9
70%	7.5	7.6	11.1	9.7	10.7	11.2	12.5	12.5
75%	8.3	8.3	11.7	10.3	11.3	11.8	13.2	13.1
80%	9.3	9.0	12.3	11.0	12.1	12.6	13.8	13.8
85%	10.2	10.0	13.1	11.9	12.8	13.4	14.5	14.4
90%	11.4	11.1	14.0	13.1	14.0	14.4	15.4	15.3
95%	13.1	12.4	15.5	14.6	15.7	16.0	16.6	16.6
100%	20.4	19.2	19.6	19.2	21.5	21.0	21.1	21.0
Volume (gal):	12,551,351,739	12,605,647,535	12,924,625,994	13,215,304,396	13,838,063,327	13,583,809,485	14,230,001,733	14,070,501,00

RFG NOx Performance by Gasoline Volume (continued):

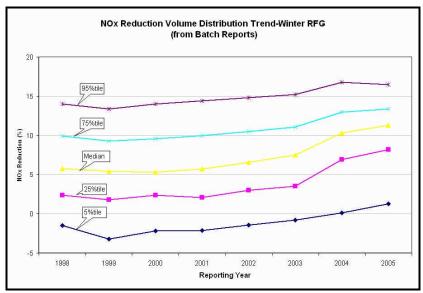


Figure 17

		Winter RI	G NOx Reduct	ion (%) by Vol	ume (from Bate	ch Reports)		
	Reporting Year	ar						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	-12.2	-14.6	-13.2	-13.4	-10.4	-16.0	-8.6	-11.0
5%	-1.5	-3.2	-2.2	-2.1	-1.4	-0.8	0.1	1.3
10%	0.2	-1.0	-0.3	-0.3	0.2	0.6	2.6	3.6
15%	1.2	0.1	1.0	0.6	1.2	1.7	4.4	5.5
20%	1.8	1.0	1.8	1.5	2.1	2.7	5.7	7.0
25%	2.4	1.8	2.4	2.1	3.0	3.5	6.9	8.2
30%	3.1	2.4	2.9	2.8	3.7	4.3	7.7	9.1
35%	3.7	3.2	3.5	3.4	4.4	5.2	8.4	9.8
40%	4.4	3.9	4.0	4.0	5.1	6.0	9.1	10.3
45%	5.1	4.6	4.7	4.8	5.7	6.8	9.7	10.8
50%	5.8	5.4	5.3	5.7	6.6	7.5	10.3	11.3
55%	6.6	6.2	6.1	6.6	7.3	8.3	10.9	11.7
60%	7.3	6.9	7.0	7.5	8.2	9.0	11.5	12.2
65%	8.1	7.7	7.8	8.3	8.9	9.7	11.9	12.5
70%	9.0	8.4	8.8	9.2	9.6	10.3	12.4	12.9
75%	9.9	9.3	9.6	10.0	10.5	11.1	13.0	13.4
80%	10.7	10.1	10.6	10.8	11.3	11.8	13.6	13.8
85%	11.6	11.1	11.6	11.7	12.2	12.7	14.2	14.3
90%	12.6	12.1	12.7	12.7	13.2	13.8	15.1	15.0
95%	14.0	13.4	14.0	14.4	14.8	15.2	16.8	16.5
100%	19.8	20.2	20.0	20.6	19.3	20.4	21.5	21.1
Volume (gal):	14,617,590,035	14,589,007,345	15,829,263,333	15,703,151,227	16,429,670,147	16,679,773,135	17,190,635,125	18,044,155,54

RFG NOx Performance by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

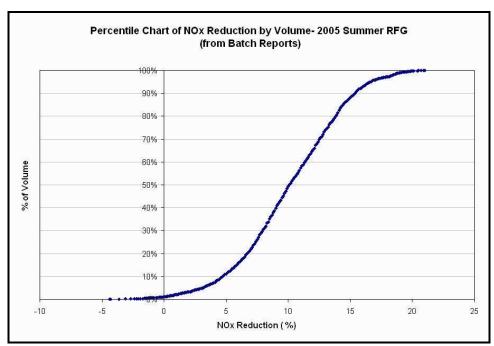


Figure 18

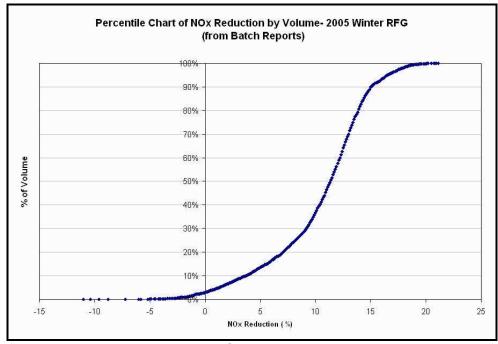


Figure 19

RFG NOx Performance by Grade

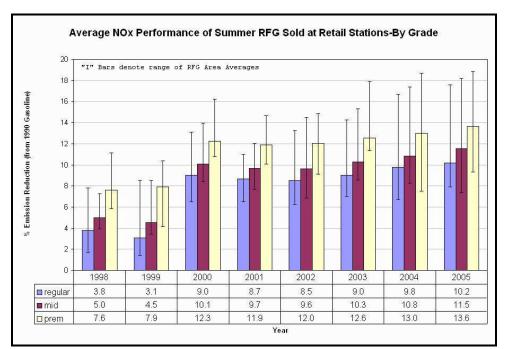


Figure 20

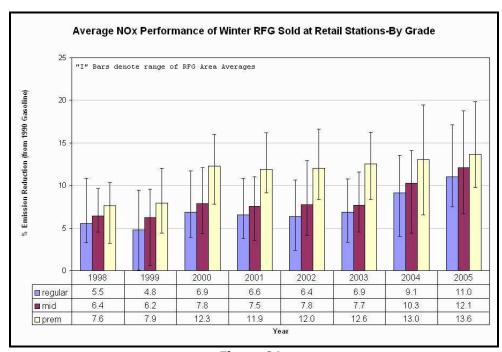


Figure 21

RFG NOx Performance by Grade (continued):

			Reporting Yea	ar				
Grade	Season	Data	2000	2001	2002	2003	2004	2005
PRM	S	Average	11.8	11.0	12.0	12.5	12.8	13.0
		Volume	2,775,514,551	2,772,816,841	2,930,007,747	2,735,922,026	2,385,535,898	2,141,224,947
	W	Average	8.9	9.2	10.4	11.0	12.4	12.6
		Volume	3,418,369,505	3,288,964,179	3,387,457,520	3,103,333,727	2,943,555,811	2,581,178,988
REG	s	Average	8.4	7.7	8.2	8.7	9.9	9.6
		Volume	10,076,956,707	10,377,246,679	10,871,002,718	10,822,132,177	11,770,292,617	11,862,678,003
	W	Average	5.1	5.3	5.8	6.6	9.1	10.1
		Volume	12,246,078,983	12,289,025,746	12,966,338,451	13,486,978,064	14,158,974,318	15,422,172,055

Users of these grade-specific property estimates calculated from RFG and Anti-Dumping data should be aware that grade-specific estimates based on reporting data may differ from actual retail property values by grade. Although aggregate estimates from the reporting system may also differ from actual retail property values, there are several additional reasons why these grade-specific estimates may differ. Mid-grade gasoline is often blended from regular and premium gasoline at some point downstream of the refinery. Thus, some of the gasoline volume reported and included in these tables as regular or premium would be marketed as mid-grade. Additionally, EPA's grade-specific average analysis excludes some gasoline and blendstock that was included in aggregate average estimates. EPA has presented averages for batches labeled as regular and premium gasoline only; excluding batches labeled as mid-grade (since these batches may not be a representative sample of gasoline marketed as mid-grade), mix of grades, or without a grade label. EPA also excluded CG blendstock batches from grade-specific analyses even if they had a grade designation.

The table shows the total volume, in gallons, for the batches used to calculate each grade average. In part, because of factors discussed above these volumes are not expected to represent the actual volumes by grade of retail gasoline.

RFG NOx Performance (Geographic)

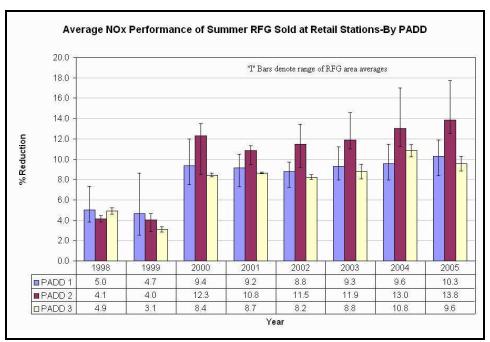


Figure 22

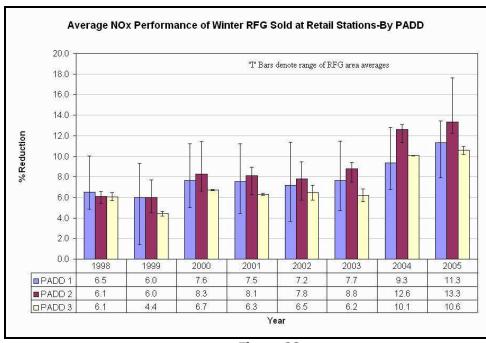
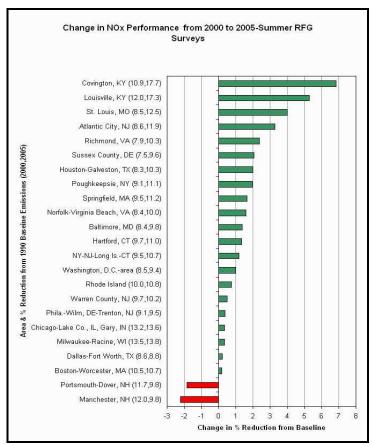



Figure 23

RFG NOx Performance-Geographic (continued):

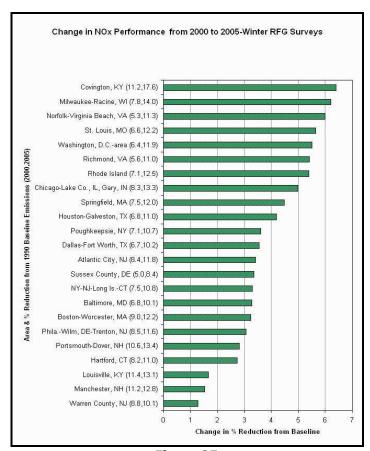


Figure 24

Figure 25

Conventional Gasoline

CG Exhaust Toxics Emissions by Gasoline Volume

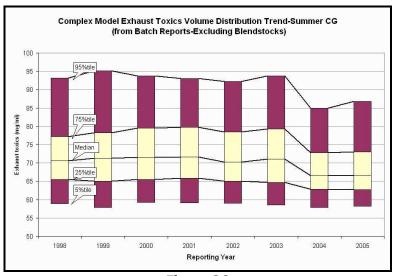


Figure 26

	Reporting Yea	r						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	49.9	48.6	49.6	47.0	47.0	47.0	46.4	48.4
5%	58.9	57.9	59.3	59.1	59.0	58.6	57.9	58.2
10%	60.9	60.7	61.5	61.5	61.2	60.7	59.8	59.8
15%	62.8	62.4	62.9	63.3	62.8	62.3	61.1	61.0
20%	64.2	63.9	64.3	64.6	64.0	63.5	62.0	61.9
25%	65.5	65.1	65.5	65.8	65.0	64.7	62.8	62.7
30%	66.5	66.4	66.5	66.9	66.0	65.8	63.5	63.5
35%	67.5	67.5	67.6	67.9	67.0	66.9	64.3	64.3
40%	68.5	68.8	68.8	69.1	68.1	68.1	65.0	65.0
45%	69.5	70.1	70.1	70.4	69.2	69.6	65.8	65.8
50%	70.6	71.3	71.5	71.7	70.3	71.1	66.6	66.7
55%	71.7	72.7	73.0	72.9	71.7	72.6	67.6	67.8
60%	72.9	74.0	74.5	74.4	73.1	74.4	68.6	69.0
65%	74.0	75.4	76.1	76.0	74.7	76.0	69.7	70.2
70%	75.4	76.7	77.8	77.8	76.4	77.6	71.1	71.5
75%	77.2	78.2	79.5	79.7	78.5	79.3	72.8	73.0
80%	79.5	80.1	81.4	81.9	80.6	81.1	74.7	75.0
85%	82.1	82.7	83.7	84.2	82.9	83.3	76.8	77.4
90%	86.1	86.7	87.2	87.5	86.3	87.0	79.7	80.9
95%	93.2	95.1	93.7	93.1	92.2	93.7	85.0	86.8
100%	155.2	252.3	255.2	258.0	245.8	159.3	154.0	175.8
Volume (gal):	38,992,885,793	37,127,053,812	36,355,722,872	38,541,026,687	40,811,369,914	43,215,951,157	43,495,028,871	42,171,355,

CG Exhaust Toxics by Gasoline Volume (continued):

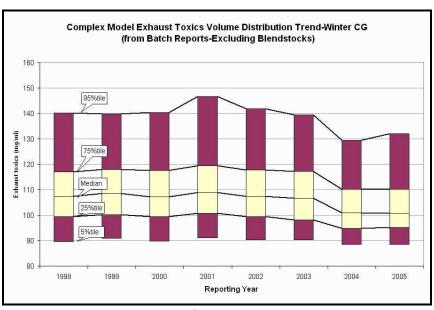


Figure 27

	Reporting Yea	ar						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	76.4	73.8	76.2	75.5	75.4	74.4	72.9	73.9
5%	89.7	90.9	89.8	91.2	90.4	90.3	88.6	88.5
10%	93.1	94.0	93.3	94.2	93.5	93.1	91.0	91.3
15%	95.6	96.4	95.8	96.5	95.8	94.9	92.7	92.8
20%	97.6	98.4	97.6	99.0	97.8	96.4	93.9	94.0
25%	99.4	100.1	99.4	100.8	99.4	98.1	94.9	95.1
30%	101.0	101.8	101.2	102.4	101.0	99.5	96.0	96.3
35%	102.7	103.2	102.6	104.0	102.6	101.2	97.2	97.4
40%	104.3	105.0	104.1	105.6	104.3	102.9	98.4	98.5
45%	105.7	106.7	105.6	107.2	105.9	104.7	99.7	99.7
50%	107.5	108.5	107.2	108.9	107.5	106.6	101.0	100.8
55%	109.3	110.3	108.7	110.5	109.2	108.4	102.7	102.4
60%	110.9	111.9	110.5	112.1	111.1	110.4	104.4	104.1
65%	112.8	113.7	112.5	114.0	113.1	112.5	106.3	105.8
70%	114.8	115.9	114.7	116.5	115.4	114.7	108.3	108.0
75%	117.1	118.0	117.6	119.4	117.8	117.2	110.2	110.1
80%	119.6	120.8	121.0	122.6	121.1	120.4	113.1	112.7
85%	123.5	124.7	125.4	127.0	124.7	124.0	116.1	116.5
90%	128.7	129.9	131.1	134.7	130.9	129.3	120.9	121.9
95%	140.1	139.9	140.4	146.7	141.9	139.4	129.5	132.0
100%	408.8	395.2	419.4	414.9	239.8	399.7	276.7	260.6
Volume (gal):	46,167,047,173	47,555,086,633	47,925,321,684	48,770,268,393	49,640,309,828	47,426,711,234	47,615,735,564	48,664,360,9

CG Exhaust Toxics by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

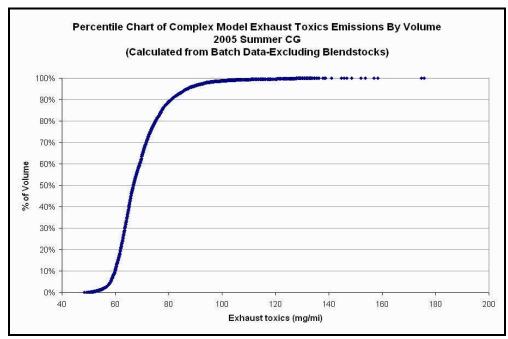


Figure 28

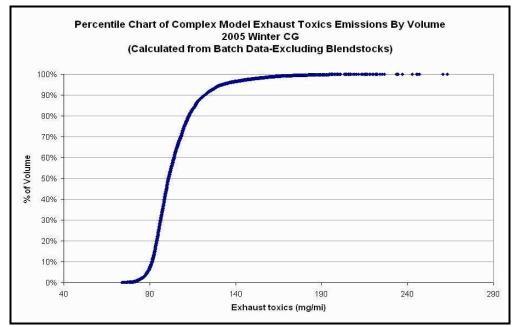


Figure 29

CG NOx Emissions by Gasoline Volume

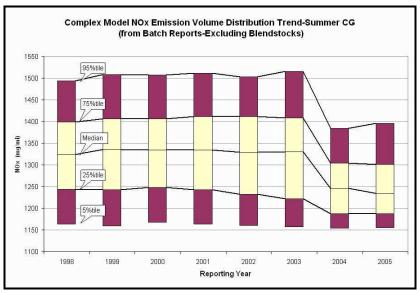


Figure 30

	Reporting Yea	r						
/olume %tile	1998	1999	2000	2001	2002	2003	2004	2005
minimum	1069.8	1053.6	1071.4	1072.8	1064.4	1072.6	1058.0	1052.1
5%	1163.8	1159.2	1168.0	1163.5	1160.5	1157.1	1154.1	1154.9
10%	1182.3	1178.2	1191.5	1184.0	1179.9	1172.4	1163.6	1166.4
15%	1201.4	1199.5	1206.9	1202.0	1196.7	1186.8	1171.7	1175.7
20%	1224.7	1220.2	1225.9	1221.2	1214.9	1201.1	1180.3	1182.4
25%	1244.0	1243.2	1248.0	1242.2	1232.3	1221.7	1187.6	1187.9
30%	1262.8	1265.4	1271.2	1263.5	1254.1	1247.7	1194.8	1195.8
35%	1280.4	1288.0	1291.9	1283.4	1275.1	1273.0	1204.5	1204.0
40%	1298.3	1306.5	1308.9	1302.4	1295.1	1295.3	1217.6	1213.6
45%	1311.3	1320.6	1320.9	1319.5	1313.5	1314.9	1231.3	1223.9
50%	1323.5	1335.2	1334.2	1334.6	1329.1	1330.1	1245.8	1234.0
55%	1335.4	1351.7	1345.5	1348.1	1344.3	1343.6	1259.9	1246.2
60%	1349.3	1364.7	1358.5	1362.3	1357.2	1357.4	1270.4	1259.1
65%	1365.6	1377.0	1371.6	1379.6	1373.1	1373.1	1283.3	1272.6
70%	1382.0	1391.7	1389.3	1394.0	1392.6	1388.9	1293.4	1287.2
75%	1399.4	1406.6	1405.9	1411.5	1411.0	1408.5	1304.5	1301.4
80%	1418.1	1425.2	1427.8	1432.2	1430.6	1428.3	1316.0	1314.8
85%	1440.3	1446.8	1449.5	1453.7	1450.5	1450.6	1330.3	1331.0
90%	1463.3	1470.9	1472.6	1477.3	1472.9	1477.0	1349.6	1353.4
95%	1494.0	1508.3	1507.4	1511.2	1503.3	1515.9	1384.7	1395.6
100%	1790.5	1799.1	1765.5	1813.7	1769.8	1782.6	1629.2	1662.1
Volume (gal):	38,992,885,793	37,127,053,812	36,355,722,872	38,541,026,687	40,811,369,914	43,215,951,157	43,495,028,871	42,171,355,9

CG NOx Emissions by Gasoline Volume (continued):

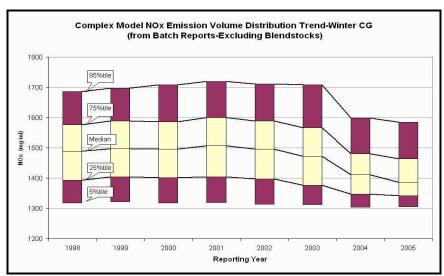


Figure 31

	Reporting You	ear						
Volume %tile	1998	1999	2000	2001	2002	2003	2004	2003
minimum	1207.9	1214.1	1210.4	1202.6	1217.4	1201.5	1204.1	1205.4
5%	1318.6	1321.9	1317.5	1320.1	1314.0	1313.1	1304.8	1305.4
10%	1335.1	1339.9	1337.8	1339.0	1334.7	1328.0	1320.6	1319.9
15%	1352.9	1361.7	1358.7	1358.6	1355.1	1341.8	1329.4	1327.8
20%	1372.9	1382.2	1378.0	1379.8	1374.4	1356.9	1337.7	1335.1
25%	1393.0	1403.5	1400.9	1403.7	1397.8	1376.0	1346.9	1342.3
30%	1413.8	1426.1	1420.7	1428.5	1421.3	1397.4	1356.5	1349.5
35%	1434.3	1446.9	1444.2	1451.4	1444.7	1421.6	1369.8	1357.2
40%	1454.4	1464.0	1464.0	1471.9	1462.3	1441.0	1383.6	1365.7
45%	1473.4	1481.8	1480.9	1487.8	1479.3	1456.8	1397.0	1376.0
50%	1489.4	1497.5	1496.4	1507.4	1496.1	1472.9	1411.4	1386.2
55%	1506.0	1514.0	1512.5	1524.4	1511.9	1489.8	1425.5	1398.4
60%	1524.0	1531.8	1530.2	1542.5	1527.7	1507.8	1440.1	1412.1
65%	1540.8	1549.8	1551.1	1561.3	1544.0	1524.4	1454.4	1428.7
70%	1558.3	1568.4	1567.4	1579.7	1564.7	1544.3	1466.2	1444.8
75%	1576.2	1588.4	1586.2	1599.5	1589.0	1567.0	1480.8	1463.6
80%	1596.7	1611.5	1607.7	1619.6	1613.9	1592.8	1495.0	1481.2
85%	1618.6	1633.6	1632.4	1644.1	1637.3	1624.1	1516.3	1503.7
90%	1645.9	1660.2	1661.5	1672.2	1666.4	1659.0	1543.6	1531.9
95%	1686.6	1696.9	1709.0	1719.0	1710.6	1708.8	1599.2	1584.2
100%	2033.8	2048.4	2019.9	2010.7	2005.6	2017.4	1886.7	1897.0
/olume (gal):	46,167,047,173	47,555,086,633	47,925,321,684	48,770,268,393	49,640,309,828	47,426,711,234	47,615,735,564	48,664,360.

CG NOx Emissions by Gasoline Volume (continued): (Cumulative Distributions for Latest Year Data)

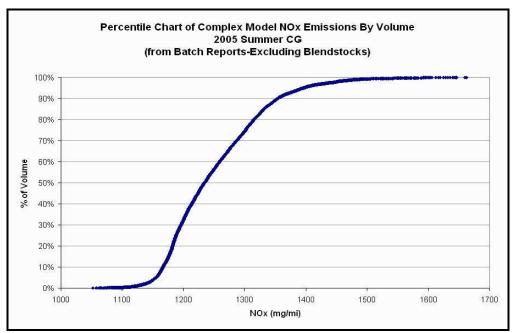


Figure 32

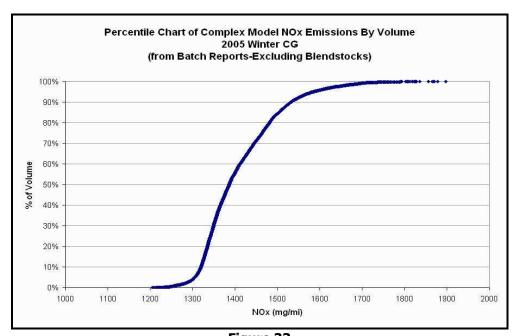


Figure 33

Regression Analysis

This report has largely focused on how gasoline has changed in response to EPA's regulatory requirements. In order to supplement more subjective evidence that gasoline composition has or has not changed concurrent with regulatory changes, EPA has made limited use of regression analysis.

RFG composition was expected to change when the Phase II standards were implemented. Many of the descriptive analyses presented in this report show property changes between 1999 and 2000. However it is not always clear that these changes are distinguishable from year-to-year fluctuations and any overall linear time trend that may be present. EPA fit each set of average estimates to the model:

$$Y=b_0+b_1*YEAR+b_2*Phs2$$

where Y is EPA's estimate of the property average. YEAR is the reporting or survey year and Phs2 is a categorical variable set to 0 for 1998 and 1999 and 1 for 2000 through 2004. (Although EPA's data for some properties included years prior to 1998, and the report examines trends through 2005, these regression analyses were limited to years 1998 through 2004.) ⁴²A statistically significant Phs2 term would provide objective evidence that a sustained shift in a property value occurred concurrent with the transition from Phase I to Phase II RFG standards. Table 1 shows an estimate of the Phs2 coefficient and its p-value for each data set. The value of the Phs2 coefficient is an estimate of the magnitude of the parameter shift and a p-value of 0.050 or less indicates a Phs2 coefficient that can be considered statistically significant.

⁴² These regression analyses were done before the 2005 averages were calculated. They were not updated since the primary intent of this analysis was to provide a more objective basis for evaluating changes between 1999 and 2000.

	P-Value and Co	efficient fo	r Phs2 Term		RFG
Season	Parameter	Term	Data	1998-2004 Surveys	1998-2004 RFG Reporting
Summer	Benzene	Phs2	P-value	0.006	0.019
			Coefficients	-0.112	-0.092
	Aromatics	Phs2	P-value	0.002	0.008
			Coefficients	-6.109	-2.904
	RVP	Phs2	P-value	0.000	0.000
			Coefficients	-0.913	-0.859
	E200	Phs2	P-value	0.003	0.003
			Coefficients	-2.124	-1.710
	E300	Phs2	P-value	0.004	0.006
			Coefficients	2.451	2.311
	T50	Phs2	P-value	0.003	
			Coefficients	4.892	
	T90	Phs2	P-value	0.004	
			Coefficients	-9.039	
	Sulfur	Phs2	P-value	0.030	0.024
			Coefficients	-51.320	-53.790
	Oxygen	Phs2	P-value	0.340	0.700
	30		Coefficients	-0.125	-0.050
	Olefins	Phs2	P-value	0.028	0.652
			Coefficients	-1.436	-0.320
	NOx reduction	Phs2	P-value	0.002	0.012
			Coefficients	4.717	3.267
	Toxics reduction	Phs2	P-value	0.000	0.001
			Coefficients	6.617	4.811
	VOC reduction	Phs2	P-value	0.000	0.000
			Coefficients	9.674	9.168
Winter	Benzene	Phs2	P-value	0.072	0.288
			Coefficients	-0.037	0.008
	Aromatics	Phs2	P-value	0.001	0.132
			Coefficients	-3.295	-0.611
	E200	Phs2	P-value	0.245	0.872
			Coefficients	-0.275	0.044
	E300	Phs2	P-value	0.002	0.000
			Coefficients	1.928	1.726
	T50	Phs2	P-value	0.099	
			Coefficients	2.826	
	T90	Phs2	P-value	0.003	
			Coefficients	-9.838	
	Sulfur	Phs2	P-value	0.365	0.367
			Coefficients	29.467	29.143
	Oxygen	Phs2	P-value	0.206	0.191
			Coefficients	-0.242	-0.192
	Olefins	Phs2	P-value	0.512	0.104
			Coefficients	0.315	1.290
	NOx reduction	Phs2	P-value	0.812	0.228
			Coefficients	0.330	-1.515
	Toxics reduction	Phs2	P-value	0.026	0.867
			Coefficients	2.087	-0.101

Table 1

For Summer RFG, both survey (retail) and reporting (production)-based data analyses indicated that statistically significant shifts occurred in all Complex Model input properties except oxygen and olefins. Neither analysis indicated a statistically significant shift in oxygen content and only the survey-based analysis indicated a shift in olefins content. The survey analysis indicated statistically significant shift in T50 and T90. (These parameters are not reported for all production data, so these trends were analyzed for surveys only.) Both analyses found that emissions performance for VOCs, NOx and toxics changed significantly concurrent with the transition.

For Winter RFG, the survey data analysis detected statistically significant shifts in aromatics, E300, T90 and toxics performance. Reporting data analysis detected a shift in E300 only.

In general, these regression results are consistent with subjective interpretation of the data and consideration of the underlying cause-effect relationships. This analysis, in some cases, may have failed to detect shifts that occurred between 1999 and 2000 because important variables or terms were omitted from the regression model. For example, the Winter NOx emission performance graph based on survey data gives a distinct impression of a shift (see the RFG Trends and Emissions Chapters). However the regression analysis did not conclude significance quite possibly because an even larger change occurred between 2003 and 2004. This latter change occurred as a result of Tier 2 sulfur reductions, and there is no term in the regression model to account for anything but a linear change over time.

Table 2 shows an estimate of the YEAR coefficient and its p-value for each data set. A statistically significant ($P \le 0.050$) YEAR coefficient indicates that an upward (positive coefficient) or downward (negative) linear trend was detected between 1998 and 2004 after correcting for any upward or downward Phase I to Phase II shift.

	P-Value and Coe	fficient fo	r Year Term	R	FG		
Season	Parameter	Term	Data	1998-2004 Surveys	1998-2004 RFG Reporting		
Summer	Benzene	YEAR	P-value	0.051	0.894		
			Coefficients	0.013	0.001		
	Aromatics	YEAR	P-value	0.232	0.421		
			Coefficients	0.257	0.121		
	RVP	YEAR	P-value	0.047	0.008		
			Coefficients	0.023	0.020		
	E200	YEAR	P-value	0.280	0.162		
			Coefficients	0.091	0.100		
	E300	YEAR	P-value	0.022	0.085		
			Coefficients	-0.340	-0.223		
	T50	YEAR	P-value	0.480			
			Coefficients	-0.128			
	T90	YEAR	P-value	0.013			
			Coefficients	1.433			
	Sulfur	YEAR	P-value	0.043	0.038		
			Coefficients	-10.287	-10.430		
	Oxygen	YEAR	P-value	0.044	0.068		
			Coefficients	0.076	0.068		
	Olefins	YEAR	P-value	0.015	0.593		
			Coefficients	0.389	0.086		
	NOx reduction	YEAR	P-value	0.434	0.116		
			Coefficients	0.126	0.337		
	Toxics reduction	YEAR	P-value	0.017	0.731		
			Coefficients	-0.306	-0.040		
	VOC reduction	YEAR	P-value	0.559	0.379		
	_		Coefficients	-0.060	-0.065		
Winter	Benzene	YEAR	P-value	0.027	0.074		
			Coefficients	0.012	-0.003		
	Aromatics	YEAR	P-value	0.015	0.686		
			Coefficients	0.301	0.032		
	E200	YEAR	P-value	0.286	0.989		
			Coefficients	0.056	-0.001		
	E300	YEAR	P-value	0.007	0.000		
			Coefficients	-0.318	-0.288		
	T50	YEAR	P-value	0.038			
	T00	\/E	Coefficients	-0.910			
	T90	YEAR	P-value	0.009			
	0.15	\/E4D	Coefficients	1.611	0.005		
	Sulfur	YEAR	P-value	0.036	0.035		
		\/E4D	Coefficients	-20.333	-20.325		
	Oxygen	YEAR	P-value	0.152	0.151		
	Olafina	\/ F	Coefficients	0.064	0.049		
	Olefins	YEAR	P-value	0.230	0.157		
	NO ' '	\/= - =	Coefficients	0.140	-0.242 0.027		
	NOx reduction	YEAR	P-value	0.192	0.027		
	Tarder and Coll	\/E 4 D	Coefficients	0.460	0.816		
	Toxics reduction	YEAR	P-value	0.472	0.071		
	1	-	Coefficients	-0.109	0.311		

Table 2

For Summer RFG, the analysis detected a statistically significant upward linear trend in RVP and a downward linear trend in sulfur in both data sets. The analysis found statistically significant downward E300 and sulfur trends in both Winter RFG data sets. For several other properties only one of the two data sets indicated a statistically significant trend. Again, this analysis may have failed to detect systematic increases or decreases between 1998 and 2004 because the regression model chosen does not adequately describe the trend. For instance, although only the reporting data indicated statistical significance, there is little doubt (because of required sulfur reductions) that the NOx performance of both retail and production Winter RFG improved between 1998 and 2004.

Since substantial changes in some RFG properties occurred with Phase II, it is possible that the transition to Phase II RFG standards also affected CG composition. (EPA's Anti-Dumping regulations were designed to limit RFG's adverse impact on CG's emission-related qualities.) EPA applied the same regression model to its reporting data-based CG average estimates in order to detect possible property value shifts between 1999 and 2000.

Table 3 shows estimates of the Phs2 coefficients and p-values. For Summer CG, aromatics and RVP indicated statistically significant values. The shift in aromatics was positive, opposite in direction to the statistically significant negative change in RFG aromatics. While this may indicate that some aromatics were shifted from RFG to CG production to achieve RFG aromatics reductions, this is uncertain (see the *Aromatics Chapter*.) The RVP shifts for CG and RFG were in the same direction. For Winter CG, only olefins showed a statistically significant value, and the RFG regression analysis did not indicate a change in Winter olefin content.

Season	Parameter	Term	Data	1998-2004 CG Anti-Dumping
Summer	Aromatics	Phs2	P-value	0.004
			Coefficient	0.960
	Benzene	Phs2	P-value	0.955
			Coefficient	0.002
	E200	Phs2	P-value	0.853
			Coefficient	0.043
	E300	Phs2	P-value	0.447
			Coefficient	-0.274
	Olefins	Phs2	P-value	0.234
			Coefficient	0.903
	RVP	Phs2	P-value	0.027
			Coefficient	-0.063
	Sulfur	Phs2	P-value	0.309
			Coefficient	89.591
Winter	Aromatics	Phs2	P-value	0.433
			Coefficient	0.299
	Benzene	Phs2	P-value	0.572
			Coefficient	0.020
	E200	Phs2	P-value	0.556
			Coefficient	-0.233
	E300	Phs2	P-value	0.388
			Coefficient	0.301
	Olefins	Phs2	P-value	0.038
			Coefficient	1.281
	RVP	Phs2	P-value	0.120
			Coefficient	-0.208
	Sulfur	Phs2	P-value	0.308
			Coefficient	75.818

Table 3

Table 4 shows estimates of the YEAR coefficients and p-values. None of these are statistically significant. As previously stated, this regression analysis may not have detected systematic changes between 1998 and 2004 because the model does not adequately describe the trend. For example, there is no question that Summer and Winter CG sulfur decreased between 1998 and 2004, but the decreases were very non-linear.

Season	Parameter	Term	Data	1998-2004 CG Anti-Dumping
Summer	Aromatics	Year	P-value	0.059
			Coefficient	-0.099
	Benzene	Year	P-value	0.874
			Coefficient	-0.001
	E200	Year	P-value	0.344
			Coefficient	0.053
	E300	Year	P-value	0.959
			Coefficient	0.004
	Olefins	Year	P-value	0.283
			Coefficient	-0.180
	RVP	Year	P-value	0.086
			Coefficient	0.009
	Sulfur	Year	P-value	0.102
			Coefficient	-36.705
Winter	Aromatics	Year	P-value	0.396
			Coefficient	-0.074
	Benzene	Year	P-value	0.750
			Coefficient	-0.003
	E200	Year	P-value	0.170
			Coefficient	0.137
	E300	Year	P-value	0.431
			Coefficient	-0.062
	Olefins	Year	P-value	0.073
			Coefficient	-0.229
	RVP	Year	P-value	0.128
			Coefficient	0.046
	Sulfur	Year	P-value	0.079
			Coefficient	-34.410

Table 4

PADD Level Analysis of Reporting Data

United States gasoline production and supply data are often aggregated into geographic regions referred to as Petroleum Administration for Defense Districts (PADDs). The US is divided into five PADDs (PADD I-East Coast, PADD II-Midwest, PADD III-Gulf Coast, PADD IV-Rocky Mountain, PADD V-West Coast).

In the various individual parameter appendices, EPA presented estimates of RFG property averages in each year and season, aggregated at the PADD level. These estimates were based on the retail data collected in RFG Surveys. EPA did not have comparable geographic data for CG, and did not include any "geographic" CG trend analysis in those appendices. This appendix includes a limited PADD-specific analysis of RFG and CG batch reporting data. It does not examine trends, but separately summarizes 2004 and 2005 reporting data. ⁴³ These PADD averages also appear in the individual parameter chapters.

Batch records do not explicitly identify a PADD, but each batch record contains a "facility" identifier, so that a refiner's batch data can be related to a refinery, and the refinery related to a PADD, based on its location. This PADD-specific analysis excluded those batches where the "facility" was an importer. Importer batches were included in the aggregate trend analyses presented in the body of the report.

In order to provide the additional geographic information contained in this PADD-level analysis, while still maintaining a sufficient degree of aggregation to prevent gasoline properties or volumes from being strongly associated with individual companies or facilities, EPA has reported gasoline property averages for PADDs I, II and III only. (The parties that submit these data to EPA have claimed that the data are confidential business information (CBI), and these data may be protected by CBI regulations.)

Users of these PADD-specific averages should be aware that while these estimates are likely to provide better information about the properties and emissions qualities of gasoline sold or used within a PADD than national averages, the properties of gasoline produced in a PADD are likely to differ somewhat from the properties of gasoline consumed in a PADD. Significant PADD to PADD movement of gasoline (e.g. via the Colonial Pipeline which transports gasoline from PADD III to PADD I) as well as importation of finished gasoline account for this difference. PADD-specific retail property averages estimated from RFG Survey data are included in the parameter chapters.

Tables 1 and 4 show the volumes, in gallons, for the batches allocated to the various PADDs in each of the two years. The gasoline volume in the column labeled "Other" includes total volume from batches associated with PADD IV or V refineries and refineries in US territories. The column labeled "Grand total" is the sum of the volumes in the PADD I through III and "Other" columns. The column labeled "Aggregate Total" represents the volume of the batches considered in the aggregate analyses reported in the body of this report and in the individual parameter appendices. The "Aggregate Totals" are higher because the aggregate analyses included importer as well as refiner batches. The volume totals in Tables 1 and 4 are totals prior to any data screening done in conjunction with computation of the averages presented in this report. (The PADD-average tables in the parameter chapters give the post-screening volumes for each parameter average calculation). PADD I, II and III volume totals are expected to be approximately the total gasoline production in each of those PADDs, excluding any gasoline volume that is exported.

_

⁴³ Resources did not permit PADD-specific analysis of each year's batch data. EPA felt that analysis of more recent data may be of greater use to a wider audience than analysis of older data.

EPA reporting data "Grand Totals" by PADD in Table 1 compare reasonably well to estimates of finished gasoline production volume minus exports based on data published in the Energy Information Administration's "Petroleum Supply Annual 2004" (EIA,2005). ⁴⁴ Using the EIA data, EPA calculated that these volumes were, for PADDs I, II and III, respectively, 18,926,166,000 gallons, 31,976,994,000 gallons and 54,012,336,000 gallons. The purpose of these volume comparisons was not to question EIA's volume data, but to provide some independent verification of the completeness of EPA's data, and to detect any gross inconsistencies, possibly indicating a problem with EPA's data or analysis. Although there were some differences (see footnote), EPA does not believe that they are "gross inconsistencies", and has not investigated them. EPA did not do a similar comparison of 2005 volumes. The volumes in the "Grand total" column do not represent total PADD I through V gasoline production because they exclude PADD V "California" gasoline, and include some volume from refineries outside of the 50 states.

	2004 Gasoline Production Volumes (gallons) by PADD-Calculated from Refiner Batch Reports														
		PADD													
Gas type	Season	I	п	III	Other	Grand total	Aggregate total								
CG	Summer	3,752,272,894	11,456,437,187	21,722,608,623	6,400,078,025	43,331,396,729	44,009,126,002								
	Winter	3,484,116,076	13,323,944,095	23,628,091,025	6,809,448,022	47,245,599,218	48,333,969,089								
CG Total		7,236,388,970	24,780,381,282	45,350,699,648	13,209,526,047	90,576,995,947	92,343,095,091								
RFG	Summer	4,792,114,891	1,740,499,436	5,890,920,167	624,073,296	13,047,607,790	14,243,059,617								
	Winter	6,489,530,475	2,438,403,544	6,059,647,031	461,826,582	15,449,407,632	17,194,370,899								
RFG To	ital	11,281,645,366	4,178,902,980	11,950,567,198	1,085,899,878	28,497,015,422	31,437,430,516								
Grai	nd Total	18,518,034,336	28,959,284,262	57,301,266,846	14,295,425,925	119,074,011,369	123,780,525,607								

Table 1

Tables 2, 3, 5, and 6 show the volume-weighted parameter averages calculated for PADDs I, II, and III RFG and CG. In both cases, the data were screened as for the aggregate average computations; i.e. for estimation of most seasonal average parameter values, data were screened on a parameter-specific basis primarily to exclude missing data. Additionally, for Complex Model emission average calculations, batches with "outlier" property values and CG blendstock batches were excluded. Although EPA's aggregate CG emissions rate averages were based on EPA's recalculated Complex Model emissions values for each batch, these PADD-level analyses used reported emission values. Further information relating to data screening, as well as information relating to each parameter can be found in the body of this report. The negative value for the volume-weighted average TAME content that appears in the CG average table warrants further explanation. This arises because certain batches, for compliance calculations, are reported with negative volumes. When a refiner uses previously certified gasoline (PCG) as a blending component to make other gasoline the PCG batch properties are reported with a negative volume in order to avoid double-counting this gasoline in calculations. When a batch of certified gasoline is exported, it is also reported with a negative volume. Consequently, although a negative property average may be physically impossible, it could occur in volume-weighted average calculations

⁴⁴EPA used supply and disposition data for Finished Motor Gasoline for PADD I (Table 4 page 34), PADD II (Table 6, page 36) and PADD III (Table 8, page 38) summing field production and refinery production and subtracting exports. Volumes were reported in thousand barrels. These tables also subdivided Finished Gasoline into "Reformulated", "Oxygenated" and "Other" categories. EPA compared the EIA "Reformulated" volumes with its RFG volumes and the sum of the "Oxygenated" and "Other" volumes with its CG volumes. EIA's PADD II "Reformulated" volume was about 32% higher than EPA's and its PADD III "Reformulated" volume about 13% lower. The remaining differences ranged from about 0.4% to under 7 percent. The sum of the compared gasoline category volumes over the three PADDs as well as the sum of gasoline volume over these PADDs each differed by less than 1 percent.

		2004 RF	G Paramo	eter Ave	erages by	/ PADE	-Volu	ne We	ighted	Average	s Calcu	lated fi	om Ba	tch Report	S			
		Gasolii	ne Prope	rties												Complex Model Performance		
	PADD	Aromatics (v%)	Benzene (v%)	Olefins (v%)	Oxygen (wt%)	E200 (%)	E300 (%)	RVP (psi)	Sulfur (ppm)	Ethanol (v%)	MTBE (v%)	ETBE (v%)	TAME (v%)	T_butanol (v%)	NOx (%)	Toxics (%)	VOC (%)	
Summer	1	21.2	0.55	12.97	2.59	47.3	83.6	6.83	91	3.01	8.02	0.00	0.14	0.01	8.8	32.8	28.0	
	П	18.9	0.84	5.29	3.48	46.6	84.7	6.98	78	9.39	0.00	0.00	0.00	0.00	13.3	29.9	26.6	
	Ш	18.7	0.54	11.24	2.36	48.7	82.5	6.88	73	1.75	8.74	0.00	0.55	0.05	11.3	35.6	29.1	
Winter	I	20.4	0.65	12.92	2.45	55.4	85.1		118	3.00	7.11	0.00	0.05	0.01	7.6	25.0		
	П	17.3	0.79	4.86	3.26	58.4	85.7		93	8.61	0.00	0.00	0.00	0.00	12.9	25.2		
	Ш	17.9	0.54	11.40	2.09	55.8	83.7		101	0.98	8.52	0.00	0.68	0.04	10.3	29.0		

Table 2

	2004	Convention	nal Gasoliı	ne Parar	neter Ave	erages	by PAD	D-Volu	me Wei	ghted Ave	erages (Calcula	ted fron	n Batch Rep	orts	
		Gasoline P	roperties											Complex N Rates (mg		ission
	PADD	Aromatics (v%)	Benzene (v%)	Olefin s (v%)	Oxygen (wt%)	E200 (%)	E300 (%)	RVP (psi)	Sulfur (ppm)	Ethanol (v%)	MTBE (v%)	ETBE (v%)	TAME (v%)	T_butanol (v%)	Exhaust toxics	NOx
Summer	I	28.4	0.96	12.8	0.44	45.5	82.7	8.40	125	0.82	0.70	0.09	-0.17	0.00	67.7	1275.8
	П	28.7	1.38	8.8	0.34	46.6	81.4	8.46	140	0.97	0.00	0.00	0.00	0.00	71.2	1249.9
	Ш	27.3	0.98	12.2	0.17	44.6	79.4	8.19	108	0.06	0.76	0.00	0.04	0.00	67.1	1254.5
Winter	I	24.0	0.93	15.7	0.37	51.5	84.4	12.66	138	0.83	0.35	0.01	0.03	0.00	103.7	1477.5
	П	25.1	1.32	8.6	0.40	52.6	84.1	13.31	135	1.16	0.00	0.00	0.00	0.00	107.6	1413.5
	Ш	24.1	0.89	12.2	0.14	49.7	81.8	11.77	115	0.05	0.65	0.00	0.02	0.00	101.1	1424.9

Table 3

	2	005 Gasoline Prod	luction Volumes (gallons) by PADD	-Calculated from	Refiner Batch Report	S
		PADD					
Gas type	Season	I	II	III	Other	Grand total	Aggregate total
CG	Summer	3,547,001,722	10,568,941,899	20,889,546,279	6,061,232,118	41,066,722,018	42,849,893,176
	Winter	4,064,064,814	13,589,333,929	22,444,880,341	6,725,201,537	46,823,480,621	49,467,392,607
CG Total		7,611,066,536	24,158,275,828	43,334,426,620	12,786,433,655	87,890,202,639	92,317,285,783
RFG	Summer	4,431,080,230	1,844,913,833	5,690,766,967	546,882,756	12,513,643,786	14,092,489,036
	Winter	7,081,940,665	2,718,751,541	5,766,524,033	388,731,882	15,955,948,121	18,046,671,196
RFG Total		11,513,020,895	4,563,665,374	11,457,291,000	935,614,638	28,469,591,907	32,139,160,232
Grand Tota	al	19,124,087,431	28,721,941,202	54,791,717,620	13,722,048,293	116,359,794,546	124,456,446,015

Table 4

		2005 RFG I	Paramete	r Averag	jes by PA	DD-Vo	lume V	Veight	ed Aver	rages Cal	lculated	from	Refiner	Batch Rep	orts			
		Gasoline P	roperties											Complex N	1odel F	Performance		
	PADD	Aromatics (v%)	Benzene (v%)	Olefins (v%)	Oxygen (wt%)	E200 (%)	E300 (%)	RVP (psi)	Sulfur (ppm)	Ethanol (v%)	MTBE (v%)	ETBE (v%)	TAME (v%)	T_butanol (v%)	NOx (%)	Toxics (%)	VOC (%)	
Summer	1	21.9	0.62	13.3	2.50	47.6	84.1	6.88	73	3.14	7.13	0.01	0.28	0.01	9.0	31.9	27.9	
	Ш	19.1	0.86	4.7	3.50	46.3	84.3	6.95	64	9.46	0.00	0.00	0.00	0.00	13.8	29.9	26.5	
	Ш	19.2	0.60	12.5	2.25	49.9	83.2	6.93	78	1.31	8.96	0.01	0.59	0.04	10.0	34.7	29.2	
Winter	I	20.7	0.69	13.0	2.41	55.6	85.7		90	3.02	6.82	0.04	0.09	0.01	8.6	25.1		
	Ш	18.4	0.81	5.3	3.24	56.5	84.7		78	8.63	0.00	0.00	0.00	0.00	13.2	24.5		
	Ш	18.0	0.57	11.0	2.05	56.7	84.5		83	0.91	8.53	0.02	0.53	0.03	11.3	29.4		

Table 5

	2005 C	onvention	al Gasolir	ne Parar	neter Av	erages	by PA	DD-V	olume V	Veighted	l Avera	iges Ca	lculate	ed from Ba	tch Report	ts
		Gasoline F	Complex Model Emission Rates (mg/mi)													
	PADD	Aromatics (v%)	Benzene (v%)	Olefins (v%)	Oxygen (wt%)	E200 (%)	E300 (%)	RVP (psi)	Sulfur (ppm)	Ethanol (v%)	MTBE (v%)	ETBE (v%)	TAME (v%)	T_butanol (v%)	Exhaust toxics	NOx
Summer	1	28.9	1.12	12.7	0.34	45.1	82.8	8.31	108	0.74	0.39	0.00	0.07	0.00	69.5	1264.9
	П	28.6	1.41	9.6	0.34	47.5	81.9	8.46	121	0.97	0.00	0.00	0.00	0.00	71.2	1244.9
	Ш	27.0	1.07	12.8	0.13	44.8	80.5	8.22	98	0.05	0.60	0.01	0.02	0.00	68.0	1253.9
Winter		24.6	1.18	14.8	0.30	51.0	84.4	12.31	110	0.68	0.30	0.00	0.05	0.00	107.7	1453.4
	П	24.5	1.25	9.4	0.33	52.7	84.6	13.25	117	0.92	0.00	0.00	0.00	0.00	105.6	1405.3
	Ш	24.5	1.01	12.1	0.11	49.3	82.6	11.73	86	0.07	0.41	0.01	0.02	0.00	102.6	1405.2

Table 6