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Continental-Scale Evaluation of Remotely
Sensed Soil Moisture Products

Wade T. Crow, Member, IEEE, and Xiwu Zhan, Member, IEEE

Abstract—A new data assimilation-based approach for the
continental-scale evaluation of remotely sensed surface soil mois-
ture retrievals is applied to four separate soil moisture products
over the contiguous U.S. The approach is based on quantifying
the ability of a given soil moisture product to correct for known
rainfall errors when sequentially assimilated into a simple water
balance model. Analysis results provide new insight into the
continental-scale performance of surface soil moisture retrieval
algorithms based on satellite passive microwave, scatterometer,
and thermal remote sensing observations.

Index Terms—Microwave radiometry, moisture, rain, remote
sensing.

I. INTRODUCTION

W ITHIN the past decade, a range of remote sensing
techniques have been developed to retrieve surface

(0–2 cm) soil moisture from spaceborne sensors. A variety
of sensor types, including geostationary thermal (e.g., [1]),
microwave scatterometers (e.g., [2]), and passive microwave
radiometers (e.g., [3]), have been utilized in these efforts.
However, to date, little is known about either the relative merits
of competing approaches or the added benefit for hydrometeo-
rology and hydroclimatology applications of assimilating these
observations into a land surface model. Most of this residual
uncertainty stems from severe limitations in the availability of
ground-based soil moisture observations and the challenge of
reliably upscaling point-scale soil moisture measurements to
spaceborne footprint scales (typically > 10 km) [4].

Recently, Crow [5] introduced an evaluation strategy for
remotely sensed soil moisture products that effectively substi-
tutes ground-based rainfall measurements for ground-based soil
moisture observations. The approach is based on evaluating
the correlation coefficient between antecedent rainfall errors
and analysis increments realized during the Kalman filter-based
assimilation of remotely sensed soil moisture products into
a simple water balance model. Because it does not require
ground-based soil moisture observations, the approach enables
the spatial expansion of potential soil moisture validation lo-
cations from sparse sites containing sufficiently dense ground-
based soil moisture measurements to continental-scale regions
over which high-quality ground-based rain-gauge information
is available [e.g., the entire contiguous U.S. (CONUS) area].
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Work in [5] introduced the approach and applied it to four
separate passive microwave soil moisture products within eight
1◦ latitude/longitude boxes in the southern U.S. This paper
expands on these preliminary results by applying the approach
to the entire CONUS area (∼800 1◦ boxes) and considering soil
moisture products derived from both microwave scatterometer
and thermal remote sensing as well as passive microwave
radiometry.

II. DATA ASSIMILATION APPROACH

The approach in [5] is based on using daily satellite-based
precipitation estimates (P sat) to derive a simple antecedent
precipitation index (API) model

APIi = γiAPIi−1 + P sat
i (1)

where γ is the API coefficient, and i is a daily time in-
dex. Higher quality daily rainfall accumulations obtained from
ground-based gauge networks (P gauge) must also be available
but are reserved for benchmarking purposes (see Section III). In
order to capture evapotranspiration seasonality in a basic way,
γ in (1) is varied according to day-of-year (d) as

γi = α + β cos(2πdi/365). (2)

The parameters α and β are constants set equal to 0.85 and 0.10
(unless otherwise noted).

When available, remotely sensed soil moisture estimates θRS

are used to update (1) using a Kalman filter

API+i = API−i + Ki

(
θRSi

− a − bAPI−i
)
. (3)

Here, “−” and “+” denote API values before and after Kalman
filter updating. Observation operator parameters a and b are
derived from least squares regression of API, calculated using
P gauge and no Kalman filter, updating against θRS. The Kalman
gain K is given by

Ki = bT−
i /

(
b2T−

i + S
)

(4)

where T is the forecast error in API, and S the error in θRS

retrievals. At measurement times, T is updated via

T+
i = (1 − bKi)T−

i . (5)

Between soil moisture measurements and the adjustment of
API and T via (3) and (5), the model state API is temporally
updated using observed P sat and (1). In parallel, model forecast
error T is updated in time as

T−
i = γ2

i T+
i−1 + Q (6)
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where Q relates to the uncertainty added to an API forecast as
it is propagated from time i − 1 to i. Values of Q and S are
calibrated through statistical analysis of filter innovations

νi =
(
θRSi

− a − b API−i
)
/
√(

b2T−
i + S

)
. (7)

Properly constructed linear filters should yield a ν time series
that is serially uncorrelated and has a second moment of one
[6]. Here, a simple optimization algorithm is used to iteratively
vary Q and S until both constraints are met.

The overall approach goes as follows.

Step 1) Using P gauge observations and (2), a multiyear inte-
gration of (1) is performed without any Kalman filter
updating.

Step 2) Based on this integration, estimates of a and b are
obtained from least squares regression of results
against θRS.

Step 3) Using observed P sat and an assumed value for Q,
API and T are temporally integrated from initial
conditions until the first (next) measurement time
using (1) and (6).

Step 4) At measurement times, this forecasted T and an as-
sumed value for S are used to calculate the Kalman
gain (4). Which, in turn, is used to update API and
T via (3) and (5).

Step 5) Steps 3) and 4) are iteratively repeated in time for
the entire length of the θRS time series.

Step 6) The entire Kalman filter loop summarized in
Steps 3)–5) is repeated several times until assumed
Q and S values are optimized to produce filter inno-
vations (ν) that are serially uncorrelated and have a
second moment of one. The final calibrated iteration
of the Kalman filter is used for further analysis.

Of particular emphasis, here, are the updates to API predicted
by (3) in the course of assimilating a particular remote sensing
product. These updates are commonly referred to as “analysis
increments”

δi = API+i − API−i = Ki

(
θRSi

− a − b API−i
)
. (8)

III. DEFINITION OF Rvalue

Fig. 1 demonstrates how this filtering approach is exploited
to evaluate a remotely sensed soil moisture product (θRS). For
a 1◦ latitude/longitude box centered at 101.5◦ W and 35.5◦ N,
Fig. 1(a) plots a daily rainfall time series extracted from both
satellite-based (P sat) and gauge-based (P gauge) rainfall prod-
ucts [derived from the 1◦ latitude/longitude daily (1DD) Global
Precipitation Climatology Project (GPCP) and Climate Pre-
diction Center (CPC) precipitation datasets, respectively—see
Section IV]. Relative to the more accurate P gauge product,
satellite-based P sat retrievals underestimate rainfall accumu-
lations for a March 19–20, 2003 storm event and overestimate
rainfall for an event on March 27–28. As a result of these errors,
temporal tendencies in surface soil moisture retrievals obtained
from satellite observations are at odds with API predictions
derived from P sat. This is observed in Fig. 1(b), where the
time series of θRS retrievals (extracted from the AMSREUSDA

product—see Section IV) supports P gauge (and contradicts
P sat rainfall) in suggesting that the March 19–20, 2003 storm

Fig. 1. For a 1◦ latitude/longitude box centered at 101.5◦ W and 35.5◦ N,
time series of (a) daily satellite (P sat from GPCP-1DD) and gauge-based
(P gauge from CPC) rainfall accumulations, (b) P sat-based API (no assimi-
lation) and AMSREUSDA soil moisture retrievals, and (c) analysis increments
calculated when assimilating AMSREUSDA into the P sat-based API model.

is the larger of the two events. Consequently, the assimilation of
θRS into the P sat-driven API model (using the procedure out-
lined in Section II) acts to compensate API predictions for the
impact of antecedent precipitation errors. Specifically, Kalman
filter analysis increments δ plotted in Fig. 1(c) are inversely
correlated with recent rainfall errors plotted in Fig. 1(a).

Fig. 1 implies that, if θRS soil moisture estimates are mini-
mally accurate and the Kalman filter functioning properly, δ up-
dates should reflect the correction of errors in API predictions
resulting from forcing via noisy satellite-based precipitation. In
areas of the world where high-quality rainfall observations are
available from ground-based gauge networks, such error can be
estimated on a daily basis as εraini = P sat

i − P gauge
i . To exploit

this possibility, Crow [5] suggests temporally aggregating δ and
εrain within a series of nonoverlapping windows of length m

δi =
i+m+n∑

i+n

δi (9)

εraini =
i+m∑

i

εraini (10)

and calculating the standard correlation coefficient R between
δi and εraini for a multiyear record of θRS. The negative of R
is referred to as the Rvalue coefficient for a particular remotely
sensed surface soil moisture product. The lag of n days for δi in
(9) and (10) is introduced to reflect the impact of past rainfall on
current soil moisture conditions. Here, values of one and seven
day(s) will be used for n and m, respectively.

For the period of July 1, 2002–December 31, 2005 and the
1◦ box considered in Fig. 1, Fig. 2 plots the (nonoverlapping)
seven-day sums of Kalman filter analysis increments δi calcu-
lated when assimilating θRS against seven-day sums of rainfall
error εraini (lagged in the past by a single day). The Rvalue



CROW AND ZHAN: CONTINENTAL-SCALE EVALUATION OF REMOTELY SENSED SOIL MOISTURE PRODUCTS 453

Fig. 2. Scatterplot of seven-day rainfall error total (εraini ) versus seven-day

sums of Kalman filter analysis increments (δi) calculated when assimilating
AMSREUSDA within the 101.5◦ W and 35.5◦ N 1◦ latitude/longitude box
between January 1, 2002 and December 31, 2005.

metric is simply the negative of the standard correlation coeffi-
cient for this scatterplot. Higher (lower) Rvalue magnitudes
indicate greater (reduced) efficiency in the filtering of past
rainfall errors and implies a(n) enhanced (degraded) correlation
between θRS and true soil moisture. Consequently, it provides a
measure of θRS accuracy obtained without reliance on ground-
based soil moisture measurements. In addition, as demonstrated
in [5], the same remotely sensed soil moisture product produces
progressively higher (lower) Rvalue magnitudes as the accu-
racy of P sat is degraded (improved). This trend reflects the
tendency for θRS retrievals of a constant accuracy to become
relatively less valuable for land-surface modeling as satellite-
based precipitation estimates improve. Consequently, Rvalue is
most accurately interpreted as a proxy of added value, which
reflects the ability of θRS retrievals to improve upon a baseline
water balance model driven by P sat observations.

IV. DATA

As discussed above, the calculation of Rvalue is based on two
separate daily precipitation data sets—a satellite-based global
product to force the API model (P sat) during the data assim-
ilation analysis and a higher accuracy gauge-based product to
function as a benchmark data set in the calculation of precipita-
tion errors (P gauge). Here, P sat is taken from the GPCP-1DD
rainfall product based primarily on satellite-based retrievals [7].
P gauge is obtained from the gauge-based National Center for
Environmental Prediction CPC retrospective CONUS rainfall
product. Following the approach of the study in [8], CPC data
processed as part of the North American Land Data Assimi-
lation System project [9] is aggregated into daily (0 UTZ to
0 UTZ) 1◦ latitude/longitude boxes to match the temporal and
spatial attributes of the GPCP-1DD data set. Note that, since the
GPCP-1DD rain product is rescaled at coarse time and space
scales to match rain-gauge output [7], long-term means of the
GPCP-1DD and CPC rainfall datasets (and, therefore, the API
predictions derived from them) are approximately equal.

Four separate remotely sensed soil moisture products are
considered in the analysis. The first two volumetric soil
moisture products are based on Level 2 X-band (10.6 GHz)

passive microwave brightness temperature (TB) observations
obtained from the Advanced Microwave Scanning Radiometer
(AMSRE) aboard the NASA Aqua satellite. These observations
are available with a spatial resolution of about 402 km2 and
repeat times of approximately one to two days at CONUS
latitudes. The AMSRENASA product is the official AMSRE
level-three soil moisture product [10] based on the applica-
tion of the dual-polarization (H and V) algorithm described
in [3] to AMSRE X-band TB observations. In contrast, the
AMSREUSDA product [developed at the U.S. Department of
Agriculture (USDA) Hydrology and Remote Sensing Labora-
tory by T. J. Jackson and X. Zhan] is based on the applica-
tion of the single-polarization (H only) [11] algorithm to the
same AMSRE TB data. The two algorithms differ fundamen-
tally in their approach for estimating vegetation-water-content
(VWC) values required for surface soil moisture retrieval from
TB . The single-polarization AMSREUSDA algorithm uses the
Moderate Resolution Imagery Spectrometer 16-day normalized
difference vegetation index (NDVI) composite product and the
VWC/NDVI regression of [12] to estimate VWC while the
AMSRENASA approach simultaneously solves for both VWC
and surface soil moisture based on the consideration of dual-
polarized (H and V) AMSRE TB observations. All AMSRE
results presented here are based on data collected between
July 1, 2002 and December 31, 2005.

In addition to soil moisture products derived from the
passive microwave AMSRE sensor, surface soil moisture
retrievals obtained from European Remote Sensing (ERS)-1
and -2 scatterometer measurements, and the retrieval algorithm
as described in [3], are also considered. This product (available
online at www.ipf.tuwien.ac.at/radar) has an approximate
spatial resolution of 502 km2 and provides a retrieval once
every three to four days. The [2] algorithm exploits the multi-
incidence nature of the ERS scatterometer measurements to
correct for vegetation phenology and compares these vegetation
corrected values to dry and wet reference backscatter
measurements to obtain a relative surface-wetness index.
Results are based on ERS-1 and -2 scatterometer measurements
obtained between January 1, 1997 and December 31, 2005.

A final measurement strategy for the retrieval of surface soil
moisture information is based on the interpretation of varia-
tions in thermal-based surface radiometric temperature (TR)
retrievals. The approach in the study of [1] uses Geostationary
Environmental Satellite (GOES) observations of TR and the
Atmosphere Land Exchange Inverse (ALEXI) model to es-
timate the ratio between actual and potential soil evapora-
tion. This fraction possesses a close physical relationship with
water availability for direct soil evaporation and can be in-
terpreted as a surface soil moisture proxy. ALEXI predicted
actual/potential soil-evaporation fractions, subsequently re-
ferred to the GOES/ALEXIsoil product, are available on a
102-km2 grid during the 2002–2004 growing seasons (April 1
to October 31). Due to cloud cover, retrieval frequency is
limited to once every two or three days.

V. RESULTS

The approach outlined in Sections II and III is applied sepa-
rately for every 1◦ latitude/longitude CONUS box and repeated
using each of the four remotely sensed soil moisture data sets
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Fig. 3. CONUS maps of calculated Rvalue for the AMSREUSDA, AMSRENASA, ERS, and GOES/ALEXIsoil surface soil moisture products.

described in Section IV (AMSRENASA, AMSREUSDA, ERS,
and GOES/ALEXIsoil). Regardless of their native resolution,
all four products are spatially aggregated to a 1◦ resolution to
match spatial resolution of the GPCP-1DD (P sat) rain product.
Observation-operator parameters a and b for each soil moisture
product are obtained via a linear least squares line fit separately
to the θRS/API relationship within each 1◦ box. Only seven-
day periods where at least two remotely sensed soil moisture
retrievals are available and at least 2 mm of total precipitation
is reported (in either the P sat or P gauge rainfall products) are
included in the analysis.

Fig. 3 displays maps of CONUS Rvalue magnitudes derived
in this manner. Spatial patterns of Rvalue for all products in
Fig. 3 mirror basic CONUS vegetation biomes. Reflecting the
presence of forest cover, low values are generally noted in the
Pacific Northwest (44◦ N–49◦ N, 112◦ W–124◦ W), the upper
Great Lakes (45◦ N–49◦ N, 84◦ W–95◦ W), the Ozark Mountain
region (33◦ N–39◦ N, 90◦ W–95◦ W), and along a board swath
of the eastern U.S. In addition, several differences can be
noted between products. For instance, the null hypothesis of
nonpositive AMSREUSDA Rvalue can be rejected (at 95% confi-
dence) over 84% of the CONUS versus 66% for AMSRENASA.
These percentages represent the fractional CONUS area where
soil moisture retrievals are contributing a significant amount
of added value to a simple land surface model driven by
remotely-sensed precipitation. Most of the fractional difference
between the two AMSRE products is attributable to superior

AMSREUSDA retrievals (i.e., higher Rvalue) across the south
central and southeastern U.S. (Fig. 3). From an algorithm
standpoint, the fundamental difference between the two is the
use of ancillary NDVI measurements (and an empirically based
regression model) by the single-polarization AMSREUSDA ap-
proach to predict VWC versus the simultaneous retrieval of
both soil moisture and VWC based on multipolarization TB by
the AMSRENASA approach. Since the VWC/NDVI regression
model used in the AMSREUSDA algorithm was developed
through field work in rangeland areas of the south central U.S.
[12], the superior performance of the AMSREUSDA product in
this region (34◦ N–40◦ N, 99◦ W–105◦ W) is not surprising.
However, relatively high Rvalue results for the AMSREUSDA

approach within the mixed agricultural/forest areas of the
southeastern U.S. suggest that the NDVI/VWC regression
model can be successfully applied to other major land-cover
types. Rejecting the null hypothesis of zero difference between
AMSREUSDA and AMSRENASA at 95% confidence requires
an absolute Rvalue contrast of approximately 0.2 in Fig. 3.
This threshold is widely met in the south central and south-
eastern U.S. (Fig. 3). Here, the inclusion of ancillary NDVI
measurements for VWC estimates adds detectable value to soil
moisture retrievals. In contrast, the marginal impact of NDVI
observations is much less along the northern U.S. where Rvalue

differs little between AMSREUSDA and AMSRENASA.
Relative to the AMSRE-based products, the ERS scatterom-

eter product demonstrates less spatial variability in response
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to variations in VWC. For instance, note the more gradual
decline in Rvalue for the product when transitioning between
lightly vegetated rangeland to forested areas of the southern
Great Plains (i.e., moving along a transect at 38◦ N from
105◦ W–93◦ W). This reduction in sensitivity may be due
to a slightly lower antenna frequency for ERS observations
(6.9 GHz for ERS versus 10.6 GHz for AMSRE). Overall, the
performance of the ERS soil moisture product is roughly on a
par with the AMSRENASA product—perhaps slightly better in
heavily vegetated areas.

The thermal-based GOES/ALEXIsoil product demonstrates
the best relative performance in highly water-limited ar-
eas of the southwest U.S., where variations in TR are
tightly coupled to surface moisture availability (32◦ N–37◦ N,
110◦ W–120◦ W). Despite low levels of VWC, the AMSRE
and ERS products do not perform well in this region.
Conversely, relative to the microwave-based retrievals, the
GOES/ALEXIsoil product performs poorly along the northern
edge of the U.S., where evapotranspiration is typically energy
limited and surface moisture availability is not strongly coupled
with TR. In addition to surface soil moisture, thermal-based
observations also have potential for inferring deeper root-zone
soil moisture information based on the calculation of vegetation
fractional evapotranspiration (GOES/ALEXIveg). Under dense
vegetation, GOES/ALEXIveg predictions show good response
to precipitation on a monthly time scale commensurate with the
time scale for root-zone soil water depletion [1]. Unfortunately,
Rvalue reflects only the quick response of shallow (0–2 cm) soil
moisture to daily rainfall and cannot be used to assess retrievals
of slower root-zone variations.

Several additional factors can potentially affect the interpre-
tation of Fig. 3. First, the lower observation frequency for ERS
and ALEXI soil moisture retrievals (once every two to four
days versus every one to two for AMSRE) may reduce Rvalue

magnitudes for ERS soil moisture products even if the intrinsic
accuracy of the soil moisture products are equivalent [5]. To
control for this effect, AMSREUSDA and AMSRENASARvalue

results in Fig. 3 were recalculated by randomly subsampling
AMSRE-based soil moisture retrievals until their temporal fre-
quency approximated that of the ERS and GOES/ALEXIsoil
products (one measurement every 3.5 days). Such subsampling
led to an average relative reduction of ∼5% for AMSREUSDA

and AMSRENASARvalue magnitudes but did not lead to any
qualitative change in results. In addition, sensitivity to α and β
in (1) was examined by regenerating Fig. 3 for a range of cases
based on systematically varying α between 0.80 and 0.95 and
β between 0.00 and 0.15. Generally, little sensitivity was found
due to either variation. The two noteworthy exceptions to this
rule are a tendency for AMSREUSDA Rvalue magnitudes in the
southern U.S. to rise as β is increased from 0.00 to 0.10 and a
trend among all products toward lower Rvalue magnitudes for
α greater than 0.90.

VI. DISCUSSION

The data assimilation-based evaluation method of the study
in [5] is applied within the CONUS to four separate spaceborne
soil moisture products. Results demonstrate the potential for
using the approach to evaluate the relative performance of each
product within a continental-scale domain. Unlike traditional

validation approaches, application of this technique is not lim-
ited to extremely sparse space/time periods where sufficiently
dense ground-based soil moisture observations are available.

Despite this potential, several points should be considered
when interpreting these results. First, Rvalue magnitudes reflect
only the ability of assimilated soil moisture to correct rainfall
errors and neglect potential value associated with the correction
of additional model shortcomings (e.g., the simple treatment
of soil water loss in the API model). In addition, the use of
a linear observation operator precludes the representation of
potential nonlinearities existing between modeled and retrieved
soil moisture [13]. Additional work directed at these limitations
may prove useful. Finally, since Rvalue magnitudes reflect only
the ability of a given soil moisture product to correlate with
true soil moisture and not their absolute root-mean-square (rms)
accuracy, it evaluates products based only on their skill with
regards to relative change detection. For land data assimilation
applications, such skill is generally regarded as more important
than absolute rms retrieval accuracy [14]. However, it should
be stressed that this is not uniformly the case for all potential
applications.
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