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Abstract.

Physically-based models of surface water and energy balance processes typ-

ically require a large number of soil and vegetation parameters as inputs. Ac-

curate specification of these parameters is often difficult without resorting

to calibration of model predictions against independent observations. Along

with streamflow observations from gauging stations, spaceborne surface ra-

diometric temperature retrievals offer the only independent observation of

land surface model output commonly available at regional spatial scales (i.e.

> 502 km2). This analysis examines the potential benefits of incorporating

spaceborne radiometric surface temperature retrievals and streamflow ob-

servations in a multi-objective calibration framework to accurately constrain

regional-scale model evapotranspiration predictions. Results for the VIC (Vari-

able Infiltration Capacity) model over the Southern Great Plains of the United

States suggest that multi-objective model calibration against radiometric skin

temperatures and steamflow observations can reduce error in model monthly

evapotranspiration predictions by up to 20% relative to single-objective model

calibration against streamflow alone.
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1. Introduction

Due to their increasing complexity, ambiguities surrounding parameter selection have

emerged as a critical source of error for land surface model predictions of water and energy

fluxes [Franks and Beven, 1997; Gupta et al., 1999; Houser et al., 2001]. These difficulties

are often compounded by the need to apply land surface schemes over relatively coarse-grid

cells (> 10 km) for continental- to global-scale applications.

For large-scale applications, obtaining an adequate spatial representation of parameter

values through direct observation is almost always impractical. The most common alterna-

tive for large-scale simulations is the use of land surface classifications and lookup tables

populated with parameter values taken from the literature. Soil hydraulic parameters

for distributed hydrological modeling, for instance, are typically derived from empirical

relationships between soil texture and hydraulic properties and maps of soil textural clas-

sification for a particular region. The significant amount of unexplained variability in

these empirical relationships - combined with the spatial inadequacies of the soil texture

maps themselves [Zhu, 2000] - make the approach approximate at best.

Parameter selection difficulties are often compounded by the presence of land surface

heterogeneity at spatial scales finer than the proscribed model grid size. Some quantities

such as surface albedo are measurable remotely, have a relatively clear physical meaning

at the regional-scale, and are linearly related to model flux predictions. Consequently,

effective grid-scale values can be obtained through simple averaging of observable sub-

grid-scale heterogeneity. However, many parameters lack a clear physical definition at the

grid-cell in the presence of sub-grid-scale heterogeneity and require more complex aggre-

gation strategies (e.g. surface roughness lengths [Klassen and Claussen, 1995] or stomatal
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resistance [Blyth et al., 1993]). Other parameters are simply difficult to accurately esti-

mate or measure over large spatial scales (e.g. vegetation rooting depths).

As a consequence, it appears increasingly likely that even “physically-based” land sur-

face models will require some calibration against independent observations to accurately

represent land surface state variables and fluxes [Franks and Beven, 1997]. A central con-

clusion of the PILPS 2-e study over the United States Southern Great Plains was that land

surface schemes that incorporated some type of calibration against observations outper-

formed those that did not [Lettenmaier et al., 1996]. Developing strategies for transferring

calibrated parameters to nearby - or geomorphologically similar basins - is also a criti-

cal component of NOAA’s Model Parameters Estimation Experiment (MOPEX) study

(online at: http://www.nws.noaa.gov/oh/mopex/).

Recent advances in land surface model calibration have focused on examining the issue

within a framework that recognizes the inherently multi-objective nature of land surface

models [Gupta et al., 1998; Yapo et al., 1998; Gupta et al., 1999; Houser et al., 2001].

An underlying principle of this framework is the recognition that a single parameter set

is unlikely to optimize all model outputs. Gupta et al. [1999], for instance, demonstrates

that the calibration of land surface model predictions against observations of a single out-

put (e.g. evapotranspiration) does not accurately constrain other predictions (e.g. skin

temperature or soil moisture) accurately. Instead multi-objective calibration incorporat-

ing at least one surface energy flux and one surface state variable is required to ensure

adequate calibration of all model predictions. With the exception of Houser et al. [2001],

most previous multi-objective calibration work has focused on the patch-scale (10-100
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m) application of models and not addressed the calibration of land surface models over

coarser regional-scales.

Evapotranspiration is typically both the largest component of the terrestrial water bal-

ance and the most difficult to measure directly. Consequently, it’s accurate prediction is

often a central goal of large-scale modeling efforts. Land surface models have generally

focused on calibration against streamflow measurements to constrain evapotranspiration

predictions. Neglecting variations in interannual soil water storage, calibration against

streamflow ensures accurate prediction of annual evapotranspiration, but does not con-

strain seasonal partitioning between evapotranspiration and soil water storage. Because

of its spatial attributes, remote sensing observations have attracted interest as a source of

alternative (or complementary) calibration data for land surface models [Camillo et al.,

1986; Burke et al., 1997]. Its close conceptual link to terms of the surface energy balance

and widespread availability suggests that spaceborne surface radiometric temperature (Ts)

retrievals in particular have some calibrational value for evapotranspiration predictions.

Recent work has examined the value of remote Ts retrievals as a source of validation data

for land surface models [Jin et al., 1997; Rhoads et al., 2001] and demonstrated the utility

of Ts observations within the context of land surface data assimilation systems [Lakshmi,

2000; Boni et al., 2001]. The goal of this paper is to clarify the potential for improv-

ing large-scale (> 502-km2) model predictions of evapotranspiration through calibration

of a land surface model using remote surface radiometric temperature retrievals. Most

centrally, it focuses on whether multi-objective model calibrations involving streamflow

and radiometric surface temperature retrievals can outperform traditional single-objective

model calibration using streamflow alone.
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2. Multi-objective Calibration

Land surface models typically predict a range of land surface state (e.g. soil moisture

and soil temperature) and flux (e.g. infiltration, runoff and evapotranspiration) variables.

Consequently, it is often advantageous to think of their calibration within a multi-objective

framework. Multi-objective calibration is based on the minimization of a set of model

performance criteria where each criterion corresponds to a different land surface variable.

In general, errors in forcing data, measurement uncertainties, and shortcomings in the

physics of the models themselves will prevent a single set of parameters from optimizing

all types of land surface model predictions. Instead, multi-objective optimization leads

to a set of solutions which captures optimal trade-offs between various types of model

predictions.

Figure 2 (adapted from Houser et al. [2001]) presents a simple one-parameter (θ)

example of multi-objective calibration. In this example, two observations (or objectives)

are matched with model predictions. The goodness-of-fit criteria between observations

and model predictions are given by f1(θ) and f2(θ). Figure 2a demonstrates a case where

the parameter value required to minimize f1 (labeled θ1) provides a poor result for f2 and

vise versa for the minimizing parameter choice for f2 (labeled θ2). Between θ1 and θ2 in

Figure 2a there exists a set of parameters for which it is possible to improve fit to one

objective through adjustments to θ only at the expense of fit to another. Following Gupta

et al. [1998], this set of parameters solutions will be referred to as the Pareto set. Figure

2b shows the same case mapped in f1 and f2 fitness space. The curve shows f1(θ) and

f2(θ) values associated with the adjustment of θ within it’s feasible range. Bold portions

of the trajectory represent results for adjustments of θ within the Pareto set (θ1 < θ < θ2).
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Note that the member of the Pareto set that minimizes f1 + f2 (A on Figure 2b) is distinct

from parameter values that minimize either f1 (B on Figure 2b) or f2 (C on Figure 2b)

individually.

One method for approximating the Pareto set is to linearly collapse a vector containing

multiple fitness criteria (F) into a single scalar criteria (G):

G = W · F (1)

and then minimize G for a finite range of weighting choices in W [Gupta et al., 1998;

Bastidas et al., 1999]. For the one-parameter/two-objective example in Figure 2, F =

{f1, f2} and W = {W1, W2} where W1 and W2 are positive real numbers that sum to

one. Point A on Figure 2b corresponds to a weighting choice of W = {0.5, 0.5}, point

B to W = {1, 0}, and point C to W = {0, 1}. Since it requires a separate optimization

calculation for each weighting choice, (1) can be an inefficient method for obtaining the

complete Pareto set [Gupta et al., 1998]. Potentially more efficient methods include the

multi-objective complex evolution (MOCOM) algorithm introduced by Yapo et al. [1998],

and optimization algorithms based on genetic analogies [Kuczera, 1997; Seibert, 2000].

All calibration techniques require the specification of a fitness criterion f to quantify

the goodness-of-fit between model predictions (Z) and observations (X). For a series of n

observations, the most common fitness criteria is the root mean squares error (RMSE):

RMSE =

√√√√ 1

n

∑
t=1..n

(Zt −Xt)2. (2)
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Dividing a RMSE criteria by the standard deviation of the observations (RMSE/σX)

gives the normalized root mean squared error (NRMSE). The quantity 1 − NRMSE2

is commonly called the Nash-Sutcliffe coefficient of efficiency for predictions.

Following notation presented by Gupta et al. [1999], the use of bracket { } notation

surrounding model output variables is used here to signify calibration of those variables.

Results for single-objective calibration (e.g. {Z1}) consist of a single optimal parameter

set. Multi-objective calibration ({Z1, ..., Zn} where n > 1) leads to a Pareto set of parame-

ter solutions, each reflecting various choices for the weighting vector W in (1). Calibration

results can also be evaluated in terms of their goodness-of-fit to observations. This is pos-

sible for cases of direct calibration (e.g. NRMSE for Z1 given {Z1}) and cross-calibration

where goodness-of-fit is evaluated for an observation type which is not calibrated against

(e.g. NRMSE for Z3 given {Z1, Z2}).

3. Procedure

The analysis was based on multi-objective calibration of the Variable Infiltration Ca-

pacity (VIC) land surface model [Liang et al., 1994; Cherkauer et al., 1999] using a

combination of streamflow observations and remote skin temperature retrievals within

the model domain shown in Figure 1. Flux towers measurements were used to assess the

accuracy of subsequent VIC evapotranspiration predictions. Sections 3.1 and 3.2 detail

the acquisition and processing of observational data sets. Sections 3.3 and 3.4 discuss the

VIC model and its application to the study domain. Section 3.5 gives specifics concerning

the calibration of VIC against observations.
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3.1. Water Flux Measurements

The geographic domain for this analysis was taken to be the area of overlap between

the Atmospheric Radiation Measurement Cloud and Radiation Testbed (ARM-CART)

Southern Great Plains (SGP) site and the state of Oklahoma (see Figure 1). The do-

main, and its immediate vicinity, contains 17 ARM-CART surface energy flux towers -

5 eddy correlation (ECOR) and 12 energy balance/bowen ratio (EBBR) - and 59 Okla-

homa Mesonet stations. In addition, streamflow measurements were obtained from United

States Geological Survey (USGS) gages at 18 locations in and around the domain.

Despite a relatively high density of measurement sites, obtaining domain-averaged

monthly values for streamflow and evapotranspiration is challenging. Land cover vari-

ability within the domain, chiefly the contrast between grassland and winter wheat fields,

can lead to large horizontal heterogeneity in growing season surface energy fluxes. The

ongoing establishment of ECOR towers on winter wheat fields since 1997 has improved

the regional representativeness of ARM-CART flux tower measurements. Nevertheless,

ambiguity remains in the aggregation of local evapotranspiration measurements over het-

erogeneous land cover up to a domain-scale average. For this analysis, monthly flux tower

observations were spatially interpolated onto a 10-km grid using r−2 weighting, where r

is the distance from a given 10-km grid-cell to a given tower. This imagery was then

aggregated up to the domain-scale shown in Figure 1.

In addition, adequate sampling of streamflow from the central and western portion

of the domain required moving beyond available natural (i.e. unregulated) basins in the

region. While every attempt was made to minimize the impact of diversion and regulation,

it should be noted that a number of the basins contain flood control structures and/or
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non-negligible levels of urban diversion. Domain-averaged, monthly streamflow values

were obtained by interpolating streamflow measurements onto a 10-km grid. A simple

nearest-neighbor algorithm was used since more complex interpolation procedures (e.g.

cubic smoothing, block kriging, and r−2 interpolation) yielded very similar results.

Despite the uncertainties inherent in these measurements, domain-averaged values of

precipitation, streamflow, and evapotranspiration balance over long time scales. Within

the two-year study period (October 1, 1997 to September 30, 1999), total observed pre-

cipitation (1972 mm) matched the sum of total observed streamflow (434 mm) and total

observed evaporation (1546 mm) to within 8 mm (< 0.5% of total precipitation). Since

measurements of streamflow, evapotranspiration, and precipitation are independently ac-

quired, this balance implies that no long-term biases are present in the observations.

At a finer time scale, month by month evaluations of water flux measurements are pos-

sible using soil moisture observations from the 59 Oklahoma Mesonet stations equipped

with soil moisture probes within the study domain. Figure 3a shows monthly observed

means for the site for the two-year study period and Figure 3b the comparison between

spatially averaged monthly changes in 1-m soil moisture measurements (∆S) at Mesonet

sites and the residual of independent precipitation (P ), streamflow (Q), and evapotranspi-

ration (ET ) measurements (P − ET −Q). An integrated 1-m soil moisture measurement

was derived from weighted averaging of 10-, 25-, 60-, and 75-cm measurements at Mesonet

sites. Large differences in Figure 3b underscore the difficulty of closing the domain-scale

water budget with observations alone. Some of the difficulty may lie in the exclusive use

of 1-m soil moisture measurements to characterize temporal changes in terrestrial water

storage. For example, one clear difference in Figure 3b is the larger seasonality in flux
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residuals (P − ET − Q) relative to monthly 1-m soil moisture variations. A portion of

this difference can be accounted for by the movement of water across the bottom of the

1-m zone sampled by the Mesonet measurements since recharge during the spring and

the upward movement of water during the late summer and early fall will dampen the

seasonality of soil moisture measurements limited to the root-zone.

3.2. Surface Radiometric Temperature Observations

Surface radiometric temperature observations were taken from both the TIROS Oper-

ational Environmental Sounder (TOVS) instrument aboard the NOAA-14 satellite and

Geostationary Environmental Satellite (GOES) observations. TOVS surface radiomet-

ric temperature estimations were extracted from the TOVS Pathfinder Path A data set

[Susskind et al., 1997]. Atmospheric corrections for the Path A data were performed

using temperature and moisture profiles derived from the Goddard Earth Observing Sys-

tem - Data Assimilation System (GEOS-DAS) general circulation model. Retrievals are

possible for cloud coverage up to 80% and retrievals should be considered a spatial av-

erage of cloud-free areas within the scene. When launched in early 1995, NOAA-14 had

a local overpass time of 13:30. It subsequently drifted to slightly later overpass times.

Consequently, TOVS afternoon surface radiometric temperature observations occurring

in 1997 and 1998 were assumed to correspond to a local time of 14:30 and observations

in 1999 to a local time of 15:30. At 96o W, local solar times of 14:30 and 15:30 corre-

spond to GMT times of 21 and 22 respectively. TOVS surface radiometric temperature

retrievals are available on a 1o x 1o lat/long resolution grid, and a rectangle containing

degree boxes between 99o and 96o W and 37o and 35o N was selected to represent the

model domain (see Figure 1). Observations within these boxes were averaged to obtain
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a single domain-averaged surface radiometric temperature. Only days in which surface

radiometric temperature retrievals were successful in at least two of the six-degree boxes

were included in the analysis. Comparisons of TOVS Ts observations with ground-based

observations typically yield root-mean-squared (RMS) differences of between 4 and 5 oK

for instantaneous measurements (Lakshmi and Susskind, 2000). Differences in monthly-

averaged Ts values tend to be near 1 to 2 oK (see e.g. Drusch and Wood [2001]) and

comparisons over longer time periods suggest the presence of little or no retrieval bias in

observations (Lakshmi and Susskind, 2000).

GOES observations offer the possibility of surface radiometric temperature observations

at a higher temporal frequency (hourly as opposed to daily) and finer spatial resolution

(2-km as opposed to 1o). Following Czajkowski et al. [1998], surface temperature retrieval

from GOES channel 4 and 5 observations were based on the split-window approach de-

scribed in Rhoads et al. [2001]. GOES radiometric surface temperature products were

taken from 1/8o degree resolution data generated for the North American Land Data As-

similation System (NLDAS). Only days in which radiometric temperature retrieval was

successful in at least 200 of the 640 1/8o pixels that comprised the domain were included in

the analysis. Ground-based validating of GOES Ts retrievals with the SGP ARM CART

area was performed as part of the NLDAS project. Spatial averages of instantaneous

GOES Ts and ground-based measurements within the entire ARM CART site yields a

RMS difference of 3.1 oK during years 1998 and 1999. Averaging Ts values to monthly

averages prior to comparison reduces RMS error levels by about half (Robock et al., 2003).

TOVS and GOES Ts retrievals can be intercompared by considering only GOES re-

trievals that occur within one hour of the daily TOVS overpass time and averaging both
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sets of retrievals up to a monthly time scale. Direct comparisons of monthly averaged

Ts values yields a RMS difference of 3.8 oK with GOES observations biased 2.3 oK high

relative to TOVS retrievals. Some of this difference is likely due to each sensor sampling

different days within the month. When determinations of cloud-free scenes are made in-

dependently by each sensor, GOES tends to be more conservation and labels fewer days

as being sufficiently cloud-free. Forcing monthly averages to be based on exactly the

same set of observation times - determined to be cloud-free by both sensors - reduces the

observed RMS difference to 2.4 oK.

3.3. VIC Model Set-up

Land surface modeling was based on the Variable Infiltration Capacity (VIC) model

[Liang et al., 1994; Cherkauer et al., 1999]. The VIC model was designed to solve the

surface water and energy balance over large grid-scales (typically > 10 km) based on ob-

servations of rainfall and incoming radiation. Partitioning of rainfall into infiltration and

surface runoff is controlled by a variable infiltration capacity curve which implicitly repre-

sents sub-grid scale heterogeneity in the infiltrative capacity of the land surface. Vertical

water movement occurs within four discrete soil layers through diffusion and drainage

processes parameterized by user specified soil hydraulic parameters. Evapotranspiration

is predicted using a Penman-Monteith calculation based on observed meteorology, vege-

tation leaf area index (LAI), and a stomatal conductance formulation which considers the

impact of soil water stress. Based on this calculation of evapotranspiration and observa-

tions of incoming radiation, the surface energy balance is numerically solved on an hourly

time step by iterating on surface temperature. The model has been successfully applied
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to the United States Southern Great Plains region by a number of researchers (see e.g.

Lohmann et al. [1998] or Abdulla et al. [1996]) .

Hourly forcing data for VIC simulations were taken from the NLDAS retrospective

forcing data set. Rainfall observations were derived from the use of NCAR Climate Pre-

diction Center (CPC) rain gage measurements to bias correct 4-km WSR-88D Doppler

radar-based precipitation estimates. Solar radiation forcing was based on the inversion

of GOES visible imagery with a short-wave radiative transfer model. Required meteoro-

logical observations for VIC (e.g. wind speed, air temperature, relative humidity, and air

pressure) were obtained from the NCEP Eta Data Assimilation System (EDAS) and used

to estimate incoming longwave radiation. Complete processing details for the NLDAS

retrospective data set can be found in Cosgrove et al. [2003].

Forcing data were used to drive VIC predictions on an hourly time step in full energy-

balance mode. The hourly resolution of the simulations and forcing data was essential

for facilitating direct comparisons between instantaneous satellite measurements of Ts

and model predictions at various points along the diurnal cycle. For each land cover

component (bare soil, grassland, and winter wheat), VIC derived a surface temperature

estimate by iteratively solving the surface energy balance. Surface temperature estimates

for each land cover type were aggregated into a single surface radiometric temperature

(Ts) through weighted averaging of surface temperature to the fourth power [Norman et

al., 1995]:

Ts = [
3∑

i=1

fiT
4
s,i]

1/4 (3)

where fi refers to the fractional extent of each land cover type.
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3.4. VIC Calibration Parameters

Table 1 lists the calibration parameters and their minimum and maximum possible

values. The seven were selected both for their importance in driving evapotranspiration

predictions as well as the high level of uncertainty in their specification at coarse spatial

scales. With the exception of the maximum baseflow rate (dsmax - see Table 1), parameters

for runoff and baseflow processes were taken from the VIC calibration work of Abdulla

et al. [1996] within the Red-Arkansas River basin. Various constitutive relationships

were also employed to relate parameters in Table 1 to additional VIC model parameters.

Soil sand (%sand - see Table 1) and clay percentages (%clay - see Table 1) were converted

into soil hydraulic conductivity, pore size distribution parameter, bubbling pressure, and

porosity values using single-variable regression relationships presented in Cosby et al.

[1984]. Soil quartz content was assumed equal to %sand and values of critical and wilting

point soil moisture were derived from soil suction curves parameterized with pore size

distribution indices and bubbling pressures derived from the Cosby et al. [1984] regression

relationships. Based on land cover classifications of the region, vegetation cover within

the study domain was classified as 85% grassland and 15% winter wheat fields. Areas with

summer crop and forage land cover types were lumped with the grassland classification

and small areas with tree and brush cover were neglected. The surface area of grass and

winter wheat roots was assumed to decay exponentially with a folding length equal to

the root density decay parameter (k−1 - see Table 1). This exponential relationship was

integrated within the three soil layers (0-15 cm, 15-45 cm, and 45-145 cm) to give the

fraction of root area in each soil layer. Typical monthly LAI cycles for both grass and

winter fields were taken from field measurements [Verma and Berry, 1999]. These observed
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annual cycles were rescaled such that their annual maximum (May for winter wheat and

July for grasslands) was equal to the calibrated maximum LAI parameter (LAImax - see

Table 1). Winter wheat fields were assumed to be fully vegetated between December and

June and completely bare between July and November. In contrast, a constant fraction

of the grassland fields (fveg - see Table 1) was specified to be bare soil. Except for the

post-harvest conversion of winter wheat fields to bare soil, roughness lengths (zo - see

Table 1) were assumed to be seasonally constant and equal for both grassland and winter

wheat land covers types.

Due to computational constraints, simulations were run as a single grid-cell containing

the entire study domain shown in Figure 1. The representation of sub-grid heterogeneity

was limited to the statistical representation of sub-grid land cover variations (i.e. winter

wheat, grassland, and bare soil surfaces) and the treatment of sub-grid infiltration capacity

fundamental to the VIC modeling concept. While relatively coarse, such a grid-size is

consistent with the original design specifications of the VIC model.

3.5. VIC Calibration Procedure

VIC calibration was against monthly summed (for fluxes) and averaged (for tempera-

tures) observations during the two-year period between October 1, 1997 and September

31, 1999. All observations and model predictions were spatially averaged over the entire

domain shown in Figure 1. To ensure that monthly averages of Ts retrievals were based

on the same temporal support as model predictions, modeled mean monthly surface tem-

perature values were obtained by averaging hourly model predictions only for time steps

at which remote observations were available. For TOVS observations, this meant that

only hourly model predictions corresponding to the single daily NOAA-14 overpass time
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were considered. All other VIC Ts predictions were discarded. Automated calibration was

performed with the Shuffled Complex Evolution algorithm developed at the University of

Arizona (SCE-UA) [Duan et al., 1992]. Following (1), G was defined to be the weighted

sum of normalized root mean square errors (NRMSE - see Section 2) in VIC model pre-

dictions relative to both surface temperature (Ts) and streamflow (Q) observations:

G = WTs NRMSETs + WQ NRMSEQ (4)

where the weights WTs and WQ are positive and sum to unity. Using the SCE-UA algo-

rithm, VIC parameters were optimized within the ranges specified in Table 1 to minimize

G. The optimization procedure was repeated for a range of WTs and WQ choices, and

remote Ts retrievals acquired from both TOVS and GOES, to approximate the Pareto set

for multi-objective {Q, Ts,GOES} and {Q, Ts,TOVS} calibration. Members these Pareto sets

were evaluated based on the accuracy of their cross-calibration ET predictions. In addi-

tion to the automated SCE-UA calibration, a Monte Carlo calibration method based on

100,000 random samples of the parameters listed in Table 1 was employed. Each random

parameter value was independently sampled from uniform distributions bounded between

the feasible parameter extremes listed in Table 1 and used to initiate a VIC model simu-

lation which was evaluated in terms of the misfit between its predictions and observations

of Q and Ts. Instead of returning a single optimal parameter set, these simulations calcu-

lated Ts and Q NRMSE fitness for a large number of randomly selected parameter sets.

Using (4), these parameter sets were then ranked for a range of WTs and WQ combinations.
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4. Results

Sections 4.1 and 4.2 compare the accuracy of VIC ET and Q predictions derived from

single-objective {Q} and {Ts} calibrations to ET and Q VIC predictions for parameter

sets within the Pareto set associated with multi-objective {Q, Ts} calibration. Section 4.1

focuses on calibration using the SCE-UA algorithm. Section 4.2 examines results for the

Monte Carlo method based on the random generation of a large number of parameter

sets.

4.1. SCE-UA Algorithm Calibration

Figure 4a describes results for the cross-calibration of VIC ET predictions using the

SCE-UA algorithm and Q and Ts observations described in Sections 3.1 and 3.2. The

abscissa shows weighting values corresponding to WTs and WQ in (4). As a result, the

figure relates cross-calibrated ET model errors for a sample of parameter solutions within

the Pareto set derived by {Q, Ts} calibration. The goodness-of-fit criteria (i.e. F in (1))

is the NRMSE measure described in Section 2.

Single objective calibration results are located at the edges of the plots in Figure 4.

{Q}, {Ts,GOES}, and {Ts,TOVS} calibration lead to cross-calibrated ET accuracies of 15.8

mm, 22.7 mm, and 24.3 mm, respectively. When restricted to single-objective calibration,

Q measurements constrain ET predictions more effectively than remote Ts observations.

Nevertheless, since direct {ET} calibration leads to an ET RMSE of 8.1 mm, the use of Q

measurements as a surrogate for direct ET calibration effectively doubles model ET error

(15.8 mm versus 7.7 mm). ET predictions are improved by multi-objective calibration

the incorporates both Q and Ts,GOES observations. Appropriate weighting of Ts,GOES and

Q NRMSE values (WTs,GOES = 0.75 and WQ = 0.25) leads to a 2.8 mm reduction in
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RMSE for VIC ET predictions relative to {Q} calibration results. This represents an 18%

reduction in total model error (2.8 mm / 15.4 mm) and a 37% reduction in the fraction

of model error attributable to calibration shortcomings (2.8 mm / 7.7 mm).

Previous calibration studies of VIC in the SGP region have noted that single-objective

{Q} calibration produces good ET predictions on a average annual basis but may lead

to seasonal errors [Abdulla et al., 1996]. The monthly time series of VIC ET results in

Figure 5 for {Q} calibration are consistent with results in Abdulla et al. [1996] with

the exception that VIC overestimation of ET occurs in the spring (as opposed to mid-

winter in Abdulla et al. [1996]) and VIC underestimation in centered on late-summer (as

opposed to fall). Seasonal ET biases occur because Q observations do not contain any

information concerning the partitioning of P−Q into ET and changes in soil water storage.

However, comparison of VIC ET results for {Q} calibration to the best {Q, Ts,GOES}

calibration result (i.e. WTs,GOES = 0.75 and WQ = 0.25) demonstrates that multi-objective

calibration incorporating Ts observations makes about a 20% reduction in RMSE levels

associated with {Q} calibration. Since Ts levels generally rise as ET falls (and vise versa),

any seasonal ET bias should be associated with a opposing bias in VIC Ts predictions.

Figures 5 suggests that this Ts bias is remotely detectable using GOES and that a partial

correction of seasonal VIC ET predictions is a by-product of calibrating model parameters

to minimize both Q and Ts error.

Reducing the calibration weighting for Q observations eventually lowers the accuracy of

VIC Q predictions. However, Figure 4b demonstrates that decreasing Q weighting relative

to Ts observations significantly degrades Q predictions only for very low Q weights. At

the minimum seen for GOES results in Figure 4a (WTs,GOES = 0.75 and WQ = 0.25), Q
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RMSE for {Q, Ts,GOES} calibration is only 0.3 mm greater than that observed for single-

objective {Q} calibration. This suggests that the improved cross-calibration of ET does

not come at the expense of Q accuracy and multi-objective calibration improves VIC’s

overall representation of the terrestrial water cycle.

The cross-calibrational value of Ts,GOES observations for VIC ET predictions demon-

strated in Figure 4a is not reflected in {Q, Ts,TOVS} calibration results. {Q, Ts,TOVS}

calibration produces consistently inferior ET results relative to single-objective {Q} cali-

bration. Key parameter contrasts underscoring the difference in TOVS and GOES results

in Figure 4 are discussed in Section 4.2.2.

4.2. Monte Carlo Results

Results in Figures 4 and 5 describe cross-calibration results for optimal fits to various

fitness criteria but give no consideration to the impact of measurement uncertainty. For

instance, Figure 6 plots a point cloud for VIC Q and ET RMSE responses derived from

100,000 randomly selected parameters values (see Section 3.5). The dotted vertical line

represents an arbitrarily chosen threshold that defines a set of points considered statisti-

cally indistinguishable from the best Q fit. Note that indistinguishable Q responses are

associated with a wide range of ET responses. Consequently, two parameter sets can give

essentially identical results for one objective but vastly different cross-calibration results

for a another objective not accounted for during calibration. Since results in Figures 4

and 5 reflect only the single best fit to observations of Ts and Q, it is unclear whether

cross-calibrated ET results are robust to reasonable levels of observational error.

4.2.1. ET Cross-calibration Results.
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Figures 6 and 7 examine the cross-calibration advantages of Ts measurements in a

more robust framework. Both figures are based on the random generation of 100,000

model parameters sets from Table 1 and the random sampling procedure discussed in

Section 3.4. Figure 6b plots ET and Ts,GOES RMSE results for the “indistinguishable” Q

responses that fall to the left of the line in Figure 6a. A statistically significant trend is

observed which suggests that Ts,GOES observations have the potential to sort previously

indistinguishable parameter sets into ones exhibiting good ET responses from those that

do not. The trend is a general property for all parameters sets exhibiting good Q fits and

cannot be ascribed to an anomalous result for any single parameter set.

Figure 7 is analogous to Figure 4 except that “optimal” parameter solutions for each

of the various weighting combinations are defined to be the 1% of the randomly selected

parameter sets which give the lowest G value in (4) for various choices of WTs and WQ. This

set of parameter solutions can be run through VIC to derive a corresponding distribution

of ET accuracies. The median, 25th, and 75th quartiles of ET RMSE distributions are

plotted in Figure 7. Consequently, ET cross-calibration results are based not just on the

single best result, but for an entire set of near-optimal, and effectively indistinguishable,

parameter solutions. Several minor differences exist between results in Figures 4 and

7. For example, {Ts,GOES} and {Ts,TOVS} calibration is associated with lower ET RMSE

relative to SCE-UA results in Figure 4, and the slight local minimum in TOVS results

seen near WQ = 0.35 in Figure 4 is not reflected in Figure 7. Despite these discrepancies,

both figures demonstrate the same basic qualitative trends. Therefore, we conclude that

the cross-calibration advantages associated with the incorporation of Ts,GOES observations

in Figures 4 and 5 are robust in nature and not an anomaly associated with the single,
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potentially unrepresentative, optimal parameter set selected by the SCE-UA algorithm.

As in Figure 4, no comparable advantages are observed for Ts,TOVS observations.

The choice of 1% threshold defining “indistinguishable” is somewhat arbitrary, but

results do not qualitatively changes for other thresholds. In addition to results presented

in Figure 7, a series of smaller Monte Carlo simulations (10,000 members) were run to

gauge the impact of raising the threshold of cloud-free Ts retrievals required to define a

single domain-averaged Ts retrieval (see Section 3.2). Doubling the required threshold

(from 2 out of 6 pixels to 4 out of 6 pixels for TOVS and from 200 out of 640 pixels to

400 out of 640 pixels for GOES) produced results essentially identical to those shown in

Figure 7. In fact, results are stable up to the point where thresholds become too stringent

to allow for more than a handful of usable retrievals in some months (6 out of 6 pixels for

TOVS and ∼550 out of 640 pixels for GOES).

4.2.2. Parameter Results.

Monte Carlo results can also be evaluated in terms of the model parameters found

to facilitate a good fit between VIC model predictions and various observation types.

Instead of returning a single “calibrated” parameter set, these results examine the range

of parameter values that can be associated with good fits to various observation types.

Figure 8 displays box and whisker plots for the 1% of 100,000 randomly selected parameter

sets with the lowest G in (4) for the relative weighting of Q and Ts,GOES at the ET RMSE

minimum in Figure 7 (WQ = 0.20 and WTs,GOES
= 0.80). Also plotted are the 1% of

randomly selected parameter sets exhibiting the best single-objective fit to ET and Q

observations. The ordinate range for plots in Figure 8 corresponds to the maximum and

minimum parameter values listed in Table 1.
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A clear tendency in Figure 8 is for calibration against different observation types to re-

turn substantially different parameter values. This is a common phenomenon in hydrologic

modeling which reflects errors in observations as well as inherent structural shortcomings

in a model’s approximation of reality (Gupta et al., 1998). Isolating the source, and im-

pact, of these parameter differences is frequently an ambiguous process. However, a key

difference between parameters associated with {Q} and {Q, Ts,GOES} calibration appears

to be the tendency for multi-objective {Q, Ts,GOES} calibration to predict lower LAImax

values and a sandier soil texture. High LAI values for {Q} calibration lead to excessively

high springtime ET predictions and, consequently, more severe water limitations on ET

later in the growing season. These water limitations are exacerbated by excessively clayey

soils whose high wilting point further restricts late summer ET magnitudes. Seasonal

biases in VIC ET predictions manifest themselves as excessively cool (warm) Ts VIC pre-

dictions in spring (summer). The critical contribution of the Ts,GOES observations within

multi-objective {Q, Ts,GOES} calibration appears to be detection of seasonal Ts errors and

the positive impact on ET predictions of correcting VIC Ts values by lowering LAImax

and %clay values while raising %sand. Unlike Ts,GOES observations, multi-objective calibra-

tion incorporating TOVS Ts observations (not shown) is unable to detect seasonal biases

in VIC Ts associated with poor ET predictions. Except for extremely low weighting of

Q observations, multi-objective {Q, Ts,TOVS} calibration yields parameters, and VIC ET

predictions, that do not differ greatly from single-objective {Q} calibration.

Comparison of ET model predictions derived with randomly selected parameter sets to

observations demonstrates that relatively well-defined parameter values can be associated

with accurate ET predictions (see Figure 8). However, there is significantly more spread
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in parameter sets exhibiting good fits to Q observations. Beven [1993] coined the term

“equifinality” is described the phenomenon of equally accurate model predictions arising

from widely varying parameter choices. Multi-objective calibration using a weighted com-

bination of Q and Ts does little to reduce parameter equifinality relative to single objective

{Q} calibration. Moving from {Q} to {Q, Ts,GOES} calibration decreases the interquartile

spread of parameters for only 3 out of 7 VIC parameters in Figure 8. In addition, with the

exception of LAImax and %clay (see discussion above), there is no trend of {Q, Ts,GOES}

calibration results becoming more consistent with {ET}-specified parameter ranges than

{Q} calibration. Consequently, while the incorporation of Ts,GOES into a multi-objective

framework calibration allows for slightly improved ET predictions, it does not does lead to

a consistent convergence of model parameters towards those found through {ET} calibra-

tion nor does it significantly alleviate parameter equifinality difficulties associated with

single-objective {Q} calibration.

5. Discussion and Conclusions

Previous calibration studies using VIC have focused on obtaining baseflow, runoff, and

soil parameters through single-objective calibration against streamflow observations [Ab-

dulla et al., 1996; Nijssen et al., 2001]. Less emphasis has been placed on calibrating

parameters related to vegetation and energy balance processes. Within the SGP region,

relatively low runoff ratios (∼15%) and a pronounced seasonal cycle in soil moisture (see

Figure 2b or Lohmann et al. [1998]) suggest that comparisons to streamflow observations

alone may not accurately constrain evapotranspiration predictions. This study focuses on

the potential for improving the calibration of large-scale land surface models by incorpo-

rating satellite-derived surface radiometric temperature retrievals into a multi-objective
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calibration framework with streamflow. The approach is evaluated over the intersection of

the SGP ARM-CART site with the state of Oklahoma (see Figure 1). The site is notable

for its quality and density of evapotranspiration observations.

Computational constraints played a large role in determining the methodology applied

to this analysis. Comparison to instantaneous surface radiometric temperature (Ts) ob-

servations required an hourly model resolution and 17,520 time steps (24*365*2) to cover

the two-year simulation period. Furthermore, construction of Figures 4 and 7 necessitated

a large number (> 50,000) of model simulations. Two principle sacrifices were necessary

to maintain computational feasibility. First, sub-domain scale heterogeneity in dynamic

model forcings (e.g. solar insolation and precipitation) and soil properties was neglected.

Second, the Pareto set for multi-objective {Q, Ts} calibration was sampled only at several

various discrete weightings of Q and Ts. The lack of a complete Pareto set retrieval limits

plotting of ET RMSE results in Figure 4 to discrete points along the abscissa. Never-

theless, the inferred curves appear smooth enough to offer some confidence that a partial

representation is sufficient to capture critical trends in ET fitness among members of the

{Q, Ts} Pareto set.

A second limitation was the accuracy of the ground-truth data sets used to evaluate

and/or calibrate VIC predictions. Comparisons of model output to observations were

limited to monthly averages for Ts and monthly sums for streamflow (Q) and evapotran-

spiration (ET ) to minimize the impact of observational error. The observational quality

of TOVS Ts retrievals (Ts,TOVS), for instance, has been questioned at time scales below

monthly [Drusch and Wood, 2001], and daily or weekly comparison to ET or Q obser-

vations would likely incorporate significant errors related to the spatial sampling of ET
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and/or the routing of Q in some of the larger basins. Consequently, comparisons at a finer

time scales - while increasing the degrees of freedom and accuracy of criteria calculations -

come at the cost of greater observational uncertainty. A monthly time-scale was therefore

chosen as a compromise between these two considerations.

Despite these limitations, Figures 4 to 7 demonstrate a modest level of improvement

associated with VIC ET predictions when GOES Ts observations (Ts,GOES) are included

with streamflow observations within a multi-objective model calibration framework. This

improvement is detectable in both automatically optimized SCE-UA results based only

on the single best fit to observations (Figure 4) and Monte Carlo results derived from the

top 1% of 100,000 random parameter choices (Figure 7). No analogous improvements are

noted for TOVS Ts observations. TOVS and GOES Ts products differ in their spatial

resolution, temporal frequency, and methods for correction of atmospheric effects. Addi-

tional work is required to identify which of these differences are critical to the contrast in

results for TOVS and GOES Ts retrievals observed in Figures 4 and 7.

No attempt is typically made in multi-objective calibration to differentiate between

various members of the Pareto set associated with a particular model and set of obser-

vations. Instead, it is assumed that all members of the set are equally appropriate and

made distinguishable only by the arbitrary selection of a particular weighting vector W

(see e.g. Gupta et al. [1998]). Our analysis deviates from this tendency by evaluating

members of the Pareto set for {Q, Ts,GOES} calibration based on the accuracy of their

ET predictions. This emphasis on ET prediction in not arbitrary. Rather, it reflects the

difficulty of measuring ET at large scales, and a desire to focus on particular applications

of the VIC model where the partitioning of net radiation into surface energy fluxes is
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the single critical model determination (e.g. coupling of VIC with a short-term weather

prediction model). More hydrological applications of VIC, which focus on the accuracy

of model Q predictions, may be better served by single-objective calibration against Q

observations. Nevertheless, is it worth noting that improvements in ET associated with

shifting calibrational weighting from Q to Ts,GOES do not generally occur at the direct

expense of Q accuracy (Figures 4b and 7b).

In parameter space, Figure 8 suggests that relatively large ranges of parameters can

be associated with acceptable {Q} fits. Direct {ET} calibration leads to more tightly

constrained parameter ranges. One desirable quality in multi-objective {Q, Ts} calibra-

tion would be an ability to focus relatively diffuse {Q} parameter results into ranges that

more closely approximate {ET} calibration. Unfortunately, this is not the case. Cali-

bration against both Q and Ts,GOES does little to reduce apparent parameter equifinality

problems associated with {Q} calibration. Therefore, despite the advantages in criteria

space associated with the inclusion of Ts,GOES observations, no clear advantageous could

be identified in parameter space. This implies a complex response surface for ET where

improved ET performance is not necessarily associated with convergence to parameter

sets derived from direct {ET} calibration.
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Figure 1. Location of the study domain, ARM-CART surface energy flux tower stations,

gauged basin outlets and the TOVS retrieval rectangle within the United States Southern Great

Plains. The study domain is taken to be the intersection of the DOE ARM-CART area with the

state of Oklahoma.
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Figure 2. a) Graph of parameter value (θ) versus fitness criteria (f1 and f2) for a simple

one-parameter multi-objective calibration case. b) Transformation of same case into f1 versus f2

fitness-space. Labeled points B and C correspond to fitness criteria results for single-objective

calibration against f1 and f2 respectively. Labeled point A corresponds to the equal weighting

of f1 and f2 for multi-objective calibration. Both graphs are modeled after Section 5.0 of Houser

et al. [2001].
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Figure 3. a) Observed monthly totals of precipitation (P ), streamflow (Q) and evapotranspira-

tion (ET ) within the study domain shown in Figure 1. b) Residual of measured fluxes (P -ET -Q)

and average observed change in top 1-meter soil moisture (∆S) over 59 Oklahoma Mesonet sites

within the model domain.
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Figure 4. a) Cross-calibration ET RMSE values for members of the Pareto set derived from

{Q, Ts,GOES} calibration using the SCE-UA algorithm. Results are shown for both TOVS and

GOES Ts retrievals. b) Same but for Q RMSE values.
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Figure 5. Time series of monthly VIC model ET predictions derived from single-objective {Q}

calibration and multi-objective {Q, Ts,GOES} calibration using WTs,GOES = 0.75 and WQ = 0.25.
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Figure 6. a) Q and ET RMSE errors for 100,000 VIC model simulations using randomly

selected parameters. b) Correlation between Ts,GOES and ET RMSE for parameter sets with Q

fitness criteria judged to be indistinguishable from the best fit (i.e. points to left of the dashed

line in Figure 6a).
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Figure 7. a) Cross-calibration ET RMSE values for the 1% of randomly selected parameter

sets with the lowest G values in (4) for a range of WTs and WQ choices. Results are shown for

both TOVS and GOES Ts retrievals. b) Same but for Q RMSE values.
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Figure 8. Box and whisker plot for the 1% of randomly selected parameter with the highest

fitness (i.e. lowest NRMSE) for Monte-Carlo based {Q}, {ET}, and {Q, Ts,GOES} calibration.

{Q, Ts,GOES} results are based on the relative weighting of Q and Ts,GOES NRMSE in (4) that led

to the minimum for ET error in Figure 7 (WQ = 0.20 and WTs,GOES
= 0.80).
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Table 1. Calibrated parameters and their maximum and minimum possible values. The given

maximum/minimum range represents limited knowledge of parameter values prior to calibration.

Values for LAImax, zo, and k−1 are assumed equal for both grassland and winter wheat land cover

types while fveg values apply only to grassland areas. See Section 3.4 for details.

Parameter Explanation Units Minimum Maximum
LAImax Annual maximum LAI - 1.0 6.0
%sand Soil sand percentage - 5.0 90
%clay Soil clay pPercentage - 5.0 60
zo Surface roughness length m 0.01 0.20
fveg Vegetation fraction - 0.60 1.00
k−1 Root density decay m 0.10 0.70
dsmax Maximum baseflow rate mm day−1 0.01 30.0
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